Science.gov

Sample records for csti high capacity

  1. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  3. The NASA CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1991-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  4. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  5. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  6. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  7. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  8. Programmatic status of NASA's CSTI High Capacity Power Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Department Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  9. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    SciTech Connect

    Dudenhoefer, J.E.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  10. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    SciTech Connect

    Shwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1994-09-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets.

  11. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  12. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  13. High Information Capacity Quantum Imaging

    DTIC Science & Technology

    2014-09-19

    High Capacity Quantum Imaging Robert W. Boyd, John C. Howell Department of Physics and Astronomy , University of Rochester, Rochester, New York, 14627...breadth of fields from magnetic resonance imaging [83] to radio astronomy [84] to entanglement characterization [85, 86]. B. Adapting Single Photon...L. Starck, and R. Ottensamer, “Compressed sensing in astronomy ,” Selected Topics in Signal Processing, IEEE Journal of 2, 718–726 (2008). [85] S. T

  14. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  15. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  16. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  17. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  18. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  19. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  20. High-Capacity Communications from Martian Distances

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali

    2007-01-01

    High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.

  1. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  2. High capacity heat pipe performance demonstration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A high capacity heat pipe which will operate in one-g and in zero-g is investigated. An artery configuration which is self-priming in one-g was emphasized. Two artery modifications were evolved as candidates to achieve one-g priming and will provide the very high performance: the four artery and the eight artery configurations. These were each evaluated analytically for performance and priming capability. The eight artery configuration was found to be inadequate from a performance standpoint. The four artery showed promise of working. A five-inch long priming element test article was fabricated using the four artery design. Plexiglas viewing windows were made on each end of the heat pipe to permit viewing of the priming activity. The five-inch primary element would not successfully prime in one-g. Difficulties on priming in one-g raised questions about zero-g priming. Therefore a small test element heat pipe for verifying that the proposed configuration will self-prime in zero-g was fabricated and delivered.

  3. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  4. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  5. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  6. High Five: Building Capacity for School Excellence

    ERIC Educational Resources Information Center

    McCullen, Caroline

    2006-01-01

    In 2004, five North Carolina school districts combined forces with five corporate foundations to leverage their collective wisdom and develop regional strategies for school improvement. The result was the High Five Regional Partnership for High School Excellence, a corporate-public sector effort that had the common goal of improving graduation…

  7. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everwhere else around the annulus. The rotation of the sorbent bed causes the separation components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m0-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory.

  8. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everywhere else around the annulus. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory. 17 references, 9 figures, 1 table.

  9. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everywhere else around the annulus. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory. 9 figures, 1 table.

  10. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  11. Exploring the Characteristics of Principals in High Leadership Capacity Schools

    ERIC Educational Resources Information Center

    Bergstrom, Leslie C.

    2011-01-01

    This qualitative study examines the characteristics of principals in high leadership capacity schools. Lambert (1998) defines leadership capacity as broad-based, skillful participation in the work of leadership. Data were collected from a total of nine study participants, one Assistant Superintendent, two principals, and six certified professional…

  12. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  13. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  14. High capacity anode materials for lithium ion batteries

    DOEpatents

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  15. High-capacity transmission over multi-core fibers

    NASA Astrophysics Data System (ADS)

    Awaji, Yoshinari; Sakaguchi, Jun; Puttnam, Benjamin J.; Luís, Ruben S.; Mendinueta, Jose Manuel Delgado; Klaus, Werner; Wada, Naoya

    2017-02-01

    The ultimate transmission capacity of standard single-mode fiber (SSMF) is limited by fiber nonlinearity which prevents increasing transmission power and finite amplifier bandwidth. In order to overcome such limitation, space-division multiplexing (SDM) has been proposed. Multi-core fiber (MCF) is a strong candidate to realize practical SDM transmission system because of high isolation of individual spatial modes sharing the same cladding, which enables ultra-high capacity transmission in cooperation with wide band WDM.

  16. High-capacity dense space division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Mizuno, Takayuki; Miyamoto, Yutaka

    2017-02-01

    In this paper, we review space division multiplexing (SDM) transmission experimental demonstrations and associated technologies. In past years, SDM achieved high capacity transmission through increased spatial multiplicity, and long-haul transmission through improved transmission performance. More recently, dense SDM (DSDM) with a large spatial multiplicity exceeding 30 was demonstrated with multicore technology. Various types of multicore and multimode SDM fibers, amplification, and spatial multi/demultiplexers have helped achieve high-capacity DSDM transmission.

  17. Holographic memory module with ultra-high capacity and throughput

    SciTech Connect

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  18. High methane storage capacity in aluminum metal-organic frameworks.

    PubMed

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M

    2014-04-09

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm(3) cm(-3) at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm(3) cm(-3) under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm(3) cm(-3), and between 5 and 80 bar, 230 cm(3) cm(-3).

  19. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    PubMed Central

    2015-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm3 cm–3 under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm3 cm–3, and between 5 and 80 bar, 230 cm3 cm–3. PMID:24661065

  20. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    NASA Astrophysics Data System (ADS)

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g‑1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g‑1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g‑1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material.

  1. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    PubMed Central

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g−1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g−1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g−1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material. PMID:28059110

  2. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  3. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  4. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  5. High Capacity Two-Stage Coaxial Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Jaco, C.; Nguyen, T.; Tward, E.

    2008-03-01

    The High Capacity Cryocooler Qualification unit (HCCQ) provides large capacity cooling at both 35 K and 85 K for space applications in which focal planes and optics require cooling. The compressor is scaled from the High Energy Cryocooler (HEC) compressor and is capable of using input powers up to 700 W. The two coaxial pulse tube cold heads are integrated with the compressor into an integral cryocooler. A thermal strap between the cold heads improves efficiency and can be positioned to provide cooling for a wide range of applied loads. The cooler will be acceptance tested at space qualification levels that include thermal performance mapping over a range of reject temperatures and power levels and launch vibration testing.

  6. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.; Cerza, M. R., Jr.; Hall, J. B.

    1986-01-01

    High capacity honeycomb panel heat pipes were investigated as heat rejection radiators on future space platforms. Starting with a remnant section of honeycomb panel measuring 3.05-m long by 0.127-m wide that was originally designed and built for high-efficiency radiator fins, features were added to increase thermal transport capacity and thus permit test evaluation as an integral heat transport and rejection radiator. A series of subscale panels were fabricated and reworked to isolate individual enhancement features. Key to the enhancement was the addition of a liquid sideflow that utilizes pressure priming. A prediction model was developed and correlated with measured data, and then used to project performance to large, space-station size radiators. Results show that a honeycomb panel with 5.08-cm sideflow spacing and core modification will meet the design load of a 50 kW space heat rejection system.

  7. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks

    SciTech Connect

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M.

    2014-08-14

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm3 cm–3 under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm3 cm–3, and between 5 and 80 bar, 230 cm3 cm–3.

  8. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  9. High-capacity hydrogen storage in Al-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  10. Colloidal silica films for high-capacity DNA arrays

    NASA Astrophysics Data System (ADS)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  11. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  12. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  13. High-capacity turbo-Brayton cryocoolers for space applications

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; McCormick, John A.

    2006-02-01

    Long-life, high-capacity cryocoolers may be needed for future space systems utilizing stored cryogens. The cooling requirements for planetary and extraterrestrial exploration missions, extended-life orbital transfer vehicles, and space depots may range from 10 W to 50 W at temperatures between 20 K and 120 K. Turbo-Brayton cryocoolers are ideal for these systems because they are lightweight, compact and very efficient at high cooling loads due to the high power density of rotary machines. These benefits are in addition to their inherent attributes of high reliability; negligible vibration; long, maintenance-free lifetimes; flexibility in integrating with spacecraft systems; and ability to directly cool remote and distributed loads. To date, space-borne turbo-Brayton technology has been developed for low cooling loads. The first space implementation of a turbo-Brayton cryocooler was in the NICMOS Cooling System (NCS). The NCS has been operational on the Hubble Space Telescope for over 3.5 years without any degradation. It provides 7 W of cooling at 70 K. The scaling of the technology to higher capacities is the subject of this paper.

  14. High-capacity composite adsorbents for nucleic acids.

    PubMed

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well.

  15. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  16. High-capacity quantum Fibonacci coding for key distribution

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  17. Development of High Capacity Split Stirling Cryocooler for HTS

    NASA Astrophysics Data System (ADS)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  18. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  19. Work capacity of permanent residents of high altitude.

    PubMed

    Marconi, Claudio; Marzorati, Mauro; Cerretelli, Paolo

    2006-01-01

    Tibetan and Andean natives at altitude have allegedly a greater work capacity and stand fatigue better than acclimatized lowlanders. The principal aim of the present review is to establish whether convincing experimental evidence supports this belief and, should this be the case, to analyze the possible underlying mechanisms. The superior work capacity of high altitude natives is not based on differences in maximum aerobic power (V(O2 peak)), mL kg(-1)min(-1)). In fact, average V (O2 peak) of both Tibetan and Andean natives at altitude is only slightly, although not significantly, higher than that of Asian or Caucasian lowlanders resident for more than 1 yr between 3400 and 4700 m (Tibetans, n = 152, vs. Chinese Hans, n = 116: 42.4 +/- 3.4 vs. 39.2 +/- 2.6 mL kg(-1)min(-1), mean +/- SE; Andeans, n = 116, vs. Caucasians, n = 70: 47.1 +/- 1.7 vs. 41.6 +/- 1.2 mL kg(-1)min(-1)). However, compared to acclimatized lowlanders, Tibetans appear to be characterized by a better economy of cycling, walking, and running on a treadmill. This is possibly due to metabolic adaptations, such as increased muscle myoglobin content and antioxidant defense. All together, the latter changes may enhance the efficiency of the muscle oxidative metabolic machinery, thereby supporting a better prolonged submaximal performance capacity compared to lowlanders, despite equal V(O2 peak). With regard to Andeans, data on exercise efficiency is scanty and controversial and, at present, no conclusion can be drawn as to the origin of their superior performance.

  20. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    PubMed

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  1. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects

    PubMed Central

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113

  2. High discharge capacity solid composite polymer electrolyte lithium battery

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; Chuang, Y. C.; Su, J. H.; Yu, H. C.; Chen-Yang, Y. W.

    2011-03-01

    In this study, a series of nanocomposite polymer electrolytes (CPEs), PAN/LiClO4/SAP, with high conductivity are prepared based on polyacrylonitrile (PAN), LiClO4 and low content of the silica aerogel powder (SAP) prepared by the sol-gel method with ionic liquid (IL) as the template. The effect of addition of SAP on the properties of the CPEs is investigated by FTIR, AC impedance, linear sweep voltagrams and cyclic voltammetry measurements as well as the charge-discharge performance. It is found that the ionic conductivity of the CPE is significantly improved by addition of SAP. The maximum ambient ionic conductivity of CPEs is about 12.5 times higher than that without addition of SAP. The results of the voltammetry measurements of CPE-3, which contained 3 wt% of SAP, show that the anodic and cathodic peaks are well maintained after 100 cycles, showing excellent electrochemical stability and cyclability over the potential range between 0 V and 4 V vs. Li/Li+. Besides, the room temperature discharge capacity measured at 0.5C for the coin cell based on CPE-3 is 120 mAh g-1 and the capacity is retained after 20 cycles discharge, indicating the potential for practical use. This is perhaps the first report of the room temperature charge-discharge performance on the solid composite polymer electrolyte to the best of our knowledge.

  3. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  4. Testing of a high capacity research heat pipe

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests were performed on a high-capacity channel-wick heat pipe to assess the transport limitations of v-grooves and the effects of boiling. The results showed that transport can vary significantly (less than 50 W) under similar conditions and the continuous boiling was observed at power levels as low as 40 W. In addition, some evidence was found to support the predictions using a groove transport model which shows that transport increases with lower groove densities and longer evaporators. However, due to transport variations, these results were not consistent throughout the program. When a glass fiber wick was installed over the grooves, a relatively low transport level was achieved (80 to 140 W). Based on these results and the identification of some potential causes for them, several design suggestions were recommended for reducing the possibility of boiling and improving groove transport.

  5. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    PubMed Central

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; Tour, James M.; Kent, Thomas A.

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS such as superoxide and hydroxyl radicals, show no reactivity toward nitric oxide, and can be functionalized with targeting moieties without loss of activity. Given these properties, we propose that PEG-HCCs offer an exciting new area of study for treatment of numerous ROS-induced human pathologies. PMID:25175886

  6. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  7. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOEpatents

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  8. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    NASA Technical Reports Server (NTRS)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  9. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  10. An overview of the Lewis Research Center CSTI thermal management program

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1991-01-01

    An integrated multi-element project effort, currently being carried out at NASA LeRC, for the development of space heat rejection subsystems, with special emphasis on lightweight radiators, in support of SEI power system technology, and in particular the SP-100 program, is reported. Principal project elements include both contracted and in-house efforts. Included in the first category are two contracts aimed at the development of advanced radiator concepts, and demonstration of a flexible fabric heat pipe radiator concept. In-house work is designed to guide and support the overall program by system integration studies, heat pipe testing and analytical code development, radiator surface morphology alteration for emissivity enhancement, and composite materials research focused on the development of lightweight high conductivity fins.

  11. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  12. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  13. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  14. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  15. New optical fibres for high-capacity optical communications

    PubMed Central

    Richardson, D. J.

    2016-01-01

    Researchers are within a factor of 2 or so from realizing the maximum practical transmission capacity of conventional single-mode fibre transmission technology. It is therefore timely to consider new technological approaches offering the potential for more cost-effective scaling of network capacity than simply installing more and more conventional single-mode systems in parallel. In this paper, I review physical layer options that can be considered to address this requirement including the potential for reduction in both fibre loss and nonlinearity for single-mode fibres, the development of ultra-broadband fibre amplifiers and finally the use of space division multiplexing. PMID:26809569

  16. What Builds Student Capacity in an Alternative High School Setting?

    ERIC Educational Resources Information Center

    Lind, Candace

    2013-01-01

    Good mental health is a learning enabler for adolescents, demonstrating a reciprocal relationship between mental health and learning outcomes. This article describes a Canadian participatory action research partnership between students, staff and a nurse researcher working together to explore student capacity-building experiences at an alternative…

  17. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  18. High Capacity Pouch-Type Li-air Batteries

    SciTech Connect

    Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

    2010-05-05

    The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2¬ diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

  19. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  20. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific

    PubMed Central

    Weiner, Kevin S.; Grill-Spector, Kalanit

    2015-01-01

    Prevailing hierarchical models propose that temporal processing capacity—the amount of information that a brain region processes in a unit time—decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. SIGNIFICANCE STATEMENT Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  1. Ultimate strength of high-load-capacity composite bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Lightfoot, M. C.

    1979-01-01

    Presented are the results of a series of tests initiated to obtain baseline data on the load-carrying capacity of bolted joints designed to carry large loads, specifically up to 222 kN (50 kips). The major testing purposes were to determine the load carrying capacity as a function of the width and thickness of the joint and the diameter and number of bolts, and to observe the failure mode. A total of 100 tests were conducted on three different specimen configurations. The specimens were fabricated from a T300/5208 fiber/resin system in a quasi-isotropic lay-up. The results presented indicate that for a given ratio of specimen width to hole diameter, the specimens with the smaller holes sustained a higher net-section tensile stress before failure. In addition, for a given ratio of specimen width to hole diameter, the thinner specimens withstood a higher net-section stress. No attempt has been made to correlate the results with theoretical predictions.

  2. Pulmonary artery pressure limits exercise capacity at high altitude.

    PubMed

    Naeije, R; Huez, S; Lamotte, M; Retailleau, K; Neupane, S; Abramowicz, D; Faoro, V

    2010-11-01

    Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day(-1) for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake (V'(O(2),max)). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V'(O(2),max), by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V'(O(2),max) were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects.

  3. Resource-Efficient Data-Intensive System Designs for High Performance and Capacity

    DTIC Science & Technology

    2015-09-01

    Resource- Efficient Data-Intensive System Designs for High Performance and Capacity Hyeontaek Lim CMU-CS-15-132 September 2015 School of Computer...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Resource- Efficient Data-Intensive System Designs for High Performance and Capacity 5a. CONTRACT...query processing and 5.7X higher capacity than the previous state-of-the-art system . It employs new memory- efficient indexing schemes including ECT

  4. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  5. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  6. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  7. Development of a high capacity longwall conveyor. Final technical report

    SciTech Connect

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  8. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance.

    PubMed

    Hu, Wei; Jin, Xian; Zhang, Peng; Yu, Qiang; Yin, Guizhi; Lu, Yi; Xiao, Hongbing; Chen, Yueguang; Zhang, Dadong

    2016-03-23

    Accurate measurements of autonomic nerve regulation in heart failure (HF) were unresolved. The discriminating performance of deceleration and acceleration capacities of heart rate in HF was evaluated in 130 HF patients and 212 controls. Acceleration capacity and deceleration capacity were independent risk factors for HF in males, evaluated by multiple logistic regression analysis, with odds ratios (ORs) of 5.94 and 0.13, respectively. Acceleration capacity was also an independent risk factor for HF in females, with an OR of 8.58. Deceleration capacity was the best cardiac electrophysiological index to classify HF in males, with an area under the receiver operating characteristic curve (AUC) of 0.88. Deceleration capacity was the best classification factor of HF in females with an AUC of 0.97, significantly higher than even left ventricular ejection fraction (LVEF). Acceleration capacity also showed high performance in classifying HF in males (0.84) and females (0.92). The cut-off values of deceleration capacity for HF classification in males and females were 4.55 ms and 4.85 ms, respectively. The cut-off values of acceleration capacity for HF classification in males and females were -6.15 ms and -5.75 ms, respectively. Our study illustrates the role of acceleration and deceleration capacity measurements in the neuro-pathophysiology of HF.

  9. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance

    PubMed Central

    Hu, Wei; Jin, Xian; Zhang, Peng; Yu, Qiang; Yin, Guizhi; Lu, Yi; Xiao, Hongbing; Chen, Yueguang; Zhang, Dadong

    2016-01-01

    Accurate measurements of autonomic nerve regulation in heart failure (HF) were unresolved. The discriminating performance of deceleration and acceleration capacities of heart rate in HF was evaluated in 130 HF patients and 212 controls. Acceleration capacity and deceleration capacity were independent risk factors for HF in males, evaluated by multiple logistic regression analysis, with odds ratios (ORs) of 5.94 and 0.13, respectively. Acceleration capacity was also an independent risk factor for HF in females, with an OR of 8.58. Deceleration capacity was the best cardiac electrophysiological index to classify HF in males, with an area under the receiver operating characteristic curve (AUC) of 0.88. Deceleration capacity was the best classification factor of HF in females with an AUC of 0.97, significantly higher than even left ventricular ejection fraction (LVEF). Acceleration capacity also showed high performance in classifying HF in males (0.84) and females (0.92). The cut-off values of deceleration capacity for HF classification in males and females were 4.55 ms and 4.85 ms, respectively. The cut-off values of acceleration capacity for HF classification in males and females were −6.15 ms and −5.75 ms, respectively. Our study illustrates the role of acceleration and deceleration capacity measurements in the neuro-pathophysiology of HF. PMID:27005970

  10. Fast High Capacity Annular Gas Puff Valve Design Concept

    NASA Astrophysics Data System (ADS)

    Ruden, Edward

    2000-10-01

    A fast opening gas valve design concept is presented that can theoretically inject a few grams of D2 gas radially outward into a coaxial annular vacuum region with a radius of about 10 cm in less that 100 μ s. The concept employs a single turn 20-30 T pulsed magnetic field coil that axially accelerates an Mg alloy ring, which seals a gas plenum, to high velocity, releasing the gas. Both coil and ring are profiled to minimize stress in the ring. Such a device could be used to supply the initial gas load for a proposed 5 MJ Dense Plasma Focus driven by AFRL's Shiva Star Capacitor bank. The intent here is keep the vacuum current feed insulator under high vacuum during the discharge to avoid surface breakdown. Alternatively, a high energy rep ratable plasma flow opening switch could be supplied with such a valve. This work is funded by the USAF.

  11. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    SciTech Connect

    Jenkin, Thomas; Beiter, Philipp; Margolis, Robert

    2016-02-11

    implementing capacity markets that provide both adequate operational and investment incentives, particularly under high-VRE scenarios with greater need for flexible capacity.

  12. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    NASA Astrophysics Data System (ADS)

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-10-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  13. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  14. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  15. An agile high-capacity FDMA digital satellite network

    NASA Astrophysics Data System (ADS)

    Hawkins, R. B.; Johannes, V. I.; Lowell, R.

    A centrally controlled digital transmission satellite network has been designed for High Speed Switched Digital Service (HSSDS), which uses both satellite and earth transmission facilities to provide point-to-point digital trunks on a reservation basis. HSSDS customers connect via 1.544 Mb/s loops to the nodes where switches are located, and the FDMA system employed offers 24 one-way 1.544 Mb/s trunks per satellite transponder.

  16. Capacity fade study of lithium-ion batteries cycled at high discharge rates

    NASA Astrophysics Data System (ADS)

    Ning, Gang; Haran, Bala; Popov, Branko N.

    Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2 C and 3 C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1 C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3 C) showed the largest internal resistance increase of 27.7% relative to the resistance of the fresh cells. The rate capability losses were proportional with the increase of discharge rates. Half-cell study and material and charge balances were used to quantify the capacity fade due to the losses of primary active material (Li +), the secondary active material (LiCoO 2/C)) and rate capability losses. It was found that carbon with 10.6% capacity loss after 300 cycles dominates the capacity fade of the whole cell at high discharge rates (3 C). A mechanism is proposed which explains the capacity fade at high discharge rates.

  17. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  18. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  19. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  20. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    PubMed

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ((1)H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  1. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  2. Reconfigurable high-speed optical signal processing and high-capacity optical transmitter

    NASA Astrophysics Data System (ADS)

    Chitgarha, Mohammad Reza

    The field of optics and photonics enables several technologies including communication, bioimaging, spectroscopy, Ladars, microwave photonics and data processing [1-139]. The ability to use and manipulate large amounts of data is transforming many vital areas of society. The high capacity that optics brought to communications might also bring advantages to increase performance in signal processing by using a novel all-optical implementation of a tapped-delay-line, a fundamental building block for digital signal processing. This all-optical alternative provides real-time processing of amplitude- and phase-encoded optical fields, such that the overall potential speed-up is 10-100 fold faster than individual electronic processors with 5 GHz clock speeds. It can also enhance the optical data generation and transmission techniques by using different optical nonlinear processes to achieve higher baud rate data with more complex modulation format. Here, we demonstrate a reconfigurable high- speed optical tapped-delay-line, enabling several fundamental real-time signal processing functions such as equalization, correlation and discrete Fourier transform. Using nonlinear optics and dispersive elements, continuous tunability in time, amplitude and phase of the tapped-delay-line can be achieved at high speed. We also demonstrate a reconfigurable optical generation of higher-order modulation formats including pulse-amplitude-modulation (PAM) signals and quadrature-amplitude-modulation (QAM) signals [140-195].

  3. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High expansion foam devices; minimum capacity... Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-10 High expansion... as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06...

  4. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High expansion foam devices; minimum capacity... Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-10 High expansion... as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06...

  5. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High expansion foam devices; minimum capacity... Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-10 High expansion... as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06...

  6. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High expansion foam devices; minimum capacity... Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-10 High expansion... as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06...

  7. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High expansion foam devices; minimum capacity... Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-10 High expansion... as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06...

  8. High-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes

    NASA Astrophysics Data System (ADS)

    Ohsaki, Takahisa; Kanda, Motoya; Aoki, Yoshiyasu; Shiroki, Hiroyuki; Suzuki, Shintaro

    We have developed high-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber (MCF) as an anode material. The graphitized MCF is a highly graphitized carbon fiber with a radial-like texture in the cross section. This structure contributes to the rapid diffusion of lithium ions inside the carbon fiber. The diffusion coefficient of lithium ions in the graphitized MCF was one order of magnitude larger than those for graphite, resulting in an excellent high-rate performance of the carbon electrode. The graphitized MCF anode showed larger capacity, a higher rate capability, and better reversibility than the graphite anode. The 863448 size (8.6 mm × 34 mm × 48 mm) prismatic cell with the graphitized MCF anode exhibited a large capacity of > 1000 mAh. At 3 A discharge, the prismatic cell had 95% of its capacity at 0.5 A discharge with a mid-discharge voltage of 3.35 V. The cell maintained > 85% of its initial capacity after 500 cycles and showed high capacity at -20 °C. It has thus been demonstrated that the prismatic cell using the graphitized MCF anode has excellent performance, and is an attractive choice for the power sources of cellular phones and other appliances.

  9. High capacity image steganography method based on framelet and compressive sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Moyan; He, Zhibiao

    2015-12-01

    To improve the capacity and imperceptibility of image steganography, a novel high capacity and imperceptibility image steganography method based on a combination of framelet and compressive sensing (CS) is put forward. Firstly, SVD (Singular Value Decomposition) transform to measurement values obtained by compressive sensing technique to the secret data. Then the singular values in turn embed into the low frequency coarse subbands of framelet transform to the blocks of the cover image which is divided into non-overlapping blocks. Finally, use inverse framelet transforms and combine to obtain the stego image. The experimental results show that the proposed steganography method has a good performance in hiding capacity, security and imperceptibility.

  10. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  11. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  12. Highly precise experimental device for determining the heat capacity of liquids under pressure

    SciTech Connect

    Gonzalez-Salgado, D.; Valencia, J. L.; Troncoso, J.; Carballo, E.; Peleteiro, J.; Romani, L.; Bessieres, D.

    2007-05-15

    An experimental device for making isobaric heat capacity measurements of liquids under pressure is presented. The device is an adaptation of the Setaram micro-DSC II atmospheric-pressure microcalorimeter, including modifications of vessels and a pressure line allowing the pressure in the measurement system to be set, controlled, and stabilized. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very accurate heat capacity measurements under pressure to be made. The relative uncertainty in the isobaric molar heat capacity measurements provided by the new device is estimated to be 0.08% at atmospheric pressure and 0.2% at higher levels. The device was validated from isobaric molar heat capacity measurements for hexane, nonane, decane, undecane, dodecane, and tridecane, all of which were highly consistent with reported data. It also possesses a high sensitivity as reflected in its response to changes in excess isobaric molar heat capacity with pressure, which were examined in this work for the first time by making heat capacity measurements throughout the composition range of the 1-hexanol+n-hexane system. Finally, preliminary measurements at several pressures near the critical conditions for the nitromethane+2-butanol binary system were made that testify to the usefulness of the proposed device for studying critical phenomena in liquids under pressure.

  13. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    SciTech Connect

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs.

  14. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    SciTech Connect

    D'Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  15. Improved Performance and Safety for High Energy Batteries Through Use of Hazard Anticipation and Capacity Prediction

    NASA Technical Reports Server (NTRS)

    Atwater, Terrill

    1993-01-01

    Prediction of the capacity remaining in used high rate, high energy batteries is important information to the user. Knowledge of the capacity remaining in used batteries results in better utilization. This translates into improved readiness and cost savings due to complete, efficient use. High rate batteries, due to their chemical nature, are highly sensitive to misuse (i.e., over discharge or very high rate discharge). Battery failure due to misuse or manufacturing defects could be disastrous. Since high rate, high energy batteries are expensive and energetic, a reliable method of predicting both failures and remaining energy has been actively sought. Due to concerns over safety, the behavior of lithium/sulphur dioxide cells at different temperatures and current drains was examined. The main thrust of this effort was to determine failure conditions for incorporation in hazard anticipation circuitry. In addition, capacity prediction formulas have been developed from test data. A process that performs continuous, real-time hazard anticipation and capacity prediction was developed. The introduction of this process into microchip technology will enable the production of reliable, safe, and efficient high energy batteries.

  16. High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes.

    PubMed

    Liu, Jinyun; Chen, Xi; Kim, Jinwoo; Zheng, Qiye; Ning, Hailong; Sun, Pengcheng; Huang, Xingjiu; Liu, Jinhuai; Niu, Junjie; Braun, Paul V

    2016-07-13

    High volumetric energy density secondary batteries are important for many applications, which has led to considerable efforts to replace the low volumetric capacity graphite-based anode common to most Li-ion batteries with a higher energy density anode. Because most high capacity anode materials expand significantly during charging, such anodes must contain sufficient porosity in the discharged state to enable the expansion, yet not excess porosity, which lowers the overall energy density. Here, we present a high volumetric capacity anode consisting of a three-dimensional (3D) nanocomposite formed in only a few steps which includes both a 3D structured Sn scaffold and a hollow Sn sphere within each cavity where all the free Sn surfaces are coated with carbon. The anode exhibits a high volumetric capacity of ∼1700 mA h cm(-3) over 200 cycles at 0.5C, and a capacity greater than 1200 mA h cm(-3) at 10C. Importantly, the anode can even be formed into a commercially relevant ∼100 μm thick form. When assembled into a full cell the anode shows a good compatibility with a commercial LiMn2O4 cathode. In situ TEM observations confirm the electrode design accommodates the necessary volume expansion during lithiation.

  17. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  18. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stabilitymore » and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  19. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    SciTech Connect

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.

  20. High capacity digital radio system family for the 18 GHz band

    NASA Astrophysics Data System (ADS)

    Otremba, K.; Steinkamp, J.; Thaler, H.-J.; Vogel, K.

