DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklas, Jens; Beaupré, Serge; Leclerc, Mario
2015-06-18
Understanding charge separation and charge transport is crucial for improving the efficiency of organic solar cells. Their active media are based on organic molecules and polymers, serving as both light-absorbing and transport layers. The charge-transfer (CT) states play an important role, being intermediate for free carrier generation and charge recombination. Here, we use light-induced electron paramagnetic resonance spectroscopy to study the CT dynamics in blends of the polymers P3HT, PCDTBT, and PTB7 with the fullerene derivative C-60-PCBM. Time-resolved EPR measurements show strong spin-polarization patterns for all polymer-fullerene blends, confirming predominant generation of singlet CT states and partial orientation ordering nearmore » the donor-acceptor interface. These observations allow a comparison with charge separation processes in molecular donor-acceptor systems and in natural and artificial photosynthetic assemblies, and thus the elucidation of the initial steps of sequential CT in organic photovoltaic materials.« less
Technical considerations for implementation of x-ray CT polymer gel dosimetry.
Hilts, M; Jirasek, A; Duzenli, C
2005-04-21
Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.
Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel
NASA Astrophysics Data System (ADS)
Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.
2015-01-01
The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.
Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.
2004-11-01
Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less
Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V
2011-12-01
The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.
Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin
2014-10-01
Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni
2014-06-09
The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.
Cone, Jamie A; Martin, Thomas M; Marcellin-Little, Denis J; Harrysson, Ola L A; Griffith, Emily H
2017-08-01
OBJECTIVE To assess the repeatability and accuracy of polymer replicas of small, medium, and large long bones of small animals fabricated by use of 2 low-end and 2 high-end 3-D printers. SAMPLE Polymer replicas of a cat femur, dog radius, and dog tibia were fabricated in triplicate by use of each of four 3-D printing methods. PROCEDURES 3-D renderings of the 3 bones reconstructed from CT images were prepared, and length, width of the proximal aspect, and width of the distal aspect of each CT image were measured in triplicate. Polymer replicas were fabricated by use of a high-end system that relied on jetting of curable liquid photopolymer, a high-end system that relied on polymer extrusion, a triple-nozzle polymer extrusion low-end system, and a dual-nozzle polymer extrusion low-end system. Polymer replicas were scanned by use of a laser-based coordinate measurement machine. Length, width of the proximal aspect, and width of the distal aspect of the scans of replicas were measured and compared with measurements for the 3-D renderings. RESULTS 129 measurements were collected for 34 replicas (fabrication of 1 large long-bone replica was unsuccessful on each of the 2 low-end printers). Replicas were highly repeatable for all 3-D printers. The 3-D printers overestimated dimensions of large replicas by approximately 1%. CONCLUSIONS AND CLINICAL RELEVANCE Low-end and high-end 3-D printers fabricated CT-derived replicas of bones of small animals with high repeatability. Replicas were slightly larger than the original bones.
NASA Astrophysics Data System (ADS)
Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.
2012-02-01
Copolymers based on diketopyrrolopyrrole (DPP) have recently gained potential in organic photovoltaics. When blended with another acceptor such as PCBM, intermolecular charge transfer occurs which may result in the formation of charge transfer (CT) states. We present here the spectral photocurrent characteristics of two donor-acceptor DPP based copolymers, PDPP-BBT and TDPP-BBT, blended with PCBM to identify the CT states. The spectral photocurrent measured using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) methods are compared with P3HT:PCBM, where the CT state is well known. PDPP-BBT:PCBM shows a stable CT state while TDPP-BBT does not. Our analysis shows that the larger singlet state energy difference between TDPP-BBT and PCBM along with the lower optical gap of TDPP-BBT obliterates the formation of a midgap CT state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.
Blood-pool contrast agent for pre-clinical computed tomography
NASA Astrophysics Data System (ADS)
Cruje, Charmainne; Tse, Justin J.; Holdsworth, David W.; Gillies, Elizabeth R.; Drangova, Maria
2017-03-01
Advances in nanotechnology have led to the development of blood-pool contrast agents for micro-computed tomography (micro-CT). Although long-circulating nanoparticle-based agents exist for micro-CT, they are predominantly based on iodine, which has a low atomic number. Micro-CT contrast increases when using elements with higher atomic numbers (i.e. lanthanides), particularly at higher energies. The purpose of our work was to develop and evaluate a lanthanide-based blood-pool contrast agent that is suitable for in vivo micro-CT. We synthesized a contrast agent in the form of polymer-encapsulated Gd nanoparticles and evaluated its stability in vitro. The synthesized nanoparticles were shown to have an average diameter of 127 +/- 6 nm, with good size dispersity. Particle size distribution - evaluated by dynamic light scattering over the period of two days - demonstrated no change in size of the contrast agent in water and saline. Additionally, our contrast agent was stable in a mouse serum mimic for up to 30 minutes. CT images of the synthesized contrast agent (containing 27 mg/mL of Gd) demonstrated an attenuation of over 1000 Hounsfield Units. This approach to synthesizing a Gd-based blood-pool contrast agent promises to enhance the capabilities of micro-CT imaging.
Vattikunta, Radhika; Venkatakrishnarao, Dasari; Sahoo, Chakradhar; Naraharisetty, Sri Ram Gopal; Narayana Rao, Desai; Müllen, Klaus; Chandrasekar, Rajadurai
2018-05-16
Novel photonic microresonators with enhanced nonlinear optical (NLO) intensity are fabricated from polymer particles. As an additional advantage, they offer band gap tunability from the visible to near-infrared regions. A special protocol including (i) copolymerization of 4-(1-pyrenyl)-styrene, styrene, and 1,4-divinylbenzene, (ii) extraction of a dispersible and partly dissolvable, lightly cross-linked polymer network (PN), and (iii) treatment of the blue-emitting PN with electron acceptor (A) molecules such as 1,2,4,5-tetracyanobenzene (TCNB) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) furnishes orange- and red-emitting D-A charge-transfer (CT) complexes with the pendant pyrene units. These complexes, here named PN-TCNB and PN-TCNQ, respectively, precipitate as microparticles upon the addition of water and subsequent ultrasonication. Upon electronic excitation, these spherical microparticles act as whispering-gallery-mode resonators by displaying optical resonances in the photoluminescence (PL) spectra because of light confinement. Further, the trapped incident light increases the light-matter interaction and thereby enhances the PL intensity, including the two-photon luminescence. The described protocol for polymer-based CT microresonators with tunable NLO emissions holds promise for a myriad of photonic applications.
Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V
2017-03-01
This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.
Polymeric contrast agents for medical imaging.
Torchilin, V P
2000-09-01
Synthetic polymers and co-polymers are described, to be used as carriers of reporter groups for gamma-, magnetic resonance (MR), and computed tomography (CT) imaging. Those compounds include polychelating and amphiphilic polymers and serve as key components of various contrast agents. Single terminus-activated polychelating polymers were synthesized using poly-L-lysine (PLL) as a main chain and chelating moieties (such as diethylene triamine pentaacetic acid or DTPA) as side groups. These polymers were used for the modification of diagnostic monoclonal antibodies to increase their load with reporter metal atoms. As a result, better images within shorter time intervals were obtained in animal experiments. The application of liposomes and micelles as carriers for diagnostic imaging agents in experimental and clinical medicine is considered. The load of liposomes and micelles with contrast agents for gamma- and MR imaging (MRI) was sharply increased by using polychelating polymers additionally modified on one end with a hydrophobic phospholipid residue to give amphiphilic polymers. Such polymers easily incorporate the liposome membrane or micelle core and provide better loading of liposomes and micelles with reporter metals and, consequently, better and faster imaging of various physiological compartments, such as lymphatic and vascular systems. A block-copolymer of methoxy-poly(ethylene glycol) (MPEG) and iodine-substituted PLL was synthesized to prepare long-circulating contrast agent for CT imaging of the blood pool. In the aqueous solution, this copolymer forms stable and heavily loaded with iodine (up to 30% of iodine by weight) micelles. These micelle were successfully used for CT visualization of the vascular network in experimental animals. General trends in developing contrast polymers are discussed.
NASA Astrophysics Data System (ADS)
Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.
2017-06-01
The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.
Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong
2017-07-01
Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter
NASA Astrophysics Data System (ADS)
Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min
2013-09-01
The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.
Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang
2014-08-07
Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.
Radiologic advantages of potential use of polymer plastic clips in neurosurgery.
Delibegović, Samir
2014-01-01
Plastic clips are made of diamagnetic material and may result in fewer computed tomography (CT) and magnetic resonance artifacts than titanium clips. Considering that polymer plastic clips are increasingly being used in endoscopic surgery, our study examined the CT and magnetic resonance imaging (MRI) characteristics of plastic clips after application in the neurocranium and compared them with titanium clips. Craniotomy was performed on the heads of domestic pigs (Sus scrofa domestica), and, at an angle of 90°, a permanent Yasargil FT 746 T clip was placed in a frontobasal, interhemispheric position. A plastic polymer medium-large Hem-o-lok clip was placed in the same position into another animal. After this procedure, CT of the brain was performed using Siemens 16 slice, followed by an MRI scan, on Philips MRI, 1.5 Tesla. The CT and magnetic resonance scans were analyzed. On axial CT sections through the site of placement of titanium clips, dotted hyperdensity with a high value of Hounsfield units (HUI) of about 2800-3000 could be clearly seen. At the site where the plastic polymer clips were placed, discrete hyperdensity was observed, measuring 130-140 HUI. MRI of the brain in which titanium clips were used revealed a hypointensive T1W signal in the interhemispheric fissure, with a hypointensive T2W signal. On the other hand, upon examination of the MRI of the brain in which plastic clips were used, the T1W signal described above did not occur, and there was also no T2W signal, and no artifacts observed. The plastic clips are made of a diamagnetic, nonconductive material that results in fewer CT and MRI artifacts than titanium clips. Copyright © 2014 Elsevier Inc. All rights reserved.
Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...
2015-09-12
Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less
Wang, Y; Lin, D; Fu, T
1997-03-01
Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.
NASA Astrophysics Data System (ADS)
Sathiyaraj, P.; Samuel, E. James jebaseelan
2018-01-01
The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
Kim, Dongkyu; Park, Sangjin; Lee, Jae Hyuk; Jeong, Yong Yeon; Jon, Sangyong
2007-06-20
Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.
Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...
2014-12-22
Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Warren G; Jirasek, Andrew; Wells, Derek M
2014-08-15
Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can havemore » on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.« less
Cuijpers, Vincent M J I; Jaroszewicz, Jacub; Anil, Sukumaran; Al Farraj Aldosari, Abdullah; Walboomers, X Frank; Jansen, John A
2014-03-01
The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. To determine spatial resolution and sensitivity, standardized reference samples containing standardized nano- and microspheres were prepared in polymer and ceramic matrices. Thereafter, 10 titanium-coated polymer dental implants (3.2 mm in Ø by 4 mm in length) were placed in the mandible of Beagle dogs. Both micro- and nano-CT, as well as histological analyses, were performed. The reference samples confirmed the high resolution of the nano-CT system, which was capable of revealing sub-micron structures embedded in radiodense matrices. The dog implantation study and subsequent statistical analysis showed equal values for bone area and bone-implant contact measurements between micro-CT and histology. However, because of the limited sample size and field of view, nano-CT was not rendering reliable data representative of the entire bone-implant specimen. Micro-CT analysis is an efficient tool to quantitate bone healing parameters at the bone-implant interface, especially when using titanium-coated PMMA implants. Nano-CT is not suitable for such quantification, but reveals complementary morphological information rivaling histology, yet with the advantage of a 3D visualization. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.
Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu
2013-11-15
In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.
Wang, Guannan; Qian, Kun; Mei, Xifan
2018-06-14
Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.
Introduction of a deformable x-ray CT polymer gel dosimetry system
NASA Astrophysics Data System (ADS)
Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.
2018-04-01
This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.
Life Cycle Cost for Drainage Structures
1988-02-01
36aftSFCURITY CLASSIF"CTION OF TMuS PACA Unclassified -mm/ is. AletmCT (Cestlaed). gldellses presented I* Part II of this report can be used to ,stimato the...life calculated using this method is the average life based on field data. The actual life of individual installations may vary significantly. 12...applicatious where effluents contain petroleum products. Polymer coatings (AASMTO K246), in Several, add about 10 years to the average servics life. A
Rose, Fabrice; Wern, Jeanette Erbo; Gavins, Francesca; Andersen, Peter; Follmann, Frank; Foged, Camilla
2018-02-10
Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entry directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world, and there is an unmet medical need for an effective vaccine. A vaccine against Ct should elicit protective humoral and cell-mediated immune (CMI) responses in the genital tract mucosa. We previously designed an antibody- and CMI-inducing adjuvant based on poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating of the LPNs. Cryo-transmission electron microscopy revealed a PLGA core coated with one or several concentric lipid bilayers. The GC coating of the surface was identified as a saturable, GC concentration-dependent increase in particle size and a reduction of the zeta-potential, and the coating layer could be compressed upon addition of salt. Increased antigen-specific mucosal immune responses were induced in the lungs and the genital tract with the optimized GC-coated LPN adjuvant upon nasal immunization of mice with the recombinant Ct fusion antigen CTH522. The mucosal responses were characterized by CTH522-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of CTH522 adjuvanted with chitosan-coated LPNs represents a promising strategy to modulate the magnitude of mucosal vaccine responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.
Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E
2015-11-11
Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the PDI excimer excited state manifold.
The microstructure of capsule containing self-healing materials: A micro-computed tomography study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Stappen, Jeroen, E-mail: Jeroen.Vanstappen@uge
Autonomic self-healing materials are materials with built-in (micro-) capsules or vessels, which upon fracturing release healing agents in order to recover the material's physical and mechanical properties. In order to better understand and engineer these materials, a thorough characterization of the material's microstructural behavior is essential and often overlooked. In this context, micro-computed tomography (μCT) can be used to investigate the three dimensional distribution and (de)bonding of (micro-) capsules in their native state in a polymer system with self-healing properties. Furthermore, in-situ μCT experiments in a self-healing polymer and a self-healing concrete system can elucidate the breakage and leakage behaviormore » of (micro-) capsules at the micrometer scale. While challenges related to image resolution and contrast complicate the characterization in specific cases, non-destructive 3D imaging with μCT is shown to contribute to the understanding of the link between the microstructure and the self-healing behavior of these complex materials. - Highlights: • μCT imaging allows for the analysis of microcapsule distribution patterns in self-healing materials. • μCT allows for qualitative and quantitative measurements of healing agent release from carriers in self-healing materials. • Experimental set-ups can be optimized by changing chemical compounds in the system to ensure maximum quality imaging.« less
Organic arsenicals as efficient and highly specific linkers for protein/peptide-polymer conjugation.
Wilson, Paul; Anastasaki, Athina; Owen, Matthew R; Kempe, Kristian; Haddleton, David M; Mann, Sarah K; Johnston, Angus P R; Quinn, John F; Whittaker, Michael R; Hogg, Philip J; Davis, Thomas P
2015-04-01
The entropy-driven affinity of trivalent (in)organic arsenicals for closely spaced dithiols has been exploited to develop a novel route to peptide/protein-polymer conjugation. A trivalent arsenous acid (As(III)) derivative (1) obtained from p-arsanilic acid (As(V)) was shown to readily undergo conjugation to the therapeutic peptide salmon calcitonin (sCT) via bridging of the Cys(1)-Cys(7) disulfide, which was verified by RP-HPLC and MALDI-ToF-MS. Conjugation was shown to proceed rapidly (t < 2 min) in situ and stoichiometrically through sequential reduction-conjugation protocols, therefore exhibiting conjugation efficiencies equivalent to those reported for the current leading disulfide-bond targeting strategies. Furthermore, using bovine serum albumin as a model protein, the trivalent organic arsenical 1 was found to demonstrate enhanced specificity for disulfide-bond bridging in the presence of free cysteine residues relative to established maleimide functional reagents. This specificity represents a shift toward potential orthogonality, by clearly distinguishing between the reactivity of mono- and disulfide-derived (vicinal or neighbors-through-space) dithiols. Finally, p-arsanilic acid was transformed into an initiator for aqueous single electron-transfer living radical polymerization, allowing the synthesis of hydrophilic arsenic-functional polymers which were shown to exhibit negligible cytotoxicity relative to a small molecule organic arsenical, and an unfunctionalized polymer control. Poly(poly[ethylene glycol] methyl ether acrylate) (PPEGA480, DPn = 10, Mn,NMR = 4900 g·mol(-1), Đ = 1.07) possessing a pentavalent arsenic acid (As(V)) α-chain end was transformed into trivalent As(III) post-polymerization via initial reduction by biological reducing agent glutathione (GSH), followed by binding of GSH. Conjugation of the resulting As(III)-functional polymer to sCT was realized within 35 min as indicated by RP-HPLC and verified later by thermodynamically driven release of sCT, from the conjugate, in the presence of strong chelating reagent ethanedithiol.
1986-02-04
Laberge , Phys. Chem. Glasses 14, 122 (1973); F.S. Howell, R. Bose, P.B. Macedo and C.T. Moynihan, J. Phys. Chem. 78, 639 (1974). 30. K.L. Ngai, R.W...J.R. Stevens , J. Polym. Sci.: Polym. Phys. Ed. 17, 1547 (1979); 21, 605 (1983). 41. For Polyethyl acrylate (PEA) see G. Williams and D.C. Watts in
2008-11-17
Storrs, CT 06269 2Current Address: Syracuse Biomaterials Institute and Biomedical and Chemical Engineering Department, Syracuse University...dimension in the range 1-100 nm – in order to realize materials that combine the processibility and property-tuning of polymers with outstanding stiffness...polymers with a variety of vertex-groups: isobutyl (iBu), cyclopentyl (Cp) and cyclohexyl (Cy). EXPERIMENTAL SECTION Materials . In order to
Feasibility of hydrogel fiducial markers for in vivo proton range verification using PET
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Campbell, Patrick; Wang, Min; Alqathami, Mamdooh; Mawlawi, Osama; Kerr, Matthew; Cho, Sang Hyun
2016-03-01
Biocompatible/biodegradable hydrogel polymers were immersed in 18O-enriched water and 16O-water to create 18O-water hydrogels and 16O-water hydrogels. In both cases, the hydrogels were made of ~91 wt% water and ~9 wt% polymer. In addition, 5-8 μm Zn powder was suspended in 16O-water and 18O-enriched water and cross-linked with hydrogel polymers to create Zn/16O-water hydrogels (30/70 wt%, ~9 wt% polymer) and Zn/18O-water hydrogels (10/90 wt%), respectively. A block of extra-firm ‘wet’ tofu (12.3 × 8.8 × 4.9 cm, ρ ≈ 1.05 g cm-3) immersed in water was injected with Zn/16O-water hydrogels (0.9 ml each) at four different depths using an 18-gauge needle. Similarly, Zn/18O-water hydrogels (0.9 ml) were injected into a second tofu phantom. As a reference, both 16O-water hydrogels (1.8 ml) and 18O-water hydrogels (0.9 ml) in Petri dishes were irradiated in a ‘dry’ environment. The hydrogels in the wet tofu phantoms and dry Petri dishes were scanned via CT and images were used for treatment planning. Then, they were positioned at the proton distal dose fall-off region and irradiated (2 Gy) followed by PET/CT imaging. Notably high PET signals were observed only in 18O-water hydrogels in the dry environment. The visibility of the Zn/16O-water hydrogels injected into the tofu phantom was outstanding in CT images, but these hydrogels provided no noticeable PET signals. The visibility of the Zn/18O-water hydrogels in the wet tofu were excellent on CT and moderate on PET; however, the PET signals were weaker than those in the dry environment, possibly owing to 18O-water leaching out. The hydrogel markers studied here could be used to develop universal PET/CT fiducial markers. Their PET visibility (attributed more to activated 18O-water than Zn) after proton irradiation can be used for proton therapy/range verification. More investigation is needed to slow down the leaching of 18O-water.
NASA Astrophysics Data System (ADS)
Basel, Tek Prasad
We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.
Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging.
Yin, Qian; Yap, Felix Y; Yin, Lichen; Ma, Liang; Zhou, Qin; Dobrucki, Lawrence W; Fan, Timothy M; Gaba, Ron C; Cheng, Jianjun
2013-09-18
Biocompatible poly(iohexol) nanoparticles, prepared through cross-linking of iohexol and hexamethylene diisocyanate followed by coprecipitation of the resulting cross-linked polymer with mPEG-polylactide, were utilized as contrast agents for in vivo X-ray computed tomography (CT) imaging. Compared to conventional small-molecule contrast agents, poly(iohexol) nanoparticles exhibited substantially protracted retention within the tumor bed and a 36-fold increase in CT contrast 4 h post injection, which makes it possible to acquire CT images with improved diagnosis accuracy over a broad time frame without multiple administrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardin, A; Avery, S; Ding, X
2014-06-15
Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less
Bair, Ryan J.; Bair, Eric; Viswanathan, Akila N.
2016-01-01
PURPOSE We assessed a novel Food and Drug Administration–approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen’s kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68–0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05–1.03) in the CT visibility score and 0.83 (95% CI = 0.17–1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional–based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications. PMID:26481393
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-01-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363
Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo
2018-04-10
To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
An insight into non-emissive excited states in conjugated polymers
NASA Astrophysics Data System (ADS)
Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.
2015-09-01
Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.
Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D
2015-04-01
Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Wu, Li-Na; Zhang, Li-Juan
2018-05-01
This work presents a systematic density functional theory (DFT) study for geometrical and electronic structures, g factors and UV-vis spectra of three Cu(II) coordination polymers (CPs) [Cu(XL)(NO3)2]n (1), {[Cu(XL)(4,4‧-bpy)(NO3)2]•CH3CN}n (2) and {[Cu(XL)3](NO3)2·3.5H2O}n (3) based on the ligand N,N‧-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide bi(1,2,4-triazole) (XL) with the linker triazole coordinated with copper to construct the CPs. For three CPs with distinct ligands, the optimized molecular structures with PBE0 hybrid functional and the 6-311g basis set agree well with the corresponding XRD data. Meanwhile, the electronic properties are also analyzed for all the systems. The calculated g factors are found sensitive to the (Hartree-Fock) HF character due to the significant hybridization between copper and ligand orbitals. The calculated UV-visible spectra reveal that the main electronic transitions for CP 1 contain d-d and CT transitions, while those for CPs 2 and 3 largely belong to CT ones. The present CPs seem difficult to adsorb small molecules, e.g., CP 1 with H2O and NO2 exhibit unfavorable adsorption and deformation structures near the Cu2+ site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strop, P.; Mikes, F.; Kalal, J.
1976-03-25
In Pt. 1 of this work, solvatochromic compounds embedded in polymer chains were used for measuring the polarity of their microenvironment. The semiempirical expression of the polarity of solvents by means of the energy of the charge-transfer (C-T) absorption band of 1-ethyl-4-carbomethylpyridinium iodide, as proposed by Kosower, was shown to be applicable in principle for measuring the polarity of the polymer microenvironment. In this present work, this approach was employed to measure the polarity of microenvironments of the synthetic polymers polymethacrylamide (PMA), poly(2-hydroxethyl methacrylate) (PHEMA), poly(2-vinylpyridine) (P-2VP), poly(4-vinylpyridine) (P-4VP), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and polystyrene (PS) in binarymore » solvents and to compare them with the polarities of these solvents. It is concluded that comparisons with a solution with the same polarity expressed by the semi-empirical scale represents only the first approximation for characterizing the polymer microenvironment. (12 refs.)« less
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-09-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dose evaluation of an NIPAM polymer gel dosimeter using gamma index
NASA Astrophysics Data System (ADS)
Chang, Yuan-Jen; Lin, Jing-Quan; Hsieh, Bor-Tsung; Yao, Chun-Hsu; Chen, Chin-Hsing
2014-11-01
An N-isopropylacrylamide (NIPAM) polymer gel dosimeter has great potential in clinical applications. However, its three-dimensional dose distribution must be assessed. In this work, a quantitative evaluation of dose distributions was performed to evaluate the NIPAM polymer gel dosimeter using gamma analysis. A cylindrical acrylic phantom filled with NIPAM gel measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by a 4×4 cm2 square light field. The irradiated gel phantom was scanned using an optical computed tomography (optical CT) scanner (OCTOPUS™, MGS Research, Inc., Madison, CT, USA) at 1 mm resolution. The projection data were transferred to an image reconstruction program, which was written using MATLAB (The MathWorks, Natick, MA, USA). The program reconstructed the image of the optical density distribution using the algorithm of a filter back-projection. Three batches of replicated gel phantoms were independently measured. The average uncertainty of the measurements was less than 1%. The gel was found to have a high degree of spatial uniformity throughout the dosimeter and good temporal stability. A comparison of the line profiles of the treatment planning system and of the data measured by optical CT showed that the dose was overestimated in the penumbra region because of two factors. The first is light scattering due to changes in the refractive index at the edge of the irradiated field. The second is the edge enhancement caused by free radical diffusion. However, the effect of edge enhancement on the NIPAM gel dosimeter is not as significant as that on the BANG gel dosimeter. Moreover, the dose uncertainty is affected by the inaccuracy of the gel container positioning process. To reduce the uncertainty of 3D dose distribution, improvements in the gel container holder must be developed.
Deng, Heng; Zhong, Yanqi; Du, Meihong; Liu, Qinjun; Fan, Zhanming; Dai, Fengying; Zhang, Xin
2014-01-01
The controllable self-assembly of amphiphilic mixed polymers grafted gold nanoparitcles (AuNPs) leads to strong interparticle plasmonic coupling, which can be tuned to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). In this study, an improved thiolation method was adopted for ATRP and ROP polymer to obtain amphiphilic brushes of PMEO2MA-SH and PCL-SH. By anchoring PCL-SH and PMEO2MA-SH onto the 14 nm AuNPs, a smart hybrid building block for self-assembly was obtained. Increasing the PCL/PMEO2MA chain ratio from 0.8:1, 2:1 and 3:1 to 7:1, the structure of gold assemblies (GAs) was observed to transfer from vesicle to large compound micelle (LCM). Contributed to the special dense packed structure of gold nanoparticles in LCM, the absorption spectrometry of gold nanoparticles drastically red-shifted from 520 nm to 830 nm, which endowed the GAs remarkable NIR photothermal conversion ability. In addition, gold has high X-ray absorption coefficient which qualifies gold nanomaterial a potential CT contrast agent Herein, we obtain a novel gold assembly structure which can be utilized as potential photothermal therapeutic and CT contrast agents. In vitro and In vivo studies testified the excellent treatment efficacy of optimum GAs as a PTT and CT contrast agent. In vitro degradation test, MTT assay and histology study indicated that GAs was a safe, low toxic reagent with good biodegradability. Therefore, the optimum GAs with strong NIR absorption and high X-ray absorption coefficient could be used as a theranostic agent and the formation of novel gold large compound micelle might offers a new theory foundation for engineering design and synthesis of polymer grafted AuNPs for biomedical applications.
Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Ueda, Kazuhiko; Florian, Beuer; Stimmelmayr, Michael
2016-12-01
CAD/CAM-fabricated long-term temporary restorations from high-density polymers can be applied for a wide range of indications. Milled from monolithic, mono-colored polymer blocks, the translucency of the material plays an important role for an esthetically acceptable result. The aim of this study was to compare the transmittance through visible light and blue light of CAD CAM polymers to a glass-ceramic material of the same color. Ambarino High-Class (AM), Telio-CAD (TC), Zenotec PMMA (ZT), Cercon base PMMA (CB), CAD Temp (CT), Artbloc Temp (AT), Polycon ae (PS), New Outline CAD (NC), QUATTRO DISK Eco PMMA (GQ), Lava Ultimate (LU), and Paradigm MZ 100 (PA) were employed in this study using the feldspathic glass-ceramic Vita Mark II (MK) as control group. Using a spectrophotometer, the overall light transmittance was measured for each material (n = 40) and was calculated as the integration (t c (λ) dλ [10 -5 ]) of all t c values for the wavelengths of blue light (360-540 nm). Results were compared to previous data of the authors for visible light (400 to 700 nm). Wilcoxon test showed significant differences between the light transmittance of visible and blue light for all materials. CAD/CAM polymers showed different translucency for blue and visible light. This means clinicians may not conclude from the visible translucency of a material to its permeability for blue light. This influences considerations regarding light curing. CAD/CAM polymers need to be luted adhesively; therefore, clinicians should be aware about the amount of blue light passing through a restoration.
NASA Astrophysics Data System (ADS)
Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital
2018-04-01
Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheu, R; Powers, A; McGee, H
Purpose: To investigate the reproducibility and limitations of Pd-103 prostate brachytherapy using fixed length linear sources (CivaString). Methods: An LDR prostate brachytherapy case which was preplanned on MR images with prefabricated linear polymer-encapsulated Pd-103 sources (CivaString) was studied and compared with ultrasound based intra-operative planning and CT based post-implant dosimetry. We evaluated the following parameters among the three studies: prostate geometry (volume and cross sectional area), needle position and alignment deviations, and dosimetry parameters (D90). Results: The prostate volumes and axial cross sectional areas at center of prostate were measured as 41.8, 39.3 and 36.8 cc, and 14.9, 14.3, andmore » 11.3 respectively on pre-plan MR, inter-op US, and post-implant CT studies. The deviation of prostate volumes and axial cross sectional areas measured on pre-planning MR and intra-operative US were within 5%. 17 out of 19 pre-planned needles were positioned within 5mm (the template grid size). One needle location was adjusted intra-operatively and another needle was removed due to proximity to urethra. The needle pathways were not always parallel to the trans-rectal probe due to the flexibility of CivaString. The angle of deviation was up to 10 degrees. Two pairs of needles were exchanged to better fit the length of prostate at the time of implant. This resulted in a prostate D90 of 153.8 Gy (124%) and 131.4 Gy (106.7%) for intra-op and PID respectively. Conclusion: Preplanning is a necessary part of implants performed with prefabricated linear polymer sources. However, as is often the case, there were real-time deviations from the pre-plan. Intra-op planning provides the ability conform to anatomy at the time of implant. Therefore, we propose to develop a systematic way to order extra strings of different length to provide the flexibility to perform intra-operative planning with fixed length strands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.
Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.« less
Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.; ...
2017-11-24
Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.« less
NASA Astrophysics Data System (ADS)
Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.
2017-05-01
The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.
The influence of pore structure parameters on the digital core recovery degree
NASA Astrophysics Data System (ADS)
Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi
2017-05-01
Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.
Puska, Mervi; Moritz, Niko; Aho, Allan J; Vallittu, Pekka K
2016-06-01
Medical polymers of biostable nature (e.g. polymethylmetacrylate, PMMA) are widely used in various clinical applications. In this study, novel PMMA-based composite bone cement was prepared. Bioactive glass (BAG) particulate filler (30wt%) was added to enhance potentially the integration of bone to the cement. The polymer matrix was functionalized with trimethoxysilyl to achieve an interfacial bond between the matrix and the fillers of BAG. The amount of trimethoxysilyl in the monomer system varied from 0 to 75wt%. The effects of dry and wet (simulated body fluid, SBF at +37°C for 5 weeks) conditions were investigated. In total, 20 groups of specimens were prepared. The specimens were subjected to a destructive mechanical test in compression. Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) were used to study the surface and the three-dimensional morphology of the specimens. The results of the study indicated that the addition of trimethoxysilyl groups led to the formation of a hybrid polymer matrix which, in lower amounts (<10wt% of total weight), did not significantly affect the compression properties. However, when the specimens stored in dry and wet conditions were compared, the water sorption increased the compression strength (~5-10MPa per test group). At the same time, the water sorption also caused an evident porous structure formation for the specimens containing BAG and siloxane formation in the hybrid polymer matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Construction of digital core by adaptive porosity method
NASA Astrophysics Data System (ADS)
Xia, Huifen; Liu, Ting; Zhao, Ling; Sun, Yanyu; Pan, Junliang
2017-05-01
The construction of digital core has its unique advantages in the study of water flooding or polymer flooding oil displacement efficiency. The frequency distribution of pore size is measured by mercury injection experiment, the coordination number by CT scanning method, and the wettability data by imbibition displacement was measured, on the basis of considering the ratio of pore throat ratio and wettability, the principle of adaptive porosity is used to construct the digital core. The results show that the water flooding recovery, the degree of polymer flooding and the results of the Physical simulation experiment are in good agreement.
Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.
Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M
2013-09-18
For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.
Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.
Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung
2016-01-01
With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.
NASA Astrophysics Data System (ADS)
Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.
2013-06-01
This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.
Kim, Yu Jin; Ahn, Sunyong; Wang, Dong Hwan; Park, Chan Eon
2015-01-01
All-polymer solar cells are herein presented utilizing the PBDTTT-CT donor and the P(NDI2OD-T2) acceptor with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN) binary solvent additives. A systematic study of the polymer/polymer bulk heterojunction photovoltaic cells processed from the binary additives revealed that the microstructures and photophysics were quite different from those of a pristine system. The combination of DIO and CN with a DIO/CN ratio of 3:1 (3 vol% DIO, 1 vol% CN and 96 vol% o-DCB) led to suitable penetrating polymer networks, efficient charge generation and balanced charge transport, which were all beneficial to improving the efficiency. This improvement is attributed to increase in power conversion efficiency from 2.81% for a device without additives to 4.39% for a device with the binary processing additives. A detailed investigation indicates that the changes in the polymer:polymer interactions resulted in the formation of a percolating nasnoscale morphology upon processing with the binary additives. Depth profile measurements with a two-dimensional grazing incidence wide-angle X-ray scattering confirm this optimum phase feature. Furthermore impedance spectroscopy also finds evidence for synergistically boosting the device performance. PMID:26658472
Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM
NASA Astrophysics Data System (ADS)
Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.
2013-06-01
The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.
Jones, Mathew W; Mantovani, Giuseppe; Blindauer, Claudia A; Ryan, Sinead M; Wang, Xuexuan; Brayden, David J; Haddleton, David M
2012-05-02
Direct polymer conjugation at peptide tyrosine residues is described. In this study Tyr residues of both leucine enkephalin and salmon calcitonin (sCT) were targeted using appropriate diazonium salt-terminated linear monomethoxy poly(ethylene glycol)s (mPEGs) and poly(mPEG) methacrylate prepared by atom transfer radical polymerization. Judicious choice of the reaction conditions-pH, stoichiometry, and chemical structure of diazonium salt-led to a high degree of site-specificity in the conjugation reaction, even in the presence of competitive peptide amino acid targets such as histidine, lysines, and N-terminal amine. In vitro studies showed that conjugation of mPEG(2000) to sCT did not affect the peptide's ability to increase intracellular cAMP induced in T47D human breast cancer cells bearing sCT receptors. Preliminary in vivo investigation showed preserved ability to reduce [Ca(2+)] plasma levels by mPEG(2000)-sCT conjugate in rat animal models. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Hassan, H. E.; Refat, Moamen S.; Sharshar, T.
2016-04-01
Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at
2014-05-15
We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less
Examination of Scanning Electron Microscope and Computed Tomography Images of PICA
NASA Technical Reports Server (NTRS)
Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery
2010-01-01
Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).
Lupu, Stelian; Lete, Cecilia; Balaure, Paul Cătălin; Caval, Dan Ion; Mihailciuc, Constantin; Lakard, Boris; Hihn, Jean-Yves; del Campo, Francisco Javier
2013-01-01
Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and tyrosinase (Ty) were successfully electrodeposited on conventional size gold (Au) disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA) and catechol (CT) electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM. PMID:23698270
NASA Astrophysics Data System (ADS)
Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.
2014-10-01
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01405g
Application of Polychromatic µCT for Mineral Density Determination
Zou, W.; Hunter, N.; Swain, M.V.
2011-01-01
Accurate assessment of mineral density (MD) provides information critical to the understanding of mineralization processes of calcified tissues, including bones and teeth. High-resolution three-dimensional assessment of the MD of teeth has been demonstrated by relatively inaccessible synchrotron radiation microcomputed tomography (SRµCT). While conventional desktop µCT (CµCT) technology is widely available, polychromatic source and cone-shaped beam geometry confound MD assessment. Recently, considerable attention has been given to optimizing quantitative data from CµCT systems with polychromatic x-ray sources. In this review, we focus on the approaches that minimize inaccuracies arising from beam hardening, in particular, beam filtration during the scan, beam-hardening correction during reconstruction, and mineral density calibration. Filtration along with lowest possible source voltage results in a narrow and near-single-peak spectrum, favoring high contrast and minimal beam-hardening artifacts. More effective beam monochromatization approaches are described. We also examine the significance of beam-hardening correction in determining the accuracy of mineral density estimation. In addition, standards for the calibration of reconstructed grey-scale attenuation values against MD, including K2PHO4 liquid phantom, and polymer-hydroxyapatite (HA) and solid hydroxyapatite (HA) phantoms, are discussed. PMID:20858779
Mishra, Renuka; Joshi, Priyanka; Mehta, Tejal
2016-01-01
The objective of the present investigation was formulation, optimization and characterization of mucoadhesive film of clotrimazole (CT) which is patient-convenient and provides an effective alternative for the treatment of vaginal candidiasis. CT is an antimycotic drug applied locally for the treatment of vaginal candidiasis. Mucoadhesive vaginal films were prepared by solvent casting technique using hydroxyl propylcellulose and sodium alginate as polymers. Propylene glycol and polyethylene glycol-400 were evaluated as plasticizers. The mucoadhesive vaginal films were evaluated for percentage elongation, tensile strength, folding endurance, drug content, in vitro disintegration time, in vitro dissolution study, swelling index, bioadhesive strength, and diffusion study. Among various permeation enhancers used, isopropyl myristate was found to be suitable. To evaluate the role of the concentration of permeation enhancer and concentration of polymers in the optimization of mucoadhesive vaginal film, 3(2) full factorial design was employed. Optimized batch showed in vitro disintegration time, 18 min; drug content, 99.83%; and tensile strength, 502.1 g/mm(2). In vitro diffusion study showed that 77% drug diffusion occurred in 6 h. This batch was further evaluated by scanning electron microscopy indicating uniformity of the film. In vitro Lactobacillus inhibition and in vitro antifungal activity of optimized batch showed an inhibitory effect against Candida albicans and no effect on Lactobacillus, which is a normal component of vaginal flora. Mucoadhesive vaginal film of CT is an effective dosage form for the treatment of vaginal candidiasis.
Alberich-Bayarri, Angel; Moratal, David; Ivirico, Jorge L Escobar; Rodríguez Hernández, José C; Vallés-Lluch, Ana; Martí-Bonmatí, Luis; Estellés, Jorge Más; Mano, Joao F; Pradas, Manuel Monleón; Ribelles, José L Gómez; Salmerón-Sánchez, Manuel
2009-10-01
Detailed knowledge of the porous architecture of synthetic scaffolds for tissue engineering, their mechanical properties, and their interrelationship was obtained in a nondestructive manner. Image analysis of microcomputed tomography (microCT) sections of different scaffolds was done. The three-dimensional (3D) reconstruction of the scaffold allows one to quantify scaffold porosity, including pore size, pore distribution, and struts' thickness. The porous morphology and porosity as calculated from microCT by image analysis agrees with that obtained experimentally by scanning electron microscopy and physically measured porosity, respectively. Furthermore, the mechanical properties of the scaffold were evaluated by making use of finite element modeling (FEM) in which the compression stress-strain test is simulated on the 3D structure reconstructed from the microCT sections. Elastic modulus as calculated from FEM is in agreement with those obtained from the stress-strain experimental test. The method was applied on qualitatively different porous structures (interconnected channels and spheres) with different chemical compositions (that lead to different elastic modulus of the base material) suitable for tissue regeneration. The elastic properties of the constructs are explained on the basis of the FEM model that supports the main mechanical conclusion of the experimental results: the elastic modulus does not depend on the geometric characteristics of the pore (pore size, interconnection throat size) but only on the total porosity of the scaffold. (c) 2009 Wiley Periodicals, Inc.
Charge Transfer-Mediated Singlet Fission
NASA Astrophysics Data System (ADS)
Monahan, N.; Zhu, X.-Y.
2015-04-01
Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M
Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less
Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A
2014-11-01
The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Qualitative Evaluation of Fiducial Markers for Radiotherapy Imaging
Chan, Maria F.; Cohen, Gil’ad N.; Deasy, Joseph O.
2016-01-01
Purpose To evaluate visibility, artifacts, and distortions of various commercial markers in magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound imaging used for radiotherapy planning and treatment guidance. Methods We compare 2 solid gold markers, 4 gold coils, and 1 polymer marker from 3 vendors. Imaging modalities used were 3-T and 1.5-T GE MRIs, Siemens Sequoia 512 Ultrasound, Phillips Big Bore CT, Varian Trilogy linear accelerator (cone-beam CT [CBCT], on-board imager kilovoltage [OBI-kV], electronic portal imaging device megavoltage [EPID-MV]), and Medtronic O-ARM CBCT. Markers were imaged in a 30 × 30 × 10 cm3 custom bolus phantom. In one experiment, Surgilube was used around the markers to reduce air gaps. Images were saved in Digital Imaging and Communications in Medicine (DICOM) format and analyzed using an in-house software. Profiles across the markers were used for objective comparison of the markers’ signals. The visibility and artifacts/distortions produced by each marker were assessed qualitatively and quantitatively. Results All markers are visible in CT, CBCT, OBI-kV, and ultrasound. Gold markers below 0.75 mm in diameter are not visible in EPID-MV images. The larger the markers, the more CT and CBCT image artifacts there are, yet the degree of the artifact depends on scan parameters and the scanner itself. Visibility of gold coils of 0.75 mm diameter or larger is comparable across all imaging modalities studied. The polymer marker causes minimal artifacts in CT and CBCT but has poor visibility in EPID-MV. Gold coils of 0.5 mm exhibit poor visibility in MRI and EPID-MV due to their small size. Gold markers are more visible in 3-T T1 gradient-recalled echo than in 1.5-T T1 fast spin-echo, depending on the scan sequence. In this study, all markers are clearly visible on ultrasound. Conclusion All gold markers are visible in CT, CBCT, kV, and ultrasound; however, only the large diameter markers are visible in MV. When MR and EPID-MV imagers are used, the selection of fiducial markers is not straightforward. For hybrid kV/MV image-guided radiotherapy imaging, larger diameter markers are suggested. If using kV imaging alone, smaller sized markers may be used in smaller sized patients in order to reduce artifacts. Only larger diameter gold markers are visible across all imaging modalities. PMID:25230715
Comparison of CT numbers of organs before and after plastination using standard S-10 technique.
Shanthi, Pauline; Singh, Rabi Raja; Gibikote, Sridhar; Rabi, Suganthy
2015-05-01
Plastination is the art of preserving biological tissues with curable polymers. Imaging with plastinates offers a unique opportunity for radiographic, anatomical, pathological correlation to elucidate complex anatomical relationships. The aim of this study was to make plastinates from cadavers using the standard S-10 plastination technique and to compare the radiological properties of the tissue before and afterwards to examine the suitability of plastinates as phantoms for planning radiotherapy treatment. An above-diaphragm and a below-diaphragm specimen were obtained from a male and a female cadaver, respectively, and subjected to the standard S-10 plastination technique. CT images were obtained before and after plastination and were compared using Treatment Planning System for anatomical accuracy, volume of organs, and CT numbers. The plastinated specimens obtained were dry, robust, and durable. CT imaging of the plastinated specimens showed better anatomical detail of the organs than the preplastinate. Organ volumes were estimated by contouring the organs' outline in the CT images of the preplastinated and postplastinated specimens, revealing an average shrinkage of 25%. CT numbers were higher in the plastinated specimens except in bones and air-filled cavities such as the maxillary air sinus. Although plastination by the standard S-10 technique preserves anatomical accuracy, it increases the CT numbers of the organs because of the density of silicone, making it unsuitable for radiation dosimetry. Further improvements of the technique could yield more suitable plastinated phantoms. © 2015 Wiley Periodicals, Inc.