    A highly modular family of large-capacity radio relay systems designed for the channel allocation plans of the 18-GHz band is presented. It makes use of 16-QAM and cochannel operation and provides high spectrum efficiency up to 6.8 b/s/Hz. Indirect modulation with spectrum shaping at IF based on a highly sophisticated SAW filter technology is combined with a multiple IF carrier approach, so that a transmission capacity of up to 1.12 Gb/s per RF and a maximum band capacity of 4.5 Gb/s is achieved. The intended use of this family is the extension of optical filter routes and application in densely meshed trunk and regional networks, especially where frequency coordination problems must be solved.

  1. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  2. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Jizhang; Yang, Li; Rousidan, Saibihai; Fang, Shaohua; Zhang, Zhengxi; Hirano, Shin-Ichi

    2013-10-01

    Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1.Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1. Electronic supplementary information (ESI) available: SEM images; N2 adsorption/desorption isotherm; long-term cycling performance at 500 mA g-1 comparison with other literature. See DOI: 10.1039/c3nr03955b

  3. Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.

    1986-01-01

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.

  4. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro.

    PubMed

    Jimenez-Alvarez, D; Giuffrida, F; Vanrobaeys, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-05-28

    Assays comprising three probes for different mechanisms of antioxidant activity in food products have been modified to allow better comparison of the contributions of the different mechanisms to antioxidant capacity (AOC). Incorporation of a common format for oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and iron(II) chelating activity (ICA) assays using 96-well microplates provides a comprehensive and high-throughput assessment of the antioxidant capacity of food extracts. The methods have been optimized for aqueous extracts and validated in terms of limit of quantification (LoQ), linearity, and precision (repeatability and intermediate reproducibility). In addition, FRAP and ORAC assays have been validated to assess AOC for lipophilic extracts. The relative standard deviation of repeatability of the methods ranges from 1.2 to 6.9%, which is generally considered to be acceptable for analytical measurement of AOC by in vitro methods. Radical scavenging capacity, reducing capacity, and iron chelating properties of olive mill wastewaters (OMWW), oregano, and parsley were assessed using the validated methods. OMWW showed the highest radical scavenging and reducing capacities, determined by ORAC and FRAP assays, respectively, followed by oregano and parsley. The ability to chelate Fe (2+) was, in decreasing order of activity ( p > 0.05) parsley congruent with oregano > OMWW. Total phenol content, determined by the Folin-Ciocalteu method, correlated to the radical scavenging and reducing capacities of the samples but not to their chelating properties. Results showed that the optimized high-throughput methods provided a comprehensive and precise determination of the AOC of lipophilic and hydrophilic food extracts in vitro.

  5. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.

    PubMed

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J; Hong, Seung Sae; Cui, Yi

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li(2)S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO(3) additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy.

  6. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation

    PubMed Central

    Riley, Nicholas M.; Mullen, Christopher; Weisbrod, Chad R.; Sharma, Seema; Senko, Michael W.; Zabrouskov, Vlad; Westphall, Michael S.; Syka, John E.P.; Coon, Joshua J.

    2015-01-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately three fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase. PMID:26589699

  7. Associations between Attitudes toward Physical Education and Aerobic Capacity in Hungarian High School Students

    ERIC Educational Resources Information Center

    Kaj, Mónika; Saint-Maurice, Pedro F.; Karsai, István; Vass, Zoltán; Csányi, Tamás; Boronyai, Zoltán; Révész, László

    2015-01-01

    Purpose: The purpose of this study was to create a physical education (PE) attitude scale and examine how it is associated with aerobic capacity (AC). Method: Participants (n = 961, aged 15-20 years) were randomly selected from 26 Hungarian high schools. AC was estimated from performance on the Progressive Aerobic Cardiovascular and Endurance Run…

  8. Supporting Leadership Development: An Examination of High School Principals' Efforts to Develop Leaders' Personal Capacities

    ERIC Educational Resources Information Center

    Huggins, Kristin Shawn; Klar, Hans W.; Hammonds, Hattie L.; Buskey, Frederick C.

    2016-01-01

    In this article, we report findings from an exploratory, qualitative study in which we used a constructivist lens to examine how two high school principals endeavored to develop the personal capacities of teachers and other leaders in their schools. We collected data from semistructured interviews with the principals and three other leaders from…

  9. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  10. Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity.

    PubMed

    Lu, Zhisong; Liu, Yingshuai; Hu, Weihua; Lou, Xiong Wen David; Li, Chang Ming

    2011-09-14

    We report a branched polyethyleneimine (BPEI)-quantum dot (QD) based rewritable fluorescent system with a multicolor recording mode, in which BPEI is both QD-multicolor patterning "writer" and data erasing "remover". This method could write distinct colors from size-tailored QDs to represent large numbers of logic states for high data storage capacity.

  11. High-Capacity Photorefractive Neural Network Implementing a Kohonen Topological Map

    NASA Astrophysics Data System (ADS)

    Frauel, Yann; Pauliat, Gilles; Villing, André; Roosen, Gérald

    2001-10-01

    We designed and built a high-capacity neural network based on volume holographic interconnections in a photorefractive crystal. We used this system to implement a Kohonen topological map. We describe and justify our optical setup and present some experimental results of self-organization in the learning database.

  12. Principals Fostering the Instructional Leadership Capacities of Department Chairs: A Strategy for Urban High School Reform

    ERIC Educational Resources Information Center

    Klar, Hans W.

    2013-01-01

    A growing body of literature has highlighted the affordances of distributive forms of instructional leadership as a means to broaden and deepen instructional leadership capacity within schools. Yet, specifically how the capabilities of such key leaders as high school department chairs can be fostered to realize enhanced instructional capacity…

  13. High-capacity packet-switched fabrics: introduction to the focus issue

    NASA Astrophysics Data System (ADS)

    Smiljanic, Aleksandra

    2003-07-01

    Growth in Internet Protocol (IP) traffic is bringing about a need for larger packet switches. Merely adding more small switches to the network to handle the increased IP traffic is an inefficient solution, since the effective capacity of a router falls when packets must pass through many routers—the number of futile transit ports falls with increased switch size. In addition, control is simpler in networks with a smaller number of nodes. In this Focus Issue, authors from NEC, Alcatel, Lucent Technologies, and Chiaro Networks examine designs that enable high-capacity packet switches.

  14. In Silico Discovery of High Deliverable Capacity Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Martin, Richard; Simon, Cory; Haranczyk, Maciej; Smit, Berend; Deem, Michael; Michael W. Deem Team; Maciej Haranczyk Team; Berend Smit Team

    2015-03-01

    Metal organic frameworks (MOFs) are actively being explored as potential adsorbed natural gas storage materials for small vehicles. Experimental exploration of potential materials is limited by the throughput of synthetic chemistry. We here describe a computational methodology to complement and guide these experimental efforts. The method uses known chemical transformations in silico to identify MOFs with high methane deliverable capacity. The procedure explicitly considers synthesizability with geometric requirements on organic linkers. We efficiently search the composition and conformation space of organic linkers for nine MOF networks, finding 48 materials with higher predicted deliverable capacity (at 65 bar storage, 5.8 bar depletion, and 298 K) than MOF-5 in four of the nine networks. The best material has a predicted deliverable capacity 8% higher than that of MOF-5. US Department of Energy.

  15. Computational Design of Metal-Organic Frameworks with High Methane Deliverable Capacity

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Martin, Richard; Simon, Cory; Haranczyk, Maciej; Smit, Berend; Deem, Michael; Deem Team; Haranczyk Team; Smit Team

    Metal-organic frameworks (MOFs) are a rapidly emerging class of nanoporous materials with largely tunable chemistry and diverse applications in gas storage, gas purification, catalysis, etc. Intensive efforts are being made to develop new MOFs with desirable properties both experimentally and computationally in the past decades. To guide experimental synthesis with limited throughput, we develop a computational methodology to explore MOFs with high methane deliverable capacity. This de novo design procedure applies known chemical reactions, considers synthesizability and geometric requirements of organic linkers, and evolves a population of MOFs with desirable property efficiently. We identify about 500 MOFs with higher deliverable capacity than MOF-5 in 10 networks. We also investigate the relationship between deliverable capacity and internal surface area of MOFs. This methodology can be extended to MOFs with multiple types of linkers and multiple SBUs. DE-FG02- 12ER16362.

  16. Easy preparation of dietary fiber with the high water-holding capacity from food sources.

    PubMed

    Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu

    2005-03-01

    Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.

  17. Metal-organic frameworks with high capacity and selectivity for harmful gases

    PubMed Central

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  18. High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity.

    PubMed

    Yang, Hui; Zhang, Shengliang; Han, Liheng; Zhang, Zhou; Xue, Zheng; Gao, Juan; Li, Yongjun; Huang, Changshui; Yi, Yuanping; Liu, Huibiao; Li, Yuliang

    2016-03-02

    A high conductive 2D COF polyporphyrin (TThPP) linked by 4-thiophenephenyl groups was synthesized through an in situ chemical oxidative polymerization on the surface of copper foil. The TThPP films were used as the anode of lithium-ion battery, which exhibited high specific capacities, excellent rate performances, and long cycle lives due to the alignment of 2D polyporphyrin nanosheets, and they (i) can highly efficiently adsorb Li atoms, (ii) have short-ended paths for the fast lithium ion diffusion, and (iii) open nanopores holding electrolyte. The reversible capacity is up to 666 mAh/g. This is the first example of an organic 2D COF for an anode of lithium-ion battery and represents an important step toward the use of COFs in the next-generation high-performance lithium-ion battery.

  19. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  20. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    PubMed

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  1. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  2. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  3. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.

    PubMed

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-17

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems.

  4. A high-capacity steganography scheme for JPEG2000 baseline system.

    PubMed

    Zhang, Liang; Wang, Haili; Wu, Renbiao

    2009-08-01

    Hiding capacity is very important for efficient covert communications. For JPEG2000 compressed images, it is necessary to enlarge the hiding capacity because the available redundancy is very limited. In addition, the bitstream truncation makes it difficult to hide information. In this paper, a high-capacity steganography scheme is proposed for the JPEG2000 baseline system, which uses bit-plane encoding procedure twice to solve the problem due to bitstream truncation. Moreover, embedding points and their intensity are determined in a well defined quantitative manner via redundancy evaluation to increase hiding capacity. The redundancy is measured by bit, which is different from conventional methods which adjust the embedding intensity by multiplying a visual masking factor. High volumetric data is embedded into bit-planes as low as possible to keep message integrality, but at the cost of an extra bit-plane encoding procedure and slightly changed compression ratio. The proposed method can be easily integrated into the JPEG2000 image coder, and the produced stego-bitstream can be decoded normally. Simulation shows that the proposed method is feasible, effective, and secure.

  5. High-capacity method for hiding data in the discrete cosine transform domain

    NASA Astrophysics Data System (ADS)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  6. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

    PubMed Central

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-01

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems. PMID:28049820

  7. Extreme genetic structure in a social bird species despite high dispersal capacity.

    PubMed

    Morinha, Francisco; Dávila, José A; Bastos, Estela; Cabral, João A; Frías, Óscar; González, José L; Travassos, Paulo; Carvalho, Diogo; Milá, Borja; Blanco, Guillermo

    2017-02-21

    Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red-billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long-distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers.

  8. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage.

    PubMed

    Wang, Xi; Weng, Qunhong; Liu, Xizheng; Wang, Xuebin; Tang, Dai-Ming; Tian, Wei; Zhang, Chao; Yi, Wei; Liu, Dequan; Bando, Yoshio; Golberg, Dmitri

    2014-03-12

    Distinct from pure graphene, N-doped graphene (GN) has been found to possess high rate capability and capacity for lithium storage. However, there has still been a lack of direct experimental evidence and fundamental understanding of the storage mechanisms at the atomic scale, which may shed a new light on the reasons of the ultrafast lithium storage property and high capacity for GN. Here we report on the atomistic insights of the GN energy storage as revealed by in situ transmission electron microscopy (TEM). The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ high-resolution TEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0002} spacings and surface hole defects result in improved surface capacitive effects and thus high rate capability and the high capacity are owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

  9. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  10. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  11. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    PubMed Central

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  12. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  13. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-11-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  14. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  15. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.

    PubMed

    Gu, Yan; Xu, Yi; Wang, Yong

    2013-02-01

    Graphene-wrapped CoS nanoparticles are synthesized by a solvothermal approach. The product is significantly different from porous CoS microspheres prepared in the absence of graphene under similar preparation conditions. The CoS microspheres and CoS/graphene composite are fabricated as anode materials for lithium-ion batteries. The CoS/graphene composite is found to be better suitable as an anode in terms of higher capacity and better cycling performances. The nanocomposite exhibits an unprecedented high reversible capacity of 1056 mA h/g among all cobalt sulfide-based anode materials. Good cycling performances are also observed at both small and high current rates.

  16. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    PubMed

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  17. Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution

    NASA Astrophysics Data System (ADS)

    Fakhry, Moutaz; Granik, Yuri; Adam, Kostas; Lai, Kafai

    2011-11-01

    As the demand for taking Source Mask Optimization (SMO) technology to the full-chip level is increasing, the development of a flow that overcomes the limitations which hinder this technology's moving forward to the production level is a priority for Litho-Engineers. The aim of this work is to discuss advantages of using a comprehensive novel SMO flow that outperforms conventional techniques in areas of high capacity simulations, resist modeling and the production of a final manufacturable mask. We show results that indicate the importance of adding large number of patterns to the SMO exploration space, as well as taking into account resist effects during the optimization process and how this flow incorporates the final mask as a production solution. The high capacity of this flow increases the number of patterns and their area by a factor of 10 compared to other SMO techniques. The average process variability band is improved up to 30% compared to the traditional lithography flows.

  18. Toward an ideal polymer binder design for high-capacity battery anodes.

    PubMed

    Wu, Mingyan; Xiao, Xingcheng; Vukmirovic, Nenad; Xun, Shidi; Das, Prodip K; Song, Xiangyun; Olalde-Velasco, Paul; Wang, Dongdong; Weber, Adam Z; Wang, Lin-Wang; Battaglia, Vincent S; Yang, Wanli; Liu, Gao

    2013-08-14

    The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.

  19. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  20. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent.

    PubMed

    Isobe, Noriyuki; Chen, Xiaoxia; Kim, Ung-Jin; Kimura, Satoshi; Wada, Masahisa; Saito, Tsuguyuki; Isogai, Akira

    2013-09-15

    Nitroxy radical catalyzed oxidation with hypochlorite/bromide (TEMPO-mediated oxidation) was performed on a cellulose hydrogel prepared using LiOH/urea solvent. TEMPO oxidation successfully introduced carboxyl groups onto the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. The equilibrium measurement of Cu(2+) adsorption showed favorable interaction with Cu(2+) and high maximum adsorption capacity. In addition, over 98% of the adsorbed Cu(2+) was recovered using acid treatment, and the subsequent washing allowed the TEMPO-oxidized gels to be used repeatedly. Furthermore, the TEMPO-oxidized cellulose hydrogel showed high adsorption capacity for other toxic metal ions such as Zn(2+), Fe(3+), Cd(2+), and Cs(+).

  1. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.

    PubMed

    Wang, Qianqian; Yu, Linling; Sun, Yan

    2016-04-22

    To develop ion exchangers of high protein adsorption capacity, we have herein introduced atom transfer radical polymerization (ATRP) method to graft glycidyl methacrylate (GMA) onto Sepharose FF gel. GMA-grafted Sepharose FF resins of four grafting densities and different grafting chain lengths were obtained by adjusting reaction conditions. The epoxy groups on the grafted chains were functionalized by modification with diethylamine (DEA), leading to the fabrication of Sepharose-based anion exchangers of 14 different grafting densities and/or grafting chain lengths. The resins were first characterized for the effects of grafting density, chain length and ionic strength on pore sizes by inverse size exclusion chromatography. Then, the resins were evaluated by adsorption equilibria of bovine serum albumin (BSA) as a function of ionic capacity (IC) (chain length) at individual grafting densities. It was observed that at each grafting density there was a specific IC value (chain length) that offered the maximum equilibrium capacity. Of the resins with maximum values at individual grafting densities, the resin of the second grafting density with an IC value of 330 mmol/L (denoted as FF-Br2-pG-D330) showed the highest capacity, 264 mg/mL, about two times higher than that of the traditional ungrafted resin Q Sepharose FF (137 mg/mL). This resin also showed the most favorable uptake kinetics among the resins of similar IC values but different grafting densities, or of the same grafting density but different IC values. Effects of ionic strength showed that the capacities of FF-Br2-pG-D330 were much higher than Q Sepharose FF at a wide range of NaCl concentrations (0-200 mmol/L), and the uptake rates of the two resins were similar in the ionic strength range. Therefore, the dynamic binding capacity values of BSA on FF-Br2-pG-D330 were much higher than Q Sepharose FF as demonstrated at different residence times and ionic strengths. Taken together, the research has proved the

  2. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  3. Joint synchronization and high capacity data hiding for 3D meshes

    NASA Astrophysics Data System (ADS)

    Itier, Vincent; Puech, William; Gesquière, Gilles; Pedeboy, Jean-Pierre

    2015-03-01

    Three-dimensional (3-D) meshes are already profusely used in lot of domains. In this paper, we propose a new high capacity data hiding scheme for vertex cloud. Our approach is based on very small displacements of vertices, that produce very low distortion of the mesh. Moreover this method can embed three bits per vertex relying only on the geometry of the mesh. As an application, we show how we embed a large binary logo for copyright purpose.

  4. Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons

    NASA Astrophysics Data System (ADS)

    He, Yan-Ping; Zhou, Nan; Tan, Yan-Xi; Wang, Fei; Zhang, Jian

    2016-06-01

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m2/g and exhibits high separation capacity on C2/C1 hydrocarbons.

  5. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  6. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    SciTech Connect

    Kennedy, RD; Krungleviciute, V; Clingerman, DJ; Mondloch, JE; Peng, Y; Wilmer, CE; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK; Mirkin, CA

    2013-09-10

    A Cu-carborane-based metal organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm(3)/g and a gravimetric BET surface area of ca. 2600 m(2)/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the, unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m(2)/cm(3). CH4, CO2, and H-2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 v(STP)/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5-65 bar) is 170 v(STP)/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

  7. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  8. High temperature charging efficiency and degradation behavior of high capacity Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeon; Kim, Joong

    2001-02-01

    Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate for electric vehicles and portable computers, and etc. In this work, the charging efficiency of the Ni-MH battery which uses Ni electrode with addition of various compounds and the degradation behavior of the 90Ah battery were studied. The battery using the Ni electrode with Ca(OH)2 addition showed the charging efficiency and the utilization ratio significantly better than electrodes without added compounds. After 418 cycles, the residual capacities at the Ni electrode showed nearly the same values in the upper, middle and lower regions. In the case of the MH electrode, the residual capacity in the upper region appeared lower than that in other regions. As a result of ICP analysis, the amount of dissolved elements in the three regions appeared almost the same. The faster degradation in the upper region of the MH electrode was caused by the TiO2 oxide film formed at the electrode surface because of overcharging. The thickness of the oxide film increases with cycling, so it will form a layer that is not able to allow hydrogen to penetrate into the MH electrode.

  9. Pulmonary vascular reserve and exercise capacity at sea level and at high altitude.

    PubMed

    Pavelescu, Adriana; Faoro, Vitalie; Guenard, Hervé; de Bisschop, Claire; Martinot, Jean-Benoit; Mélot, Christian; Naeije, Robert

    2013-03-01

    It has been suggested that increased pulmonary vascular reserve, as defined by reduced pulmonary vascular resistance (PVR) and increased pulmonary transit of agitated contrast measured by echocardiography, might be associated with increased exercise capacity. Thus, at altitude, where PVR is increased because of hypoxic vasoconstriction, a reduced pulmonary vascular reserve could contribute to reduced exercise capacity. Furthermore, a lower PVR could be associated with higher capillary blood volume and an increased lung diffusing capacity. We reviewed echocardiographic estimates of PVR and measurements of lung diffusing capacity for nitric oxide (DL(NO)) and for carbon monoxide (DL(CO)) at rest, and incremental cardiopulmonary exercise tests in 64 healthy subjects at sea level and during 4 different medical expeditions at altitudes around 5000 m. Altitude exposure was associated with a decrease in maximum oxygen uptake (VO2max), from 42±10 to 32±8 mL/min/kg and increases in PVR, ventilatory equivalents for CO2 (V(E)/VCO2), DL(NO), and DL(CO). By univariate linear regression VO2max at sea level and at altitude was associated with V(E)/VCO2 (p<0.001), mean pulmonary artery pressure (mPpa, p<0.05), stroke volume index (SVI, p<0.05), DL(NO) (p<0.02), and DL(CO) (p=0.05). By multivariable analysis, VO2max at sea level and at altitude was associated with V(E)/VCO2, mPpa, SVI, and DL(NO). The multivariable analysis also showed that the altitude-related decrease in VO2max was associated with increased PVR and V(E)/VCO2. These results suggest that pulmonary vascular reserve, defined by a combination of decreased PVR and increased DL(NO), allows for superior aerobic exercise capacity at a lower ventilatory cost, at sea level and at high altitude.

  10. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.

    PubMed

    Wang, Wei; Kumta, Prashant N

    2010-04-27

    Lithium-ion batteries have witnessed meteoric advancement the last two decades. The anode area has seen unprecedented research activity on Si and Sn, the two anode alternatives to currently used carbon following the initial seminal work by Fuji on tin oxide nanocomposites. Recent reports on silicon nanowires, porous Si, and amorphous Si coatings on graphite nanofibers (GNF) have been very encouraging. High capacity and long cycle life anodes are still, however, elusive and much needed to meet the ever increasing energy storage demands of modern society. Herein, we report for the first time the synthesis of novel 1D heterostructures comprising vertically aligned multiwall CNTs (VACNTs) containing nanoscale amorphous/nanocrystalline Si droplets deposited directly on VACNTs with clearly defined spacing using a simple two-step liquid injection CVD process. A hallmark of these single reactor derived heterostructures is an interfacial amorphous carbon layer anchoring the nanoscale Si clusters directly to the VACNTs. The defined spacing of nanoscale Si combined with their tethered CNT architecture allow for the silicon to undergo reversible electrochemical alloying and dealloying with Li with minimal loss of contact with the underlying CNTs. The novel heterostructures thus exhibit impressive reversible stable capacities approximately 2050 mAh/g with very good rate capability and an acceptable first cycle irreversible loss approximately 20% comparable to graphitic anodes indicating their promise as high capacity Li-ion anodes. Although warranting further research, particularly with regard to long-term cycling, it can be envisaged that optimization of this simple approach could lead to reversible high capacity next generation Li-ion anodes.

  11. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  12. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

    PubMed

    Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E

    2015-05-01

    Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.

  13. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Londer, H.; Myneni, G. R.; Adderley, P.; Bartlok, G.; Setina, J.; Knapp, W.; Schleussner, D.

    2006-05-01

    Current "Non evaporable getters" (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 °C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  14. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    PubMed

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  15. High areal capacity Si/LiCoO2 batteries from electrospun composite fiber mats

    DOE PAGES

    Self, Ethan C.; Naguib, Michael Abdelmalak; Ruther, Rose E.; ...

    2017-03-09

    Freestanding nanofiber mat Li–ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (≈0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1484 mA h g–1 (3500 mA h gmath formula ) at 0.1 C and 489 mA h g–1 at 1 C and good cycling stability (e.g., 73 % capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrodemore » structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm–2 and 750 mA h cm–3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO2-based cathode has a high specific energy density of 270 Wh kg–1. Here, the excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: i) PAA binder, which interacts with the SiOx surface of Si nanoparticles and ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats.« less

  16. High Capacity Communications From Martian Distances. Part 1; Spacecraft Link Design Analysis

    NASA Technical Reports Server (NTRS)

    Vyas, Hemali N.; Schuchman, Leonard; Orr, Richard; Williams, Wallace Dan; Collins, Michael; Noreen, Gary

    2006-01-01

    High capacity space communications has been a desire for Human Exploration and Science missions. Current Mars missions operate at data rates of 120 kbps for telemetry downlink and it is desirable to study high rate communication links in the range of 100 Mbps to 1 Gbps data rates from Martian distances. This paper will present some assumed scenarios along with link design assumptions and link analysis for high capacity communications from Mars. The paper will focus on RF subsystems namely antenna and power for the downlink communication from a relay orbiter at Mars. The relay orbiter will communicate with the low orbit spacecrafts at Mars or any Martian surface elements such as robots, and relay the data back to the ground networks on Earth. The study will dive into the spacecraft downlink system design and communication link analysis between the relay orbiter and ground network on Earth for data rates ranging from 100 Mbps to 1 Gbps based on the assumed scenarios and link assumptions. With high rate links at larger distances, there will be a significant impact on the antenna and power requirements and the link design will make an attempt to minimize the mass of the RF subsystem on the spacecraft. The results of this study will be presented for three data rates 1 Gbps, 500 Mbps and 100 Mbps at maximum Mars to Earth distance of 2.67AU. The design will use a Ka-band downlink with 90% link availability, along with various ground network G/T assumptions and possible bandwidth efficient modulations. The paper will conclude with what types of high rate communication links are feasible from Martian distances and also identify a range of requirements for antenna and power technologies for these high capacity communications from Mars.

  17. High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats.

    PubMed

    Self, Ethan C; Naguib, Michael; Ruther, Rose E; McRen, Emily C; Wycisk, Ryszard; Liu, Gao; Nanda, Jagjit; Pintauro, Peter N

    2017-03-09

    Freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (≈0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1484 mA h g(-1) (3500 mA h g-1Si ) at 0.1 C and 489 mA h g(-1) at 1 C and good cycling stability (e.g., 73 % capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm(-2) and 750 mA h cm(-3) , respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO2 -based cathode has a high specific energy density of 270 Wh kg(-1) . The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: i) PAA binder, which interacts with the SiOx surface of Si nanoparticles and ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats.

  18. Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins

    PubMed Central

    Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris

    2015-01-01

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830

  19. High capacity embedding with indexed data recovery using adjunctive numerical relations in multimedia signal covers

    NASA Astrophysics Data System (ADS)

    Collins, James C.; Agaian, Sos S.

    2013-05-01

    We introduce a technique for covertly embedding data throughout an audio file using redundant number system decomposition across non-standard digital bit-lines. This bit-line implementation integrates an index recoverable embedded algorithm with an extended bit level representation that achieves a high capacity data channel within an audio multimedia file. It will be shown this new steganography method has minimal aural distortive affects while preserving both first and second order cover statistics, making it less susceptible to most steganalysis attacks. Our research approach involves reviewing the common numerical methods used in common binary-based algorithms. We then describe basic concepts and challenges when attempting to implement complex embedding algorithms that are based on redundant number systems. Finally, we introduce a novel class of numerical based multiple bit-line decomposition systems, which we define as Adjunctive Numerical Representations. The system is primarily described using basic PCM techniques in uncompressed audio files however extended applications for alternate multimedia is addressed. This new embedding system will not only provide the statistical stability required for effective steganography but will also give us an improvement in the embedding capacity in this class of multimedia carrier files. This novelty of our approach is demonstrated by an ability to embed high capacity covert data while simultaneously providing a means for rapid, indexed data recovery.

  20. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    SciTech Connect

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue Y.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; Wood, Brandon C.; Wang, Y. Morris; Shin, Swanee J.

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.

  1. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE PAGES

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes inmore » graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  2. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  3. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; Yonemoto, Bryan T.; Balasubramanian, Mahalingam; Long, Brandon R.; Ren, Yang; Thackeray, Michael M.

    2016-12-01

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich "layered-layered-spinel" (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (∼200 mAh g-1) and good energy densities (>700 Wh kgoxide-1) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  4. Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol.

    PubMed

    Higueras, Laura; López-Carballo, Gracia; Cerisuelo, Josep P; Gavara, Rafael; Hernández-Muñoz, Pilar

    2013-09-12

    The aim of this work was to design new polymer-based systems exhibiting an adjustable loading capacity of carvacrol depending on the film formulation. For this purpose, biocomposite films were developed employing chitosan (CS) as the polymer matrix and hydroxypropyl-β-cyclodextrins (HP-βCDs) as an adjuvant to improve the sorption of carvacrol in the polymer matrix. The morphology, optical, mechanical and barrier properties of the resulting films were investigated, and the sorption capacity of carvacrol evaluated. Biocomposites resulted highly transparent with higher mechanical resistance and moisture barrier properties. Sorption of carvacrol was greatly affected by the humidity (RH) and glycerol (G) content of the biocomposites. The highest sorption values were achieved for composites incorporating 35% glycerol and conditioned at 75% these composites retained 216% carvacrol (g/100 g dry matter). These results indicate that inclusion of carvacrol in the films could be occurring by mechanisms other than formation of inclusion complexes.

  5. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  6. A high capacity multiple watermarking scheme based on Fourier descriptor and Sudoku

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Huimin

    2015-12-01

    Digital watermark is a type of technology to hide some significant information which is mainly used to protect digital data. A high capacity multiple watermarking method is proposed, which adapts the Fourier descriptor to pre-process the watermarks, while a Sudoku puzzle is used as a reference matrix in embedding process and a key in extraction process. It can dramatically reduce the required capacity by applying Fourier descriptor. Meanwhile, the security of watermarks can be guaranteed due to the Sudoku puzzle. Unlike previous algorithms applying Sudoku puzzle in spatial domain, the proposed algorithm works in transformed domain by applying LWT2.In addition, the proposed algorithm can detect the temper location accurately. The experimental results demonstrated that the goals mentioned above have been achieved.