Ahmadi, Emad; Katnani, Husam A.; Daftari Besheli, Laleh; Gu, Qiang; Atefi, Reza; Villeneuve, Martin Y.; Eskandar, Emad; Lev, Michael H.; Golby, Alexandra J.; Gupta, Rajiv
2016-01-01
Purpose To develop an electrocorticography (ECoG) grid by using deposition of conductive nanoparticles in a polymer thick film on an organic substrate (PTFOS) that induces minimal, if any, artifacts on computed tomographic (CT) and magnetic resonance (MR) images and is safe in terms of tissue reactivity and MR heating. Materials and Methods All procedures were approved by the Animal Care and Use Committee and complied with the Public Health Services Guide for the Care and Use of Animals. Electrical functioning of PTFOS for cortical recording and stimulation was tested in two mice. PTFOS disks were implanted in two mice; after 30 days, the tissues surrounding the implants were harvested, and tissue injury was studied by using immunostaining. Five neurosurgeons rated mechanical properties of PTFOS compared with conventional grids by using a three-level Likert scale. Temperature increases during 30 minutes of 3-T MR imaging were measured in a head phantom with no grid, a conventional grid, and a PTFOS grid. Two neuroradiologists rated artifacts on CT and MR images of a cadaveric head specimen with no grid, a conventional grid, and a PTFOS grid by using a four-level Likert scale, and the mean ratings were compared between grids. Results Oscillatory local field potentials were captured with cortical recordings. Cortical stimulations in motor cortex elicited muscle contractions. PTFOS implants caused no adverse tissue reaction. Mechanical properties were rated superior to conventional grids (χ2 test, P < .05). The temperature increase during MR imaging for the three cases of no grid, PTFOS grid, and conventional grid was 3.84°C, 4.05°C, and 10.13°C, respectively. PTFOS induced no appreciable artifacts on CT and MR images, and PTFOS image quality was rated significantly higher than that with conventional grids (two-tailed t test, P < .05). Conclusion PTFOS grids may be an attractive alternative to conventional ECoG grids with regard to mechanical properties, 3-T MR heating profile, and CT and MR imaging artifacts. © RSNA, 2016 Online supplemental material is available for this article. PMID:26844363
Hassan, H E; Refat, Moamen S; Sharshar, T
2016-04-15
Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.
Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru
2013-03-10
Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.
Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications
Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.
2013-01-01
The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589
FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less
Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam
Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.
2013-01-01
Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002
Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam
NASA Astrophysics Data System (ADS)
Ortega, J. M.; Hartman, J.; Rodriguez, J. N.; Maitland, D. J.
2012-11-01
Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present prior to treatment. A prediction of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The two modeling approaches capture similar qualitative trends for the initial locations of thrombus within the SMP foam.
Diekmann, Julia; Bauer, Sylvie; Weizbauer, Andreas; Willbold, Elmar; Windhagen, Henning; Helmecke, Patrick; Lucas, Arne; Reifenrath, Janin; Nolte, Ingo; Ezechieli, Marco
2016-02-01
The reconstruction of the anterior cruciate ligament is, for the most part, currently performed with interference screws made of titanium or degradable polymers. The aim of this study was to investigate the use of biodegradable magnesium interference screws for such a procedure because of their known biocompatibility and reported osteoconductive effects. The left tibiae of each of 18 rabbits were implanted with a magnesium-based (MgYREZr-alloy) screw, and another 18 with a titanium-based control. Each group was divided into observation periods of 4, 12 and 24weeks. After sacrifice, μCT scans were acquired to assess the amount of the gas liberated and the degradation rate of the implant. Histological evaluations were performed to investigate the local tissue response adjacent to the implant and to assess the status of the attachment between the tendon and the bone tissue. The μCT scans showed that liberation of gas was most prominent 4weeks after implantation and was significantly decreased by 24weeks. All screws remained in situ and formed a sufficient connection with the tendon and sufficient osseous integration at 24weeks. Histological evaluations showed neither inflammatory reactions nor necrosis of the tendon. The results of this pilot study in rabbits indicate that this magnesium-based interference screw should be considered as an alternative to conventional implant materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai
2014-01-01
Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.
Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D
2012-04-13
Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tai, Hongyun; Mather, Melissa L; Howard, Daniel; Wang, Wenxin; White, Lisa J; Crowe, John A; Morgan, Steve P; Chandra, Amit; Williams, David J; Howdle, Steven M; Shakesheff, Kevin M
2007-12-17
Tissue engineering scaffolds require a controlled pore size and structure to host tissue formation. Supercritical carbon dioxide (scCO2) processing may be used to form foamed scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that shape the developing pores. The process of forming these scaffolds involves a simultaneous change in phase in the CO2 and the polymer, resulting in rapid expansion of a surface area and changes in polymer rheological properties. Hence, the process is difficult to control with respect to the desired final pore size and structure. In this paper, we describe a detailed study of the effect of polymer chemical composition, molecular weight and processing parameters on final scaffold characteristics. The study focuses on poly(DL-lactic acid) (PDLLA) and poly(DL-lactic acid-co-glycolic acid) (PLGA) as polymer classes with potential application as controlled release scaffolds for growth factor delivery. Processing parameters under investigation were temperature (from 5 to 55 degrees C) and pressure (from 60 to 230 bar). A series of amorphous PDLLA and PLGA polymers with various molecular weights (from 13 KD to 96 KD) and/or chemical compositions (the mole percentage of glycolic acid in the polymers was 0, 15, 25, 35 and 50 respectively) were employed. The resulting scaffolds were characterised by optical microscopy, scanning electron microscopy (SEM), and micro X-ray computed tomography (microCT). This is the first detailed study on using these series polymers for scaffold formation by supercritical technique. This study has demonstrated that the pore size and structure of the supercritical PDLLA and PLGA scaffolds can be tailored by careful control of processing conditions.
Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.
Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C
2015-06-01
Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul
2014-04-01
Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowedmore » visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.« less
Douglas, Timothy E L; Schietse, Josefien; Zima, Aneta; Gorodzha, Svetlana; Parakhonskiy, Bogdan V; KhaleNkow, Dmitry; Shkarin, Roman; Ivanova, Anna; Baumbach, Tilo; Weinhardt, Venera; Stevens, Christian V; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Vanhaecke, Frank; Slośarczyk, Anna; Surmeneva, Maria A; Surmenev, Roman A; Skirtach, Andre G
2018-03-01
Mineralized hydrogels are increasingly gaining attention as biomaterials for bone regeneration. The most common mineralization strategy has been addition of preformed inorganic particles during hydrogel formation. This maintains injectability. One common form of bone cement is formed by mixing particles of the highly reactive calcium phosphate alpha-tricalcium phosphate (α-TCP) with water to form hydroxyapatite (HA). The calcium ions released during this reaction can be exploited to crosslink anionic, calcium-binding polymers such as the polysaccharide gellan gum (GG) to induce hydrogel formation. In this study, three different amounts of α-TCP particles were added to GG polymer solution to generate novel, injectable hydrogel-inorganic composites. Distribution of the inorganic phase in the hydrogel was studied by high resolution microcomputer tomography (µCT). Gelation occurred within 30 min. α-TCP converted to HA. µCT revealed inhomogeneous distribution of the inorganic phase in the composites. These results demonstrate the potential of the composites as alternatives to traditional α-TCP bone cement and pave the way for incorporation of biologically active substances and in vitro and in vivo testing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 822-828, 2018. © 2017 Wiley Periodicals, Inc.
Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.
2010-02-15
The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 tomore » 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.« less
CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator
Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.
2008-01-01
PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699
Aronin, C.E. Petrie; Cooper, J.A.; Sefcik, L.S.; Tholpady, S.S.; Ogle, R.C.; Botchwey, E.A.
2008-01-01
A novel scaffold fabrication method utilizing both polymer blend extrusion and gas foaming techniques to control pore size distribution is presented. Seventy five per cent of all pores produced using polymer blend extrusion alone were less than 50 μm. Introducing a gas technique provided better control of pore size distribution, expanding the range from 0-50 to 0-350 μm. Varying sintering time, annealing temperature and foaming pressure also helped reduced the percentage of pore sizes below 50 μm. Scaffolds chosen for in vitro cellular studies had a pore size distribution of 0-300 μm, average pore size 66 ± 17 μm, 0.54 ± 0.02% porosity and 98% interconnectivity, measured by micro computed tomography (microCT) analysis. The ability of the scaffolds to support osteogenic differentiation and cranial defect repair was evaluated by static and dynamic (0.035 ± 0.006 m s-1 terminal velocity) cultivation with dura mater stem cells (DSCs). In vitro studies showed minimal increases in proliferation over 28 days in culture in osteogenic media. Alkaline phosphatase expression remained constant throughout the study. Moderate increases in matrix deposition, as assessed by histochemical staining and microCT analysis, occurred at later time points, days 21 and 28. Although constructs cultured dynamically showed greater mineralization than static conditions, these trends were not significant. It remains unclear whether bioreactor culture of DSCs is advantageous for bone tissue engineering applications. However, these studies show that polycaprolactone (PCL) scaffolds alone, without the addition of other co-polymers or ceramics, support long-term attachment and mineralization of DSCs throughout the entire porous scaffold. PMID:18434267
Uzgur, Recep; Ercan, Ertuğrul; Uzgur, Zeynep; Çolak, Hakan; Yalçın, Muhammet; Özcan, Mutlu
2016-08-12
To evaluate the marginal and internal cement thicknesses of inlay restorations made of various CAD/CAM materials using 3D X-ray micro-computed tomography (micro-CT) technique. Caries-free extracted mandibular molars (N = 30) with similar size were randomly assigned to three groups (N = 10 per group). Mesio-occlusal-distal (MOD) cavities were prepared, and inlay restorations were obtained by milling out CAD/CAM materials namely, (a) IPS: monolithic lithium disilicate (control), (b) VE: polymer-infiltrated ceramic, and (c) CS: nano-ceramic using a CAM unit. Marginal and internal cement thicknesses were measured using 3D micro-CT. Data were analyzed using 1-way ANOVA and Tukey's tests (alpha = 0.05). The mean marginal and internal cement thickness were not significant in all inlay materials (p > 0.05). Mean marginal cement thickness (μm) was the lowest for the IPS group (67.54 ± 10.16) followed by VE (84.09 ± 3.94) and CS (95.18 ± 10.58) (p > 0.05). The internal cement thickness (μm) was the lowest in the CS group (54.85 ± 6.94) followed by IPS (60.58 ± 9.22) and VE (77.53 ± 12.13) (p > 0.05). Marginal and internal cement thicknesses of MOD inlays made of monolithic lithium disilicate, polymer-infiltrated ceramic, and nano-ceramic CAD/CAM materials were similar and all less than 100 μm, which could be considered clinically acceptable. MOD inlays made of different CAD/CAM materials presented similar cement thickness, less than 100 μm. © 2016 by the American College of Prosthodontists.
The effects of vibronic coupling on the photophysics of pi-conjugated oligomers and polymers
NASA Astrophysics Data System (ADS)
Yamagata, Hajime
A theoretical model describing photophysics of pi-conjugated aggregates, such as molecular crystals and polymer thin films, is developed. A Holstein-like Hamiltonian expressed with a multi-particle basis set is used to evaluate absorption and photoluminescence (PL) spectra. An analysis with line strength ratio proves to be a powerful diagnostic tool to obtain additional spectral signatures with which to distinguish H- vs. J-aggregation. For the H-aggregates absorption peak ratio, A 0-0/A 0-1, diminishes as the excitonic coupling increases. Also the PL peak ratio, I 0-0/I 0-1, is zero at T=0K with no disorder and the value increases as temperature and disorder increase. By contrast the J-aggregates show the opposite trends. Furthermore we will show the PL peak ratio provides a direct measurement of the exciton coherence length for a linear J-aggregate and could be expressed as I0-0/I 0-1 = Ncoh/gamma2. We will also show that it is inversely proportional to square root of temperature (T-1/2). Applying our theory to the herringbone style oligoacene molecular crystals, we show the lowest singlet exciton states are highly influenced by charge transfer (CT) states and the well known energetic gap in two polarized absorption spectra, so called Davydov Splitting (DS), is a product of the interaction. We have successfully reproduced the DS for all three oligoacenes without any free parameters. Inspired by the CT contribution in oligoacene crystals, we further develop Wannier-Mott exciton model and apply to disorder-free polydiacetylene (PDA) quantum wires, which have been shown to be extremely emissive. We will show the quantum wire is a J-aggregate and we once again derive the peak ratio and the coherence size relation, I0-0/I 0-1 = kappaNcoh/gamma 2, where kappa is a prefactor close to unity. Typical photophysical properties of polymer pi-stacks such as those occurring in P3HT films are well explained by the simple linear H-aggregate model. However several groups have started seeing more J-like behaviors amongst "improved" (less disordered) polymer films such as increased values of A 0-0/A 0-1 and I 0-0/I 0-1 and higher radiative rates. With the new perception of a single polymer chain being a J-aggregate, we apply our new theory to pi-stack of polymer chains. We call this HJ-aggregate model since the interchain interaction induces H-aggregation. In the study we show a competition between intrachain and interchain interactions that leads to unique photophysical features. The new model is capable of explaining a wide range of polymer systems and most importantly the theory uncovers the mechanism of the improved polymer films; reducing disorder urges increasing intrachain reactions within each chain, thus enhancing more J-like spectral features.
Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M
2014-11-07
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Leszczynski, K; Lee, Y
Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of EDmore » assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more similar to CT plans than bulk assignment-based pCTs. MR-only treatment planning using voxel-based pCT generated from T1-wieghted MRI may be feasible.« less
Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT
NASA Astrophysics Data System (ADS)
Chen, Chin-Hsing; Wu, Jay; Hsieh, Bor-Tsung; Chen, De-Shiou; Wang, Tzu-Hwei; Chien, Sou-Hsin; Chang, Yuan-Jen
2014-11-01
The accuracy of an optical computed tomography (CT)-based dosimeter is significantly affected by the refractive index (RI) of the matching liquid. Mismatched RI induces reflection and refraction as the laser beam passes through the gel phantom. Moreover, the unwanted light rays collected by the photodetector produce image artifacts after image reconstruction from the collected data. To obtain the best image quality, this study investigates the best-fit RI of the matching liquid for a 3D NIPAM gel dosimeter. The three recipes of NIPAM polymer gel used in this study consisted of 5% gelatin, 5% NIPAM and 3% N,N'-methylene bisacrylamide, which were combined with three compositions (5, 10, and 20 mM) of Tetrakis (hydroxymethyl) phosphonium chloride. Results were evaluated using a quantitative evaluation method of the gamma evaluation technique. Results showed that the best-fit RI for the non-irradiated NIPAM gel ranges from 1.340 to 1.346 for various NIPAM recipes with sensitivities ranging from 0.0113 to 0.0227. The greatest pass rate of 88.00% is achieved using best-fit RI=1.346 of the matching liquid. The adoption of mismatching RI decreases the gamma pass rate by 2.63% to 16.75% for all three recipes of NIPAM gel dosimeters. In addition, the maximum average deviation is less than 0.1% for the red and transparent matching liquids. Thus, the color of the matching liquid does not affect the measurement accuracy of the NIPAM gel dosimeter, as measured by optical CT.