  7. DTCWT based high capacity steganography using coefficient replacement and adaptive scaling

    NASA Astrophysics Data System (ADS)

    Sathisha, N.; Priya, R.; Babu, K. Suresh; Raja, K. B.; Venugopal, K. R.; Patnaik, L. M.

    2013-12-01

    The steganography is used for secure communication. In this paper we propose Dual Tree Complex Wavelet Transform (DTCWT) based high capacity steganography using coefficient replacement and adaptive scaling. The DTCWT is applied on cover image and Lifting Wavelet Transform2 (LWT2) is applied on payload to convert spatial domain into transform domain. The new concept of replacing HH sub band coefficients of DTCWT of cover image by LL sub band coefficients of payload is introduced to generate intermediate stego object. The adaptive scaling factor is used based on entropy of cover image to scale down intermediate stego object coefficient values to generate final stego object. It is observed that the capacity and security are increased in the proposed algorithm compared to existing algorithms.

  8. High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition

    USGS Publications Warehouse

    Mocala, K.; Navrotsky, A.; Sherman, David M.

    1992-01-01

    A strong anomaly was found in the heat capacity of Co3O4 between 1000 K and the decomposition temperature. This anomaly is not related to the decomposition of Co3O4 to CoO. The measured entropy of transition, ??S=46??4 J mol-1 K-1 of Co3O4, supports the interpretation that this anomaly reflects a spin unpairing transition in octahedrally coordinated Co3+ cations. Experimental values of heat capacity, heat content and entropy of Co3O4 in the high temperature region are provided. The enthalpy of the spin unpairing transition is 53??4 kJ mol-1 of Co3O4. ?? 1992 Springer-Verlag.

  9. Graphdiyne as a high-capacity lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Lee, Hosik; Nam, Jaewook; Kwon, Yongkyung; Lee, Hoonkyung

    2013-12-01

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp2 hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C6Li7.31 and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g-1/2032 mAh cm-3, much greater than the values of ˜372 mAh g-1/˜818 mAh cm-3, ˜1117 mAh g-1/˜1589 mAh cm-3, and ˜744 mAh g-1 for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  10. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  11. Nitrogen removal capacity of the river network in a high nitrogen loading region.

    PubMed

    Zhao, Yongqiang; Xia, Yongqiu; Ti, Chaopu; Shan, Jun; Li, Bolun; Xia, Longlong; Yan, Xiaoyuan

    2015-02-03

    Denitrification is the primary process that regulates the removal of bioavailable nitrogen (N) from aquatic ecosystems. Quantifying the capacity of N removal from aquatic systems can provide a scientific basis for establishing the relationship between N reduction and water quality objectives, quantifying pollution contributions from different sources, as well as recommending control measures. The Lake Taihu region in China has a dense river network and heavy N pollution; however, the capacity for permanent N removal by the river network is unknown. Here, we concurrently examined environmental factors and net N2 flux from sediments of two rivers in the Lake Taihu region between July 2012 and May 2013, using membrane inlet mass spectrometry, and then established a regression model incorporating the highly correlated factors to predict the N removal capacity of the river network in the region. To test the applicability of the regression model, 21 additional rivers surrounding Lake Taihu were sampled between July and December 2013. The results suggested that water nitrate concentrations are still the primary controlling factor for net denitrification even in this high N loading river network, probably due to multicollinearity of other relevant factors, and thus can be used to predict N removal from aquatic systems. Our established model accounted for 78% of the variability in the measured net N2 flux in these 21 rivers, and the total N removed through N2 production by the river network was estimated at 4 × 10(4) t yr(-1), accounting for about 43% of the total aquatic N load to the river system. Our results indicate that the average total N content in the river water discharged into Lake Taihu would be around 5.9 mg of N L(-1) in the current situation, far higher than the target concentration of 2 mg of N L(-1), given the total N load and the N removal capacity. Therefore, a much stronger effort is required to control the N pollution of the surface water in the region.

  12. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  13. High intrinsic aerobic capacity and pomegranate juice are protective against macrophage atherogenecity: studies in high- vs. low-capacity runner (HCR vs. LCR) rats.

    PubMed

    Rosenblat, Mira; Volkova, Nina; Abassi, Zaid; Britton, Steven L; Koch, Lauren G; Aviram, Michael

    2015-10-01

    We studied the rat model system of high- vs. low-capacity runner (HCR vs. LCR) rats to question the atherogenic properties (oxidative stress, triglycerides and cholesterol metabolism) in the rat macrophages, serum, liver and heart. Half of the LCR or HCR rats consumed pomegranate juice (PJ; 15 μmol of gallic acid equivalents/rat/day) for 3 weeks and were compared to placebo-treated rats. At the end of the study blood samples, peritoneal macrophages (RPM), livers, and hearts were harvested from the rats. RPM harvested from HCR vs. LCR demonstrated reduced cellular oxidation (21%), increased paraoxonase 2 activity (28%) and decreased triglycerides mass (44%). Macrophage uptake rates of fluorescein-isothiocyanate-labeled low-density lipoprotein (LDL) or oxidized LDL were significantly lower, by 37% or by 18%, respectively, in HCR vs. LCR RPM. PJ consumption significantly decreased all the above atherogenic parameters with more substantial beneficial effects observed in the LCR vs. the HCR rats (~80% vs. ~40% improvement, respectively). Similar hypo-triglyceridemic pattern was noted in serum from HCR vs. LCR. In contrast to the above results, liver oxidation and triglycerides mass were both minimally increased in HCR vs. LCR rats by 31% and 28%, respectively. In the heart, lipid content was very low, and interestingly, an absence of any significant oxidative stress, along with modest triglyceride accumulation, was observed. We conclude that HCR vs. LCR rats demonstrate reduced atherogenicity, mostly in their macrophages. PJ exerts a further improvement, mostly in macrophages from LCR rats.

  14. Endurance capacity and neuromuscular fatigue following high vs moderate-intensity endurance training: a randomised trial.

    PubMed

    O'Leary, Thomas J; Collett, Johnny; Howells, Ken; Morris, Martyn G

    2017-02-16

    High-intensity exercise induces significant central and peripheral fatigue, however the effect of endurance training on these mechanisms of fatigue is poorly understood. We compared the effect of cycling endurance training of disparate intensities on high-intensity exercise endurance capacity and the associated limiting central and peripheral fatigue mechanisms. Twenty adults were randomly assigned to 6 weeks of either high-intensity interval training (HIIT, 6-8 × 5 min at halfway between lactate threshold and maximal oxygen uptake [50%Δ]) or volume matched moderate-intensity continuous training (CONT, ~60-80 min at 90% lactate threshold). Two time to exhaustion (TTE) trials at 50%Δ were completed pre- and post-training to assess endurance capacity; the two post-training trials were completed at the pre-training 50%Δ (same absolute intensity) and the 'new' post-training 50%Δ (same relative intensity). Pre- and post-exercise responses to femoral nerve and motor cortex stimulation were examined to determine peripheral and central fatigue, respectively. HIIT resulted in greater increases in TTE at the same absolute and relative intensities as pre-training (148% and 43%, respectively) compared with CONT (38% and -4%, respectively). Compared with pre-training, HIIT increased the level of potentiated quadriceps twitch reduction (-34% vs -43%, respectively) and attenuated the level of voluntary activation reduction (-7% vs -3%, respectively) following the TTE trial at the same relative intensity. There were no other training effects on neuromuscular fatigue development. This suggests that central fatigue resistance contributes to enhanced high-intensity exercise endurance capacity after HIIT by allowing greater performance to be extruded from the muscle. This article is protected by copyright. All rights reserved.

  15. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.

    PubMed

    Zhou, Sa; Yang, Xiaogang; Lin, Yongjing; Xie, Jin; Wang, Dunwei

    2012-01-24

    The performance of advanced energy conversion and storage devices, including solar cells and batteries, is intimately connected to the electrode designs at the nanoscale. Consider a rechargeable Li ion battery, a prevalent energy storage technology, as an example. Among other factors, the electrode material design at the nanoscale is key to realizing the goal of measuring fast ionic diffusion and high electronic conductivity, the inherent properties that determine power rates, and good stability upon repeated charge and discharge, which is critical to the sustainable high capacities. Here we show that such a goal can be achieved by forming heteronanostructures on a radically new platform we discovered, TiSi(2) nanonets. In addition to the benefits of high surface area, good electrical conductivity, and superb mechanical strength offered by the nanonet, the design also takes advantage of how TiSi(2) reacts with O(2) upon heating. The resulting TiSi(2)/V(2)O(5) nanostructures exhibit a specific capacity of 350 Ah/kg, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles of charge and discharge. These figures indicate that a cathode material significantly better than V(2)O(5) of other morphologies is produced.

  16. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  17. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links.

    PubMed

    Jiang, Juncong; Furukawa, Hiroyasu; Zhang, Yue-Biao; Yaghi, Omar M

    2016-08-17

    High methane storage capacity in porous materials is important for the design and manufacture of vehicles powered by natural gas. Here, we report the synthesis, crystal structures and methane adsorption properties of five new zinc metal-organic frameworks (MOFs), MOF-905, MOF-905-Me2, MOF-905-Naph, MOF-905-NO2, and MOF-950. All these MOFs consist of the Zn4O(-CO2)6 secondary building units (SBUs) and benzene-1,3,5-tri-β-acrylate, BTAC. The permanent porosity of all five materials was confirmed, and their methane adsorption measured up to 80 bar to reveal that MOF-905 is among the best performing methane storage materials with a volumetric working capacity (desorption at 5 bar) of 203 cm(3) cm(-3) at 80 bar and 298 K, a value rivaling that of HKUST-1 (200 cm(3) cm(-3)), the benchmark compound for methane storage in MOFs. This study expands the scope of MOF materials with ultrahigh working capacity to include linkers having the common acrylate connectivity.

  18. ERP markers of target selection discriminate children with high vs. low working memory capacity

    PubMed Central

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the “adult time-window” related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in

  19. Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2015-10-13

    Membrane adsorbers are a proposed alternative to packed beds for chromatographic separations. To date, membrane adsorbers have suffered from low binding capacities and/or complex processing methodologies. In this work, a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer is cast into an asymmetric membrane that possesses a high density of nanopores (d ∼ 38 nm) at the upper surface of the membrane. Exposing the membrane to a 6 M aqueous hydrochloric acid solution converts the PDMA brushes that line the pore walls to poly(acrylic acid) (PAA) brushes, which are capable of binding metal ions (e.g., copper ions). Using mass transport tests and static binding experiments, the saturation capacity of the PI-PS-PAA membrane was determined to be 4.1 ± 0.3 mmol Cu(2+) g(-1). This experimental value is consistent with the theoretical binding capacity of the membranes, which is based on the initial PDMA content of the triblock polymer precursor and assumes a 1:1 stoichiometry for the binding interaction. The uniformly sized nanoscale pores provide a short diffusion length to the binding sites, resulting in a sharp breakthrough curve. Furthermore, the membrane is selective for copper ions over nickel ions, which permeate through the membrane over 10 times more rapidly than copper during the loading stage. This selectivity is present despite the fact that the sizes of these two ions are nearly identical and speaks to the chemical selectivity of the triblock polymer-based membrane. Furthermore, addition of a pH 1 solution releases the bound copper rapidly, allowing the membrane to be regenerated and reused with a negligible loss in binding capacity. Because of the high binding capacities, facile processing method implemented, and ability to tailor further the polymer brushes lining the pore walls using straightforward coupling reactions, these membrane adsorbers based on block polymer precursors have potential as a separation media that can

  20. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    PubMed

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (<30 nm), resulting in a decrease of the melting point and an initial release of hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  1. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    PubMed Central

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  2. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  3. High-temperature heat capacity of orthovanadates Ce1- x Bi x VO4

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.

    2016-09-01

    Orthovanadates Ce1- x Bi x VO4 (1 ≥ x ≥ 0) have been produced by solid-phase synthesis from initial oxides CeO2, Bi2O3, and V2O5 upon step-by-step burning. The high-temperature heat capacity of Ce1- x Bi x VO4 has been measured by differential scanning calorimetry. The experimental data on C p = f(T) were used to calculate the thermodynamic properties (the enthalpy changes, the entropy changes, and the Gibbs energy).

  4. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    SciTech Connect

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  5. A novel single-source precursor for collapsed boron nitride nanotubes with high hydrogen storage capacity

    NASA Astrophysics Data System (ADS)

    Li, Jie; Dai, Wei; Chen, Muqing; Wu, Tian

    An efficient chemical vapor deposition (CVD) method was successfully utilized to synthesize boron nitride nanotubes (BNNTs), where Ammonium boron trifluoride (NH3BF3) and MgCl2 were employed as the novel single-source precursor and the promoter, respectively. The as-obtained BNNTs displayed a collapsed structure with the average diameter of 15nm and lengths up to tens of micrometers, named as collapsed BNNTs. They exhibited a reproducible hydrogen storage capacity of 2.63wt.% under 10 MPa and at ambient temperature. Moreover, they showed an high storage cycling stability due to the excellent chemical and structural stability.

  6. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  7. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    PubMed

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  8. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  9. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    PubMed

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P

    2016-08-01

    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P < 0.05) between all pair-wise comparisons such that CAFF + CMR (65 ± 26 min) was superior to CMR (52 ± 23 min) and PLACEBO (36 ± 22 min). We conclude that carbohydrate mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle.

  10. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    PubMed

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa.

  11. Endurance capacity and high-intensity exercise performance responses to a high fat diet.

    PubMed

    Fleming, Jesse; Sharman, Matthew J; Avery, Neva G; Love, Dawn M; Gómez, Ana L; Scheett, Timothy P; Kraemer, William J; Volek, Jeff S

    2003-12-01

    The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate protein (HFMP; 61% fat diet) (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (-2.2 kg; p < or = .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 +/- 0.14 to 3.27 +/- 0.09 L x min(-1)) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (-10 and -20%, respectively) group but not the C (-8 and -16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (-18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.

  12. High-capacity hydrogen storage of magnesium-decorated boron fullerene

    NASA Astrophysics Data System (ADS)

    Li, J. L.; Hu, Z. S.; Yang, G. W.

    2012-01-01

    By theoretical analysis, we have explored the feasibility of functionalizing boron fullerene (B 80) by adsorbing Mg atoms for the application as hydrogen storage nanomaterials. Our results show that due to the charge transfer from Mg to B atoms Mg atoms reside above the pentagonal faces of the B 80 cage. The electric field induced around the positive charged Mg atoms polarizes H 2 molecules, and the resulting binding is strong enough to adsorb H 2 without dissociation. Further calculations indicated that the 12Mg-decorated-B 80 has a high hydrogen storage capacity storing up to 96 H 2 molecules with an ideal binding energy of 0.20 eV/H 2 according to the approximation of GGA and 0.5 eV/H 2 according to LDA, corresponding to a hydrogen uptake of 14.2%. This suggested a possible method of engineering new structure for high-capacity hydrogen storage materials with the reversible adsorption and desorption of hydrogen molecules.

  13. Metal-Organic Coaxial Nanowire Array Electrodes Combining Large Energy Capacity and High Rate Capability.

    PubMed

    Nakanishi, Hideyuki; Kikuta, Ikuo; Segawa, Hiroyo; Kawabata, Yuto; Kishida, Reiko; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2017-02-22

    Pseudocapacitors have been widely studied in the context of their potential applications in portable electronics and energy regeneration. However, the internal resistance within these devices hampers charge transport and limits their performance. As a result, maximum charge/discharge rates are typically limited to a few hundred mV s(-1) for pseudocapacitors. Beyond this limit, capacitance rapidly decreases and devices become incapable of storing energy. Here, we design electrodes in which coaxial nanowires made of highly conductive metal cores and pseudocapacitive organic shells are fabricated into a seamless, monolithic, and vertically aligned structure. The design of this structure reduces its internal resistance, and devices fabricated using these electrodes exhibit excellent energy capacity even when charged/discharged at high rates of more than a few hundred mV s(-1) . The energy density obtained in these devices corresponds to the maximum energy density predicted by the Trasatti method, and the coaxial-nanowire structure of the electrodes enhances the charge storage capacity and rate capability simultaneously.

  14. Three-dimensional carbon nanotubes for high capacity lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kang, Chiwon; Patel, Mumukshu; Rangasamy, Baskaran; Jung, Kyu-Nam; Xia, Changlei; Shi, Sheldon; Choi, Wonbong

    2015-12-01

    Carbon nanotubes (CNTs) have been considered as a potential anode material for next generation Lithium-ion batteries (LIBs) due to their high conductivity, flexibility, surface area, and lithium-ion insertion ability. However, the low mass loading and bulk density of carbon nanomaterials hinder their use in large-scale energy storage because their high specific capacity may not scale up linearly with the thickness of the electrode. To address this issue, a novel three-dimensional (3D) architecture is rationally designed by stacking layers of free-standing CNTs with the increased areal density to 34.9 mg cm-2, which is around three-times higher than that of the state-of-the-art graphitic anodes. Furthermore, a thermal compression process renders the bulk density of the multi-stacked 3D CNTs to be increased by 1.85 g cm-3, which yields an excellent volumetric capacity of 465 mAh cm-3 at 0.5C. Our proposed strategy involving the stacking of 3D CNT based layers and post-thermal compression provides a powerful platform for the utilization of carbon nanomaterials in the advanced LIB technology.

  15. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  16. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    PubMed Central

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  17. Integration and flight demonstration of a high-capacity monogroove heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.

    1984-01-01

    The cancellation of the TDRS-B satellite as the payload for the eighth Space Shuttle mission provided a unique opportunity to demonstrate on-orbit operation of the high-capacity monogroove heat pipe used in the space constructible radiator subsystem. In less than 4 months, a flight experiment was conceived, designed, fabricated, tested, integrated with a payload carrier, installed in the Orbiter Challenger payload bay, and successfully operated in flight. Still color photographs and direct crew visual observation of color changes in a pattern of temperature-sensitive liquid-crystal tapes provided the temperature data necessary to verify successful on-orbit startup and orbital transient response of the heat pipe when subjected to a heat load from its attached electrical heaters. This successful on-orbit demonstration verified analytical design tools and provided confidence in the use of high-capacity heat pipes for future space applications. The flight experiment hardware and the integration and test activities that led to the flight are described, and the actual flight results are compared to analytical performance predictions.

  18. High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    PubMed Central

    Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif

    2011-01-01

    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031

  19. An insect herbivore microbiome with high plant biomass-degrading capacity.

    PubMed

    Suen, Garret; Scott, Jarrod J; Aylward, Frank O; Adams, Sandra M; Tringe, Susannah G; Pinto-Tomás, Adrián A; Foster, Clifton E; Pauly, Markus; Weimer, Paul J; Barry, Kerrie W; Goodwin, Lynne A; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T; Slater, Steven C; Donohue, Timothy J; Currie, Cameron R

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  20. Pectins from the albedo of immature lemon fruitlets have high water binding capacity.

    PubMed

    Schröder, Roswitha; Clark, Christopher J; Sharrock, Keith; Hallett, Ian C; MacRae, Elspeth A

    2004-04-01

    The white part of citrus peel, the albedo, has a special role in water relations of both fruit and leaves from early on in fruit development. In times of drought, this tissue acts as a water reservoir for juice sacs, seeds and leaves. When water was injected into the albedo, free water was undetectable using magnetic resonance imaging. Microscopy showed tightly packed cells with little intercellular space, and thick cell walls. Cell wall material comprised 21% of the fresh albedo weight, and contained 26.1% galacturonic acid, the main constituent of pectin. From this, we postulated that pectin of the cell wall was responsible for the high water-binding capacity of the immature lemon albedo. Cell wall material was extracted using mild procedures that keep polymers intact, and four pectic fractions were recovered. Of these fractions, the SDS and chelator-soluble fractions showed viscosities ten and twenty times higher than laboratory-grade citrus pectin or the other albedo-derived pectins. The yield of these two pectins represented 28% of the cell walls and 62% of the galacturonic acid content of immature lemon albedo. We concluded that, from viscosity and abundance, these types of pectin account for the high water-binding capacity of this tissue. Compositional analyses showed that the two highly viscous pectic fractions differ in galacturonic acid content, degree of branching and length of side chains from the less viscous albedo-derived pectins. The most striking feature of these highly viscous pectins, however, was their high molecular weight distribution compared to the other pectic fractions.

  1. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming

  2. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Qiu, Weitao; Jian, Junhua; Huang, Yongchao; Luo, Yang; Yang, Hao; Liang, Chaolun; Lu, Xihong; Tong, Yexiang

    2015-10-21

    The vulnerable restacking problem of tin disulfide (SnS2) usually leads to poor initial reversible capacity and poor cyclic stability, which hinders its practical application as lithium ion battery anode (LIB). In this work, we demonstrated an effective strategy to improve the first reversible capacity and lithium storage properties of SnS2 by growing SnS2 nanosheets on porous flexible vanadium nitride (VN) substrates. When evaluating lithium-storage properties, the three-dimensional (3D) porous VN coated SnS2 nanosheets (denoted as CC-VN@SnS2) yield a high reversible capacity of 75% with high specific capacity of about 819 mAh g(-1) at a current density of 0.65 A g(-1). Remarkable cyclic stability capacity of 791 mAh g(-1) after 100 cycles with excellent capacity retention of 97% was also achieved. Furthermore, discharge capacity as high as 349 mAh g(-1) is still retained after 70 cycles even at a elevated current density of 13 A g(-1). The excellent performance was due to the conductive flexible VN substrate support, which provides short Li-ion and electron pathways, accommodates large volume variation, contributes to the capacity, and provides mechanical stability, which allows the electrode to maintain its structural stability.

  3. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  4. Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications.

    PubMed

    Wang, Wei; Tian, Miao; Abdulagatov, Aziz; George, Steven M; Lee, Yung-Cheng; Yang, Ronggui

    2012-02-08

    The areal capacity of nanowire-based microbatteries can be potentially increased by increasing the length of nanowires. However, agglomeration of high aspect ratio nanowire arrays could greatly degrade the performance of nanowires for lithium ion (Li-ion) battery applications. In this work, a three-dimensional (3-D) Ni/TiO(2) nanowire network was successfully fabricated using a 3-D porous anodic alumina (PAA) template-assisted electrodeposition of Ni followed by TiO(2) coating using atomic layer deposition. Compared to the straight Ni/TiO(2) nanowire arrays fabricated using conventional PAA templates, the 3-D Ni/TiO(2) nanowire network shows higher areal discharging capacity. The areal capacity increases proportionally with the length of nanowires. With a stable Ni/TiO(2) nanowire network structure, 100% capacity is retained after 600 cycles. This work paves the way to build reliable 3-D nanostructured electrodes for high areal capacity microbatteries.

  5. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species.

    PubMed

    Ellsworth, David S; Crous, Kristine Y; Lambers, Hans; Cooke, Julia

    2015-06-01

    Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2 ] than at ambient [O2 ]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi  > 2 mmol P m(-2), rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.

  6. Origin of voltage decay in high-capacity layered oxide electrodes.

    PubMed

    Sathiya, M; Abakumov, A M; Foix, D; Rousse, G; Ramesha, K; Saubanère, M; Doublet, M L; Vezin, H; Laisa, C P; Prakash, A S; Gonbeau, D; VanTendeloo, G; Tarascon, J-M

    2015-02-01

    Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

  7. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    SciTech Connect

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; Poyraz, Altug S.; Wu, Wei; Kriz, David A.; Du, Shoucheng; Biswas, Sourav; Thompson Pettes, Michael; Suib, Steven L.

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlled by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.

  8. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE PAGES

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; ...

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  9. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  10. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g{sup −1}/2032 mAh cm{sup −3}, much greater than the values of ∼372 mAh g{sup −1}/∼818 mAh cm{sup −3}, ∼1117 mAh g{sup −1}/∼1589 mAh cm{sup −3}, and ∼744 mAh g{sup −1} for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  11. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    NASA Astrophysics Data System (ADS)

    Shieh, William; Khodakarami, Hamid; Che, Di

    2016-07-01

    Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV) detection architecture using four single-ended photodiodes (PD) that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD) method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  12. Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonoids in different spinach genotypes were separated, identified, and quantified by a high-performance liquid chromatographic method with photodiode array and mass spectrometric detection. The antioxidant capacities of the genotypes were also measured using two antioxidant assays - oxygen radica...

  13. Lamprey parasitism of sharks and teleosts: high capacity urea excretion in an extant vertebrate relic.

    PubMed

    Wilkie, Michael P; Turnbull, Steven; Bird, Jonathan; Wang, Yuxiang S; Claude, Jaime F; Youson, John H

    2004-08-01

    We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.

  14. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise.

    PubMed

    Lancha Junior, Antonio Herbert; Painelli, Vitor de Salles; Saunders, Bryan; Artioli, Guilherme Giannini

    2015-11-01

    Intramuscular acidosis is a contributing factor to fatigue during high-intensity exercise. Many nutritional strategies aiming to increase intra- and extracellular buffering capacity have been investigated. Among these, supplementation of beta-alanine (~3-6.4 g/day for 4 weeks or longer), the rate-limiting factor to the intramuscular synthesis of carnosine (i.e. an intracellular buffer), has been shown to result in positive effects on exercise performance in which acidosis is a contributing factor to fatigue. Furthermore, sodium bicarbonate, sodium citrate and sodium/calcium lactate supplementation have been employed in an attempt to increase the extracellular buffering capacity. Although all attempts have increased blood bicarbonate concentrations, evidence indicates that sodium bicarbonate (0.3 g/kg body mass) is the most effective in improving high-intensity exercise performance. The evidence supporting the ergogenic effects of sodium citrate and lactate remain weak. These nutritional strategies are not without side effects, as gastrointestinal distress is often associated with the effective doses of sodium bicarbonate, sodium citrate and calcium lactate. Similarly, paresthesia (i.e. tingling sensation of the skin) is currently the only known side effect associated with beta-alanine supplementation, and it is caused by the acute elevation in plasma beta-alanine concentration after a single dose of beta-alanine. Finally, the co-supplementation of beta-alanine and sodium bicarbonate may result in additive ergogenic gains during high-intensity exercise, although studies are required to investigate this combination in a wide range of sports.

  15. Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    SciTech Connect

    Gao, Jie; Lowe, Michael A.; Abruna, Hector D.

    2011-07-12

    Mn₃O₄ has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn₃O₄ was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge–charge tests. The results indicate that this novel type of nanosized Mn₃O₄ exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles.

  16. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.

    PubMed

    Wang, Linlin; Gong, Huaxu; Wang, Caihua; Wang, Dake; Tang, Kaibin; Qian, Yitai

    2012-11-07

    Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); however, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel 1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple approach. We found that the pore size could be controlled by adjusting the sintering temperature in the calcination process. With the rising of calcination temperature, the pore size of CuO has been tuned in the range of ∼0.4 nm to 22 nm. The porous CuO materials have been applied as anode materials in LIBs and the effects of porous size on the electrochemical properties were observed. The highly porous CuO nanorods with porous size in the range of ∼6 nm to 22 nm yielded excellent high specific capacity, good cycling stability, and high rate performance, superior to that of most reported CuO nanocomposites. The CuO material delivers a high reversible capacity of 654 mA h g(-1) and 93% capacity retention over 200 cycles at a rate of 0.5 C. It also exhibits excellent high rate capacity of 410 mA h g(-1) even at 6 C. These results suggest that the facile synthetic method of producing a tunable highly porous CuO nanostructure can realize a long cycle life with high reversible capacity, which is suitable for next-generation high-performance LIBs.

  17. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  18. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  19. Development of a process for high capacity-arc heater production of silicon

    NASA Technical Reports Server (NTRS)

    Reed, W. H.; Meyer, T. N.; Fey, M. G.; Harvey, F. J.; Arcella, F. G.

    1978-01-01

    The realization of low cost, electric power from large-area silicon, photovoltaic arrays will depend on the development of new methods for large capacity production of solar grade (SG) silicon with a cost of less than $10 per kilogram by 1986 (established Department of Energy goal). The objective of the program is to develop a method to produce SG silicon in large quantities based on the high temperature-sodium reduction of silicon tetrachloride (SiCl4) to yield molten silicon and the coproduct salt vapor (NaCl). Commercial ac electric arc heaters will be utilized to provide a hyper-heated mixture of argon and hydrogen which will furnish the required process energy. The reactor is designed for a nominal silicon flow rate of 45 kg/hr. Analyses and designs have been conducted to evaluate the process and complete the initial design of the experimental verification unit.

  20. Synthesization of high-capacity auto-associative memories using complex-valued neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Jiao; Wang, Xiao-Yan; Long, Hai-Xia; Yang, Xu-Hua

    2016-12-01

    In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503338, 61573316, 61374152, and 11302195) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

  1. Study on the Structures of Two Booster Pellets Having High Initiation Capacity

    NASA Astrophysics Data System (ADS)

    Shuang-Qi, Hu; Hong-Rong, Liu; Li-shuang, Hu; Xiong, Cao; Xiang-Chao, Mi; Hai-Xia, Zhao

    2014-05-01

    Insensitive munitions (IM) improve the survivability of both weapons and their associated platforms, which can lead to a reduction in casualties, mission losses, and whole life costs. All weapon systems contain an explosive train that needs to meet IM criteria but reliably initiate a main charge explosive. To ensure that these diametrically opposed requirements can be achieved, new highly effective booster charge structures were designed. The initiation capacity of the two booster pellets was studied using varied composition and axial-steel-dent methods. The results showed that the two new booster pellets can initiate standard main charge pellets with less explosive mass than the ordinary cylindrical booster pellet. The numerical simulation results were in good agreement with the experiment results.