NASA Astrophysics Data System (ADS)
Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz
2015-04-29
Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest valuemore » of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.« less
Structural parameter study on polymer-based ultrasonic motor
NASA Astrophysics Data System (ADS)
Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro
2017-11-01
Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Kim, M; Lee, M
Purpose: The novel 3 dimensional (3D)-printed spine quality assurance (QA) phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet, were developed and evaluated for spine stereotactic body radiation treatment (SBRT). Methods: The developed 3D-printed spine QA phantom consisted of an acrylic body and a 3D-printed spine phantom. DLP and Polyjet 3D printers using the high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. To verify dosimetric effects, the novel phantom was made it enable to insert films between each slabs of acrylic body phantom. Also, for measuring internal dose of spine, 3D-printedmore » spine phantom was designed as divided laterally exactly in half. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield unit (HU) was measured based on each CT image. Intensity-modulated radiotherapy plans to deliver a fraction of a 16 Gy dose to a planning target volume (PTV) based on the two 3D-printing techniques were compared for target coverage and normal organ-sparing. Results: Image fusion demonstrated good reproducibility of the fabricated spine QA phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than for the Polyjet-generated phantom. The organs at risk received a lower dose when the DLP technique was used than when the Polyjet technique was used. Conclusion: This study confirmed that a novel 3D-printed phantom mimicking a high-density organ can be created based on CT images, and that a developed 3D-printed spine phantom could be utilized in patient-specific QA for SBRT. Despite using the same main material, DLP and Polyjet yielded different HU values. Therefore, the printing technique and materials must be carefully chosen in order to accurately produce a patient-specific QA phantom.« less
Goyanes, Alvaro; Fina, Fabrizio; Martorana, Annalisa; Sedough, Daniel; Gaisford, Simon; Basit, Abdul W
2017-07-15
The aim of this study was to manufacture 3D printed tablets (printlets) from enteric polymers by single filament fused deposition modeling (FDM) 3D printing (3DP). Hot melt extrusion was used to generate paracetamol-loaded filaments from three different grades of the pharmaceutical excipient hypromellose acetate succinate (HPMCAS), grades LG, MG and HG. One-step 3DP was used to process these filaments into enteric printlets incorporating up to 50% drug loading with two different infill percentages (20 and 100%). X-ray Micro Computed Tomography (Micro-CT) analysis revealed that printlets with 20% infill had cavities in the core compared to 100% infill, and that the density of the 50% drug loading printlets was higher than the equivalent formulations loaded with 5% drug. In biorelevant bicarbonate dissolution media, drug release from the printlets was dependent on the polymer composition, drug loading and the internal structure of the formulations. All HPMCAS-based printlets showed delayed drug release properties, and in the intestinal conditions, drug release was faster from the printlets prepared with polymers with a lower pH-threshold: HPMCAS LG > HPMCAS MG > HPMCAS HG. These results confirm that FDM 3D printing makes it possible not only to manufacture delayed release printlets without the need for an outer enteric coating, but it is also feasible to adapt the release profile in response to the personal characteristics of the patient, realizing the full potential of additive manufacturing in the development of personalised dose medicines. Copyright © 2017 Elsevier B.V. All rights reserved.
Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats☆
Gradauer, K.; Barthelmes, J.; Vonach, C.; Almer, G.; Mangge, H.; Teubl, B.; Roblegg, E.; Dünnhaupt, S.; Fröhlich, E.; Bernkop-Schnürch, A.; Prassl, R.
2013-01-01
The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan–thioglycolic acid (CS–TGA) or an S-protected version of the same polymer (CS–TGA–MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately − 40 mV to a maximum value of about + 44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS–TGA–MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS–TGA-coated liposomes or CS–TGA–MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24 h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6 h, was achieved for CS–TGA–MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS–TGA–MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. PMID:24140721
Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats.
Gradauer, K; Barthelmes, J; Vonach, C; Almer, G; Mangge, H; Teubl, B; Roblegg, E; Dünnhaupt, S; Fröhlich, E; Bernkop-Schnürch, A; Prassl, R
2013-12-28
The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan-thioglycolic acid (CS-TGA) or an S-protected version of the same polymer (CS-TGA-MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately -40 mV to a maximum value of about +44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS-TGA-MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS-TGA-coated liposomes or CS-TGA-MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6h, was achieved for CS-TGA-MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS-TGA-MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. © 2013. Published by Elsevier B.V. All rights reserved.
A hyperspectral X-ray computed tomography system for enhanced material identification
NASA Astrophysics Data System (ADS)
Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng
2017-08-01
X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.
Cloning strategy for producing brush-forming protein-based polymers.
Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E
2005-01-01
Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.
A primer on polymer nomenclature: Structure-based, sourced-based and trade names
USDA-ARS?s Scientific Manuscript database
Polymer nomenclature is important because it is part of the language of polymer science and is needed for polymer identification, reference, and documentation. A primer on polymer nomenclature is provided herein for people new to the field or for instructional use. Both structure-based and source-...
Morphological characterization of dental prostheses interfaces using optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda L.; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Caplescu, Cristiana; Bradu, Adrian; Topala, Florin; Rominu, Roxana O.; Petrescu, Emanuela; Leretter, Marius; Rominu, Mihai; Podoleanu, Adrian G.
2010-03-01
Fixed partial prostheses as integral ceramic, polymers, metal-ceramic or metal-polymers bridges are mainly used in the frontal part of the dental arch (especially the integral bridges). They have to satisfy high stress as well as esthetic requirements. The masticatory stress may induce fractures of the bridges. These may be triggered by initial materials defects or by alterations of the technological process. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. Dental interfaces represent one of the most significant aspects in the strength of the dental prostheses under the masticatory load. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) to characterize the dental prostheses interfaces. The materials used were several fixed partial prostheses integral ceramic, polymers, metal-ceramic and metal-polymers bridges. It is important to produce both C-scans and B-scans of the defects in order to differentiate morphological aspects of the bridge infrastructures. The material defects observed with OCT were investigated with micro-CT in order to prove their existence and positions. In conclusion, it is important to have a non invasive method to investigate dental prostheses interfaces before the insertion of prostheses in the oral cavity.
Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.
Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin
2007-05-18
Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.
Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian
To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun
2012-04-01
Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.
Multimodality CT/SPECT Evaluation of Micelle Drug Carriers for Treatment of Breast Tumors
2008-07-01
Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer -targeted, MRI-ultrasensitive drug delivery systems , Nano Lett. 6 (11) (2006...1–4) (1999) 3–27. [40] D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems for cancer targeted drug delivery . Pharm. Res. (in...Polymer micelles are nanoscale drug delivery systems that have the potential to improve breast tumor treatment. Micelles can increase the half-life
Multimodality CT/SPECT Evaluation of Micelle Drug Carriers for Treatment of Breast Tumors
2006-07-01
through the inclusion of a radiolabel. In this study , PEG/PLA or PEG/PCL micelles were modified through the addition of a cRGD targeting ligand and a...macro-initiator and Sn(Oct)2 as a catalyst . Synthesized polymer was then characterized with NMR and gel permeation chromatography (GPC). The resulting...radiolabeled micelle distribution with in vivo animal studies . Reportable Outcomes • Refereed publications - Ai, H., C. Flask, B. Weinberg, X.-T. Shuai
Komini Babu, S.; Chung, H. T.; Wu, G.; ...
2014-08-18
This paper reports the development of a model for simulating polymer electrolyte fuel cells (PEFCs) with non-precious metal catalyst (NPMC) cathodes. NPMCs present an opportunity to dramatically reduce the cost of PEFC electrodes by removing the costly Pt catalyst. To address the significant transport losses in thick NPMC cathodes (ca. >60 µm), we developed a hierarchical electrode model that resolves the unique structure of the NPMCs we studied. A unique feature of the approach is the integration of the model with morphology data extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of the electrodes. A notable finding is themore » impact of the liquid water accumulation in the electrode and the significant performance improvement possible if electrode flooding is mitigated.« less
Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers
NASA Astrophysics Data System (ADS)
da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini
2017-10-01
The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.
The effect of cycling deflection on the injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo Vj; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka
2016-01-01
The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.
Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; De Deene, Yves
2013-09-01
A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.
Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT
NASA Astrophysics Data System (ADS)
Maspero, Matteo; Seevinck, Peter R.; Schubert, Gerald; Hoesl, Michaela A. U.; van Asselen, Bram; Viergever, Max A.; Lagendijk, Jan J. W.; Meijer, Gert J.; van den Berg, Cornelis A. T.
2017-02-01
Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in the prostate. This study will be valuable for institutions interested in introducing MR-only dose planning in their clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, P; Schreibmann, E; Fox, T
2014-06-15
Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less
Segerström, Susanna; Ruyter, I Eystein
2009-09-01
For long-term stability the adhering interfaces of an implant-retained supraconstruction of titanium/carbon-graphite fiber-reinforced (CGFR) polymer/opaquer layer/denture base polymer/denture teeth must function as a unity. The aim was to evaluate adhesion of CGFR polymer to a titanium surface or CGFR polymer to two different opaquer layers/with two denture base polymers. Titanium plates were surface-treated and silanized and combined with a bolt of CGFR polymer or denture base polymer (Probase Hot). Heat-polymerized plates of CGFR polymer (47 wt% fiber) based on poly(methyl methacrylate) and a copolymer matrix were treated with an opaquer (Sinfony or Ropak) before a denture base polymer bolt was attached (Probase Hot or Lucitone 199). All specimens were heat-polymerized, water saturated (200 days) and thermally cycled (5000 cycles, 5/55 degrees C) before shear bond testing. Silicatized titanium surfaces gave higher bond strength to CGFR polymer (16.2+/-2.34 and 18.6+/-1.32) MPa and cohesive fracture than a sandblasted surface (5.9+/-2.11) MPa where the fracture was adhesive. The opaquer Sinfony gave higher adhesion values and mainly cohesive fractures than the opaquer Ropak. Different surface treatments (roughened or polished) of the CGFR polymer had no effect on bond strength. The fracture surfaces of silicatized titanium/CGFR polymer/opaquer layer (Sinfony)/denture base polymers were mainly cohesive. A combination of these materials in an implant-retained supraconstruction is promising for in vivo evaluation.
A Primer on Polymer Nomenclature: Structure-Based, Sourced- Based, and Trade Names
ERIC Educational Resources Information Center
Cheng, H. N.; Howell, Bob A.
2017-01-01
Polymer nomenclature is important because it is part of the language of polymer science and is needed for polymer identification, reference, and documentation. A primer on polymer nomenclature is provided herein for people new to the field or for instructional use. Both structurebased and source-based nomenclatures, together with trivial and trade…
Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets
NASA Astrophysics Data System (ADS)
Kim, S. C.; Lee, H. K.; Cho, J. H.
2014-07-01
Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.
40 CFR 721.10036 - Acetaldehyde based polymer (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...
40 CFR 721.10036 - Acetaldehyde based polymer (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...
40 CFR 721.10036 - Acetaldehyde based polymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...
40 CFR 721.10036 - Acetaldehyde based polymer (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...
40 CFR 721.10036 - Acetaldehyde based polymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...
Brain CT image similarity retrieval method based on uncertain location graph.
Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin
2014-03-01
A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.
Pseudo CT estimation from MRI using patch-based random forest
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Lei, Yang; Shu, Hui-Kuo; Rossi, Peter; Mao, Hui; Shim, Hyunsuk; Curran, Walter J.; Liu, Tian
2017-02-01
Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT simulators being used in radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on a patch-based random forest. Patient-specific anatomical features are extracted from the aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified using feature selection to train the random forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This prediction technique was tested with human brain images and the prediction accuracy was assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) indexes were used to quantify the differences between the pseudo and original CT images. The experimental results showed the proposed method could accurately generate pseudo CT images from MR images. In summary, we have developed a new pseudo CT prediction method based on patch-based random forest, demonstrated its clinical feasibility, and validated its prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-12-01
In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.
Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers
Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian
2014-01-01
Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70–80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired. PMID:25023605
[Accurate 3D free-form registration between fan-beam CT and cone-beam CT].
Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun
2012-06-01
Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.
SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H; Barbee, D; Wang, W
Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CTmore » for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.« less
40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...
40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...
40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...
40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...
40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...
Boos, J; Meineke, A; Rubbert, C; Heusch, P; Lanzman, R S; Aissa, J; Antoch, G; Kröpil, P
2016-03-01
To implement automated CT dose data monitoring using the DICOM-Structured Report (DICOM-SR) in order to monitor dose-related CT data in regard to national diagnostic reference levels (DRLs). We used a novel in-house co-developed software tool based on the DICOM-SR to automatically monitor dose-related data from CT examinations. The DICOM-SR for each CT examination performed between 09/2011 and 03/2015 was automatically anonymized and sent from the CT scanners to a cloud server. Data was automatically analyzed in accordance with body region, patient age and corresponding DRL for volumetric computed tomography dose index (CTDIvol) and dose length product (DLP). Data of 36,523 examinations (131,527 scan series) performed on three different CT scanners and one PET/CT were analyzed. The overall mean CTDIvol and DLP were 51.3% and 52.8% of the national DRLs, respectively. CTDIvol and DLP reached 43.8% and 43.1% for abdominal CT (n=10,590), 66.6% and 69.6% for cranial CT (n=16,098) and 37.8% and 44.0% for chest CT (n=10,387) of the compared national DRLs, respectively. Overall, the CTDIvol exceeded national DRLs in 1.9% of the examinations, while the DLP exceeded national DRLs in 2.9% of the examinations. Between different CT protocols of the same body region, radiation exposure varied up to 50% of the DRLs. The implemented cloud-based CT dose monitoring based on the DICOM-SR enables automated benchmarking in regard to national DRLs. Overall the local dose exposure from CT reached approximately 50% of these DRLs indicating that DRL actualization as well as protocol-specific DRLs are desirable. The cloud-based approach enables multi-center dose monitoring and offers great potential to further optimize radiation exposure in radiological departments. • The newly developed software based on the DICOM-Structured Report enables large-scale cloud-based CT dose monitoring • The implemented software solution enables automated benchmarking in regard to national DRLs • The local radiation exposure from CT reached approximately 50 % of the national DRLs • The cloud-based approach offers great potential for multi-center dose analysis. © Georg Thieme Verlag KG Stuttgart · New York.
Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk
2017-01-01
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.
Lee, Min-Young; Sohn, Jason W.; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won
2017-01-01
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom. PMID:28472175
Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui
2014-05-20
As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account correlates the molecular structures of the 2D-conjugated BDT-based polymers with their photovoltaic properties. As a result, this Account can guide the molecular design of organic photovoltaic materials and the development of organic materials for other types of optoelectronic devices.
The influence of CT based attenuation correction on PET/CT registration: an evaluation study
NASA Astrophysics Data System (ADS)
Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin
2007-03-01
We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.
Low-dose CT image reconstruction using gain intervention-based dictionary learning
NASA Astrophysics Data System (ADS)
Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra
2018-05-01
Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.
Exploring the role of peptides in polymer-based gene delivery.
Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian
2017-09-15
Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio
Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less
Development of controlled drug release systems based on thiolated polymers.
Bernkop-Schnürch, A; Scholler, S; Biebel, R G
2000-05-03
The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.
Application of alkyne-TCNQ addition reaction to polymerization.
Washino, Yusuke; Michinobu, Tsuyoshi
2011-04-19
The polymerization using a high-yielding addition reaction between electron-rich alkynes and 7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives is described. The bifunctional monomer containing two TCNQ moieties and the counter comonomer bearing two dialkylaniline (DAA)-substituted alkynes are reacted in 1,2-dichloroethane under mild heating conditions. At the high monomer concentrations, high molecular weight linear polymers are obtained, while the reaction at the low monomer concentrations produces a significant amount of the cyclic compounds. A clear relationship between the monomer concentration and the cyclic compound amount is demonstrated. The obtained polymers feature a sufficient thermal stability with the decomposition temperature exceeding 300 °C as well as strong charge-transfer (CT) bands and redox activities ascribed to the produced donor-acceptor moieties. These features are also used to optimize the polymerization conditions and to estimate the chemical structures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Muirhead, Daniel
In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.
Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging
Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.
2015-01-01
Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288
Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang
2018-04-16
All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamamoto, Shingo; Tanooka, Masao; Ando, Kumiko; Yamano, Toshiko; Ishikura, Reiichi; Nojima, Michio; Hirota, Shozo; Shima, Hiroki
2009-12-01
To evaluate the diagnostic accuracy of computed tomography (CT)-based imaging methods for assessing renal vascular anatomy, imaging studies, including standard axial CT, three-dimensional volume-rendered CT (3DVR-CT), and a 3DVR-CT movie, were performed on 30 patients who underwent laparoscopic donor nephrectomy (10 right side, 20 left side) for predicting the location of the renal arteries and renal, adrenal, gonadal, and lumbar veins. These findings were compared with videos obtained during the operation. Two of 37 renal arteries observed intraoperatively were missed by standard axial CT and 3DVR-CT, whereas all arteries were identified by the 3DVR-CT movie. Two of 36 renal veins were missed by standard axial CT and 3DVR-CT, whereas 1 was missed by the 3DVR-CT movie. In 20 left renal hilar anatomical structures, 20 adrenal, 20 gonadal, and 22 lumbar veins were observed during the operation. Preoperatively, the standard axial CT, 3DVR-CT, and 3DVR-CT movie detected 11, 19, and 20 adrenal veins; 13, 14, and 19 gonadal veins; and 6, 11, and 15 lumbar veins, respectively. Overall, of 135 renal vascular structures, the standard axial CT, 3DVR-CT, and 3DVR-CT movie accurately detected 99 (73.3%), 113 (83.7%), and 126 (93.3%) vessels, respectively, which indicated that the 3DVR-CT movie demonstrated a significantly higher detection rate than other CT-based imaging methods (P < 0.05). The 3DVR-CT movie accurately provides essential information about the renal vascular anatomy before laparoscopic donor nephrectomy.
Lab-based x-ray nanoCT imaging
NASA Astrophysics Data System (ADS)
Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz
2017-03-01
Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.
Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies
NASA Astrophysics Data System (ADS)
Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin
2013-12-01
We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.
Carvalho, Isadora C; Mansur, Herman S
2017-09-01
Wound repair is one of the most complex biological processes in human life. To date, no ideal biomaterial solution has been identified, which that encompasses all functions and properties of real skin tissue. Thus, this study focused on the synthesis of new biocompatible hybrid hydrogel scaffolds based on methacrylate-functionalized high molecular mass chitosan with gelatin-A photocrosslinked with UV radiation to tailor matrix network properties. These hybrid hydrogels were produced via freeze-drying and were extensively characterized by swelling and degradation measurements, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM-EDS), and micro-computed tomography (micro-CT). The results demonstrated that hydrogels were produced with broadly designed swelling degrees typically ranging from 500% to 2000%, which were significantly dependent on the relative concentration of polymers and irradiation time for crosslinking. Analogously, degradation was reduced with increased photocrosslinking of the network. Moreover, insights into the mechanism of photochemical crosslinking were suggested based on FTIR and UV-Vis analyses of the characteristic functional groups involved in the reactions. SEM analysis associated with micro-CT imaging of the hybrid scaffolds showed uniformly interconnected 3D porous structures, with architectural features affected by the crosslinking of the network. These hydrogels were biocompatible, with live cell viability responses of human embryonic kidney (HEK293T) cells being above 95%. Hence, novel hybrid hydrogels were designed and produced with tunable properties through photocrosslinking and with a biocompatible response suitable for use in wound dressing and skin tissue repair applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Warren G.; Jirasek, Andrew, E-mail: jirasek@uvic.ca; Wells, Derek M.
2014-11-01
Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. Tomore » address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. Conclusions: This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.« less
Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters.
Campbell, Warren G; Wells, Derek M; Jirasek, Andrew
2014-11-01
The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm(2) square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky-Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.
Multifunctional metal-polymer nanoagglomerates from single-pass aerosol self-assembly
NASA Astrophysics Data System (ADS)
Byeon, Jeong Hoon
2016-08-01
In this study, gold (Au)-iron (Fe) nanoagglomerates were capped by a polymer mixture (PM) consisting of poly(lactide-co-glycolic acid), protamine sulfate, and poly-l-lysine via floating self-assembly in a single-pass aerosol configuration as multibiofunctional nanoplatforms. The Au-Fe nanoagglomerates were directly injected into PM droplets (PM dissolved in dichloromethane) in a collison atomizer and subsequently heat-treated to liberate the solvent from the droplets, resulting in the formation of PM-capped Au-Fe nanoagglomerates. Measured in vitro, the cytotoxicities of the nanoagglomerates (>98.5% cell viability) showed no significant differences compared with PM particles alone (>98.8%), thus implying that the nanoagglomerates are suitable for further testing of biofunctionalities. Measurements of gene delivery performance revealed that the incorporation of the Au-Fe nanoagglomerates enhanced the gene delivery performance (3.2 × 106 RLU mg-1) of the PM particles alone (2.1 × 106 RLU mg-1), which may have been caused by the PM structural change from a spherical to a hairy structure (i.e., the change followed the agglomerated backbone). Combining the X-ray-absorbing ability of Au and the magnetic property of Fe led to magnetic resonance (MR)-computed tomography (CT) contrast ability in a phantom; and the signal intensities [which reached 64 s-1 T2-relaxation in MR and 194 Hounsfield units (HUs) in CT at 6.0 mg mL-1] depended on particle concentration (0.5-6.0 mg mL-1).
Morais, Maurício; Campello, Maria P C; Xavier, Catarina; Heemskerk, Johannes; Correia, João D G; Lahoutte, Tony; Caveliers, Vicky; Hernot, Sophie; Santos, Isabel
2014-11-19
Current methods for sentinel lymph node (SLN) mapping involve the use of radioactivity detection with technetium-99m sulfur colloid and/or visually guided identification using a blue dye. To overcome the kinetic variations of two individual imaging agents through the lymphatic system, we report herein on two multifunctional macromolecules, 5a and 6a, that contain a radionuclide ((99m)Tc or (68)Ga) and a near-infrared (NIR) reporter for pre- and/or intraoperative SLN mapping by nuclear and NIR optical imaging techniques. Both bimodal probes are dextran-based polymers (10 kDa) functionalized with pyrazole-diamine (Pz) or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating units for labeling with fac-[(99m)Tc(CO)3](+) or (68)Ga(III), respectively, mannose units for receptor targeting, and NIR fluorophore units for optical imaging. The probes allowed a clear visualization of the popliteal node by single-photon emission computed tomography (SPECT/CT) or positron emission tomography (PET/CT), as well as real-time optically guided excision. Biodistribution studies confirmed that both macromolecules present a significant accumulation in the popliteal node (5a: 3.87 ± 0.63% IA/organ; 6a: 1.04 ± 0.26% IA/organ), with minimal spread to other organs. The multifunctional nanoplatforms display a popliteal extraction efficiency >90%, highlighting their potential to be further explored as dual imaging agents.
How many CT detector rows are necessary to perform adequate three dimensional visualization?
Fischer, Lars; Tetzlaff, Ralf; Schöbinger, Max; Radeleff, Boris; Bruckner, Thomas; Meinzer, H P; Büchler, M W; Schemmer, Peter
2010-06-01
The technical development of computer tomography (CT) imaging has experienced great progress. As consequence, CT data to be used for 3D visualization is not only based on 4 row CTs and 16 row CTs but also on 64 row CTs, respectively. The main goal of this study was to examine whether the increased amount of CT detector rows is correlated with improved quality of the 3D images. All CTs were acquired during routinely performed preoperative evaluation. Overall, there were 12 data sets based on 4 detector row CT, 12 data sets based on 16 detector row CT, and 10 data sets based on 64 detector row CT. Imaging data sets were transferred to the DKFZ Heidelberg using the CHILI teleradiology system. For the analysis all CT scans were examined in a blinded fashion, i.e. both the name of the patient as well as the name of the CT brand were erased. For analysis, the time for segmentation of liver, both portal and hepatic veins as well as the branching depth of portal veins and hepatic veins was recorded automatically. In addition, all results were validated in a blinded fashion based on given quality index. Segmentation of the liver was performed in significantly shorter time (p<0.01, Kruskal-Wallis test) in the 16 row CT (median 479 s) compared to 4 row CT (median 611 s), and 64 row CT (median 670 s), respectively. The branching depth of the portal vein did not differ significantly among the 3 different data sets (p=0.37, Kruskal-Wallis test). However, the branching depth of the hepatic veins was significantly better (p=0.028, Kruskal-Wallis test) in the 4 row CT and 16 row CT compared to 64 row CT. The grading of the quality index was not statistically different for portal veins and hepatic veins (p=0.80, Kruskal-Wallis test). Even though the total quality index was better for the vessel tree based on 64 row CT data sets (mean scale 2.6) compared to 4 CT row data (mean scale 3.25) and 16 row CT data (mean scale 3.0), these differences did not reach statistical difference (p=0.53, Kruskal-Wallis test). Even though 3D visualization is useful in operation planning, the quality of the 3D images appears to be not dependent of the number of CT detector rows. Copyright (c) 2009. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepel, Jaroslaw T.; Department of Radiation Oncology, Brown University, Rhode Island Hospital, Providence, RI; Evans, Suzanne B.
2009-06-01
Purpose: To evaluate the accuracy of two clinical techniques for electron boost planning compared with computed tomography (CT)-based planning. Additionally, we evaluated the tumor bed characteristics at whole breast planning and boost planning. Methods and Materials: A total of 30 women underwent tumor bed boost planning within 2 weeks of completing whole breast radiotherapy using three planning techniques: scar-based planning, palpation/clinical-based planning, and CT-based planning. The plans were analyzed for dosimetric coverage of the CT-delineated tumor bed. The cavity visualization score was used to define the CT-delineated tumor bed as well or poorly defined. Results: Scar-based planning resulted in inferiormore » tumor bed coverage compared with CT-based planning, with the minimal dose received by 90% of the target volume >90% in 53% and a geographic miss in 53%. The results of palpation/clinical-based planning were significantly better: 87% and 10% for the minimal dose received by 90% of the target volume >90% and geographic miss, respectively. Of the 30 tumor beds, 16 were poorly defined by the cavity visualization score. Of these 16, 8 were well demarcated by the surgical clips. The evaluation of the 22 well-defined tumor beds revealed similar results. A comparison of the tumor bed volume from the initial planning CT scan to the boost planning CT scan revealed a decrease in size in 77% of cases. The mean decrease in volume was 52%. Conclusion: The results of our study have shown that CT-based planning allows for optimal tumor bed coverage compared with clinical and scar-based approaches. However, in the setting of a poorly visualized cavity on CT without surgical clips, palpation/clinical-based planning can help delineate the appropriate target volumes and is superior to scar-based planning. CT simulation at boost planning could allow for a reduction in the boost volumes.« less
Evaluation of portable CT scanners for otologic image-guided surgery
Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F
2011-01-01
Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768
RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.
Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J
2010-01-01
The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.
RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator
Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.
2010-01-01
The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740
Liu, Jingjing; Yang, Guangbao; Zhu, Wenwen; Dong, Ziliang; Yang, Yu; Chao, Yu; Liu, Zhuang
2017-11-01
The development of smart drug delivery systems to realize controlled drug release for highly specific cancer treatment has attracted tremendous attention. Herein, nanoscale coordination polymers (NCPs) constructed from hafnium ions and bis-(alkylthio) alkene (BATA), a singlet-oxygen responsive linker, are fabricated and applied as nanocarriers to realize light-controlled drug release under a rather low optical power density. In this system, NCPs synthesized through a solvothermal method are sequentially loaded with chlorin e6 (Ce6), a photosensitizer, and doxorubicin (DOX), a chemotherapeutic drug, and then coated with lipid bilayer to allow modification with polyethylene glycol (PEG) to acquire excellent colloidal stability. The singlet oxygen produced by such NCP-Ce6-DOX-PEG nanocomposite can be used not only for photodynamic therapy, but also to induce the break of BATA linker and thus the destruction of nanoparticle structures under light exposure, thereby triggering effective drug release. Notably, with efficient tumor accumulation after intravenous injection as revealed by CT imaging, those NCP-Ce6-DOX-PEG nanoparticles could be utilized for combined chemo-photodynamic therapy with great antitumor efficacy. Thus, this work presents a unique type of NCP-based drug delivery system with biodegradability, sensitive responses to light, as well as highly efficient tumor retention for effective cancer combinational treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr; ...
2017-08-04
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
NASA Astrophysics Data System (ADS)
Kandanapitiye, Murthi S.
The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X-ray computed tomography is capable of delineating the 3-D images of soft tissues with superb quality. The variation of X-ray attenuation from one tissue to another is used to generate the well spatial resolved superb quality images. Exogenous radiopaque agents are necessary for the superb visualization of different types of soft tissues. Heavy metals with high atomic number are better suited for biomedical applications to enhance the image contrast due to their high mass attenuation coefficient. Bismuth (Z- 83) is the nonradioactive, heaviest, nontoxic element available among the other closest neighbors (Hg, Tl, Pb and Po) of the periodic table. We have set out to search for compounds that are hydrolytically stable, more efficient and more amenable in terms of biocompatibility. Moreover this new discovery can significantly reduce the average radiation dose in one CT scan. We have discovered a simple one-step aqueous solution route for preparing biocompatible and ultra-small bismuth oxyiodide BiOI nanoparticles and investigated their potential application as an efficient CT contrast agent. Our ultra-small monodisperse BiOI NPs have excellent water dispersability, thermodynamic stability, kinetic inertness, high biocompatibility and superior attenuation power, suggesting their potential as an organ-specific CT contrast agent that may fill the gap left by the other nanoparticulate and iodine-based CT contrasting agents. The chapter 6 of this dissertation discusses synthesis and characterization of novel nanoparticulate therapeutics and theranostics. D-penicillamine has the highest efficacy, and hence is currently the most widely used drug for WD across the world. We have prepared the D-PEN-conjugated Au NPs of the average size of 16 [special character omited] 2 nm with superb water dispersability, and examined the kinetics and selectivity of copper binding of such NPs in aqueous solution. We also studied the cellular uptake, cytotoxicity and intracellular copper removal of these NPs to demonstrate their potential as a novel cell-penetrable copper detoxifying agent. Our approach of tackling these problems focuses on the development of cell-permeable copper-depleting nanoparticles that can be surface-engineered to be potentially organ-specific when targeting agents are used to form new-generation drugs for WD. The latter part of chapter 6, we describe the synthesis, characterization of zinc analogue of Prussian blue (K2Zn3[Fe(CN) 6]2-ZnPB) for intracellular copper detoxification. (Abstract shortened by ProQuest.).
Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung
2014-01-01
We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.
Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model.
Marx, Mirko; Ehrhardt, Jan; Werner, René; Schlemmer, Heinz-Peter; Handels, Heinz
2014-05-01
Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT. The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates. Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation. The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.
2017-04-12
measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate-based extended Kalman Filter CT...based CT-estimation algorithms [7, 13, 14]. One notable example is ECTempTM, which utilizes an extended Kalman Filter to estimate CT from...3. The extended Kalman filter mapping function variance coefficient (Ct) was computed using the following equation: = −9.1428 ×
Shuryak, Igor; Lubin, Jay H; Brenner, David J
2014-06-01
Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25-65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans.
Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong
2018-05-09
We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.
NASA Astrophysics Data System (ADS)
Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin
2011-08-01
The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.
Polymers in life sciences: Pharmaceutical and biomedical applications
NASA Astrophysics Data System (ADS)
Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe
2015-12-01
This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.
Amylose-Based Cationic Star Polymers for siRNA Delivery.
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.
NASA Astrophysics Data System (ADS)
Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte
2004-10-01
This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants
Low-voltage chest CT: another way to reduce the radiation dose in asbestos-exposed patients.
Macía-Suárez, D; Sánchez-Rodríguez, E; Lopez-Calviño, B; Diego, C; Pombar, M
2017-09-01
To assess whether low voltage chest computed tomography (CT) can be used to successfully diagnose disease in patients with asbestos exposure. Fifty-six former employees of the shipbuilding industry, who were candidates to receive a standard-dose chest CT due to their occupational exposure to asbestos, underwent a routine CT. Immediately after this initial CT, they underwent a second acquisition using low-dose chest CT parameters, based on a low potential (80 kV) and limited tube current. The findings of the two CT protocols were compared based on typical diseases associated with asbestos exposure. The kappa coefficient for each parameter and for an overall rating (grouping them based on mediastinal, pleural, and pulmonary findings) were calculated in order to test for correlations between the two protocols. A good correlation between routine and low-dose CT was demonstrated for most parameters with a mean radiation dose reduction of up to 83% of the effective dose based on the dose-length product between protocols. Low-dose chest CT, based on a limited tube potential, is useful for patients with an asbestos exposure background. Low-dose chest CT can be successfully used to minimise the radiation dose received by patients, as this protocol produced an estimated mean effective dose similar to that of an abdominal or pelvis plain film. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M
Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less
Naseri, Maryam; Fotouhi, Lida; Ehsani, Ali
2018-06-01
Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer and small molecule based hybrid light source
Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky
2010-03-16
An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.
Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E
2004-04-01
The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.
Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S
2011-10-01
Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
NASA Astrophysics Data System (ADS)
Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia
2017-03-01
Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.
USDA-ARS?s Scientific Manuscript database
Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...
Eiber, Matthias; Martinez-Möller, Axel; Souvatzoglou, Michael; Holzapfel, Konstantin; Pickhard, Anja; Löffelbein, Dennys; Santi, Ivan; Rummeny, Ernst J; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G; Beer, Ambros J
2011-09-01
In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent (18)F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET(AC_CT)) or simulated MR-based segmentation (PET(AC_MR)) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET(AC_CT) and PET(AC_MR) were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET(AC_CT)- and PET(AC_MR)-based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time constraints.
NASA Astrophysics Data System (ADS)
Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.
A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.
Arslan, Mustafa; Murat, Sema; Alp, Gulce; Zaimoglu, Ali
2018-01-01
The objectives of this in vitro study were to evaluate the flexural strength (FS), surface roughness (Ra), and hydrophobicity of polymethylmethacrylate (PMMA)-based computer-aided design/computer-aided manufacturing (CAD/CAM) polymers and to compare the properties of different CAD/CAM PMMA-based polymers with conventional heat-polymerized PMMA following thermal cycling. Twenty rectangular-shaped specimens (64 × 10 × 3.3 mm) were fabricated from three CAD/CAM PMMA-based polymers (M-PM Disc [M], AvaDent Puck Disc [A], and Pink CAD/CAM Disc Polident [P], and one conventional heat-polymerized PMMA (Promolux [C]), according to ISO 20795-1:2013 standards. The specimens were divided into two subgroups (n = 10), a control and a thermocycled group. The specimens in the thermocycled group were subjected to 5000 thermal cycling procedures (5 to 55°C; 30 s dwell times). The Ra value was measured using a profilometer. Contact angle (CA) was assessed using the sessile drop method to evaluate surface hydrophobicity. In addition, the FS of the specimens was tested in a universal testing machine at a crosshead speed of 1.0 mm/min. Surface texture of the materials was assessed using scanning electron microscope (SEM). The data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey's HSD post-hoc test (α < 0.05). CAD/CAM PMMA-based polymers showed significantly higher FS than conventional heat-polymerized PMMA for each group (P < 0.001). CAD/CAM PMMA-based polymer [P] showed the highest FS, whereas conventional PMMA [C] showed the lowest FS before and after thermal cycling (P < 0.001). There were no significant differences among the Ra values of the tested denture base polymers in the control group (P > 0.05). In the thermocycled group, the lowest Ra value was observed for CAD/CAM PMMA-based polymer [M] (P < 0.001), whereas CAD/CAM PMMA-based polymers [A] and [P], and conventional PMMA [C] had similar Ra values (P > 0.05). Conventional PMMA [C] had a significantly lower CA and consequently lower hydrophobicity compared to the CAD/CAM polymers in the control group (P < 0.001). In the thermocycled group, CAD/CAM PMMA-based polymer [A] and conventional PMMA [C] had significantly higher CA, and consequently higher hydrophobicity when compared to CAD/CAM polymers [M] and [P] (P < 0.001). However, no significant differences were found among the other materials (P > 0.05). The FS and hydrophobicity of the CAD/CAM PMMA-based polymers were higher than the conventional heat-polymerized PMMA, whereas the CAD/CAM PMMA-based polymers had similar Ra values to the conventional PMMA. Thermocycling had a significant effect on FS and hydrophobicity except for the Ra of denture base materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orza, Anamaria; Wu, Hui; Li, Yuancheng
Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less
Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
Lei, Ting; Wang, Jie-Yu; Pei, Jian
2014-04-15
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Yang, Yi; Tang, Shaojie
2013-03-01
Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Le, Q; Mutaf, Y
2015-06-15
Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to definemore » different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.« less
Amylose-Based Cationic Star Polymers for siRNA Delivery
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548
Designing polymers with sugar-based advantages for bioactive delivery applications.
Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E
2015-12-10
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan
The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less
Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.
Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang
2018-06-15
Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial conversion of biomass into bio-based polymers.
Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko
2017-12-01
The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.
Neubert, Aleš; Wilson, Katharine J; Engstrom, Craig; Surowiec, Rachel K; Paproki, Anthony; Johnson, Nicholas; Crozier, Stuart; Fripp, Jurgen; Ho, Charles P
2017-08-01
To examine whether magnetic resonance (MR) imaging can offer a viable alternative to computed tomography (CT) based 3D bone modeling. CT and MR (SPACE, TrueFISP, VIBE) images were acquired from the left knee joint of a fresh-frozen cadaver. The distal femur, proximal tibia, proximal fibula and patella were manually segmented from the MR and CT examinations. The MR bone models obtained from manual segmentations of all three sequences were compared to CT models using a similarity measure based on absolute mesh differences. The average absolute distance between the CT and the various MR-based bone models were all below 1mm across all bones. The VIBE sequence provided the best agreement with the CT model, followed by the SPACE, then the TrueFISP data. The most notable difference was for the proximal tibia (VIBE 0.45mm, SPACE 0.82mm, TrueFISP 0.83mm). The study indicates that 3D MR bone models may offer a feasible alternative to traditional CT-based modeling. A single radiological examination using the MR imaging would allow simultaneous assessment of both bones and soft-tissues, providing anatomically comprehensive joint models for clinical evaluation, without the ionizing radiation of CT imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurz, C; LMU Munich, Munich; Park, Y
2016-06-15
Purpose: To enable adaptive intensity modulated proton therapy for sites sensitive to inter-fractional changes on the basis of accurate CBCT-based proton dose calculations. To this aim two CBCT intensity correction methods are considered: planning CT (pCT) to CBCT DIR and projection correction based on pCT DIR prior. Methods: 3 H&N and 3 prostate cancer patients with CBCT images and corresponding projections were used in this study, in addition to pCT and re-planning CT (rpCT) images (H&N only). A virtual CT (vCT) was generated by pCT to CBCT DIR. In a second approach, the vCT was used as prior for scattermore » correction of the CBCT projections to yield a CBCTcor image. BEV 2D range maps of SFUD IMPT plans were compared. For the prostate cases, the geometric accuracy of the vCT was also evaluated by contour comparison to physician delineation of the CBCTcor and original CBCT. Results: SFUD dose calculations on vCT and CBCTcor were found to be within 3mm for 97% to 99% of 2D range maps. Median range differences compared to rpCT were below 0.5mm. Analysis showed that the DIR-based vCT approach exhibits inaccuracies in the pelvic region due to the very low soft-tissue contrast in the CBCT. The CBCTcor approach yielded results closer to the original CBCT in terms of DICE coefficients than the vCT (median 0.91 vs 0.81) for targets and OARs. In general, the CBCTcor approach was less affected by inaccuracies of the DIR used during the generation of the vCT prior. Conclusion: Both techniques yield 3D CBCT images with intensities equivalent to diagnostic CT and appear suitable for IMPT dose calculation for most sites. For H&N cases, no considerable differences between the two techniques were found, while improved results of the CBCTcor were observed for pelvic cases due to the reduced sensitivity to registration inaccuracies. Deutsche Forschungsgemeinschaft (MAP); Bundesministerium fur Bildung und Forschung (01IB13001)« less
Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI
Schwenzer, N. F.; Sperling, O.; Aschoff, P.; Lichy, M. P.; Müller, M.; Brendle, C.; Werner, M. K.; Claussen, C. D.; Pfannenberg, C.
2013-01-01
Abstract Purpose: In patients with a neuroendocrine tumour (NET), the extent of disease strongly influences the outcome and multidisciplinary therapeutic management. Thus, systematic analysis of the diagnostic performance of the existing staging modalities is necessary. The aim of this study was to compare the diagnostic performance of 2 whole-body imaging modalities, [68Ga]DOTATOC positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in patients with NET with regard to possible impact on treatment decisions. Materials and methods: [68Ga]DOTATOC-PET/CT and whole-body magnetic resonance imaging (wbMRI) were performed on 51 patients (25 females, 26 males, mean age 57 years) with histologically proven NET and suspicion of metastatic spread within a mean interval of 2.4 days (range 0–28 days). PET/CT was performed after intravenous administration of 150 MBq [68Ga]DOTATOC. The CT protocol comprised multiphase contrast-enhanced imaging. The MRI protocol consisted of standard sequences before and after intravenous contrast administration at 1.5 T. Each modality (PET, CT, PET/CT, wbMRI) was evaluated independently by 2 experienced readers. Consensus decision based on correlation of all imaging data, histologic and surgical findings and clinical follow-up was established as the standard of reference. Lesion-based and patient-based analysis was performed. Detection rates and accuracy were compared using the McNemar test. P values <0.05 were considered significant. The impact of whole-body imaging on the treatment decision was evaluated by the interdisciplinary tumour board of our institution. Results: 593 metastatic lesions were detected in 41 of 51 (80%) patients with NET (lung 54, liver 266, bone 131, lymph node 99, other 43). One hundred and twenty PET-negative lesions were detected by CT or MRI. Of all 593 lesions detected, PET identified 381 (64%) true-positive lesions, CT 482 (81%), PET/CT 545 (92%) and wbMRI 540 (91%). Comparison of lesion-based detection rates between PET/CT and wbMRI revealed significantly higher sensitivity of PET/CT for metastatic lymph nodes (100% vs 73%; P < 0.0001) and pulmonary lesions (100% vs 87%; P = 0.0233), whereas wbMRI had significantly higher detection rates for liver (99% vs 92%; P < 0.0001) and bone lesions (96% vs 82%; P < 0.0001). Of all 593 lesions, 22 were found only in PET, 11 only in CT and 47 only in wbMRI. The patient-based overall assessment of the metastatic status of the patient showed comparable sensitivity of PET/CT and MRI with slightly higher accuracy of PET/CT. Patient-based analysis of metastatic organ involvement revealed significantly higher accuracy of PET/CT for bone and lymph node metastases (100% vs 88%; P = 0.0412 and 98% vs 78%; P = 0.0044) and for the overall comparison (99% vs 89%; P < 0.0001). The imaging results influenced the treatment decision in 30 patients (59%) with comparable information from PET/CT and wbMRI in 30 patients, additional relevant information from PET/CT in 16 patients and from wbMRI in 7 patients. Conclusion: PET/CT and wbMRI showed comparable overall lesion-based detection rates for metastatic involvement in NET but significantly differed in organ-based detection rates with superiority of PET/CT for lymph node and pulmonary lesions and of wbMRI for liver and bone metastases. Patient-based analysis revealed superiority of PET/CT for NET staging. Individual treatment strategies benefit from complementary information from PET/CT and MRI. PMID:23466785
Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S
2018-05-02
Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.
Synthetic Polymers from Readily Available Monosaccharides
NASA Astrophysics Data System (ADS)
Galbis, J. A.; García-Martín, M. G.
The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.
Lin, Wenjing; Yao, Na; Qian, Long; Zhang, Xiaofang; Chen, Quan; Wang, Jufang; Zhang, Lijuan
2017-08-01
The development of an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging was reported. β-cyclodextrin-{poly(lactide)-poly(2-(dimethylamino) ethyl methacrylate)-poly[oligo(2-ethyl-2-oxazoline)methacrylate]} 21 [β-CD-(PLA-PDMAEMA-PEtOxMA) 21 ] unimolecular micelles served as a template for the in situ formation of gold nanoparticles (GNPs) and the subsequent encapsulation of doxorubicin (DOX). The formation of unimolecular micelles, microstructures and the distributions of GNPs and DOX were investigated through the combination of experiments and dissipative particle dynamics (DPD) simulations. β-CD-(PLA-PDMAEMA-PEtOxMA) 21 formed spherical unimolecular micelles in aqueous solution within a certain range of polymer concentrations. GNPs preferentially distributed in the PDMAEMA area. The maximum wavelength (λ max ) and the size of GNPs increased with increasing concentration of HAuCl 4 . DOX preferentially distributed in the PDMAEMA mesosphere, but penetrated the inner PLA core with increasing DOX concentration. DOX-loaded micelles with 41-61% entrapment efficiency showed fast release (88% after 102h) under acidic tumor conditions. Both in vitro and in vivo experiments revealed superior anticancer efficacy and effective CT imaging properties for β-CD-(PLA-PDMAEMA-PEtOxMA) 21 /Au/DOX. We conclude that the reported unimolecular micelles represent a class of versatile smart nanocarriers for theranostic application. Developing polymeric nanoplatforms as integrated theranostic vehicles for improving cancer diagnostics and therapy is an emerging field of much importance. This article aims to develop an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging. Specific emphases is on structure-properties relationship. There is a sea of literature on polymeric drug nanocarriers, and a couple of polymer-stabilized gold nanoparticles (GNPs) systems for cancer diagnosis are also known. However, to our knowledge, there has been no report on polymeric unimolecular micelles capable of dual loading of GNPs without external reducing agents and anticancer drugs for cancer diagnosis and treatment. To this end, the target of the current work was to develop an in situ formed nanocarrier, which actively dual wrapped CT contrast agent GNPs and hydrophobic anticancer drug doxorubicin (DOX), achieving high CT imaging and antitumor efficacy under in vitro and in vivo acid tumor condition. Meanwhile, by taking advantage of dissipative particle dynamics (DPD) simulation, we further obtained the formation process and mechanism of unimolecular micelles, and detailed distributions and microstructures of GNPs and DOX on unimolecular micelles. Taken together, our results here provide insight and guidance for the design of more effective nanocarriers for cancer theranostic application. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E
2015-09-14
Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.