  2. Remembering to prepare: The benefits (and costs) of high working memory capacity

    PubMed Central

    Richmond, Lauren; Redick, Thomas S.; Braver, Todd S.

    2015-01-01

    The dual mechanisms of control framework postulates that cognitive control can operate in two distinct modes: a 'proactive' preparatory mode and a 'reactive', wait-and-see mode. Importantly, the two modes are associated with both costs and benefits in cognitive performance. Here we explore this framework, in terms of its relationship with working memory capacity (WMC). We hypothesize that high WMC individuals are more likely to utilize proactive control yielding not only benefits, but also specific costs to performance. Across two separate, large-sample experiments, healthy young adults performed different variants of the AX-CPT context processing task, a well-established probe of proactive and reactive cognitive control. In two experiments, WMC predicted both improvements and relative impairments in task performance in a manner that was consistent with usage of proactive control. These findings suggest that individuals differ in the degree to which they utilize proactive control based on WMC. PMID:25867614

  3. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  4. Volume server: A scalable high speed and high capacity magnetic tape archive architecture with concurrent multi-host access

    NASA Technical Reports Server (NTRS)

    Rybczynski, Fred

    1993-01-01

    A major challenge facing data processing centers today is data management. This includes the storage of large volumes of data and access to it. Current media storage for large data volumes is typically off line and frequently off site in warehouses. Access to data archived in this fashion can be subject to long delays, errors in media selection and retrieval, and even loss of data through misplacement or damage to the media. Similarly, designers responsible for architecting systems capable of continuous high-speed recording of large volumes of digital data are faced with the challenge of identifying technologies and configurations that meet their requirements. Past approaches have tended to evaluate the combination of the fastest tape recorders with the highest capacity tape media and then to compromise technology selection as a consequence of cost. This paper discusses an architecture that addresses both of these challenges and proposes a cost effective solution based on robots, high speed helical scan tape drives, and large-capacity media.

  5. Graphene Folding in Si Rich Carbon Nanofibers for Highly Stable, High Capacity Li-Ion Battery Anodes.

    PubMed

    Fei, Ling; Williams, Brian P; Yoo, Sang H; Kim, Jangwoo; Shoorideh, Ghazal; Joo, Yong Lak

    2016-03-02

    Silicon nanoparticles (Si NPs) wrapped by graphene in carbon nanofibers were obtained via electrospinning and subsequent thermal treatment. In this study, water-soluble poly(vinyl alcohol) (PVA) with low carbon yield is selected to make the process water-based and to achieve a high silicon yield in the composite. It was also found that increasing the amount of graphene helps keep the PVA fiber morphology after carbonization, while forming a graphene network. The fiber SEM and HRTEM images reveal that micrometer graphene is heavily folded into sub-micron scale fibers during electrospinning, while Si NPs are incorporated into the folds with nanospace in between. When applied to lithium-ion battery anodes, the Si/graphene/carbon nanofiber composites show a high reversible capacity of ∼2300 mAh g(-1) at a charging rate of 100 mA/g and a stable capacity of 1191 mAh g(-1) at 1 A/g after more than 200 cycles. The interconnected graphene network not only ensures the excellent conductivity but also serves as a buffering matrix for the mechanic stress caused by volume change; the nanospace between Si NPs and folded graphene provides the space needed for volume expansion.

  6. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  7. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    PubMed Central

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  8. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

    PubMed

    Arreaga-Salas, David E; Avendaño-Bolívar, Adrian; Simon, Dustin; Reit, Radu; Garcia-Sandoval, Aldo; Rennaker, Robert L; Voit, Walter

    2015-12-09

    Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for

  9. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria.

    PubMed

    Chicco, Adam J; Le, Catherine H; Schlater, Amber; Nguyen, Alex; Kaye, Spencer; Beals, Joseph W; Scalzo, Rebecca L; Bell, Christopher; Gnaiger, Erich; Costa, Daniel P; Crocker, Daniel E; Kanatous, Shane B

    2014-08-15

    Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.

  10. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    PubMed Central

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  11. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  12. Hiding clinical information in medical images: A new high capacity and reversible data hiding technique.

    PubMed

    Parah, Shabir A; Ahad, Farhana; Sheikh, Javaid A; Bhat, G M

    2017-02-01

    A new high capacity and reversible data hiding scheme for e-healthcare applications has been presented in this paper. Pixel to Block (PTB) conversion technique has been used as an effective and computationally efficient alternative to interpolation for the cover image generation to ensure reversibility of medical images. A fragile watermark and Block Checksum (computed for each 4×4 block) have been embedded in the cover image for facilitating tamper detection and tamper localization, and hence content authentication at receiver. The EPR, watermark data and checksum data has been embedded using Intermediate Significant Bit Substitution (ISBS) to avoid commonly used LSB removal/replacement attack. Non-linear dynamics of chaos have been put to use for encrypting the Electronic Patient Record (EPR)/clinical data and watermark data for improving the security of data embedded. The scheme has been evaluated for perceptual imperceptibility and tamper detection capability by subjecting it to various image processing and geometric attacks. Experimental results reveal that the proposed system besides being completely reversible is capable of providing high quality watermarked images for fairly high payload. Further, it has been observed that the proposed technique is able to detect and localise the tamper. A comparison of the observed results with that of some state-of-art schemes show that our scheme performs better.

  13. High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner.

    PubMed

    Ning, Guoqing; Xu, Chenggen; Mu, Liang; Chen, Guangjin; Wang, Gang; Gao, Jinsen; Fan, Zhuangjun; Qian, Weizhong; Wei, Fei

    2012-07-11

    We report for the first time an experimental investigation of gas storage in porous graphene with nanomeshes. High capacity methane storage (236 v(STP)/v) and a high selectivity to carbon dioxide adsorption were obtained in the nanomesh graphene with a high specific surface area (SSA) and a SSA-lossless tightly stacking manner.

  14. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries

    SciTech Connect

    Xiao, Lifen; Cao, Yuliang; Henderson, Wesley A.; Sushko, Maria L.; Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Nie, Zimin; Liu, Jun

    2016-01-01

    Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10-13-10-15cm2s-1) in the HCNP obtained at 1150 °C is two orders of magnitude lower than that of Li+ in graphite (10-10-13-15cm2s-1), indicating that reducing the carbon particle size is very important for improving electrochemical performance. These measurements also enable a clear visualization of the stepwise reaction phases and rate changes which occur throughout the insertion/extraction processes in HCNP, The electrochemical measurements also show that the nano-sized HCNP obtained at 1150 °C exhibited higher practical capacity at voltages lower than 1.2 V (vs. Na/Na⁺), as well as a prolonged cycling stability, which is attributed to an optimum spacing of 0.366 nm between the graphitic layers and the nano particular size resulting in a low-barrier Na+ cation insertion. These results suggest that HCNP is a very promising high-capacity/stability anode for low cost sodium-ion batteries (SIBs).

  15. Specification of minimum short circuit capacity for three-phase unbalance evaluation of high-speed railway power system

    SciTech Connect

    Chen, S.L.; Kao, F.C.; Lee, T.M.

    1995-12-31

    In the paper, firstly, the authors present an efficient computational algorithm to evaluate the short circuit capacity distribution at a substation bus, and on basis of this distribution to specify the minimum short circuit capacity for the year under evaluation. Secondly, the authors estimate the maximum traction load at seven 161kv substations of Taiwan high-speed railway system which is now under planning. Thirdly, using the maximum traction load and the minimum short circuit capacity derived, the authors estimate the maximum unbalance of the 3{phi} voltage at these seven 161kv substations, and compare their results with that by Taipower to demonstrate the effectiveness of their proposed algorithm.

  16. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization

    NASA Astrophysics Data System (ADS)

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong

    2016-04-01

    In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption-desorption analysis shows that the N-PHCS have a high specific area of 512 m2/g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.

  17. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.

    PubMed

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao

    2015-01-14

    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  18. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats.

    PubMed

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-10-02

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.

  19. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats

    PubMed Central

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-01-01

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095

  20. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  1. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  2. Intracavity, adaptive correction of a high-average-power, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2005-01-05

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multigeneration laser development effort scalable to the megawatt power levels. Wavefront quality is a driving metric of its performance. A deformable mirror with over 100 degrees of freedom situated within the cavity is used to correct both the static and dynamic aberrations sensed with a Shack-Hartmann wavefront sensor. The laser geometry is an unstable, confocal resonator with a clear aperture of 10 cm x 10 cm. It operates in a pulsed mode at a high repetition rate (up to 200 Hz) with a correction being applied before each pulse. Wavefront information is gathered in real-time from a low-power pick-off of the high-power beam. It is combined with historical trends of aberration growth to calculate a correction that is both feedback and feed-forward driven. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results are presented.

  3. The Ideal and Real Gas Heat Capacity of Potassium Atoms at High Temperatures

    NASA Astrophysics Data System (ADS)

    Biolsi, Louis; Biolsi, Michael

    2016-04-01

    The ideal gas heat capacity, Cp, of potassium atoms is calculated to high temperatures using statistical mechanics. Since there are a large number of electronic energy levels in the partition function (Boltzmann sum) below the first ionization potential, the partition function and Cp will become very large as the temperature increases unless the number of energy levels contributing to the partition function is constrained. Two primary categories of arguments are used to do this. First, at high temperatures, the increased size of the atoms constrains the sum (Bethe method). Second, an argument based on the existence of interacting charged species at higher temperatures is used to constrain the sum (ionization potential lowering method). When potassium atoms are assumed to constitute a real gas that obeys the virial equation of state, the lowest non-ideal contribution to Cp depends on the second derivative of the second virial coefficient, B( T), which depends on the interaction potential energy curves between two potassium atoms. When two ground-state (2{S}) atoms interact, they can follow either of the two potential energy curves. When a 2{S} atom interacts with an atom in the first electronically excited (2{P}) state, they can follow any of the eight potential energy curves. The values of B( T) for the ten states are determined, then averaged, and used to calculate the nonideal contribution to Cp.

  4. MEO based secured, robust, high capacity and perceptual quality image watermarking in DWT-SVD domain.

    PubMed

    Gunjal, Baisa L; Mali, Suresh N

    2015-01-01

    The aim of this paper is to present multiobjective evolutionary optimizer (MEO) based highly secured and strongly robust image watermarking technique using discrete wavelet transform (DWT) and singular value decomposition (SVD). Many researchers have failed to achieve optimization of perceptual quality and robustness with high capacity watermark embedding. Here, we achieved optimized peak signal to noise ratio (PSNR) and normalized correlation (NC) using MEO. Strong security is implemented through eight different security levels including watermark scrambling by Fibonacci-Lucas transformation (FLT). Haar wavelet is selected for DWT decomposition to compare practical performance of wavelets from different wavelet families. The technique is non-blind and tested with cover images of size 512x512 and grey scale watermark of size 256x256. The achieved perceptual quality in terms of PSNR is 79.8611dBs for Lena, 87.8446 dBs for peppers and 93.2853 dBs for lake images by varying scale factor K1 from 1 to 5. All candidate images used for testing namely Lena, peppers and lake images show exact recovery of watermark giving NC equals to 1. The robustness is tested against variety of attacks on watermarked image. The experimental demonstration proved that proposed method gives NC more than 0.96 for majority of attacks under consideration. The performance evaluation of this technique is found superior to all existing hybrid image watermarking techniques under consideration.

  5. High-capacity, low-tortuosity, and channel-guided lithium metal anode.

    PubMed

    Zhang, Ying; Luo, Wei; Wang, Chengwei; Li, Yiju; Chen, Chaoji; Song, Jianwei; Dai, Jiaqi; Hitz, Emily M; Xu, Shaomao; Yang, Chunpeng; Wang, Yanbin; Hu, Liangbing

    2017-04-04

    Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mA⋅cm(-2)), more-stable stripping/plating profiles, and better cycling performance (∼150 h at 3 mA⋅cm(-2)) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.

  6. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  7. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity.

    PubMed

    Wei, Hao; Chai, Shuangzhi; Hu, Nantao; Yang, Zhi; Wei, Liangming; Wang, Lin

    2015-08-07

    We report the synthesis of a two-dimensional enamine-linked covalent organic framework (COF) using a rapid microwave-assisted solvothermal method in significantly less time and high yield under a relatively low temperature. This COF was found to have a high crystallinity, high stability, high BET surface area, and a high CO2 capacity and adsorption selectivity of CO2/N2.

  8. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    SciTech Connect

    Jenkin, Thomas; Beiter, Philipp; Margolis, Robert

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  9. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  10. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.

    PubMed

    Yu, X B; Wu, Z; Xia, B J; Xu, N X

    2004-07-08

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g(-1) of the alloy powder were obtained at discharge current of 45-10 mA g(-1) in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  11. THE ROLE OF AEROBIC CAPACITY IN HIGH-INTENSITY INTERMITTENT EFFORTS IN ICE-HOCKEY

    PubMed Central

    Roczniok, R.; Maszczyk, A.; Pietraszewski, P.; Zając, A.

    2014-01-01

    The primary objective of this study was to determine a relationship between aerobic capacity (V.O2max) and fatigue from high-intensity skating in elite male hockey players. The subjects were twenty-four male members of the senior national ice hockey team of Poland who played the position of forward or defence. Each subject completed an on-ice Repeated-Skate Sprint test (RSS) consisting of 6 timed 89-m sprints, with 30 s of rest between subsequent efforts, and an incremental test on a cycle ergometer in the laboratory, the aim of which was to establish their maximal oxygen uptake (V.O2max). The analysis of variance showed that each next repetition in the 6x89 m test was significantly longer than the previous one (F5,138=53.33, p<0.001). An analysis of the fatigue index (FI) calculated from the times recorded for subsequent repetitions showed that the value of the FI increased with subsequent repetitions, reaching its maximum between repetitions 5 and 6 (3.10±1.16%). The total FI was 13.77±1.74%. The coefficient of correlation between V.O2max and the total FI for 6 sprints on the distance of 89 m (r =–0.584) was significant (p=0.003). The variance in the index of players’ fatigue in the 6x89 m test accounted for 34% of the variance in V.O2max. The 6x89 m test proposed in this study offers a high test-retest correlation coefficient (r=0.78). Even though the test is criticized for being too exhaustive and thereby for producing highly variable results it still seems that it was well selected for repeated sprint ability testing in hockey players. PMID:25177097

  12. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    PubMed Central

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-01-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity. PMID:28378746

  13. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon andmore » Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  14. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.

    PubMed

    Goldman, Nick; Bertone, Paul; Chen, Siyuan; Dessimoz, Christophe; LeProust, Emily M; Sipos, Botond; Birney, Ewan

    2013-02-07

    Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 × 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.

  15. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity.

    PubMed

    Vermisoglou, Eleni C; Pilatos, George; Romanos, George E; Devlin, Eamon; Kanellopoulos, Nick K; Karanikolos, Georgios N

    2011-09-02

    Open-ended, multi-wall carbon nanotubes (CNTs) with magnetic nanoparticles encapsulated within their graphitic walls (magCNTs) were fabricated by a combined action of templated growth and a ferrofluid catalyst/carbon precursor, and tested as drug hosts. The hybrid nanotubes are stable under extreme pH conditions due to particle protection provided by the graphitic shell. The magCNTs are promising for high capacity drug loading given that the magnetic functionalization did not block any of the active sites available for drug attachment, either from the CNT internal void or on the internal and external surfaces. This is in contrast to typical approaches of loading CNTs with particles that proceed through surface attachment or capillary filling of the tube interior. Additionally, the CNTs exhibit enhanced hydrophilic character, as shown by water adsorption measurements, which make them suitable for biological applications. The morphological and structural characteristics of the hybrid CNTs are evaluated in conjunction to their magnetic properties and ability for drug loading (diaminophenothiazine). The fact that the magnetic functionality is provided from 'inside the walls' can allow for multimode functionalization of the graphitic surfaces and makes the magCNTs promising for targeted therapeutic applications.

  16. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite.

    PubMed

    Wang, Yifei; Lin, Feng

    2009-07-30

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100g respectively, which are greatly higher than that of the natural zeolite (97 meq/100g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca(2+)>K(+)>Mg(2+).

  17. Structural originations of irreversible capacity loss from highly lithiated copper oxides

    SciTech Connect

    Love, Corey T.; Dmowski, Wojtek; Johannes, Michelle D.; Swider-Lyons, Karen E.

    2012-02-07

    We use electrochemistry, high-energy X-ray diffraction (XRD) with pair-distribution function analysis (PDF), and density functional theory (DFT) to study the instabilities of Li{sub 2}CuO{sub 2} at varying state of charge. Rietveld refinement of XRD patterns revealed phase evolution from pure Li{sub 2}CuO{sub 2} body-centered orthorhombic (Immm) space group to multiphase compositions after cycling. The PDF showed CuO{sub 4} square chains with varying packing during electrochemical cycling. Peaks in the G(r) at the Cu-O distance for delithiated, LiCuO{sub 2}, showed CuO{sub 4} square chains with reduced ionic radius for Cu in the 3+ state. At full depth of discharge to 1.5 V, CuO was observed in fractions greater than the initial impurity level which strongly affects the reversibility of the lithiation reactions contributing to capacity loss. DFT calculations showed electron removal from Cu and O during delithiation of Li{sub 2}CuO{sub 2}.

  18. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    SciTech Connect

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.; Reichmanis, Elsa

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon and Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.

  19. Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity

    NASA Astrophysics Data System (ADS)

    Song, Hao-Jie; Liu, Lei; Jia, Xiao-Hua; Min, Chunying

    2012-12-01

    A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and β-ferric oxyhydroxide (β-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous β-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring β-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of β-FeOOH nanoparticles. The values of remanent magnetization ( M r) and coercivity ( H c) of the as-synthesized CNTs/β-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/β-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

  20. Multiresidue analysis of pesticides in vegetables and fruits using a high capacity absorbent polymer for water.

    PubMed

    Obana, H; Akutsu, K; Okihashi, M; Kakimoto, S; Hori, S

    1999-08-01

    A single extraction and a single clean-up procedure was developed for multi-residue analysis of pesticides in non-fatty vegetables and fruits. The method involves the use of a high capacity absorbent polymer for water as a drying agent in extraction from wet food samples and of a graphitized carbon column for clean-up. A homogeneously chopped food sample (20 g) and polymer (3 g) were mixed to absorb water from the sample and then 10 min later the mixture was vigorously extracted with ethyl acetate (100 ml). The extract (50 ml), separated by filtration, was loaded on a graphitized carbon column without concentration. Additional ethyl acetate (50 ml) was also eluted and both eluates were concentrated to 5 ml for analysis. The procedure for sample preparation was completed within 2 h. In a recovery test, 107 pesticides were spiked and average recoveries were more than 80% from asparagus, orange, potato and strawberry. Most pesticides were recovered in the range 70-120% with usually less than a 10% RSD for six experiments. The results indicated that a single extraction with ethyl acetate in the presence of polymer can be applied to the monitoring of pesticide residues in foods.

  1. Structural originations of irreversible capacity loss from highly lithiated copper oxides

    NASA Astrophysics Data System (ADS)

    Love, Corey T.; Dmowski, Wojtek; Johannes, Michelle D.; Swider-Lyons, Karen E.

    2011-09-01

    We use electrochemistry, high-energy X-ray diffraction (XRD) with pair-distribution function analysis (PDF), and density functional theory (DFT) to study the instabilities of Li 2CuO 2 at varying state of charge. Rietveld refinement of XRD patterns revealed phase evolution from pure Li 2CuO 2 body-centered orthorhombic ( Immm) space group to multiphase compositions after cycling. The PDF showed CuO 4 square chains with varying packing during electrochemical cycling. Peaks in the G( r) at the Cu-O distance for delithiated, LiCuO 2, showed CuO 4 square chains with reduced ionic radius for Cu in the 3+ state. At full depth of discharge to 1.5 V, CuO was observed in fractions greater than the initial impurity level which strongly affects the reversibility of the lithiation reactions contributing to capacity loss. DFT calculations showed electron removal from Cu and O during delithiation of Li 2CuO 2.

  2. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  3. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity.

    PubMed

    Zhang, Liyuan; Xu, Jin; Sun, Liangliang; Ma, Junfeng; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-04-01

    In this study, zirconium oxide (ZrO(2)) aerogel was synthesized via a green sol-gel approach, with zirconium oxychloride, instead of the commonly used alkoxide with high toxicity, as the precursor. With such material, phosphopeptides from the digests of 4 pmol of β-casein with the coexistence of 100 times (mol ratio) BSA could be selectively captured, and identified by MALDI-TOF MS. Due to the large surface area (416.0 m(2) g(-1)) and the mesoporous structure (the average pore size of 10.2 nm) of ZrO(2) aerogel, a 20-fold higher loading capacity for phosphopeptide, YKVPQLEIVPN[pS]AEER (MW 1952.12), was obtained compared to that of commercial ZrO(2) microspheres (341.5 vs. 17.87 mg g(-1)). The metal oxide aerogel was further applied in the enrichment of phosphopeptides from 100 ng nonfat milk, and 17 phosphopeptides were positively identified, with a 1.5-fold improvement in phosphopeptide detection compared with previously reported results. These results demonstrate that ZrO(2) aerogel can be a powerful enrichment material for phosphoproteome study.

  4. High-buffering capacity, hydrolytically stable, low-pI isoelectric membranes for isoelectric trapping separations.

    PubMed

    Lalwani, Sanjiv; Shave, Evan; Vigh, Gyula

    2004-10-01

    Hydrolytically stable, low-pI isoelectric membranes have been synthesized from low-pI ampholytic components, poly(vinyl alcohol), and a bifunctional cross-linker, glycerol-1,3-diglycidyl ether. The low-pI ampholytic components used contain one amino group and at least two weakly acidic functional groups. The acidic functional groups are selected such that the pI value of the ampholytic component is determined by the pK(a) values of the acidic functional groups. When the concentration of the ampholytic component incorporated into the membrane is higher than a required minimum value, the pI of the membrane becomes independent of variations in the actual incorporation rate of the ampholytic compound. The new, low-pI isoelectric membranes have been successfully used as anodic membranes in isoelectric trapping separations with pH < 1.5 anolytes and replaced the hydrolytically less stable polyacrylamide-based isoelectric membranes. The new low-pI isoelectric membranes have excellent mechanical stability, low electric resistance, good buffering capacity, and long life time, even when used with as much as 50 W power and current densities as high as 33 mA/cm(2) during the isoelectric trapping separations.

  5. A high capacity mobile communications satellite system for the first generation MSS

    NASA Astrophysics Data System (ADS)

    Wiedeman, R. A.

    A low-cost high-capacity dual-band mobile communications satellite system using existing equipment is proposed for the first generation MSS. Cost effectiveness and the requirements of beam optimization and passive intermodulation avoidance dictated the choice of two single band satellites for separate UHF and L-band coverage of North America. Similar designs for the two satellites, based on the Intelsat V and Insat/Arabsat configurations, will achieve over 6000 5-kHz SCPC, communications channels for the system. The 12 beam UHF and 17 beam L-band satellites achieve up to a three-fold frequency reuse of the FCC allocated MSS frequency spectrum. Spacecraft design features include separate 9.1 m antennas for sending and receiving, SAW filters for channel noise attenuation, an integrated bipropellant propulsion system, and a 3.8 kW 10-year electrical power subsystem with a solar array. The satellites are compatible with the STS, Ariane, and other expendable boosters.

  6. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury.

    PubMed

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the 'umbilical scar' in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) 'umbilical scar' healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status.

  7. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  8. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.

    PubMed

    Zhang, Juan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-12-23

    Sodium-ion batteries (SIBs) have attracted considerable attention as an alternative energy-storage technology in recent years. Developing advanced sodium storage anode materials with appropriate working potential, high capacity, and good cycling performance is very important. Herein, we demonstrate a nanostructured tellurium@carbon (nano-Te@C) composite by confining nano-Te molecules in the space of carbon micropores as an attractive anode material for SIBs. The nano-Te@C anode presents an appropriate redox potential in the range of 1.05-1.35 V (vs Na(+)/Na), which avoids the Na dendrite problem and achieves a high reversible capacity of 410 mA h g(-1) on the basis of a two-electron redox reaction mechanism. Notably, the nano-Te@C exhibits an admirable long-term cycling stability with a high capacity retention of 90% for 1000 cycles (i.e., ultralow capacity decay of 0.01% per cycle). The excellent electrochemical property of nano-Te@C benefits from the high electroactivity from the nanostructure design and the effective confinement of the microporous carbon host. In addition, a Na-ion full cell by using nano-Te@C as anode and Na2/3Ni1/3Mn2/3O2 as cathode is demonstrated for the first time and exhibits a remarkable capacity retention up to 95% after 150 cycles. The results put new insights for the development of advanced SIBs with long-cycle lifespan.

  9. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax

    PubMed Central

    Webster, Richard J.; Driever, Steven M.; Kromdijk, Johannes; McGrath, Justin; Leakey, Andrew D. B.; Siebke, Katharina; Demetriades-Shah, Tanvir; Bonnage, Steve; Peloe, Tony; Lawson, Tracy; Long, Stephen P.

    2016-01-01

    Arundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock’s and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m−2 s−1) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m−2 s−1) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species, and comparable to C4 bioenergy grasses. PMID:26860066

  10. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax.

    PubMed

    Webster, Richard J; Driever, Steven M; Kromdijk, Johannes; McGrath, Justin; Leakey, Andrew D B; Siebke, Katharina; Demetriades-Shah, Tanvir; Bonnage, Steve; Peloe, Tony; Lawson, Tracy; Long, Stephen P

    2016-02-10

    Arundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock's and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m(-2) s(-1)) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m(-2) s(-1)) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species, and comparable to C4 bioenergy grasses.

  11. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  12. Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G.

    PubMed

    Du, Kaifeng

    2014-12-29

    A peptide immobilized tentacle-type monolith is developed here for high-performance IgG purification. In this work, the glucose-anchored GMA molecules serve as monomers to be grafted into the tentacle-type chains on highly porous monolith by a series of chemical reactions. While maintaining high column permeability, the tentacle grafting endows the monolith with lots of reactive handles to anchor more peptides. With that, the grafted monolith shows high peptide density of about 155μmolmL(-1), up to approximately 4.7 times higher over the ungrafted one (33μmolmL(-1)). As a result, the static adsorbing capacity and dynamic adsorption capacity at 50% breakthrough point reach 101.8 and 83.3mgmL(-1) for IgG adsorption, respectively. Regeneration, recycle and reuse of grafted monolith are highly successful for 25 runs without obvious capacity loss. By taking these advantages of high capacity and excellent structure stability, the affinity grafted monolith is evaluated by using cleared human blood supernatant. And the result shows the peptide immobilized tentacle type monolith displays excellent specificity and high effectiveness for IgG purification.

  13. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  14. Carbon nanotube coating silicon doped with Cr as a high capacity anode

    NASA Astrophysics Data System (ADS)

    Ishihara, Tatsumi; Nakasu, Masashi; Yoshio, Masaki; Nishiguchi, Hiroyasu; Takita, Yusaku

    Effects of dopant and coating carbon nanotube on anodic performance of Si were studied for metallic anode Li ion rechargeable battery with large capacity. Although the large Li intercalation capacity higher than 1500 mAh g -1 is exhibited on pure Si, it decreased drastically with increasing cycle number. Increasing the electrical conductivity by doping Cr or B is effective for increasing the initial capacity and the cycle stability of Si for Li intercalation. Coating semiconductive Si with the carbon nanotube by decomposition of hydrocarbon is effective for increasing the cycle stability, though the initial Li intercalation capacity slightly decreased. Conducting binder is also important for increasing the cycle stability and it was found that Li intercalation capacity higher than 1500 mAh g -1 can be sustained by using poly vinyliden fruolide. Consequently, reversible Li intercalation capacity of 1500 mAh g -1 was successfully sustained after 10th cycles of charge and discharge by doping Cr and coating with carbon nanotube.

  15. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials.

    PubMed

    Eames, Christopher; Islam, M Saiful

    2014-11-19

    Two-dimensional transition metal carbides (termed MXenes) are a new family of compounds generating considerable interest due to their unique properties and potential applications. Intercalation of ions into MXenes has recently been demonstrated with good electrochemical performance, making them viable electrode materials for rechargeable batteries. Here we have performed global screening of the capacity and voltage for a variety of intercalation ions (Li(+), Na(+), K(+), and Mg(2+)) into a large number of M2C-based compounds (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta) with F-, H-, O-, and OH-functionalized surfaces using density functional theory methods. In terms of gravimetric capacity a greater amount of Li(+) or Mg(2+) can be intercalated into an MXene than Na(+) or K(+), which is related to the size of the intercalating ion. Variation of the surface functional group and transition metal species can significantly affect the voltage and capacity of an MXene, with oxygen termination leading to the highest capacity. The most promising group of M2C materials in terms of anode voltage and gravimetric capacity (>400 mAh/g) are compounds containing light transition metals (e.g., Sc, Ti, V, and Cr) with nonfunctionalized or O-terminated surfaces. The results presented here provide valuable insights into exploring a rich variety of high-capacity MXenes for potential battery applications.

  16. Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

    PubMed

    Audet, Gerald N; Meek, Thomas H; Garland, Theodore; Olfert, I Mark

    2011-11-01

    Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P < 0.05). In Non-MM mice, only muscle capillarity in PLT was greater than in control mice (P < 0.001). The soleus (SOL) showed no statistical differences in muscle capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P < 0.05), with no statistical difference in basal TSP-1 when compared with control mice. In the PLT, MM mice had a 79% increase in basal VEGF (P < 0.05) and a 39% lower basal TSP-1 (P < 0.05) compared with the control animals. Non-MM mice showed no difference in basal VEGF in either the GA or the PLT compared with control mice. In contrast, basal TSP-1 was elevated in the PLT, but not in the GA, of Non-MM mice compared with control mice. Neither VEGF nor TSP-1 was significantly different in SOL muscle among the three mouse lines. In response to acute exercise, MM mice displayed a 41 and 28% increase (P < 0.05) in VEGF in the GA and PLT, respectively, whereas neither control nor Non-MM mice showed a significant VEGF response to acute

  17. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  18. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics.

    PubMed

    Shen, Jianliang; Xu, Rong; Mai, Junhua; Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-11-26

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.

  19. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.

    PubMed

    Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T

    2004-09-30

    In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.

  20. Expectancy of ergogenicity from sodium bicarbonate ingestion increases high-intensity cycling capacity.

    PubMed

    Higgins, Matthew F; Shabir, Akbar

    2016-04-01

    This study examined whether expectancy of ergogenicity of a commonly used nutritional supplement (sodium bicarbonate; NaHCO3) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; WPEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output (WPEAK), one familiarisation trial and two experimental trials. Experimental trials consisted of cycling at 100% WPEAK to volitional exhaustion (TLIM) 60 min after ingesting either a placebo (PLA: 0.1 g·kg(-1) sodium chloride (NaCl), 4 mL·kg(-1) tap water, and 1 mL·kg(-1) squash) or a sham placebo (SHAM: 0.1 g·kg(-1) NaCl, 4 mL·kg(-1) carbonated water, and 1 mL·kg(-1) squash). SHAM aimed to replicate the previously reported symptoms of gut fullness (GF) and abdominal discomfort (AD) associated with NaHCO3 ingestion. Treatments were administered double blind and accompanied by written scripts designed to remain neutral (PLA) or induce expectancy of ergogenicity (SHAM). After SHAM mean TLIM increased by 9.5% compared to PLA (461 ± 148 s versus 421 ± 150 s; P = 0.048, d = 0.3). Ratings of GF and AD were mild but ~1 unit higher post-ingestion for SHAM. After 3 min TLIM overall ratings of perceived exertion were 1.4 ± 1.3 units lower for SHAM compared to PLA (P = 0.020, d = 0.6). There were no differences between treatments for blood lactate, blood glucose, or heart rate. In summary, ergogenicity after NaHCO3 ingestion may be influenced by expectancy, which mediates perception of effort during subsequent exercise. The observed ergogenicity with SHAM did not affect our measures of cardiorespiratory physiology or metabolic flux.

  1. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury

    PubMed Central

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L.

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the ‘umbilical scar’ in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) ‘umbilical scar’ healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status. PMID:27293741

  2. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity.

    PubMed

    Murray, Patrick S; Groves, Jessica L; Pettett, Brett J; Britton, Steven L; Koch, Lauren G; Dishman, Rod K; Holmes, Philip V

    2010-12-01

    The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for (1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and (2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and (3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for 3 weeks. Following this exercise protocol, mRNA for tyrosine hydroxylase (TH) and GAL was measured in the LC. The wheel running distances between the three models were significantly different, and age contributed as a significant covariate. Both selection and wheel access condition significantly affected GAL mRNA expression, but not TH mRNA expression. GAL was elevated in exercising HCR and SD rats compared to sedentary rats while LCR rats did not differ between conditions. Overall running distance significantly correlated with GAL mRNA expression, but not with TH mRNA expression. No strain differences in GAL or TH gene expression were observed in sedentary rats. Thus, intrinsic aerobic running capacity influences GAL gene expression in the LC only insofar as actual running behavior is concerned; aerobic capacity does not influence GAL expression in addition to changes associated with running.

  3. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity

    PubMed Central

    Murray, Patrick S.; Groves, Jessica L.; Pettett, Brett J.; Britton, Steven L.; Koch, Lauren G.; Dishman, Rod K.

    2010-01-01

    The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for 1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and 3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for three weeks. Following this exercise protocol, mRNA for tyrosine hydroxylase (TH) and GAL was measured in the LC. The wheel-running distances between the three models were significantly different, and age contributed as a significant covariate. Both selection and wheel access condition significantly affected GAL mRNA expression, but not TH mRNA expression. GAL was elevated in exercising HCR and SD rats compared to sedentary rats while LCR rats did not differ between conditions. Overall running distance significantly correlated with GAL mRNA expression, but not with TH mRNA expression. No strain differences in GAL or TH gene expression were observed in sedentary rats. Thus, intrinsic aerobic running capacity influences GAL gene expression in the LC only insofar as actual running behavior is concerned; aerobic capacity does not influence GAL expression in addition to changes associated with running. PMID:20850488

  4. Role of Nitrogen Doped Graphene for Improved High Capacity Potassium Ion Battery Anodes.

    PubMed

    Share, Keith; Cohn, Adam P; Carter, Rachel; Rogers, Bridget; Pint, Cary L

    2016-10-09

    Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium-ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which also enables > 6X increase in rate performance of doped versus undoped materials. Finally, in-situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.

  5. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.

  6. Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; Deserranno, D.

    2014-01-01

    NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.

  7. Power combiner with high power capacity and high combination efficiency for two phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Wang, Yue; Song, Zhimin; Li, Jiawei; Sun, Jun; Chen, Changhua

    2015-09-01

    To realize power combination of two phase-locked relativistic backward wave oscillators (RBWOs), a compact power combiner is designed and investigated by 3-D particle-in-cell (PIC) simulation and experiment. The power combiner consists of two TM01-TE11 serpentine mode converters with a common output. When the two incident ports are fed with TM01 modes with a relative phase of 180° and power of 2.5 GW at each port, the conversion efficiency from the incident TM01 modes to the combined TE11 mode is 95.2% at 9.3 GHz, and the maximum electric field in the combiner is 714 kV/cm. The PIC simulation shows that the output power from the common port is 4.2 GW when the power combiner is connected to the two RBWOs with input signals, both producing 2.2 GW microwave, corresponding to a combination efficiency of 95.4%. In the high power microwave test, a method is proposed to obtain the combination efficiency without breaking the vacuum, which is 94.1% when the two phase-locked RBWOs output 1.8 GW and 2.2 GW. The power capacity of multi-gigawatts has been demonstrated.

  8. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries.

    PubMed

    Li, Linsen; Cabán-Acevedo, Miguel; Girard, Steven N; Jin, Song

    2014-02-21

    Iron pyrite is an earth-abundant and inexpensive material that has long been interesting for electrochemical energy storage and solar energy conversion. A large-scale conversion synthesis of phase-pure pyrite nanowires has been developed for the first time. Nano-pyrite cathodes exhibited high Li-storage capacity and excellent capacity retention in Li/pyrite batteries using a liquid electrolyte, which retained a discharge capacity of 350 mAh g(-1) and a discharge energy density of 534 Wh kg(-1) after 50 cycles at 0.1 C rate.

  9. The Magnetocaloric Effect and Heat Capacity of Suspensions of High-Dispersity Samarium Ferrite

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Aref'ev, I. M.; Ramazanova, A. G.

    2008-02-01

    The magnetocaloric effect and specific heat capacity of an aqueous suspension of samarium ferrite were determined calorimetrically over the temperature range 288-343 K in magnetic fields of 0-0.7 T. The data obtained were used to calculate changes in the magnetic component of the molar heat capacity and entropy of the magnetic phase and changes in the enthalpy of the process under an applied magnetic field. The magnetocaloric effect was found to increase nonlinearly as the magnetic field induction grew. The corresponding temperature dependences contained a maximum at 313 K related to the second-order magnetic phase transition at the Curie point. The field and temperature dependences of heat capacity contained a maximum in fields of 0.4 T and a minimum at the magnetic phase transition temperature.

  10. Molybdenum disulfide grafted titania nanotube arrays as high capacity retention anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Anwar, Tauseef; Wang, Li; Sagar, Rizwan Ur Rehman; Nosheen, Farhat; Shehzad, Khurram; Hussain, Naveed; Tongxiang, Liang

    2017-02-01

    Titania nanotube arrays (TNAs) were grown by anodic oxidation method, and molybdenum disulfide (MoS2) grafted TNAs have been synthesized via one-step hydrothermal process. The MoS2 grafted TNAs (MoS2/TNAs) when employed as an anode material in lithium ion battery, exhibited excellent areal specific capacity ( 430 µAh cm-2) at current density of 50 µA cm-2, which is 33% higher as compared to the pure anatase TNAs and 55% higher as compared to MoS2. Moreover, the capacity loss per cycle of MoS2/TNAs ( 0.21%) was significantly lower than anatase TNAs ( 1.47%), suggesting an increase of capacity retention.

  11. Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials

    SciTech Connect

    Damle, A.

    2010-02-03

    The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products

  12. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  13. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  14. Complete Genome Sequence of a Marine Bacterium, Pseudomonas pseudoalcaligenes Strain S1, with High Mercury Resistance and Bioaccumulation Capacity

    PubMed Central

    Liu, Bing; Bian, Chao; Huang, Huiwei; Yin, Zhiwei

    2016-01-01

    Pseudomonas pseudoalcaligenes S1, a marine bacterium, exhibited strong resistance to a high concentration of Hg2+ and remarkable Hg2+ bioaccumulation capacity. Here, we report the 6.9-Mb genome sequence of P. pseudoalcaligenes S1, which may help clarify its phylogenetic status and provide further understanding of the mechanisms of mercury bioremediation in a marine environment. PMID:27198018

  15. High-School Students' Need for Cognition, Self-Control Capacity, and School Achievement: Testing a Mediation Hypothesis

    ERIC Educational Resources Information Center

    Bertrams, Alex; Dickhauser, Oliver

    2009-01-01

    In the present article, we examine the hypothesis that high-school students' motivation to engage in cognitive endeavors (i.e., their need for cognition; NFC) is positively related to their dispositional self-control capacity. Furthermore, we test the prediction that the relation between NFC and school achievement is mediated by self-control…

  16. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed Central

    Bezanilla, F

    1985-01-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213

  17. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework.

    PubMed

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E

    2007-02-07

    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  18. High-temperature heat capacity of YFe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Denisov, V. M.; Denisova, L. T.; Gudim, I. A.; Temerov, V. L.; Volkov, N. V.; Patrin, G. S.; Chumilina, L. G.

    2014-02-01

    The molar heat capacity of YFe3(BO3)4 has been measured using differential scanning calorimetry in the temperature range 339-1086 K. It has been found that the dependence C p = f( T) exhibits an extremum at a temperature of 401 K due to the structural transition.

  19. Space Profiles and Capacity Worksheets for Schools. Elementary Schools, Middle Schools, High Schools.

    ERIC Educational Resources Information Center

    North Carolina State Board of Education, Raleigh.

    This collection of worksheets includes typical space profiles for North Carolina's preK-12 schools, offering: number of students, core capacity, special education, media center, food service, physical education, academic and arts education classrooms, resource rooms, other teaching stations, administration, auditorium/theater, service/marketing…

  20. High-Temperature Adiabatic Calorimeter for Constant-Volume Heat Capacity Measurements of Compressed Gases and Liquids

    PubMed Central

    Magee, Joseph W.; Deal, Renee J.; Blanco, John C.

    1998-01-01

    A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities (cV) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa. Performance tests were made with a sample of twice-distilled water. Heat capacities for water were measured from 300 K to 420 K at pressures to 20 MPa. The measured heat capacities differed from those calculated with an independently developed standard reference formulation with a root-mean-square fractional deviation of 0.48 %. PMID:28009375

  1. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    PubMed

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  2. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

  3. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    PubMed

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water.

  4. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGES

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  5. High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits

    NASA Astrophysics Data System (ADS)

    Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan

    2016-11-01

    Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.

  6. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers.

    PubMed

    Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng

    2015-10-01

    Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater.

  7. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  8. Novel synthesis of high-capacity cobalt vanadate for use in lithium secondary cells

    NASA Astrophysics Data System (ADS)

    Kim, Yong Top; Gopukumar; Kim, Kwang Bum; Cho, Byung Won

    The mild combustion synthesis of cobalt vanadate involving the reaction of V 2O 5, Co(NO 3) 2 and glycine as starting materials is reported. The synthesized material is annealed at 550 °C and characterized by means of X-ray diffraction (XRD), cyclic voltammetry, and galvanostatic charge-discharge cycling techniques. XRD analysis indicates that the structure of the synthesized cobalt vanadate is amorphous. The initial delivered capacity is ˜275 mAh g -1 in a Li//CoV 2O 5 cell at a current density of 0.05 mA cm -2 when cycled between 2 and 4 V using 1 M LiClO 4 in propylene carbonate as electrolyte. The capacity remains stable even after 10 cycles. The cobalt vanadate prepared by this new synthetic route is, therefore, a potential candidate for lithium secondary batteries.

  9. Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium

    SciTech Connect

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-28

    Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ∼6.30 wt. %.

  10. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOEpatents

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  11. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  12. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers.

    PubMed

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-03-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer.

  13. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  14. Label-free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacity.

    PubMed

    Bowden-Davies, Kelly; Connolly, Joanne; Burghardt, Paul; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2015-07-01

    Divergent selection has created rat phenotypes of high- and low-capacity runners (HCR and LCR, respectively) that have differences in aerobic capacity and correlated traits such as adiposity. We analyzed visceral adipose tissue of HCR and LCR using label-free high-definition MS (elevated energy) profiling. The running capacity of HCR was ninefold greater than LCR. Proteome profiling encompassed 448 proteins and detected 30 significant (p <0.05; false discovery rate <10%, calculated using q-values) differences. Approximately half of the proteins analyzed were of mitochondrial origin, but there were no significant differences in the abundance of proteins involved in aerobic metabolism. Instead, adipose tissue of LCR rats exhibited greater abundances of proteins associated with adipogenesis (e.g. cathepsin D), ER stress (e.g. 78 kDa glucose response protein), and inflammation (e.g. Ig gamma-2B chain C region). Whereas the abundance antioxidant enzymes such as superoxide dismutase [Cu-Zn] was greater in HCR tissue. Putative adipokines were also detected, in particular protein S100-B, was 431% more abundant in LCR adipose tissue. These findings reveal low running capacity is associated with a pathological profile in visceral adipose tissue proteome despite no detectable differences in mitochondrial protein abundance.

  15. Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries.

    PubMed

    Peled, Emanuel; Patolsky, Fernando; Golodnitsky, Diana; Freedman, Kathrin; Davidi, Guy; Schneier, Dan

    2015-06-10

    Here, we report on the scalable synthesis and characterization of novel architecture three-dimensional (3D) high-capacity amorphous silicon nanowires (SiNWs)-based anodes with focus on studying their electrochemical degradation mechanisms. We achieved an unprecedented combination of remarkable performance characteristics, high loadings of 3-15 mAh/cm(2), a very low irreversible capacity (10% for the 3-4 mAh/cm(2) anodes), current efficiency greater than 99.5%, cycle stability (both in half cells and a LiFePO4 battery), a total capacity of 457 mAh/cm(2) over 204 cycles and fast charge-discharge rates (up to 2.7C at 20 mA/cm(2)). These SiNWs-based binder-free 3D anodes have been cycled for over 200 cycles, exhibiting a stable cycle life. Notably, it was found that the growth of the continuous SEI layer thickness, and its concomitant increase in resistivity, represents the major reason for the observed capacity loss of the SiNWs-based anodes. Importantly, these NWs-based anodes of novel architecture meet the requirements of lithium batteries for future portable, and electric-vehicle, applications.

  16. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  17. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  18. High adsorption capacity of V-doped TiO2 for decolorization of methylene blue

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Binh; Hwang, Moon-Jin; Ryu, Kwang-Sun

    2012-07-01

    In this study, pure TiO2 (V-TiO2-0) and V-doped TiO2 (V-TiO2-x, x = 1-10 mol%) were synthesized using a new sol-gel method. The adsorption capacity of the V-TiO2-x samples was evaluated by measuring the removal of methylene blue (MB) from aqueous solution via decolorization. Since the adsorption capacity was affected by the specific surface area, the interaction between adsorbate (MB) and adsorbent (V-TiO2-x), and the structure of the adsorbent, the physicochemical properties of the samples were investigated. Among the V-doped TiO2-x samples, the V-TiO2-10 sample showed the highest adsorption capacity, which was 11.36 times greater than that of pure TiO2, removing 85.2% of the MB after 2 h. Moreover, changing the molar ratio of the reactants in the V-TiO2-10 sample improved the performance of the material so that 91.6% of the MB was removed after 2 h.

  19. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro; Ichinose, Takahiro; Ozaki, Tomoatsu; Togawa, Yoshihiko; Mori, Shigeo

    2015-01-01

    All-solid-state sulfur-based rechargeable lithium batteries have been expected to have superior energy density and high reliability so far. In general, the solid-solid interface between electrode and electrolyte particles has strong influence on the cell performance. Recently it is realized that all-solid-state lithium-sulfur batteries exhibit good cycling performance by reducing the particle size down to submicron scale. However, the origin of excellent reversibility has not been understood. Here we clearly demonstrate Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. Through high-resolution transmission electron microscopy (TEM) and energy-dispersed X-ray (EDX) spectroscopy experiments, reversible structural and morphological changes at the nanoscale during the full-electrochemical cycles in next-generation all-solid-state lithium-sulfur batteries have been revealed for the first time. Reversible variations during cycles between crystallization and amorphization of sulfur-based active nanoparticles are responsible for the feasibility of the high capacity and cycling stability. The smooth and adhesive interface between them is truly realized at the nanoscale, which is fabricated by mechanical milling technique. Our experimental findings will lead to new route to generate the sulfur-based rechargeable batteries with high-capacity and cycling stability.

  20. On-chip high power porous silicon lithium ion batteries with stable capacity over 10 000 cycles

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Freudiger, Daniel; Gani, Zarif S.; Share, Keith; Oakes, Landon; Carter, Rachel E.; Pint, Cary L.

    2014-11-01

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50X power density, and 100X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm-2) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10 000 cycles with capacity above 0.1 mA h cm-2 without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50X power density, and 100X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm-2) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10 000 cycles with capacity above 0.1 mA h cm-2 without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04720f

  1. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    SciTech Connect

    Das, B. Reddy, M.V.; Chowdari, B.V.R

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  2. Renal function and hyperfiltration capacity in lead smelter workers with high bone lead.

    PubMed Central

    Roels, H; Lauwerys, R; Konings, J; Buchet, J P; Bernard, A; Green, S; Bradley, D; Morgan, W; Chettle, D

    1994-01-01

    OBJECTIVE--The study was undertaken to assess whether the changes in urinary excretion of eicosanoids (a decrease of 6-keto-PGF1 alpha and PGF2 and an increase of thromboxane) previously found in lead (Pb) exposed workers may decrease the renal haemodynamic response to an acute oral protein load. METHODS--The renal haemodynamic response was estimated by determining the capacity of the kidney to increase the glomerular filtration rate (in terms of creatinine clearance) after an acute consumption of cooked red meat (400 g). A cross sectional study was carried out in 76 male Pb workers (age range 30 to 60 years) and 68 controls matched for age, sex, socioeconomic state, general environment (residence), and workshift characteristics. RESULTS--The Pb workers had been exposed to lead on average for 18 (range 6-36) years and showed a threefold higher body burden of Pb than the controls as estimated by in vivo measurements of tibial Pb concentration (Pb-T) (geometric mean 66 v 21 micrograms Pb/g bone mineral). The geometric mean concentrations of Pb in blood (Pb-B) and Pb in urine (Pb-U) were also significantly higher in the Pb group (Pb-B: 430 v 141 micrograms Pb/l; Pb-U: 40 v 7.5 micrograms Pb/g creatinine). These conditions of chronic exposure to Pb did not entail any significant changes in the concentration of blood borne and urinary markers of nephrotoxicity, such as urinary low and high molecular weight plasma derived proteins (beta 2-microglobulin, retinol binding protein, albumin, transferrin), urinary activities of N-acetyl-beta-D-glucosaminidase and kallikrein, and serum concentrations of creatinine, beta 2-microglobulin, urea, and uric acid. All participants also had normal baseline creatinine clearances (> 80 ml/min/1.73 m2) amounting on average to 115.5 in the controls v 121.3 ml/min/1.73 m2 in the Pb group. Both control and Pb exposed workers showed a significant increment in creatinine clearance (on average 15%) after oral protein load suggesting that the

  3. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  4. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.

    PubMed

    Liu, Qingling; Pham, Trong; Porosoff, Marc D; Lobo, Raul F

    2012-11-01

    The increased carbon dioxide concentration in the atmosphere caused by combustion of fossil fuels has been a leading contributor to global climate change. The adsorption-driven pressure or vacuum swing (PSA/VSA) processes are promising as affordable means for the capture and separation of CO₂. Herein, an 8-membered-ring zeolite ZK-5 (Framework Type Code: KFI) exchanged with different cations (H⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺) was synthesized as novel CO₂ adsorbent. The samples were characterized by SEM, energy-dispersive X-ray spectroscopy (EDAX), XRD, and gas adsorption (CO₂ and N₂). The Toth adsorption model was used to describe the CO₂ adsorption isotherms, and the isosteric heats of adsorption were calculated. CO₂ capture adsorbent evaluation criteria such as working capacity, regenerability and CO₂/N₂ selectivity were applied to evaluate the zeolite adsorbents for PSA/VSA applications. The in situ FTIR CO₂ adsorption spectra show that physisorption accounts for the largest fraction of the total CO₂ adsorbed. The CO₂ adsorption analysis shows that Mg-ZK-5 is the most promising adsorbent for PSA applications with the highest working capacity (ΔN(CO₂)=2.05 mmol g⁻¹), excellent selectivity (α(CO₂/N₂)=121), and low isosteric heat. Li-, Na- and K-ZK-5 with good working capacity (ΔN(CO₂)=1.55-2.16 mmol g⁻¹) and excellent selectivity (α(CO₂/N₂)=103-128) are promising CO₂ adsorbents for the VSA working region.

  5. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    SciTech Connect

    He, Yan-Ping; Zhou, Nan; Tan, Yan-Xi; Wang, Fei; Zhang, Jian

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  6. Ab initio Design of Ca-Decorated Organic Frameworks for High Capacity Molecular Hydrogen Storage with Enhanced Binding

    SciTech Connect

    Sun, Y. Y.; Lee, K.; Kim, Y. H.; Zhang, S. B.

    2009-01-01

    Ab initio calculations show that Ca can decorate organic linkers of metal-organic framework, MOF-5, with a binding energy of 1.25 eV. The Ca-decorated MOF-5 can store molecular hydrogen (H{sub 2}) in both high gravimetric (4.6 wt %) and high volumetric (36 g/l) capacities. Even higher capacities (5.7 wt % and 45 g/l) can be obtained in a rationally designed covalent organic framework system, COF-{alpha}, with decorated Ca. Both density functional theory and second-order Moller-Plesset perturbation calculations show that the H{sub 2} binding in these systems is significantly stronger than the van der Waals interactions, which is required for H{sub 2} storage at near ambient conditions.

  7. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. High-Capacity Angularly Multiplexed Holographic Memory Operating at the Single-Photon Level

    NASA Astrophysics Data System (ADS)

    Chrapkiewicz, Radosław; DÄ browski, Michał; Wasilewski, Wojciech

    2017-02-01

    We experimentally demonstrate an angularly multiplexed holographic memory capable of intrinsic generation, storage, and retrieval of multiple photons, based on an off-resonant Raman interaction in warm rubidium-87 vapors. The memory capacity of up to 60 independent atomic spin-wave modes is evidenced by analyzing angular distributions of coincidences between Stokes and time-delayed anti-Stokes light, observed down to the level of single spin-wave excitation during the several-microsecond memory lifetime. We also propose how to practically enhance rates of single- and multiple-photon generation by combining our multimode emissive memory with existing fast optical switches.

  10. High energy bursts from a solid state laser operated in the heat capacity limited regime

    SciTech Connect

    Albrecht, G.; George, E.V.; Krupke, W.

    1994-12-31

    Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

  11. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    PubMed

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.

  12. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    PubMed

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal.

  13. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru.

    PubMed

    Bahar, Nur H A; Ishida, F Yoko; Weerasinghe, Lasantha K; Guerrieri, Rossella; O'Sullivan, Odhran S; Bloomfield, Keith J; Asner, Gregory P; Martin, Roberta E; Lloyd, Jon; Malhi, Yadvinder; Phillips, Oliver L; Meir, Patrick; Salinas, Norma; Cosio, Eric G; Domingues, Tomas F; Quesada, Carlos A; Sinca, Felipe; Escudero Vega, Alberto; Zuloaga Ccorimanya, Paola P; Del Aguila-Pasquel, Jhon; Quispe Huaypar, Katherine; Cuba Torres, Israel; Butrón Loayza, Rosalbina; Pelaez Tapia, Yulina; Huaman Ovalle, Judit; Long, Benedict M; Evans, John R; Atkin, Owen K

    2016-07-08

    We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.

  14. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  15. Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme.

    PubMed

    Yuan, Shifang; Deng, Qiliang; Fang, Guozhen; Wu, Jianhua; Li, Wangwang; Wang, Shuo

    2014-06-01

    In this research, ionic liquid as functional monomer to prepare molecularly imprinted polymers for protein recognition was for the first time demonstrated, in which, 1-vinyl-3-butylimidazolium chloride was selected as functional monomer, acrylamide as co-functional monomer and lysozyme (Lyz) as template protein to synthesize imprinted polymers on the surface of multiwall carbon nanotubes in aqueous medium. The results indicated that ionic liquid was helpful to improve binding capacity of imprinted polymers, which had a maximum binding capacity of 763.36 mg/g in the optimum adsorption conditions. The prepared imprinted polymers had a fast adsorption rate and a much higher adsorption capacity than the corresponding non-imprinted polymers, with the difference in adsorption capacity up to 258.31 mg/g. The obtained polymer was evaluated by Lyz, bovine serum albumin (BSA), bovine hemoglobin (BHb), equine myoglobin (MB) and cytochrome c (Cyt c). The selectivity factor (β) for Lyz/BSA, Lyz/Mb, Lyz/BHb, and Lyz/Cyt c were 7.17, 2.12, 1.76 and 1.57, respectively, indicating the imprinted polymers had a good selectivity. Easy preparation of the imprinted polymers as well as high ability and selectivity to adsorb template proteins makes this polymer attractive and broadly applicable in biomacromolecular separation, biotechnology and sensors.

  16. A novel procedure to assess the non-enzymatic hydrogen-peroxide antioxidant capacity of metabolites with high UV absorption.

    PubMed

    Csepregi, Kristóf; Hideg, Éva

    2016-12-01

    Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.

  17. Agile Thermal Management STT-RX, Modified Magnesium Hydride and Calcium Borohydride for High-Capacity Thermal Energy Storage (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    variety of areas from intermittent solar energy harvesting to thermal management of transient, high- flux heat loads. A variety of passive materials...have been developed and employed for TES including paraffin waxes, water tanks, and low-capacity reversible metal hydrides, among others. Paraffin...example materials that exceed 1 MJ/kg are water (liquid-vapor) and metal hydride (MgH2). Regarding water , the slow kinetics of boiling/evaporation

  18. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    PubMed

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug.

  19. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal.

    PubMed

    Jiang, Wei; Chen, Xubin; Pan, Bingcai; Zhang, Quanxing; Teng, Long; Chen, Yufan; Liu, Lu

    2014-07-15

    In order to accelerate the kinetics and improve the utilization of the surface active groups of chitosan (CS) for heavy metal ion removal, sub-micron-sized polystyrene supported chitosan thin-film was synthesized by the electrostatic assembly method. Glutaraldehyde was used as cross-linking agent. Chitosan thin-film was well coated onto the surface of the polystyrene (PS) beads characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Their adsorption toward Cu(II) ions was investigated as a function of solution pH, degree of cross-linking, equilibrium Cu(II) ions concentration and contact time. The maximum adsorptive capacity of PS-CS was 99.8 mg/g in the adsorption isotherm study. More attractively, the adsorption equilibrium was achieved in 10 min, which showed superior properties among similar adsorbents. Continuous adsorption-desorption cyclic results demonstrated that Cu(II)-loaded PS-CS can be effectively regenerated by a hydrochloric acid solution (HCl), and the regenerated composite beads could be employed for repeated use without significant capacity loss, indicating the good stability of the adsorbents. The XPS analysis confirmed that the adsorption process was due to surface complexes with atoms of chitosan. Generally, PS beads could be employed as a promising host to fabricate efficient composites that originated from chitosan or other bio-sorbents for environmental remediation.

  20. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    NASA Astrophysics Data System (ADS)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-02-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g‑1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.

  1. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    PubMed Central

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g−1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  2. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    PubMed

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  3. Green and economical synthesis of carbon-coated MoO2 nanocrystallines with highly reversible lithium storage capacity.

    PubMed

    Sun, Xiaohong; Shi, Yifeng; Fang, Xiangpeng; Ji, Huiming; Li, Xiaolei; Cai, Shu; Zheng, Chunming; Hu, Yongsheng

    2014-06-01

    Carbon-coated MoO2 nanocrystallines with uniform particle size and carbon-coating morphology have been fabricated by a green and economical hydrothermal route and carbonization process. Glucose here acts as a multifunctional agent, not only as the reducing species to prepare MoO2, but also as the carbonaceous precursor and coating agent to form the carbon-coated and nanoscale MoO2 crystallines. The electrochemical tests demonstrate that the as-synthesized carbon-coated MoO2 nanocrystallines exhibit high capacity and excellent capacity retention as an anode material for lithium-ion batteries. The specific discharge capacity is as high as 790 mA h g(-1) in the first cycle and 730 mA h g(-1) over 50 cycles. The significant enhancement in the electrochemical Li storage performance is attributed to the synergistic effect of the nanocrystallines structure with small particle size and uniform carbon-coating shell, which reduces the diffusion distance for Li-ion and electron, provides high electric conductivity and relieves the volume effect during the cycling.

  4. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress.

    PubMed

    Klem, Karel; Holub, Petr; Štroch, Michal; Nezval, Jakub; Špunda, Vladimír; Tříska, Jan; Jansen, Marcel A K; Robson, T Matthew; Urban, Otmar

    2015-08-01

    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.

  5. Large capacity, multi-fuel, and high temperature working fluid heaters to optimize CSP plant cost, complexity and annual generation

    NASA Astrophysics Data System (ADS)

    Peterseim, J. H.; Viscuso, L.; Hellwig, U.; McIntyre, P.

    2016-05-01

    This paper analyses the potential to optimize high temperature fluid back-up systems for concentrating solar power (CSP) plants by investigating the cost impact of component capacity and the impact of using multiple fuels on annual generation. Until now back-up heaters have been limited to 20MWth capacity but larger units have been realised in other industries. Installing larger units yields economy-of-scale benefits through improved manufacturing, optimised transport, and minimized on-site installation work. Halving the number of back-up boilers can yield cost reduction of 23% while minimizing plant complexity and on-site construction risk. However, to achieve these benefits it is important to adapt the back-up heaters to the plant's requirements (load change, capacity, minimum load, etc.) and design for manufacture, transport and assembly. Despite the fact that biomass availability is decreasing with increasing direct normal irradiance (DNI), some biomass is available in areas suitable for CSP plants. The use of these biomass resources is beneficial to maximise annual renewable energy generation, substitute natural gas, and use locally/seasonally available biomass resources that may not be used otherwise. Even small biomass quantities of only 50,000 t/a can increase the capacity factor of a 50MWe parabolic trough plant with 7h thermal energy storage from 40 to 49%. This is a valuable increase and such a concept is suitable for new plants and retrofit applications. However, similar to the capacity optimisation of back-up heaters, various design criteria have to be considered to ensure a successful project.

  6. Gelatin-loaded p(HEMA-GMA) cryogel for high-capacity immobilization of horseradish peroxidase.

    PubMed

    Soomro, Rabel; Perçin, Işık; Memon, Najma; Iqbal Bhanger, Muhammad; Denizli, Adil

    2016-11-01

    Poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [p(HEMA-GMA)] cryogel discs were prepared under sub-zero temperatures. Gelatin was attached covalently on the p(HEMA-GMA) cryogel discs and reversible immobilization of horseradish peroxidase (HRP) was performed. The p(HEMA-GMA) cryogel discs were characterized by swelling tests, scanning electron microscopy, and surface area measurements. HRP immobilization capacity of p(HEMA-GMA)/gelatin cryogel discs was 24.8 mg/g. Removal of phenol from aqueous solutions was performed using HRP immobilized p(HEMA-GMA)/gelatin cryogel. It was observed that within 2 h of contact time, the percentage of phenol removal reaches up to 91% in the presence of H2O2.

  7. Development and characterization of a high capacity lithium/thionyl chloride battery

    NASA Astrophysics Data System (ADS)

    Boyle, Gerald H.; Goebel, Franz

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 °C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm 2. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements.

  8. Raising the Bar, Building Capacity: Driving Improvement in California's Continuation High Schools

    ERIC Educational Resources Information Center

    de Velasco, Jorge Ruiz; McLaughlin, Milbrey

    2012-01-01

    California's approximately 500 continuation high schools are estimated to serve more than 115,000 California high school students each year--a number that approaches almost 10 percent of all high school students and as many as one of every seven high school seniors. Continuation schools are, however, more racially and ethnically concentrated than…

  9. Raising the Bar, Building Capacity: Driving Improvement in California's Continuation High Schools. Executive Summary

    ERIC Educational Resources Information Center

    de Velasco, Jorge Ruiz; McLaughlin, Milbrey

    2012-01-01

    California's approximately 500 continuation high schools are estimated to serve more than 115,000 California high school students each year--a number that approaches almost 10 percent of all high school students and as many as one of every seven high school seniors. Continuation schools are, however, more racially and ethnically concentrated than…

  10. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g‑1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g‑1 is obtained at a high current density of 600 mA g‑1, and the electrode recovers a capacity of 230 mAh g‑1 when the current density is reset to 15 mA g‑1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications.

  11. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    PubMed Central

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g−1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g−1 is obtained at a high current density of 600 mA g−1, and the electrode recovers a capacity of 230 mAh g−1 when the current density is reset to 15 mA g−1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications. PMID:28098231

  12. High capacity MnOx:ZrO2 sorbent for elementary mercury capture: preparation, characterization and comparison to other sorbents

    NASA Astrophysics Data System (ADS)

    Lakatos, J.; Snape, C. E.

    2017-02-01

    Manganese oxide-zirconia type (MnOx:ZrO2) sorbents were prepared using the sol-gel technique by co precipitation ZrO(NO3)2.xH2O and Mn(NO3)2 xH2O. The heat treatment below 500°C resulted a high surface area solid structure which consists of amorphous Mn2O3 (Bixbyite) and amorphous ZrO2 phases. This material was found a high capacity oxidative sorbent for mercury removal from gas streams.

  13. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability

    NASA Astrophysics Data System (ADS)

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-01

    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  14. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

    PubMed

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-13

    We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  15. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.

    PubMed

    Guo, Xun; Zhang, Xitong; Zhao, Shijun; Huang, Qing; Xue, Jianming

    2016-01-07

    Density functional theory (DFT) calculation is employed to study the adsorption properties of Pb and Cu on recently synthesized two-dimensional materials MXenes, including Ti3C2, V2C1 and Ti2C1. The influence of surface decoration with functional groups such as H, OH and F have also been investigated. Most of these studied MXenes exhibit excellent capability to adsorb Pb and Cu, especially the adsorption capacity of Pb on Ti2C1 is as high as 2560 mg g(-1). Both the binding energies and the adsorption capacities are sensitive to the functional groups attached to the MXenes' surface. Ab initio molecular dynamics (ab-init MD) simulation confirms that Ti2C1 remains stable at room temperature after adsorbing Pb atoms. Our calculations imply that these newly emerging two-dimensional MXenes are promising candidates for wastewater treatment and ion separation.

  16. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.

    PubMed

    Wang, Bei; Li, Kefei; Su, Dawei; Ahn, Hyojun; Wang, Guoxiu

    2012-06-01

    Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field-emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super-high lithium-storage capacity of 1580 mA h g(-1) and a satisfactory cycling performance in lithium-sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene-based nanocomposites can significantly improve the electrochemical performance of lithium-sulfur batteries.

  17. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity.

    PubMed

    Shen, Yu; Li, Hongxing; Wang, Xinning; Zhang, Xiaoran; Hou, Jin; Wang, Linfeng; Gao, Nan; Bao, Xiaoming

    2014-11-01

    The phenolic compounds present in hydrolysates pose significant challenges for the sustainable lignocellulosic materials refining industry. Three Saccharomyces cerevisiae strains with high tolerance to lignocellulose hydrolysate were obtained through ethyl methanesulfonate mutation and adaptive evolution. Among them, strain EMV-8 exhibits specific tolerance to vanillin, a phenolic compound common in lignocellulose hydrolysate. The EMV-8 maintains a specific growth rate of 0.104 h(-1) in 2 g L(-1) vanillin, whereas the reference strain cannot grow. Physiological studies revealed that the vanillin reduction rate of EMV-8 is 1.92-fold higher than its parent strain, and the Trolox equivalent antioxidant capacity of EMV-8 is 15 % higher than its parent strain. Transcriptional analysis results confirmed an up-regulated oxidoreductase activity and antioxidant activity in this strain. Our results suggest that enhancing the antioxidant capacity and oxidoreductase activity could be a strategy to engineer S. cerevisiae for improved vanillin tolerance.

  18. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    PubMed

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  19. The mechanisms governing low denitrification capacity and high nitrogen oxide gas emissions in subtropical forest soils in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbo; Yu, Yongjie; Zhu, Tongbin; Cai, Zucong

    2014-08-01

    Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p < 0.05). Multiple regression analysis showed that redox potential at the start of incubation (Ehi), rather than soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p < 0.01) and the ratio of NO and N2O to total denitrification gas products (p < 0.05) were significantly higher in subtropical forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p < 0.05). A high Ehi reduced the specific reduction activity of each nosZ copy and, in turn, resulted in a large ratio of NO

  20. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.

    PubMed

    Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong

    2012-12-21

    Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.

  1. High-capacity millimetre-wave communications with orbital angular momentum multiplexing.

    PubMed

    Yan, Yan; Xie, Guodong; Lavery, Martin P J; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F; Tur, Moshe; Padgett, Miles J; Willner, Alan E

    2014-09-16

    One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front 'twisting' indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s(-1) millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s(-1) Hz(-1) using four independent orbital-angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10(-3). In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than -12.5 dB and show an 8-Gbit s(-1) link containing two orbital angular momentum beams on each of two polarizations.

  2. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity.

    PubMed

    Hill, C A; Harris, R C; Kim, H J; Harris, B D; Sale, C; Boobis, L H; Kim, C K; Wise, J A

    2007-02-01

    Muscle carnosine synthesis is limited by the availability of beta-alanine. Thirteen male subjects were supplemented with beta-alanine (CarnoSyn) for 4 wks, 8 of these for 10 wks. A biopsy of the vastus lateralis was obtained from 6 of the 8 at 0, 4 and 10 wks. Subjects undertook a cycle capacity test to determine total work done (TWD) at 110% (CCT(110%)) of their maximum power (Wmax). Twelve matched subjects received a placebo. Eleven of these completed the CCT(110%) at 0 and 4 wks, and 8, 10 wks. Muscle biopsies were obtained from 5 of the 8 and one additional subject. Muscle carnosine was significantly increased by +58.8% and +80.1% after 4 and 10 wks beta-alanine supplementation. Carnosine, initially 1.71 times higher in type IIa fibres, increased equally in both type I and IIa fibres. No increase was seen in control subjects. Taurine was unchanged by 10 wks of supplementation. 4 wks beta-alanine supplementation resulted in a significant increase in TWD (+13.0%); with a further +3.2% increase at 10 wks. TWD was unchanged at 4 and 10 wks in the control subjects. The increase in TWD with supplementation followed the increase in muscle carnosine.

  3. High-capacity millimetre-wave communications with orbital angular momentum multiplexing

    PubMed Central

    Yan, Yan; Xie, Guodong; Lavery, Martin P. J.; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F.; Tur, Moshe; Padgett, Miles J.; Willner, Alan E.

    2014-01-01

    One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front ‘twisting’ indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s−1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10−3. In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than −12.5 dB and show an 8-Gbit s−1 link containing two orbital angular momentum beams on each of two polarizations. PMID:25224763

  4. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    NASA Astrophysics Data System (ADS)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  5. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-10-01

    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate.

  6. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    PubMed Central

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  7. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites.

    PubMed

    Song, Wen; Gao, Baoyu; Zhang, Tengge; Xu, Xing; Huang, Xin; Yu, Huan; Yue, Qinyan

    2015-08-01

    Easily separable amine-functionalized magnetic corn stalk composites (AF-MCS) were employed for effective adsorption and reduction of toxic hexavalent chromium [Cr(VI)] to nontoxic Cr(III). The saturated magnetization of AF-MCS reached 6.2emu/g, and as a result, it could be separated from aqueous solution by a magnetic process for its superparamagnetism. The studies of various factors influencing the sorption behavior indicated that the optimum AF-MCS dosage for Cr(VI) adsorption was 1g/L, and the maximum adsorption capacity was observed at pH 3.0. The chromium adsorption perfectly fitted the Langmuir isotherm model and pseudo second order kinetic model. Furthermore, characterization of AF-MCS was investigated by means of XRD, SEM, TEM, FT-IR, BET, VSM and XPS analysis to discuss the uptake mechanism. Basically, these results demonstrated that AF-MCS prepared in this work has shown its merit in effective removal of Cr(VI) and rapid separation from effluents simultaneously.

  8. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  9. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  10. Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Shiqiang; Yu, Yue; Wei, Shanshan; Wang, Yuxi; Zhao, Chenhao; Liu, Rui; Shen, Qiang

    2014-05-01

    Natural siderite is a valuable iron mineral composed of ferrous carbonate (FeCO3), which is commonly found in hydrothermal veins and contains no sulfur or phosphorus. In this paper, micro-sized FeCO3 crystallites are synthesized via a facile hydrothermal route, and almost all of them possess a rhombohedral shape similar to that of natural products. When applied as an anode material for lithium ion batteries, the synthetic siderite can deliver an initial specific discharge capacity of ∼1587 mAh g-1 with a coulombic efficiency of 68% at 200 mA g-1, remaining a reversible value of 1018 mAh g-1 over 120 cycles. Even at a high current density of 1000 mA g-1, after 120 cycles the residual specific capacity (812 mAh g-1) is still higher than the theoretical capacity of FeCO3 (463 mAh g-1). Moreover, a novel reversible conversion mechanism accounts for the excellent electrochemical performances of rhombohedral FeCO3 to a great extent, implying the potential applicability of synthetic siderite as lithium ion battery anodes.

  11. Doubly-Amphiphilic Poly(2-oxazoline)s as High-Capacity Delivery Systems for Hydrophobic Drugs

    PubMed Central

    Schulz, Anita; Roques, Caroline; Li, Shu; Bronich, Tatiana K.; Batrakova, Elena V.; Jordan, Rainer

    2010-01-01

    Solubilization of highly hydrophobic drugs with carriers that are non-toxic, non-immunogenic and well-defined remains a major obstacle in pharmaceutical sciences. Well defined amphiphilic di- and triblock copolymers based on poly(2-oxazolines) were prepared and used for the solubilization of Paclitaxel (PTX) and other water-insoluble drugs. Probing the polymer micelles in water with the fluorescence probe pyrene, an unusual high polar microenvironment of the probe was observed. This coincides with an extraordinary large loading capacity for PTX of 45 wt.% active drug in the formulation as well as high water solubility of the resulting formulation. Physicochemical properties of the formulations, ease of preparation and stability upon lyophilization, low toxicity and immunogenicity suggest that poly(2-oxazoline)s are promising candidates for the delivery of highly challenging drugs. Furthermore, we demonstrate that PTX is fully active and provides superior tumor inhibition as compared to the commercial micellar formulation. PMID:20346493

  12. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  13. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    PubMed

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies.

  14. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.

    PubMed

    Liu, Jun; Song, Kepeng; Zhu, Changbao; Chen, Chia-Chin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2014-07-22

    Germanium-based materials (Ge and GeOx) have recently demonstrated excellent lithium-ion storage ability and are being considered as the most promising candidates to substitute commercial carbon-based anodes of lithium-ion batteries. Nevertheless, practical implementation of Ge-based materials to lithium-ion batteries is greatly hampered by the poor cyclability that resulted from the huge volume variation during lithiation/delithiation processes. Herein, uniform carbon-encapsulated Ge and GeOx nanowires were synthesized by a one-step controlled pyrolysis of organic-inorganic hybrid GeOx/ethylenediamine (GeOx/EDA) nanowires in H2/Ar and Ar atmospheres, respectively. The as-obtained Ge/C and GeOx/C nanowires possess well-defined 0D-in-1D morphology and homogeneous carbon encapsulation, which exhibit excellent Li storage properties including high specific capacities (approximate 1200 and 1000 mA h g(-1) at 0.2C for Ge/C and GeOx/C, respectively). The Ge/C nanowires, in particular, demonstrate superior rate capability with excellent capacity retention and stability (producing high stable discharge capacities of about 770 mA h g(-1) after 500 cycles at 10C), making them promising candidates for future electrodes for high-power Li-ion batteries. The improved electrochemical performance arises from synergistic effects of 0D-in-1D morphology and uniform carbon coating, which could effectively accommodate the huge volume change of Ge/GeOx during cycling and maintain perfect electrical conductivity throughout the electrode.

  15. High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults

    PubMed Central

    Stock, Anthoney A.; Harman, S. Mitchell

    2008-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are lipid-lowering agents widely employed for atherosclerosis prevention. HMG-CoA reductase blockade reduces skeletal muscle coenzyme Q10 (CoQ10) levels and mitochondrial respiratory chain activities and may produce mild to severe skeletal muscle myopathy. This study investigated whether high-dose statin treatment would result in measurably decreased exercise capacity in older men and women. Maximal oxygen consumption, aerobic endurance, oxygen uptake kinetics, maximal strength, muscular power, and muscular endurance were measured before and after 12 weeks of statin treatment (simvastatin, 80 mg/day) in nine men and one woman, ages 55–76 years, with LDL-cholesterol levels >3.3 mmol/l (mean = 4.2 ± 0.2 mmol/l). Myalgia symptoms were assessed every 4 weeks. As expected, statin treatment resulted in significant decreases in LDL- and total-cholesterol levels (P < 0.01) with no significant changes in HDL-cholesterol or triglyceride levels. No significant changes were observed in aerobic capacity, endurance, oxygen kinetics or any measures of muscle function. No subject reported symptoms of myalgia, cramps, or weakness during the study. In the absence of myalgia or myopathic symptoms, high-dose simvastatin treatment did not impair exercise capacity in hyperlipidemic older individuals. We conclude that decreases in intramuscular CoQ10, in most patients on high dose statin treatment may not be clinically relevant, due to inter-individual variability in the degree of CoQ10 depletion, sensitivity of muscle to decreases in CoQ10, or both. PMID:19424852

  16. Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Reed, W. H.

    1979-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.

  17. Terahertz oscillators and receivers using electron devices for high-capacity wireless communication

    NASA Astrophysics Data System (ADS)

    Suzuki, Safumi; Asada, Masahiro

    2015-05-01

    Recent progress in room-temperature resonant-tunneling-diode (RTD) terahertz (THz) oscillators and high-electron-mobility- transistor (HEMT) THz receivers is reported in this paper. In this study, oscillations up to 1.86 THz were obtained using an optimized antenna and RTD. Using a two-element oscillator array, high output power of 0.6 mW at 620 GHz was obtained. THz communication up to 3 Gbps was demonstrated. A structure for high-speed direct modulation was fabricated, and the intensity modulation up to 30 GHz was achieved. A novel oscillator structure was proposed and fabricated for extraction of output power without using a Si lens. A short-gate InGaAs HEMT detector integrated with a broadband bow-tie antenna was fabricated, and a high current sensitivity of ~5 A/W was obtained at 280 GHz.

  18. On-chip high-power porous silicon lithium ion batteries with stable capacity over 10000 cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Freudiger, Daniel; Gani, Zarif; Share, Keith; Oakes, Landon; Carter, Rachel E.; Pint, Cary L.

    2015-09-01

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium ion battery anode with over 50x power density and 100x energy density improvement compared to identically prepared on-chip porous silicon supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA/cm2) where lithium locally intercalates into the nanoporous silicon, but not underlying bulk silicon material. This prevents the degradation and poor cycling performance that is commonly observed from deep storage in bulk silicon materials. As a result, this device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mAh/cm2, without notable capacity fade. This work demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration of energy storage into electronics, photovoltaics, and other silicon-based technology.

  19. Macrophages from chickens selected for high antibody response produced more nitric oxide and have greater phagocytic capacity.

    PubMed

    Guimarães, Marco Cesar Cunegundes; Guillermo, Landi Veivi Costilla; Matta, Marcos Fernando de Rezende; Soares, Sandro Gomes; DaMatta, Renato Augusto

    2011-04-15

    Macrophages are fundamental cells of the innate immune system, which, through phagocytosis and nitric oxide production, eliminate pathogens. The aim of the present study was to determine if macrophages from chicken families divergently selected to high and low antibodies response differ in nitric oxide production and phagocytic capacity. Blood monocytes derived macrophages were activated with lipopolysaccharide and supernatant from chicken spleen lymphocytes cultured with Concanavalin A (containing chicken interferon). Nitric oxide production was evaluated in culture supernatants. Phagocytic capacity of activated and non-activated macrophages was assayed using yeasts and IgY opsonized sheep red blood cells. Activated and non-activated macrophages from the high antibodies response family produced higher nitric oxide levels, internalized more yeast and significantly more opsonized sheep red blood cells than macrophages from the low antibodies response family. Moreover, activated macrophages became more elongated and widely spread. These findings indicate that macrophages from the high antibodies response family were more active suggesting that the differences in antibody response also depend on macrophage function.

  20. High-capacity single-pressure SF/sub 6/ interrupters. Final report

    SciTech Connect

    Rostron, J R; Berkebile, L E; Spindle, H E

    1983-05-01

    The object of this project was to design and develop a high-voltage, single-pressure, SF/sub 6/ interrupter with an interrupting capability of 120 kA at 145 kV with a continuous current rating of 5000 A and an interrupting time of 1.5 cycles or less. A second objective of 100 kA at 242 kV was added during the project. Mathematical models were used to extrapolate design requirements from existing data for 63 and 80 kA. Two model puffers, one liquid and the other gas, were designed and tested to obtain data at 100 kA. An interrupter, optimized on the basis of total prospective breaker cost, was designed using the mathematical models. A study was made of the construction materials to operate under the high-stress conditions in this interrupter. Existing high-speed movies of high-current arcs under double-flow conditions were analyzed to obtain more information for modeling the interrupter. The optimized interrupter design was built and tested. The interrupting capability confirmed calculations of predicted performance near current zero; however, the dielectric strength after interrupting these high-current arcs was not adequate for the 145-kV or the 242-kV ratings. The dielectric strength was reduced by hot gases flowing out of the interrupter. Valuable data have been obtained for modeling the SF/sub 6/ puffer interrupter for high currents.

  1. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    SciTech Connect

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.

  2. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity.

    PubMed

    Yang, Seung Jae; Im, Ji Hyuk; Kim, Taehoon; Lee, Kunsil; Park, Chong Rae

    2011-02-15

    Nanostructured ZnO materials have unique and highly attractive properties and have inspired interest in their research and development. This paper presents a facile method for the preparation of novel ZnO-based nanostructured architectures using a metal organic framework (MOF) as a precursor. In this approach, ZnO nanoparticles and ZnO@C hybrid composites were produced under several heating and atmospheric (air or nitrogen) conditions. The resultant ZnO nanoparticles formed hierarchical aggregates with a three-dimensional cubic morphology, whereas ZnO@C hybrid composites consisted of faceted ZnO crystals embedded within a highly porous carbonaceous species, as determined by several characterization methods. The newly synthesized nanomaterials showed relatively high photocatalytic decomposition activity and significantly enhanced adsorption capacities for organic pollutants.

  3. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    PubMed Central

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-01-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. PMID:26201747

  4. [Effect of hypoxia on muscular performance capacity: "living low--training high"].

    PubMed

    Vogt, M; Billeter, R; Hoppeler, H

    2003-07-01

    Altitude training is very popular among endurance athletes. But athletes respond very different on acute altitude exposure and altitude training. There are individual differences in the decrement of maximal oxygen consumption making general advices on the effect of altitude training very difficult. During the last few years different altitude training regimes have been developed. Beside "living high--training low," the concept of "living low--training high" becomes more and more popular. By this regime, athletes train under simulated or natural hypoxic conditions, while recovery time is spent at sea-level. Several studies show that with "living low--training high" maximal oxygen consumption as well as aerobic and anaerobic endurance performance can be improved. Molecular analysis reveal that a transcription factor called Hypoxia-Inducible Factor 1 (HIF-1) acts as a master gene in the regulation of hypoxia-dependent gene expression. In human skeletal muscle "living low-training high" induces the expression of glycolytic enzymes, the angiogenic factor VEGF, myoglobin as well as the increase of capillarity and mitochondrial content in parallel to the induction of the HIF-1 system. In trained human skeletal muscle, these adaptations cause a shift of substrate selection to an increased oxidation of carbohydrates as well as to an improvement of the conditions for transport and utilization of oxygen. Depending on the kind of sports, "living low--training high" can be used to train these muscular adaptations and to increase exercise performance.

  5. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Meyer, T. N.

    1980-01-01

    A high temperature silicon production process using existing electric arc heater technology is discussed. Silicon tetrachloride and a reductant, liquid sodium, were injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction occurred, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon were developed. The desired degree of separation was not achieved. The electrical, control and instrumentation, cooling water, gas, SiCl4, and sodium systems are discussed. The plasma reactor, silicon collection, effluent disposal, the gas burnoff stack, and decontamination and safety are also discussed. Procedure manuals, shakedown testing, data acquisition and analysis, product characterization, disassembly and decontamination, and component evaluation are reviewed.

  6. Effects of growth, diving history, and high altitude on blood oxygen capacity in harbor seals

    NASA Technical Reports Server (NTRS)

    Kodama, A. M.; Elsner, R.; Pace, N.

    1977-01-01

    Blood volume and body composition for diving and nondiving harbor seals were measured at six-week intervals during a 10-month period of captitivity. Whole body hematocrit, red cell volume per kg of lean body mass, and total circulating hemoglobin per kg lean body mass were significantly higher in the diving group, but relatively large blood volumes expressed in terms of body weight (11-12%) were found in both groups. A pair of harbor seals exposed to high altitude for about three months registered significant increases in red cell volume, blood hemoglobin levels, and blood volume expressed in terms of body weight; results of alveolar gas analyses indicate that hyperventilation also occurred. These typical mammalian responses to hypoxia suggest that the harbor seal's large blood volume and high hemoglobin content are an expression of phylogenetic control, and that in spite of its adaptability to apnea during its diving life, the animal cannot be considered preacclimatized to high altitude.

  7. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C4N3) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC49, BC7, and BC5, have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  8. Development and evaluation of a low-cost and high-capacity DICOM image data storage system for research.

    PubMed

    Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori

    2011-04-01

    Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.

  9. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.

    PubMed

    Vermeulen, Paul; van Thiel, Emile F M J; Notten, Peter H L

    2007-01-01

    In the search for hydrogen-storage materials with a high gravimetric capacity, Mg(y)Ti((1-y)) alloys, which exhibit excellent kinetic properties, form the basis for more advanced compounds. The plateau pressure of the Mg--Ti--H system is very low (approximately 10(-6) bar at room temperature). A way to increase this pressure is by destabilizing the metal hydride. The foremost effect of incorporating an additional element in the binary Mg--Ti system is, therefore, to decrease the stability of the metal hydride. A model to calculate the effect on the thermodynamic stability of alloying metals was developed by Miedema and co-workers. Adopting this model offers the possibility to select promising elements beforehand. Thin films consisting of Mg and Ti with Al or Si were prepared by means of e-beam deposition. The electrochemical galvanostatic intermittent titration technique was used to obtain pressure-composition isotherms for these ternary materials and these isotherms reveal a reversible hydrogen-storage capacity of more than 6 wt. %. In line with the calculations, substitution of Mg and Ti by Al or Si indeed shifts the plateau pressure of a significant part of the isotherms to higher pressures, while remaining at room temperature. It has been proven that, by controlling the chemistry of the metal alloy, the thermodynamic properties of Mg-based hydrides can be regulated over a wide range. Hence, the possibility to increase the partial hydrogen pressure, while maintaining a high gravimetric capacity creates promising opportunities in the field of hydrogen-storage materials, which are essential for the future of the hydrogen economy.

  10. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  11. A Framework for Assessing the Impact of Education Reforms on School Capacity: Insights from Studies of High-Stakes Accountability Initiatives

    ERIC Educational Resources Information Center

    Malen, Betty; Rice, Jennifer King

    2004-01-01

    This article offers a framework for assessing how education policy initiatives may affect a school's capacity to improve its performance. Drawing on the theoretical literature regarding school capacity and case studies of high-stakes accountability policies, the authors develop and illustrate a framework that includes both a resource dimension and…

  12. Capacities, Opportunities and Educational Investments: The Case of the High School Dropout.

    ERIC Educational Resources Information Center

    Hill, C. Russell

    1979-01-01

    While the dropouts are unlikely to become re-enrolled in high school, dropping out has a rather modest effect on the earnings of the dropouts relative to employed graduates. Available from North-Holland Publishing Company, P.O. Box 211, Amsterdam, the Netherlands; $10.00 single copy. (Author/IRT)

  13. Designing Their Own: Increasing Urban High School Teacher Capacity for Creating Interim Assessments

    ERIC Educational Resources Information Center

    Ado, Kathryn

    2013-01-01

    This case study analyzes and documents factors that affect teacher learning and instructional practices in connection to the design your own (DYO) interim or periodic assessment process at one newly developed high school in New York City. Examining these factors through Riggan and Nabors Olah's (2011) conceptual framework offers insights into the…

  14. School Improvement in High-Capacity Schools: Educational Leadership and Living-Systems Ontology

    ERIC Educational Resources Information Center

    Mitchell, Coral; Sackney, Larry

    2016-01-01

    Although school improvement continues to present as an unresolved educational problem, the required changes are relatively straightforward. Essentially, schools need to be retooled with students' experiences and high-quality instruction at the center of the design. In this article, we present the findings of research into the leadership of…

  15. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers. The relatively straightforward, robust, and cost-effective GBS protocol is...

  16. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility

    PubMed Central

    Zhao, Jie; Lee, Hyun-Wook; Sun, Jie; Yan, Kai; Liu, Yayuan; Liu, Wei; Lu, Zhenda; Lin, Dingchang; Zhou, Guangmin; Cui, Yi

    2016-01-01

    A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous efforts have produced prelithiated Si nanoparticles with dry air stability, which cannot be stabilized under ambient air. Here, we developed a one-pot metallurgical process to synthesize LixSi/Li2O composites by using low-cost SiO or SiO2 as the starting material. The resulting composites consist of homogeneously dispersed LixSi nanodomains embedded in a highly crystalline Li2O matrix, providing the composite excellent stability even in ambient air with 40% relative humidity. The composites are readily mixed with various anode materials to achieve high first cycle Coulombic efficiency (CE) of >100% or serve as an excellent anode material by itself with stable cyclability and consistently high CEs (99.81% at the seventh cycle and ∼99.87% for subsequent cycles). Therefore, LixSi/Li2O composites achieved balanced reactivity and stability, promising a significant boost to lithium ion batteries. PMID:27313206

  17. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  18. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

    SciTech Connect

    Doan-Nguyen, Vicky V. T.; Subrahmanyam, Kota S.; Butala, Megan M.; Gerbec, Jeffrey A.; Islam, Saiful M.; Kanipe, Katherine N.; Wilson, Catrina E.; Balasubramanian, Mahalingam; Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Chapman, Karena W.; Chupas, Peter J.; Moskovits, Martin; Dunn, Bruce S.; Kanatzidis, Mercouri G.; Seshadri, Ram

    2016-11-09

    Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. As a result, we find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.

  19. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    PubMed

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  20. Effects of High-Intensity Interval Training on Aerobic Capacity in Cardiac Patients: A Systematic Review with Meta-Analysis

    PubMed Central

    Xie, Bin; Yan, Xianfeng

    2017-01-01

    Purpose. The aim of this study was to compare the effects of high-intensity interval training (INTERVAL) and moderate-intensity continuous training (CONTINUOUS) on aerobic capacity in cardiac patients. Methods. A meta-analysis identified by searching the PubMed, Cochrane Library, EMBASE, and Web of Science databases from inception through December 2016 compared the effects of INTERVAL and CONTINUOUS among cardiac patients. Results. Twenty-one studies involving 736 participants with cardiac diseases were included. Compared with CONTINUOUS, INTERVAL was associated with greater improvement in peak VO2 (mean difference 1.76 mL/kg/min, 95% confidence interval 1.06 to 2.46 mL/kg/min, p < 0.001) and VO2 at AT (mean difference 0.90 mL/kg/min, 95% confidence interval 0.0 to 1.72 mL/kg/min, p = 0.03). No significant difference between the INTERVAL and CONTINUOUS groups was observed in terms of peak heart rate, peak minute ventilation, VE/VCO2 slope and respiratory exchange ratio, body mass, systolic or diastolic blood pressure, triglyceride or low- or high-density lipoprotein cholesterol level, flow-mediated dilation, or left ventricular ejection fraction. Conclusions. This study showed that INTERVAL improves aerobic capacity more effectively than does CONTINUOUS in cardiac patients. Further studies with larger samples are needed to confirm our observations. PMID:28386556

  1. Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries.

    PubMed

    Er, Dequan; Li, Junwen; Naguib, Michael; Gogotsi, Yury; Shenoy, Vivek B

    2014-07-23

    Two-dimensional (2-D) materials are capable of handling high rates of charge in batteries since metal ions do not need to diffuse in a 3-D lattice structure. However, graphene, which is the most well-studied 2-D material, is known to have no Li capacity. Here, adsorption of Li, as well as Na, K, and Ca, on Ti3C2, one representative MXene, is predicted by first-principles density functional calculations. In our study, we observed that these alkali atoms exhibit different adsorption energies depending on the coverage. The adsorption energies of Na, K, and Ca decrease as coverage increases, while Li shows little sensitivity to variance in coverage. This observed relationship between adsorption energies and coverage of alkali ions on Ti3C2 can be explained by their effective ionic radii. A larger effective ionic radius increases interaction between alkali atoms, thus lower coverage is obtained. Our calculated capacities for Li, Na, K, and Ca on Ti3C2 are 447.8, 351.8, 191.8, and 319.8 mAh/g, respectively. Compared to materials currently used in high-rate Li and Na ion battery anodes, MXene shows promise in increasing overall battery performance.

  2. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  3. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

    DOE PAGES

    Doan-Nguyen, Vicky V. T.; Subrahmanyam, Kota S.; Butala, Megan M.; ...

    2016-11-09

    Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not beingmore » a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. As a result, we find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.« less

  4. Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress

    NASA Astrophysics Data System (ADS)

    Roberty, S.; Fransolet, D.; Cardol, P.; Plumier, J.-C.; Franck, F.

    2015-12-01

    During the last decades, coral reefs have been affected by several large-scale bleaching events, and such phenomena are expected to increase in frequency and severity in the future, thus compromising their survival. High sea surface temperature accompanied by high levels of solar irradiance has been found to be responsible for the induction of oxidative stress ultimately ending with the disruption of the symbiosis between cnidarians and Symbiodinium. For two decades, many studies have pointed to the water-water cycle (WWC) as being one of the primary mediators of this phenomenon, but the impacts of environmental stress on the O2 reduction by PSI and the associated reactive oxygen species (ROS)-detoxifying enzymes remain to be determined. In this study, we analyzed the impacts of acute thermal and light stress on the WWC in the model Symbiodinium strain A1. We observed that the high light treatment at 26 °C resulted in the up-regulation of superoxide dismutase, ascorbate peroxidase, and glutathione reductase activities and an increased production of ROS with no significant change in O2-dependent electron transport. Under high light and at 33 °C, O2-dependent electron transport was significantly increased relative to total electron transport. This increase was concomitant with a twofold increase in ROS generation compared with the treatment at 26 °C, while enzymes involved in the WWC were largely inactivated. These data show for the first time that combined heat and light stress inactivate antioxidant capacities of the WWC and suggests that its photoprotective functions are overwhelmed under these conditions. This study also indicates that cnidarians may be more prone to bleach if they harbor Symbiodinium cells having a highly active Mehler-type electron transport, unless they are able to quickly up-regulate their antioxidant capacities.

  5. A high-efficiency coaxial pulse tube cryocooler with 500 W cooling capacity at 80 K

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Zhang, L. M.; Zhu, J.; Chen, S.; Luo, E. C.; Dai, W.; Li, H. B.

    2014-07-01

    High-temperature superconductivity power-grid technologies require a highly reliable and efficient cryocooler with cooling power of 100 W to kilowatt level at liquid-nitrogen temperatures to produce cryogenic environments. This paper describes the design of a coaxial Stirling-type pulse tube cryocooler to meet this need. In the designed cryocooler, the regenerator and pulse tube are lengthened to avoid possible temperature inhomogeneity. In an experiment, the azimuthal temperature difference at the middle of the regenerator was less than 30 K. With 7.6 kW electric power input, the cryocooler offers more than 520 W cooling power at 80 K corresponding to a relative Carnot efficiency of 18.2%. When the cooling power was less than 370 W, the efficiency is higher than 20%.

  6. High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems

    NASA Technical Reports Server (NTRS)

    Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan

    2006-01-01

    This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.

  7. New, high-capacity, calcium-based sorbents: Calcium silicate sorbents. Final report

    SciTech Connect

    Kenney, M.E.; Chiang, Ray-Kuang

    1993-09-30

    A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives of the past year were to study the sorption of SO{sub 2} by representative calcium silicates, to study the composition of the Ca(OH){sub 2}-fly ash sorbent, and to install a humidity sensor in the sorption system.

  8. New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report

    SciTech Connect

    Kenney, M.E.

    1996-02-28

    A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The current year objectives include the study of sorbents made by hydrating ordinary or Type I portland cement or portland cement clinker (a cement intermediate) under carefully selected conditions. Results of this study show that an excellent portland cement sorbent can be prepared by milling cement at 120{degrees}C at 600 rpm for 15 minutes with MgO-stabilized ZrO{sub 2} beads. They also show that clinker, which is cheaper than cement can be used interchangeably with cement as a starting material. Further, it is clear that while a high surface area may be a desirable property of a good sorbent, it is not a requisite property. Among the hydration reaction variables, milling time is highly important, reaction temperature is important and stirring rate and silicate-to-H{sub 2}O ratio are moderately important. The components of hydrated cement sorbent are various combinations of C-S-H, calcium silicate hydrate:Ca(OH){sub 2};AFm. a phase in hydrated cement.

  9. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    SciTech Connect

    Mohamed, Eddaoudi; Zaworotko, Michael; Space, Brian; Eckert, Juergen

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  10. Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity.

    PubMed

    Doula, Maria K

    2007-03-01

    An iron oxide-clinoptilolite system was synthesized by adding natural clinoptilolite in an iron nitrate solution under strongly basic condition. The newly synthesized material has a red-brown color. A combination of XRD, FTIR and EPR spectroscopies, as well as specific surface area measurements and TG/DSC thermal analyses provided information on the type of Fe species located on the zeolite surface. Clinoptilolite seems to maintain its structure, while Fe(3+) species are in a symmetric environment (Th or Oh). The new material has a noteworthy high value of specific surface area (151 m(2)g(-1)) and is fully iron exchanged (Fe/Al=1.23). Differences in FTIR and TG/DSC spectrograms between the Fe-Clin system and untreated Clin were reported and explained. According to Cu adsorption/desorption experiments, carried out after the synthesis and characterization procedures, the Fe-Clin system is a promising new material since it adsorbs significantly larger Cu concentrations than clinoptilolite. This fact is owed to its high specific surface area and to its high negative surface charge. Desorption of Cu was also examined and it was observed that the Fe-Clin system desorbs smaller Cu amounts than untreated clinoptilolite.

  11. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry.

    PubMed

    Simone, Patrizia; Pierri, Giuseppe; Foglia, Patrizia; Gasparrini, Francesca; Mazzoccanti, Giulia; Capriotti, Anna Laura; Ursini, Ornella; Ciogli, Alessia; Laganà, Aldo

    2016-01-01

    Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.

  12. Certification challenges in the development of an innovative high payload capacity spent fuel transportation cask

    SciTech Connect

    Mair, B.R.; Severson, M.J.; Ciez, A.P. )

    1990-01-01

    The design approach and certification strategy used in the development of an innovative transportation cask for legal weight truck shipments of spent nuclear fuel is presented. The proposed approach represents a significant departure from conventional cask designs in that it uses titanium alloy, a material with a high strength-to-weight ratio which has no precedent in transportation cask certification. The significant increase in payload obtainable with the proposed approach, and the associated benefits such as reduced life cycle costs, lower personnel exposure, and lower transportation accident risks are discussed. 8 refs., 3 figs., 1 tab.

  13. Improved power capacity in a high efficiency klystron-like relativistic backward wave oscillator by distributed energy extraction

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Cao, Yibing; Sun, Jun

    2013-12-01

    With the efficiency increase of a klystron-like relativistic backward wave oscillator, the maximum axial electric field and harmonic current simultaneously appear at the end of the beam-wave interaction region, leading to a highly centralized energy exchange in the dual-cavity extractor and a very high electric field on the cavity surface. Thus, we present a method of distributed energy extraction in this kind of devices. Particle-in-cell simulations show that with the microwave power of 5.1 GW and efficiency of 70%, the maximum axial electric field is decreased from 2.26 MV/cm to 1.28 MV/cm, indicating a threefold increase in the power capacity.

  14. Improved power capacity in a high efficiency klystron-like relativistic backward wave oscillator by distributed energy extraction

    SciTech Connect

    Xiao, Renzhen; Chen, Changhua; Cao, Yibing; Sun, Jun

    2013-12-07

    With the efficiency increase of a klystron-like relativistic backward wave oscillator, the maximum axial electric field and harmonic current simultaneously appear at the end of the beam-wave interaction region, leading to a highly centralized energy exchange in the dual-cavity extractor and a very high electric field on the cavity surface. Thus, we present a method of distributed energy extraction in this kind of devices. Particle-in-cell simulations show that with the microwave power of 5.1 GW and efficiency of 70%, the maximum axial electric field is decreased from 2.26 MV/cm to 1.28 MV/cm, indicating a threefold increase in the power capacity.

  15. A novel high-throughput image based rapid Folin-Ciocalteau assay for assessment of reducing capacity in foods.

    PubMed

    Abderrahim, Mohamed; M Arribas, Silvia; Condezo-Hoyos, Luis

    2016-05-15

    The aim of the presented work was to develop and validate a novel high-throughput rapid Folin-Ciocalteau assay for the quantification of reducing capacity of foods based on image scanner (Image-F-C assay). The original rapid F-C assay using a 96-well plate was improved by adding a neutralization step that stabilizes the formed color, enabling image acquisition using a flatbed scanner. Although the scanner has been already used in other analytical applications, no analysis has been reported regarding the effect of the scanner model, the plate orientation or the reaction volume. In the present study, we establish that the mentioned parameters do affect the linearity and precision of image based Folin-Ciocalteau assay, and provide the optimal scanning conditions for the analyzed scanner models. Euclidean distance calculated from R (Red), G (Green) and B (Blue) values was chosen, based on linearity and sensitivity, in order to quantify the reducing capacity. An in-house program using free ImageJ macro language was written to calculate automatically the RGB values of each well. The Image-F-C assay is linear within the range of 0-20 mg L(-1) of gallic acid (R(2)≥0.9939). We compared reducing capacity values from real samples quantified by the image F-C assay and by a microplate reader and an inter-day relative standard error<8% was observed. Bland-Altman and correlation analyzes showed that there were no significant differences between the two methods.

  16. Design and prototyping of a large capacity high frequency pulse tube

    NASA Astrophysics Data System (ADS)

    Ercolani, E.; Poncet, J. M.; Charles, I.; Duband, L.; Tanchon, J.; Trollier, T.; Ravex, A.

    2008-09-01

    This document describes the design and the prototyping performed at CEA/SBT in partnership with AIR LIQUIDE of a high frequency large cooling power pulse tube. Driven at 58 Hz by a 7.5 kW flexure bearing pressure wave generator, this system provides a net heat lift of 210 W at 65 K. The phase shift is obtained by an inertance and a buffer volume. This type of cryogenic cooler can be used for on site gas liquefaction or drilling site and for high temperature superconductivity power device cooling (transmission lines, large generators, fault current limiters). In this paper, we focus on two essential points, the regenerator and the flow straightener. The regenerator is a key component for good performance of the pulse tube cooler. It must have a large thermal inertia, a low dead volume, a good heat transfer gas/matrix and at the same time, small pressure drop. In the present case and unlike typical moderate cooling power pulse tubes, the regenerator is very compact. However, the resulting conductive losses remain negligible compared to the cooling power targeted. The goal of the flow straightener is to avoid as much as possible any jet stream effect and to guarantee the uniformity of the velocity field at both ends of the pulse tube. Indeed multi-dimensional flow effects can significantly impact the performances of the machine.

  17. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks.

    PubMed

    Peguero-Pina, José Javier; Sisó, Sergio; Flexas, Jaume; Galmés, Jeroni; García-Nogales, Ana; Niinemets, Ülo; Sancho-Knapik, Domingo; Saz, Miguel Ángel; Gil-Pelegrín, Eustaquio

    2017-04-01

    Leaf mass per area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm ), which is the most limiting factor for area-based photosynthesis (AN ) in many Mediterranean sclerophyll species. However, despite their high LMA, these species have similar AN to plants from other biomes. Variations in other leaf anatomical traits, such as mesophyll and chloroplast surface area exposed to intercellular air space (Sm /S and Sc /S), may offset the restrictions imposed by high LMA in gm and AN in these species. Seven sclerophyllous Mediterranean oaks from Europe/North Africa and North America with contrasting LMA were compared in terms of morphological, anatomical and photosynthetic traits. Mediterranean oaks showed specific differences in AN that go beyond the common morphological leaf traits reported for these species (reduced leaf area and thick leaves). These variations resulted mainly from the differences in gm , the most limiting factor for carbon assimilation in these species. Species with higher AN showed increased Sc /S, which implies increased gm without changes in stomatal conductance. The occurrence of this anatomical adaptation at the cell level allowed evergreen oaks to reach AN values comparable to congeneric deciduous species despite their higher LMA.

  18. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-03-01

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g-1 are 2213 and 1402 mA h g-1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g-1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g-1, respectively. Even at a high current density of 1000 mA g-1, the first discharge and charge capacities are 1502 and 876 mA h g-1, and the discharge specific capacities remains 1057 and 677 mA h g-1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.

  19. Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity.

    PubMed

    Sassin, Megan B; Hoag, Cheyne P; Willis, Bradley T; Kucko, Nathan W; Rolison, Debra R; Long, Jeffrey W

    2013-02-21

    The impressive specific capacitance and high-rate performance reported for many nanometric charge-storing films on planar substrates cannot impact a technology space beyond microdevices unless such performance translates into a macroscale form factor. In this report, we explore how the nanoscale-to-macroscale properties of the electrode architecture (pore size/distribution, void volume, thickness) define energy and power performance when scaled to technologically relevant dimensions. Our test bed is a device-ready electrode architecture in which scalable, manufacturable carbon nanofoam papers with tunable pore sizes (5-200 nm) and thickness (100-300 μm) are painted with ~10 nm coatings of manganese oxide (MnOx). The quantity of capacitance and the rate at which it is delivered for four different MnOx-C variants was assessed by fabricating symmetric electrochemical capacitors using a concentrated aqueous electrolyte. Carbon nanofoam papers containing primarily 10-20 nm mesopores support high MnOx loadings (60 wt%) and device-level capacitance (30 F g(-1)), but the small mesoporous network hinders electrolyte transport and the low void volume restricts the quantity of charge-compensating ions within the electrode, making the full capacitance only accessible at slow rates (5 mV s(-1)). Carbon nanofoam papers with macropores (100-200 nm) facilitate high rate operation (50 mV s(-1)), but deliver significantly lower device capacitance (13 F g(-1)) as a result of lower MnOx loadings (41 wt%). Devices comprising MnOx-carbon nanofoams with interconnecting networks of meso- and macropores balance capacitance and rate performance, delivering 33 F g(-1) at 5 mV s(-1) and 23 F g(-1) at 50 mV s(-1). The use of carbon nanofoam papers with size-tunable pore structures and thickness provides the opportunity to engineer the electrode architecture to deliver scalable quantities of capacitance (F cm(-2)) in tens of seconds with a single device.

  20. High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Han, Hyoung Kyu; Loka, Chadrasekhar; Yang, Yun Mo; Kim, Jae Hyuk; Moon, Sung Whan; Cho, Jong Soo; Lee, Kee-Sun

    2015-05-01

    The preparation of different kinds of nanocomposite materials is a promising approach to alleviate the severe volume changes of Silicon anode materials for lithium-ion secondary batteries. In the present study, a novel nanocomposite Si80Fe16Cr4 was synthesized by high-energy mechanical milling without noticeable contamination. The nano-indentation results revealed that the elastic recoverable energy range of the synthesized nanocomposite is 3.43 times higher than that of Si. The proposed nanocomposite milled for 8 and 10 h recorded a noteworthy reversible capacity of 841 and 812 mAh g-1 even at 100th cycle, with excellent capacity retention. Remarkably, the nanocomposite exhibited a very low initial cycle (1st cycle) capacity loss ∼14%. The crystal separation of the less active silicide phases was determined after the extended cycling, which is advantageous for accommodating the stress produced by the volume changes of the active Si. The primary factors attributed to the excellent electrochemical performance were the size reduction of Si particles to nanometer scale, the formation of the highly elastic matrix, and separation of silicide phases after extended cycling.

  1. High capacity oxide/ferroelectric/oxide stacks for on-chip charge storage

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Alpay, S. P.; Mantese, J. V.

    2006-07-01

    A thermodynamic model coupled with an electrostatic analysis of dielectric-ferroelectric-dielectric sandwich structures shows that high capacitance densities can be achieved when the total dielectric thickness reaches a critical fraction. For such cases, the induced polarization in the linear dielectrics (e.g., SiO2, Ta2O5, HfO2, Al2O3, and ZrO2) increases the overall permittivity until the internal electric field in the ferroelectric layer suppresses the spontaneous polarization of the ferroelectric. Beyond this critical fraction, the ferroelectric layer can no longer induce polarization in the dielectric layers. We specifically determine the critical fraction required for Ba1-xSrxTiO3 (0

  2. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    NASA Astrophysics Data System (ADS)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  3. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.

    PubMed

    Wang, Ping

    2012-04-21

    Ammonia borane (NH(3)BH(3), AB) is a unique molecular crystal containing an intriguingly high density of hydrogen. In the past several years, AB has received extensive attention as a promising hydrogen storage medium. Several strategies have been successfully developed for promoting H(2) release and for suppressing the evolution of volatile by-products from the solid-state thermolysis of AB. Several potentially cost-effective and energy-efficient routes for regenerating AB from the spent fuels have been experimentally demonstrated. These remarkable technological advances offer a promising prospect of using AB-based materials as viable H(2) carriers for on-board application. In this perspective, the recent progresses in promoting H(2) release from the solid-state thermolysis of AB and in developing regeneration technologies are briefly reviewed.

  4. Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity

    NASA Astrophysics Data System (ADS)

    Sassin, Megan B.; Hoag, Cheyne P.; Willis, Bradley T.; Kucko, Nathan W.; Rolison, Debra R.; Long, Jeffrey W.

    2013-01-01

    The impressive specific capacitance and high-rate performance reported for many nanometric charge-storing films on planar substrates cannot impact a technology space beyond microdevices unless such performance translates into a macroscale form factor. In this report, we explore how the nanoscale-to-macroscale properties of the electrode architecture (pore size/distribution, void volume, thickness) define energy and power performance when scaled to technologically relevant dimensions. Our test bed is a device-ready electrode architecture in which scalable, manufacturable carbon nanofoam papers with tunable pore sizes (5-200 nm) and thickness (100-300 μm) are painted with ~10 nm coatings of manganese oxide (MnOx). The quantity of capacitance and the rate at which it is delivered for four different MnOx-C variants was assessed by fabricating symmetric electrochemical capacitors using a concentrated aqueous electrolyte. Carbon nanofoam papers containing primarily 10-20 nm mesopores support high MnOx loadings (60 wt%) and device-level capacitance (30 F g-1), but the small mesoporous network hinders electrolyte transport and the low void volume restricts the quantity of charge-compensating ions within the electrode, making the full capacitance only accessible at slow rates (5 mV s-1). Carbon nanofoam papers with macropores (100-200 nm) facilitate high rate operation (50 mV s-1), but deliver significantly lower device capacitance (13 F g-1) as a result of lower MnOx loadings (41 wt%). Devices comprising MnOx-carbon nanofoams with interconnecting networks of meso- and macropores balance capacitance and rate performance, delivering 33 F g-1 at 5 mV s-1 and 23 F g-1 at 50 mV s-1. The use of carbon nanofoam papers with size-tunable pore structures and thickness provides the opportunity to engineer the electrode architecture to deliver scalable quantities of capacitance (F cm-2) in tens of seconds with a single device.The impressive specific capacitance and high

  5. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    SciTech Connect

    Jensen, Craig; McGrady, Sean; Severa, Godwin; Eliseo, Jennifer; Chong, Marina

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  6. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS.more » When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  7. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE PAGES

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...

    2017-02-14

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g–1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less

  8. System for non-disruptive high-capacity indexed data embedding and recovery using multimedia signal covers

    NASA Astrophysics Data System (ADS)

    Collins, James C.; Agaian, Sos S.

    2011-06-01

    Over the past several years there has been an apparent shift in research focus in the area of digital steganography and steganalysis - a shift from primarily image based methods to a new focus on broader multimedia techniques. More specifically the area of digital audio steganography is of prime interest. We introduce a new high capacity, covert channel data embedding and recovery system for digital audio carrier files using a key based encoding and decoding method. It will be shown that the added information file is interleaved within the carrier file and is fully indexed allowing for segmented extraction and recovery of data at chosen start and stop points in the sampled stream. The original audio quality is not affected by the addition of this covert data. The embedded information can also be secured by a binary key string or cryptographic algorithm and resists statistical analytic detection attempts. We will also describe how this new method can be used for data compression and expansion applications in the transfer and storage of digital multimedia to increase the overall data capacity and security.

  9. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    SciTech Connect

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya; Yue, Ji-Li; Hu, Enyuan; Bak, Seong-Min; Zhou, Yong-Ning; Yang, Xiao-Qing; Fu, Zheng-Wen

    2017-01-01

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.

  10. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries.

    PubMed

    Yu, Denis Y W; Prikhodchenko, Petr V; Mason, Chad W; Batabyal, Sudip K; Gun, Jenny; Sladkevich, Sergey; Medvedev, Alexander G; Lev, Ovadia

    2013-01-01

    Sodium-ion batteries are an alternative to lithium-ion batteries for large-scale applications. However, low capacity and poor rate capability of existing anodes are the main bottlenecks to future developments. Here we report a uniform coating of antimony sulphide (stibnite) on graphene, fabricated by a solution-based synthesis technique, as the anode material for sodium-ion batteries. It gives a high capacity of 730 mAh g(-1) at 50 mA g(-1), an excellent rate capability up to 6C and a good cycle performance. The promising performance is attributed to fast sodium ion diffusion from the small nanoparticles, and good electrical transport from the intimate contact between the active material and graphene, which also provides a template for anchoring the nanoparticles. We also demonstrate a battery with the stibnite-graphene composite that is free from sodium metal, having energy density up to 80 Wh kg(-1). The energy density could exceed that of some lithium-ion batteries with further optimization.

  11. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    PubMed Central

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5–5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency. PMID:24578651

  12. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana.

    PubMed

    Liu, Jun; Wang, Peng; Liu, Bing; Feng, Dongru; Zhang, Jie; Su, Jianbin; Zhang, Yang; Wang, Jin-Fa; Wang, Hong-Bin

    2013-12-01

    Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.

  13. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  14. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO(2).

    PubMed

    Saravanamurugan, Shunmugavel; Kunov-Kruse, Andreas J; Fehrmann, Rasmus; Riisager, Anders

    2014-03-01

    Ionic liquids (ILs) comprised of ammonium cations and anions of naturally occurring amino acids containing an additional amine group (e.g., lysine, histidine, asparagine, and glutamine) were examined as high-capacity absorbents for CO2. An absorption capacity of 2.1 mol CO2 per mol of IL (3.5 mol CO2 per kg IL, 13.1 wt% CO2) was measured for [N66614][Lys] at ambient temperature and about 1 mol CO2 per mol of IL at 808C (under 1 bar of CO2). This demonstrated that desorption is possible under CO2-rich conditions by temperature-swing absorption; three consecutive sorption cycles were performed with the IL. The mechanistic and kinetic study of the absorption process was further substantiated by NMR spectroscopy and in situ attenuated total reflectance FTIR for [N66614][Lys] and the homologous phosphonium-based IL [P66614][Lys]. This study revealed that carbamic acid was formed with CO2 in both ILs by chemisorption; however, the amino acid–carboxyl groups on the anion played an important—but different—catalytic role for the sorption kinetics in the two ILs. The origin of the cationic effect is speculated to be correlated with the strength of the ion interactions in the two ILs.

  15. High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities

    PubMed Central

    Calloni, Giordano W.; Le Douarin, Nicole M.; Dupin, Elisabeth

    2009-01-01

    The neural crest (NC) is a vertebrate innovation that distinguishes vertebrates from other chordates and was critical for the development and evolution of a “New Head and Brain.” In early vertebrates, the NC was the source of dermal armor of fossil jawless fish. In extant vertebrates, including mammals, the NC forms the peripheral nervous system, melanocytes, and the cartilage and bone of the face. Here, we show that in avian embryos, a large majority of cephalic NC cells (CNCCs) have the ability to differentiate into cell types as diverse as neurons, melanocytes, osteocytes, and chondrocytes. Moreover, we find that the morphogen Sonic hedgehog (Shh) acts on CNCCs to increase endochondral osteogenesis while having no effect on osteoblasts prone to membranous ossification. We have developed culture conditions that demonstrate that “neural–mesenchymal” differentiation abilities are present in more than 90% of CNCCs. A highly multipotent progenitor (able to yield neurons, glia, melanocytes, myofibroblasts, chondrocytes, and osteocytes) comprises 7–13% of the clonogenic cells in the absence and presence of Shh, respectively. This progenitor is a good candidate for a cephalic NC stem cell. PMID:19447928

  16. Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications

    NASA Astrophysics Data System (ADS)

    Futami, Fumio

    2014-10-01

    Quantum Enigma Cipher is an epoch-making concept in the cryptography that may break the Shannon limit of the cryptography. Yuen-2000 (Y-00) protocol is a first generation toward the Quantum Enigma Cipher that overcomes the Shannon limit in cryptography relying on macroscopic quantum effects. Current Y-00 cipher is an encryption scheme where noise masking blocks an eavesdropper's reading of the physical ciphertext consisting of the mathematical structure. No such masking effect is realized only by using the mathematical encryption, because mathematical ciphertexts are composed of binary signals, "0" or "1" or deterministic symbols, and they are correctly discriminated. Y-00 cipher is one of the candidates to provide high transmission performance and a provable security simultaneously in the real world. In our present, Y-00 cipher, mathematical cipher and physical phenomena are combined. It features multi-level signaling by mathematical cipher and noise masking to hide the ciphertext in the quantum noise and other channel noise. In the paper, transmission performance of Y-00 cipher is experimentally investigated. A running test for 60 days of Y-00 cipher transceiver at 2.5 Gbit/s is demonstrated. In addition, a trial of a current direct modulation scheme using 4096 signal levels for realizing a compact Y-00 transceiver is demonstrated. Furthermore, a wavelength-division multiplexing transmission of Y-00 cipher is experimentally demonstrated, and 100-Gbit/s Y-00 cipher transmission is successfully transmitted over 120 km.

  17. A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-06-01

    Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.

  18. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    PubMed Central

    Iskandar, Michèle M.; Lands, Larry C.; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D.; Kubow, Stan

    2015-01-01

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties. PMID:28231198

  19. Bucket wheel rehabilitation of ERC 1400-30/7 high-capacity excavators from lignite quarries

    NASA Astrophysics Data System (ADS)

    Vîlceanu, Fl; Iancu, C.

    2016-11-01

    The existence of bucket wheel equipment type ERC 1400-30/7 in lignite quarries with lifetime expired, or in the ultimate life period, together with high cost investments for their replacement, makes rational the efforts made to rehabilitation in order to extend their life. Rehabilitation involves checking operational safety based on relevant expertise of metal structures supporting effective resistance but also the replacement (or modernization) of subassemblies that can increase excavation process productivity, lowering energy consumption, reducing mechanical stresses. This paper proposes an analysis of constructive solution of using a part of the classical bucket wheel, on which are located 9 cutting cups and 9 chargers cups and adding a new part so that the new redesigned bucket-wheel will contain 18 cutting-chargers cups, compared to the classical model. On the CAD model of bucket wheel was performed a static and a dynamic FEA, the results being compared with the yield strength of the material of the entire structure, were checked mechanical stresses in the overall distribution map, and were verified the first 4 vibrating modes the structure compared to real loads. Thus was verified that the redesigned bucket-wheel can accomplish the proposed goals respectively increase excavation process productivity, lowering energy consumption and reducing mechanical stresses.

  20. Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions.

    PubMed

    Ogi, Takashi; Makino, Takahiko; Iskandar, Ferry; Tanabe, Eishi; Okuyama, Kikuo

    2016-10-01

    Adsorption performance in the biosorption of tungsten using Escherichia coli cells can be significantly improved by using cell suspensions that have been heat-treated at ⩽100°C. In the case of E. coli cells suspension heated at 100°C, the aqueous tungsten ions concentration rapidly decreased from 0.8mmol/L to practically zero within 1h. This biosorption time is much shorter than that of non-heat treated E. coli cells (7h). Furthermore, the adsorption saturation amount for cells heat-treated at 100°C was significantly increased up to 1.62mmol-W/g-E. coli compared to the unheated E. coli cells case (0.62mmol-W/g-E. coli). Determination of the surface potential and surface structure along with quantitative analyses of free amino acids of heat-treated E. coli cells were also carried out and revealed that heated cells have a high zeta potential and express a higher concentration of amino acids on the cell surface.

  1. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.

    PubMed

    Wu, Feng-Chin; Tseng, Ru-Ling

    2008-04-15

    In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance.

  2. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency.

    PubMed

    Stuelsatz, Pascal; Shearer, Andrew; Li, Yunfei; Muir, Lindsey A; Ieronimakis, Nicholas; Shen, Qingwu W; Kirillova, Irina; Yablonka-Reuveni, Zipora

    2015-01-01

    Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.

  3. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    PubMed

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Pol, Hilleke E Hulshoff

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network.

  4. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect

    Han, W.

    2011-05-18

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  5. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Kang, Hongyan; Jiao, Lifang; Chen, Chengcheng; Cao, Kangzhe; Wang, Yijing; Yuan, Huatang

    2015-01-01

    Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling.Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is

  6. Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction

    NASA Astrophysics Data System (ADS)

    Du, Fang-Fang; Li, Tao; Long, Gui-Lu

    2016-12-01

    Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed into another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.

  7. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities.

    PubMed

    Perreault, Véronique; Hénaux, Loïc; Bazinet, Laurent; Doyen, Alain

    2017-04-15

    The effect of high hydrostatic pressure (HHP) on flaxseed protein structure and peptide profiles, obtained after protein hydrolysis, was investigated. Isolated flaxseed protein (1%, m/v) was subjected to HHP (600MPa, 5min or 20min at 20°C) prior to hydrolysis with trypsin only and trypsin-pronase. The results demonstrated that HHP treatment induced dissociation of flaxseed proteins and generated higher molecular weight aggregates as a function of processing duration. Fluorescence spectroscopy showed that HHP treatment, as well as processing duration, had an impact on flaxseed protein structure since exposition of hydrophobic amino acid tyrosine was modified. Except for some specific peptides, the concentrations of which were modified, similar peptide profiles were obtained after hydrolysis of pressure-treated proteins using trypsin. Finally, hydrolysates obtained using trypsin-pronase had a greater antioxidant capacity (ORAC) than control samples; these results confirmed that HHP enhanced the generation of antioxidant peptides.

  8. High-Throughput, Label-Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity.

    PubMed

    Zhang, Yuanqing; Wu, Minhao; Han, Xin; Wang, Ping; Qin, Lidong

    2015-09-07

    Herein we report a microfluidics method that enriches cancer stem cells (CSCs) or tumor-initiating cells on the basis of cell adhesion properties. In our on-chip enrichment system, cancer cells were driven by hydrodynamic forces to flow through microchannels coated with basement membrane extract. Highly adhesive cells were captured by the functionalized microchannels, and less adhesive cells were collected from the outlets. Two heterogeneous breast cancer cell lines (SUM-149 and SUM-159) were successfully separated into enriched subpopulations according to their adhesive capacity, and the enrichment of the cancer stem cells was confirmed by flow cytometry biomarker analysis and tumor-formation assays. Our findings show that the less adhesive phenotype is associated with a higher percentage of CSCs, higher cancer-cell motility, and higher resistance to chemotherapeutic drugs.

  9. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts.

    PubMed

    Lv, Chenyan; Masuda, Taro; Yang, Haixia; Sun, Lei; Zhao, Guanghua

    2011-12-01

    We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.

  10. The Total Work Measured During a High Intensity Isokinetic Fatigue Test Is Associated With Anaerobic Work Capacity

    PubMed Central

    Bosquet, Laurent; Gouadec, Kenan; Berryman, Nicolas; Duclos, Cyril; Gremeaux, Vincent; Croisier, Jean Louis

    2016-01-01

    The purpose of the study was to determine whether total work measured during a high intensity isokinetic fatigue test (TWFAT) could be considered as a valid measure of anaerobic work capacity (AWC), such as determined by total work measured during a Wingate Anaerobic Test (TWWAnT). Twenty well-trained cyclists performed 2 randomly ordered sessions involving a high intensity isokinetic fatigue test consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°·s-1, and a Wingate Anaerobic Test. We found that TWFAT of knee extensors was largely lower than TWWAnT (4151 ± 691 vs 22313 ± 2901 J, respectively, p < 0.05, Hedge’s g = 4.27). Both measures were highly associated (r = 0.83), and the 95% limits of agreement (LoA) represented 24.5% of TWWAnT. TWFAT of knee flexors (2151 ± 540 J) was largely lower than TWWAnT (p < 0.05, g = 9.52). By contrast, both measures were not associated (r = 0.09), and the 95% LoA represented 31.1% of TWWAnT. Combining TWFAT of knee flexors and knee extensors into a single measure (6302 ± 818 J) did not changed neither improved these observations. We still found a large difference with TWWAnT (p < 0.05, g = 5.26), a moderate association (r = 0.65) and 95% LoA representing 25.5% of TWWAnT. We concluded that TWFAT of knee extensors could be considered as a valid measure of AWC, since both measure were highly associated. However, the mean difference between both measures and their 95% LoA were too large to warrant interchangeability. Key points Total work performed during a high intensity isokinetic fatigue test can be considered as a valid measure of anaerobic work capacity (as determined by total work performance during a 30-s Wingate anaerobic test). The 95% limits of agreement are two large to allow a direct comparison between both measures. In other words, it is not possible to estimate the magnitude of performance improvement during a 30-s Wingate anaerobic test from that observed during a

  11. The Total Work Measured During a High Intensity Isokinetic Fatigue Test Is Associated With Anaerobic Work Capacity.

    PubMed

    Bosquet, Laurent; Gouadec, Kenan; Berryman, Nicolas; Duclos, Cyril; Gremeaux, Vincent; Croisier, Jean Louis

    2016-03-01

    The purpose of the study was to determine whether total work measured during a high intensity isokinetic fatigue test (TWFAT) could be considered as a valid measure of anaerobic work capacity (AWC), such as determined by total work measured during a Wingate Anaerobic Test (TWWAnT). Twenty well-trained cyclists performed 2 randomly ordered sessions involving a high intensity isokinetic fatigue test consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°·s(-1), and a Wingate Anaerobic Test. We found that TWFAT of knee extensors was largely lower than TWWAnT (4151 ± 691 vs 22313 ± 2901 J, respectively, p < 0.05, Hedge's g = 4.27). Both measures were highly associated (r = 0.83), and the 95% limits of agreement (LoA) represented 24.5% of TWWAnT. TWFAT of knee flexors (2151 ± 540 J) was largely lower than TWWAnT (p < 0.05, g = 9.52). By contrast, both measures were not associated (r = 0.09), and the 95% LoA represented 31.1% of TWWAnT. Combining TWFAT of knee flexors and knee extensors into a single measure (6302 ± 818 J) did not changed neither improved these observations. We still found a large difference with TWWAnT (p < 0.05, g = 5.26), a moderate association (r = 0.65) and 95% LoA representing 25.5% of TWWAnT. We concluded that TWFAT of knee extensors could be considered as a valid measure of AWC, since both measure were highly associated. However, the mean difference between both measures and their 95% LoA were too large to warrant interchangeability. Key pointsTotal work performed during a high intensity isokinetic fatigue test can be considered as a valid measure of anaerobic work capacity (as determined by total work performance during a 30-s Wingate anaerobic test).The 95% limits of agreement are two large to allow a direct comparison between both measures. In other words, it is not possible to estimate the magnitude of performance improvement during a 30-s Wingate anaerobic test from that observed during a high

  12. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity.

    PubMed

    Lin, Zhifeng; Ma, Yuhong; Zhao, Changwen; Chen, Ruichao; Zhu, Xing; Zhang, Lihua; Yan, Xu; Yang, Wantai

    2014-07-21

    Protein microarrays have become vital tools for various applications in biomedicine and bio-analysis during the past decade. The intense requirements for a lower detection limit and industrialization in this area have resulted in a persistent pursuit to fabricate protein microarrays with a low background and high signal intensity via simple methods. Here, we report on an extremely simple strategy to create three-dimensional (3D) protein microarrays with an anti-fouling background and a high protein capacity by photo-induced surface sequential controlled/living graft polymerization developed in our lab. According to this strategy, "dormant" groups of isopropyl thioxanthone semipinacol (ITXSP) were first introduced to a polymeric substrate through ultraviolet (UV)-induced surface abstraction of hydrogen, followed by a coupling reaction. Under visible light irradiation, the ITXSP groups were photolyzed to initiate surface living graft polymerization of poly(ethylene glycol) methyl methacrylate (PEGMMA), thus introducing PEG brushes to the substrate to generate a full anti-fouling background. Due to the living nature of this graft polymerization, there were still ITXSP groups on the chain ends of the PEG brushes. Therefore, by in situ secondary living graft cross-linking copolymerization of glycidyl methacrylate (GMA) and polyethylene glycol diacrylate (PEGDA), we could finally plant height-controllable cylinder microarrays of a 3D PEG network containing reactive epoxy groups onto the PEG brushes. Through a commonly used reaction of amine and epoxy groups, the proteins could readily be covalently immobilized onto the microarrays. This delicate design aims to overcome two universal limitations in protein microarrays: a full anti-fouling background can effectively eliminate noise caused by non-specific absorption and a 3D reactive network provides a larger protein-loading capacity to improve signal intensity. The results of non-specific protein absorption tests

  13. An open, parallel I/O computer as the platform for high-performance, high-capacity mass storage systems

    NASA Technical Reports Server (NTRS)

    Abineri, Adrian; Chen, Y. P.

    1992-01-01

    APTEC Computer Systems is a Portland, Oregon based manufacturer of I/O computers. APTEC's work in the context of high density storage media is on programs requiring real-time data capture with low latency processing and storage requirements. An example of APTEC's work in this area is the Loral/Space Telescope-Data Archival and Distribution System. This is an existing Loral AeroSys designed system, which utilizes an APTEC I/O computer. The key attributes of a system architecture that is suitable for this environment are as follows: (1) data acquisition alternatives; (2) a wide range of supported mass storage devices; (3) data processing options; (4) data availability through standard network connections; and (5) an overall system architecture (hardware and software designed for high bandwidth and low latency). APTEC's approach is outlined in this document.

  14. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity.

    PubMed

    Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D; Padilla, Jaume; Scroggins, Rebecca J; Welly, Rebecca; Britton, Steven L; Koch, Lauren G; Vieira-Potter, Victoria J; Swanson, Kelly S

    2015-01-01

    The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27 wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11 wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts

  15. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    PubMed Central

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-01-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release. PMID:27876876

  16. Dye-adsorption capacity of high surface-area hydrogen titanate nanosheets processed via modified hydrothermal method.

    PubMed

    Padinhattayil, Hareesh; Augustine, Rimesh; Shukla, Satyajit

    2013-04-01

    High surface-area (380 m2 x g(-1)) hydrogen titanate nanosheets (HTNS) processed via the modified hydrothermal method have been utilized for the removal of methylene blue (MB) dye from an aqueous solution via the surface-adsorption process involving the electrostatic attraction mechanism. The HTNS have been characterized using the transmission electron microscope (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) specific surface-area measurement techniques. The amount of MB dye adsorbed on the surface of HTNS at equilibrium (q(e)) has been examined as a function of contact time, initial dye-concentration, and initial solution-pH. Within the investigated range of initial solution-pH (2.5-11), the MB dye adsorption on the surface of HTNS has been observed to follow the pseudo-second-order kinetics with the dye-adsorption capacity of 119 mg x g(-1) at the initial solution-pH of - 10. The adsorption equilibrium follows the Langmuir isotherm within the initial solution-pH range of 2.5-10. However, in a highly basic solution (initial solution-pH -11), the adsorption equilibrium has been observed to follow the Langmuir, Freundlich, and Dubinin-Kaganer-Radushkevich (DKR) models in the different ranges of initial MB dye concentration. The mere dependence on the DKR model has not been observed within the investigated range of initial solution-pH. The differences in the dye-adsorption characteristics and capacity of HTNS, compared with those of hydrogen titanate nanotubes, have been attributed to the difference in their specific surface-area. Irrespective of the morphology, the maximum coverage of MB dye on the surface of hydrogen titanate has been noted to be the same (52%).

  17. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    NASA Astrophysics Data System (ADS)

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-11-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

  18. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  19. All you can eat: high performance capacity and plasticity in the common big-eared bat, Micronycteris microtis (Chiroptera: Phyllostomidae).

    PubMed

    Santana, Sharlene E; Geipel, Inga; Dumont, Elizabeth R; Kalka, Margareta B; Kalko, Elisabeth K V

    2011-01-01

    Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5-7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats.

  20. Initial characterization of a modular heat exchanger with an integral heat pipe. [for Stirling space engine

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1989-01-01

    As part of the Civil Space Technology Initiative (CSTI) Advanced Technology program, a conceptual design of the Stirling space engibe (SSE) was generated to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The free-piston Stirling engine (FPSE) was chosen as the growth option in the CSTI program. An existing FPSE was modified as a test bed for a modular heat exchanger evaluation. Evaluation of the individual heat pipes before installation in the engine is described.

  1. Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Coleman, Jonathan N; Li, Yanguang

    2016-09-27

    The search for high-capacity, low-cost electrode materials for sodium-ion batteries is a significant challenge in energy research. Among the many potential candidates, layered compounds such as MoS2 have attracted increasing attention. However, such materials have not yet fulfilled their true potential. Here, we show that networks of liquid phase exfoliated MoS2 nanosheets, reinforced with 20 wt % single-wall carbon nanotubes (SWNTs), can be formed into sodium-ion battery electrodes with large gravimetric, volumetric, and areal capacity. The MoS2/SWNT composite films are highly porous, electrically conductive, and mechanically robust due to its percolating carbon nanotube network. When directly employed as the working electrode, they exhibit a specific capacity of >400 mAh/g and volumetric capacity of ∼650 mAh/cm(3). Their mechanical stability allows them to be processed into free-standing films with tunable thickness up to ∼100 μm, corresponding to an areal loading of 15 mg/cm(2). Their high electrical conductivity allows the high volumetric capacity to be retained, even at high thickness, resulting in state-of-the-art areal capacities of >4.0 mAh/cm(2). Such values are competitive with their lithium-ion counterparts.

  2. Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Ukita, Masahiro; Sakuma, Ryo; Nakanishi, Makoto; Fujii, Tatsuo; Imanishi, Nobuyuki; Takada, Jun

    2016-10-01

    A high-capacity and high-rate-capability anode material for lithium-ion batteries, silicon-doped iron oxyhydroxide or 2-line ferrihydrite (2Fh), was prepared by mixing iron nitrate powder, tetraethyl orthosilicate, 2-propanol, and ammonium hydrogen carbonate powder at room temperature. The design of this material was inspired by a bacteriogenic product, a nanometric amorphous iron-based oxide material containing small amounts of structural Si. The atomistic structure of the prepared Si-doped 2Fh was strongly affected by the Si molar ratio [x = Si/(Fe + Si)]. Its crystallinity gradually decreased as the Si molar ratio increased, with a structural variation from nanocrystalline to amorphous at x = 0.25. The sample with x = 0.20 demonstrated the best Li storage performance. The developed material exhibited a high capacity of ∼400 mAh g-1 at the 25th cycle in the voltage range of 0.3-3.0 V and at a current rate of 9 A g-1, which was three times greater than that of the Si-free 2Fh. This indicates that Si-doping into the 2Fh structure realizes good rate capability, which are presumably because of the specific nanocomposite structure of iron-based electrochemical centers embedded in the Si-based amorphous matrix, generated by reversible Li insertion/deinsertion process.

  3. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  4. Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions

    PubMed Central

    Wang, Hui; Yang, Lian; Ping, Yanhai; Bai, Yingguo; Luo, Huiying; Huang, Huoqing; Yao, Bin

    2016-01-01

    The neutral protease has high potential for industrial applications, and attempts to improve enzyme expression level have important application values. In the present study, a neutral protease-encoding gene, Banpr, was cloned from Bacillus amyloliquefaciens strain K11, and a genetic manipulation method specific for this difficult-to-transform strain was developed for the high-level expression of neutral protease. The recombinant plasmid pUB110-Banpr was constructed in Bacillus subtilis strain WB600 and then transformed into strain K11 under optimized conditions. A positive transformant 110N-6 with the highest protease secreting capacity on skim milk plates and great genetic stability for more than 100 generations was selected for further study. Optimization of the fermentation conditions increased the enzyme activity of strain 110N-6 to 8995 ± 250 U/ml in flask culture and 28084 ± 1282 U/ml in 15-l fermentor, which are significantly higher than that of the native strain K11 and industrial strain B. subtilis AS.1398, respectively. The high expression level and extreme genetic stability make B. amyloliquefaciens strain 110N-6 more favorable for mass production of neutral protease for industrial uses. PMID:26752595

  5. Mechanical Milling Assisted Synthesis and Electrochemical Performance of High Capacity LiFeBO3 for Lithium Batteries.

    PubMed

    Cambaz, Musa A; Anji Reddy, M; Vinayan, B P; Witte, Ralf; Pohl, Alexander; Mu, Xiaoke; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Fichtner, Maximilian

    2016-01-27

    Borate chemistry offers attractive features for iron based polyanionic compounds. For battery applications, lithium iron borate has been proposed as cathode material because it has the lightest polyanionic framework that offers a high theoretical capacity. Moreover, it shows promising characteristics with an element combination that is favorable in terms of sustainability, toxicity, and costs. However, the system is also associated with a challenging chemistry, which is the major reason for the slow progress in its further development as a battery material. The two major challenges in the synthesis of LiFeBO3 are in obtaining phase purity and high electrochemical activity. Herein, we report a facile and scalable synthesis strategy for highly pure and electrochemically active LiFeBO3 by circumventing stability issues related to Fe(2+) oxidation state by the right choice of the precursor and experimental conditions. Additionally, we carried out a Mössbauer spectroscopic study of electrochemical charged and charged-discharged LiFeBO3 and reported a lithium diffusion coefficient of 5.56 × 10(-14) cm(2) s(-1) for the first time.

  6. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    PubMed Central

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  7. Comparison of Nocturia Response to Desmopressin Treatment between Patients with Normal and High Nocturnal Bladder Capacity Index

    PubMed Central

    Leskovar, Jurij

    2013-01-01

    Objective. To compare efficacy of desmopressin for treatment of nocturia between patients with normal and high nocturnal bladder capacity index (NBCi). Methods. Retrospective analysis of adult patients treated with desmopressin for nocturia. Patients were analyzed according to high or normal NBCi value before treatment. Results. 55 patients were identified, aged 49–84, 47 males, 8 females, who started desmopressin 0.2 mg nocte between 2009 and 2011. Two groups (N: normal and H: high NBCi) were similar regarding number, gender, age, 24 h urine volume, and nocturnal urine volume. On treatment, nocturnal volume decreased by mean of 364 mL. Number of nightly voids decreased in N group from 3.11 to 1.50, in H from 3.96 to 1.44. Nocturnal polyuria and nocturia indices also decreased significantly. NBCi remained the same in N group (0.56 on therapy) and in H group decreased to mean 0.63. All on-treatment values were statistically similar in N and H groups. Pretreatment differences were abolished with treatment. NBCi was significantly correlated to nocturia reduction—larger reduction was observed in patients with higher NBCi. In 8/55 patients, hyponatremia was detected, but without clinical consequences. Conclusions. The results indicate that the effectiveness of desmopressin on nocturia is not dependent upon the patient's pretreatment NBCi. PMID:24223034

  8. Effect of energy drink dose on exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise

    PubMed Central

    An, Sang Min; Park, Jong Suk; Kim, Sang Ho

    2014-01-01

    [Purpose] The purpose of this research was to investigate the effects of exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise on caffeine concentration of energy drink. [Methods] The volunteers for this study were 15 male university student. 15 subjects were taken basic physical examinations such as height, weight and BMI before the experiment. Primary tests were examined of VO2max per weight of each subjects by graded exercise test using Bruce protocol. Each of five subject was divided 3 groups (CON, ECGⅠ, ECGⅡ) by matched method based on weight and VO2max per weight what gained of primary test for minimize the differences of exercise capacity and ingestion of each groups. For the secondary tests, the groups of subjects were taken their materials before and after exercise as a blind test. After the ingestion, subjects were experimented on exercise test of VO2max 80% by treadmill until the all-out. Heart rate was measured by 1minute interval, and respiratory variables were analyzed VO2, VE, VT, RR and so on by automatic respiratory analyzer. And exercise exhaustion time was determined by stopwatch. Moreover, HRV was measured after exercise and recovery 3 min. [Results] Among the intake groups, ECGⅡ was showed the longest of exercise exhaustion time more than CON group (p = .05). Result of heart rate during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). Result of RPE during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). [Conclusion] In conclusion, EDGⅡ showed the significant increase of exercise exhaustion time more than CON group (p=.05) and not significant differences in HR, RPE, RER, HRV, HRR, blood pressure (p > .05). Therefore, 2.5 mg/kg-1 ingestion

  9. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  10. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  11. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  12. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    SciTech Connect

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; Yang, Zhenzhong; Yu, Xiqian; Gu, Lin; Hu, Yong -Sheng; Li, Hong; Yang, Xiao -Qing; Chen, Liquan; Huang, Xuejie

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.

  13. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  14. Striving for Excellence Sometimes Hinders High Achievers: Performance-Approach Goals Deplete Arithmetical Performance in Students with High Working Memory Capacity

    PubMed Central

    Crouzevialle, Marie; Smeding, Annique; Butera, Fabrizio

    2015-01-01

    We tested whether the goal to attain normative superiority over other students, referred to as performance-approach goals, is particularly distractive for high-Working Memory Capacity (WMC) students—that is, those who are used to being high achievers. Indeed, WMC is positively related to high-order cognitive performance and academic success, a record of success that confers benefits on high-WMC as compared to low-WMC students. We tested whether such benefits may turn out to be a burden under performance-approach goal pursuit. Indeed, for high achievers, aiming to rise above others may represent an opportunity to reaffirm their positive status—a stake susceptible to trigger disruptive outcome concerns that interfere with task processing. Results revealed that with performance-approach goals—as compared to goals with no emphasis on social comparison—the higher the students’ WMC, the lower their performance at a complex arithmetic task (Experiment 1). Crucially, this pattern appeared to be driven by uncertainty regarding the chances to outclass others (Experiment 2). Moreover, an accessibility measure suggested the mediational role played by status-related concerns in the observed disruption of performance. We discuss why high-stake situations can paradoxically lead high-achievers to sub-optimally perform when high-order cognitive performance is at play. PMID:26407097

  15. Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages.

    PubMed

    Tadapaneni, Ravi Kiran; Banaszewski, Katarzyna; Patazca, Eduardo; Edirisinghe, Indika; Cappozzo, Jack; Jackson, Lauren; Burton-Freeman, Britt

    2012-06-13

    The present study investigated processing strategies and matrix effects on the antioxidant capacity (AC) and polyphenols (PP) content of fruit-based beverages: (1) strawberry powder (Str) + dairy, D-Str; (2) Str + water, ND-Str; (3) dairy + no Str, D-NStr. Beverages were subjected to high-temperature-short-time (HTST) and high-pressure processing (HPP). AC and PP were measured before and after processing and after a 5 week shelf-life study. Unprocessed D-Str had significantly lower AC compared to unprocessed ND-Str. Significant reductions in AC were apparent in HTST- compared to HPP-processed beverages (up to 600 MPa). PP content was significantly reduced in D-Str compared to ND-Str and in response to HPP and HTST in all beverages. After storage (5 weeks), AC and PP were reduced in all beverages compared to unprocessed and week 0 processed beverages. These findings indicate potentially negative effects of milk and processing on AC and PP of fruit-based beverages.

  16. Variable male potential rate of reproduction: high male mating capacity as an adaptation to parasite-induced excess of females?

    PubMed Central

    Moreau, Jérôme; Rigaud, Thierry

    2003-01-01

    Numerous animals are known to harbour intracytoplasmic symbionts that gain transmission to a new host generation via female eggs and not male sperm. Bacteria of the genus Wolbachia are a typical example. They infect a large range of arthropod species and manipulate host reproduction in several ways. In terrestrial isopods (woodlice), Wolbachia are responsible for converting males into females (feminization (F)) in some species, or for infertility in certain host crosses in other species (cytoplasmic incompatibility (CI)). Wolbachia with the F phenotype impose a strong excess of females on their host populations, while Wolbachia expressing CI do not. Here, we test the possibility that male mating capacity (MC) is correlated with Wolbachia-induced phenotype. We show that males of isopod hosts harbouring F Wolbachia possess a strong MC (i.e. are able to mate with several females in a short time), while those of species harbouring CI Wolbachia possess a weaker MC. This pattern may be explained either by the selection of high MC following the increase in female-biased sex ratios, or because the F phenotype would lead to population extinction in species where MC is not sufficiently high. This last hypotheses is nevertheless more constrained by population structure. PMID:12965021

  17. Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Kyungbae; Kim, Moon-Soo; Choi, Hyerang; Min, Kyeong-Sik; Kim, Ki-Doo; Kim, Jae-Hun

    2017-03-01

    Nanocrystalline Si-embedded SiOx-Al2O3 composite materials were synthesized by a high-energy mechanical milling method, and their potential as an anode material for Li-ion batteries was examined. The starting materials were amorphous SiO2 and Al metal powders. To increase the initial coulombic efficiency of the SiO2-based electrode materials, the amorphous SiO2 was reduced by Al. The reducing medium was decided by calculating the thermodynamic formation energy. During the highenergy milling process, SiO2 was partially reduced and Al was simultaneously oxidized to aluminum oxide, yielding nano Si-embedded composite. The composite was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission microscopy. In electrochemical tests, the reversible capacity of the composite electrode was approximately 850 mAh g-1 with enhanced initial coulombic efficiency of 66%. This performance of the composite electrode was achieved not through carbon incorporation, but through the formation of Si-embedded nanocomposites.

  18. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability.

    PubMed

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M

    2016-06-20

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  19. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  20. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    PubMed Central

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783