CT scans for pulmonary surveillance may be overused in lower-grade sarcoma.
Miller, Benjamin J; Carmody Soni, Emily E; Reith, John D; Gibbs, C Parker; Scarborough, Mark T
2012-01-01
Chest CT scans are often used to monitor patients after excision of a sarcoma. Although sensitive, CT scans are more expensive than chest radiographs and are associated with possible health risks from a higher radiation dose. We hypothesized that a program based upon limited CT scans in lower-grade sarcoma could be efficacious and less expensive. We retrospectively assigned patients to a high-risk or low-risk hypothetical protocol. Eighty-three low- or intermediate-grade soft tissue sarcomas met our inclusion criteria. Eight patients had pulmonary metastasis. A protocol based on selective CT scans for high-risk patients would have identified seven out of eight lesions. The incremental cost-effectiveness ratio for routine CT scans was $731,400. A program based upon selective CT scans for higher-risk patients is accurate, spares unnecessary radiation to many patients, and is less expensive.
A limited-angle CT reconstruction method based on anisotropic TV minimization.
Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge
2013-04-07
This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.
Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela
2017-04-01
When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals.
Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela
2017-01-01
When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals. PMID:28097922
Direct observation of single flexible polymers using single stranded DNA†
Brockman, Christopher; Kim, Sun Ju
2012-01-01
Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981
Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T
2017-05-15
Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.
Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J
2017-06-26
Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2017-04-01
We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.
Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei
2017-11-24
Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan
2016-10-01
Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets
NASA Astrophysics Data System (ADS)
Griesel, Dominic; Keller, Marco C.; Groche, Peter
2018-05-01
In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.
García, Fátima
2016-01-01
ABSTRACT This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551–3577. PMID:27917019
The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.
Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn
2015-12-01
To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95% CI, 67-93%) and 93% (95% CI, 89-96%). This meta-analysis shows considerable variation in techniques and reference standards for CT of myocardial blood supply. While CT seems sensitive and specific for evaluation of hemodynamically relevant CAD, studies so far are limited in size. Standardization of myocardial perfusion CT technique is essential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2014-03-01
In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.
NASA Astrophysics Data System (ADS)
Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L.
2017-02-01
Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multiatlas- based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.
Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L
2017-02-01
Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multi-atlas-based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.
Morimoto, Linda Nayeli; Kamaya, Aya; Boulay-Coletta, Isabelle; Fleischmann, Dominik; Molvin, Lior; Tian, Lu; Fisher, George; Wang, Jia; Willmann, Jürgen K
2017-09-01
To compare image quality and lesion conspicuity of reduced dose (RD) CT with model-based iterative reconstruction (MBIR) compared to standard dose (SD) CT in patients undergoing oncological follow-up imaging. Forty-four cancer patients who had a staging SD CT within 12 months were prospectively included to undergo a weight-based RD CT with MBIR. Radiation dose was recorded and tissue attenuation and image noise of four tissue types were measured. Reproducibility of target lesion size measurements of up to 5 target lesions per patient were analyzed. Subjective image quality was evaluated for three readers independently utilizing 4- or 5-point Likert scales. Median radiation dose reduction was 46% using RD CT (P < 0.01). Median image noise across all measured tissue types was lower (P < 0.01) in RD CT. Subjective image quality for RD CT was higher (P < 0.01) in regard to image noise and overall image quality; however, there was no statistically significant difference regarding image sharpness (P = 0.59). There were subjectively more artifacts on RD CT (P < 0.01). Lesion conspicuity was subjectively better in RD CT (P < 0.01). Repeated target lesion size measurements were highly reproducible both on SD CT (ICC = 0.987) and RD CT (ICC = 0.97). RD CT imaging with MBIR provides diagnostic imaging quality and comparable lesion conspicuity on follow-up exams while allowing dose reduction by a median of 46% compared to SD CT imaging.
Advanced membrane electrode assemblies for fuel cells
Kim, Yu Seung; Pivovar, Bryan S.
2012-07-24
A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
Advanced membrane electrode assemblies for fuel cells
Kim, Yu Seung; Pivovar, Bryan S
2014-02-25
A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
Johnson, Michelle L.; Uhrich, Kathryn E.
2008-01-01
A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627
2013-01-01
Background In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super paramagnetic iron oxide nanoparticles (SPION), or DTPA-SPION. Methods Examinations utilizing planar dynamic scintigraphy and hybrid imaging were performed using a commercially available single-photon emission computed tomography (SPECT)/computed tomography (CT) system. For SPION containing MBs, the biodistribution pattern of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs was investigated and co-registered using fusion SPECT/CT and magnetic resonance imaging (MRI). Moreover, to evaluate the biodistribution, organs were removed and radioactivity was measured and calculated as percentage of injected dose. Results SPECT/CT and MRI showed that the distribution of 99mTc-labeled ligand-functionalized MBs varied with the type of ligand as well as with the presence of SPION. The highest uptake was observed in the lungs 1 h post injection of 99mTc-labeled DTPA and chitosan MBs, while a similar distribution to the lungs and the liver was seen after the administration of PMAA MBs. The highest counts of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs were observed in the lungs, liver, and kidneys 1 h post injection. The highest counts were observed in the liver, spleen, and kidneys as confirmed by MRI 24 h post injection. Furthermore, the results obtained from organ measurements were in good agreement with those obtained from SPECT/CT. Conclusions In conclusion, microbubbles functionalized by different ligands can be labeled with radiotracers and utilized for SPECT/CT imaging, while the incorporation of SPION in MB shells enables imaging using MR. Our investigation revealed that biodistribution may be modified using different ligands. Furthermore, using a single contrast agent with fusion SPECT/CT/MR multimodal imaging enables visualization of functional and anatomical information in one image, thus improving the diagnostic benefit for patients. PMID:23442550
NASA Astrophysics Data System (ADS)
Chhour, Peter
Cell tracking offers the opportunity to study migration and localization of cells in vivo, allowing investigations of disease mechanisms and drug efficacy. Monocytes play a key role in the progression of atherosclerotic plaques in the coronary arteries. While x-ray computed tomography (CT) is commonly used to clinically assess coronary plaque burden, cell tracking with CT is mostly unexplored. The establishment of monocyte cell tracking tools would allow for the direct investigation of gene and drug therapies aimed at monocyte recruitment in atherosclerosis. In this thesis, we present the design and optimization of gold nanoparticles as CT contrast agents for cell tracking of monocyte recruitment to atherosclerotic plaques. Gold nanoparticle polymer constructs with controlled localization are evaluated as potential monocyte labels. However, cytotoxic effects were observed at concentrations necessary for cell labeling. Therefore, variations in physical and chemical properties of gold nanoparticles were explored as cell labels for monocyte tracking. Each formulation was screened for effects on cell viability, cell function and uptake in monocytes. The uptake in monocytes revealed a complex relationship with nanoparticle size behavior dependent on the surface ligand used. This led to the selection of an optimal size and coating for monocyte labeling, 11-mercaptoundecanoic acid coated 15 nm gold nanoparticles. This formulation was further investigated for cell viability, function, and uptake with isolated primary monocytes. Moreover, primary monocytes labeled with this formulation were used to observe monocyte recruitment in atherosclerotic mice. Mice with early atherosclerotic plaques received intravenously injections of gold labeled monocytes and their recruitment to plaques were observed over 5 days with CT. Increases in CT attenuation in the plaque and transmission electron microscopy of plaque sections indicated the presence of gold labeled monocytes in the plaque. These results demonstrate the feasibility of using CT to track ex-vivo labeled cells non-invasively with CT and could further be used to investigate drugs aimed at modulating monocyte recruitment in the treatment of atherosclerosis. This work expands the applications of cell tracking and may lead to additional uses in other diseases.
Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko
2018-03-21
To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Ali, Akbar; Ahmed, Shakeel
2018-06-26
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir
2017-02-15
Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.
Larsson, Anne; Johansson, Adam; Axelsson, Jan; Nyholm, Tufve; Asklund, Thomas; Riklund, Katrine; Karlsson, Mikael
2013-02-01
The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images. Images from eight patients, examined with (18)F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated. The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6% for the head and 1.9% for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2%, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1%. The global average difference in the head when replacing bone with soft tissue was 11%. The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiangyang; Yang Yi; Tang Shaojie
Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.« less
Porter; Eastman; Pace; Bradley
2000-09-01
Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.
Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images
Yang, Juan; Zhang, You; Yin, Yong
2015-01-01
Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993
Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.
Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong
2015-07-08
Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.
Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi
2010-06-15
A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.
Noyes, Julie A; Thomovsky, Stephanie A; Chen, Annie V; Owen, Tina J; Fransson, Boel A; Carbonneau, Kira J; Matthew, Susan M
2017-10-01
To determine the influence of preoperative computed tomography (CT) versus magnetic resonance (MR) on hemilaminectomies planned to treat thoracolumbar (TL) intervertebral disc (IVD) extrusions in chondrodystrophic dogs. Prospective clinical study. Forty chondrodystrophic dogs with TL IVD extrusion and preoperative CT and MR studies. MR and CT images were randomized and reviewed by 4 observers masked to the dog's identity and corresponding imaging studies. Observers planned the location along the spine, side, and extent (number of articular facets to be removed) based on individual reviews of CT and MR studies. Intra-observer agreement was determined between overall surgical plan, location, side, and size of the hemilaminectomy planned on CT versus MR of the same dog. Similar surgical plans were developed based on MR versus CT in 43.5%-66.6% of dogs, depending on the observer. Intra-observer agreement in location, side, and size of the planned hemilaminectomy based on CT versus MR ranged between 48.7%-66.6%, 87%-92%, and 51.2%-71.7% of dogs, respectively. Observers tended to plan larger laminectomy defects based on MR versus CT of the same dog. Findings from this study indicated considerable differences in hemilaminectomies planned on preoperative MR versus CT imaging. Surgical location and size varied the most; the side of planned hemilaminectomies was most consistent between imaging modalities. © 2017 The American College of Veterinary Surgeons.
Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A
2009-12-01
To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.
NASA Astrophysics Data System (ADS)
Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.
2014-04-01
Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.
Kawahara, Daisuke; Ozawa, Shuichi; Yokomachi, Kazushi; Tanaka, Sodai; Higaki, Toru; Fujioka, Chikako; Suzuki, Tatsuhiko; Tsuneda, Masato; Nakashima, Takeo; Ohno, Yoshimi; Nagata, Yasushi
2018-02-01
To evaluate the accuracy of raw-data-based effective atomic number (Z eff ) values and monochromatic CT numbers for contrast material of varying iodine concentrations, obtained using dual-energy CT. We used a tissue characterization phantom and varying concentrations of iodinated contrast medium. A comparison between the theoretical values of Z eff and that provided by the manufacturer was performed. The measured and theoretical monochromatic CT numbers at 40-130 keV were compared. The average difference between the Z eff values of lung (inhale) inserts in the tissue characterization phantom was 81.3% and the average Z eff difference was within 8.4%. The average difference between the Z eff values of the varying concentrations of iodinated contrast medium was within 11.2%. For the varying concentrations of iodinated contrast medium, the differences between the measured and theoretical monochromatic CT values increased with decreasing monochromatic energy. The Z eff and monochromatic CT numbers in the tissue characterization phantom were reasonably accurate. The accuracy of the raw-data-based Z eff values was higher than that of image-based Z eff values in the tissue-equivalent phantom. The accuracy of Z eff values in the contrast medium was in good agreement within the maximum SD found in the iodine concentration range of clinical dynamic CT imaging. Moreover, the optimum monochromatic energy for human tissue and iodinated contrast medium was found to be 70 keV. Advances in knowledge: The accuracy of the Z eff values and monochromatic CT numbers of the contrast medium created by raw-data-based, dual-energy CT could be sufficient in clinical conditions.
Development of buccal drug delivery systems based on a thiolated polymer.
Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas
2003-02-18
The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.
The role of physician characteristics in clinical trial acceptance: testing pathways of influence.
Curbow, Barbara; Fogarty, Linda A; McDonnell, Karen A; Chill, Julia; Scott, Lisa Benz
2006-03-01
Eight videotaped vignettes were developed that assessed the effects of three physician-related experimental variables (in a 2 x 2 x 2 factorial design) on clinical trial (CT) knowledge, video knowledge, information processing, CT beliefs, affective evaluations (attitudes), and CT acceptance. It was hypothesized that the physician variables (community versus academic-based affiliation, enthusiastic versus neutral presentation of the trial, and new versus previous relationship with the patient) would serve as communication cues that would interrupt message processing, leading to lower knowledge gain but more positive beliefs, attitudes, and CT acceptance. A total of 262 women (161 survivors and 101 controls) participated in the study. The manipulated variables primarily influenced the intermediary variables of post-test CT beliefs and satisfaction with information rather than knowledge or information processing. Multiple regression results indicated that CT acceptance was associated with positive post-CT beliefs, a lower level of information processing, satisfaction with information, and control status. Based on these results, CT acceptance does not appear to be based on a rational decision-making model; this has implications for both the ethics of informed consent and research conceptual models.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
NASA Astrophysics Data System (ADS)
Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin
2008-09-01
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.
Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix
NASA Astrophysics Data System (ADS)
Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa
2018-05-01
We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.
Lin, Xiaojie; Ishihara, Kazuhiko
2014-01-01
Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.
Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina
2007-03-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.
Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz
2013-09-01
Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.
Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk
2016-12-01
The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.
2012-02-01
code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol
Rao, Shasha; Prestidge, Clive A
2016-01-01
A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.
Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less
Communication Technology: Pros and Cons of Constant Connection to Work
ERIC Educational Resources Information Center
Diaz, Ismael; Chiaburu, Dan S.; Zimmerman, Ryan D.; Boswell, Wendy R.
2012-01-01
We examined the relationship between employees' attitudes related to communication technology (CT) flexibility, communication technology (CT) use, work-to-life conflict and work satisfaction. Based on data obtained from 193 employees, CT flexibility predicted more CT use. Further, CT use was associated not only with increased work satisfaction,…
Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker
2014-06-25
18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions as targets for Image-guided stereotactic Radiotherapy. This has to be investigated prospectively in larger cohorts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Koyfman, S; Xia, P
2015-06-15
Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
Hybrid scaffolds based on PLGA and silk for bone tissue engineering.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum
2016-03-01
Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.
Avelino, Karen Y P S; Frias, Isaac A M; Lucena-Silva, Norma; Gomes, Renan G; de Melo, Celso P; Oliveira, Maria D L; Andrade, César A S
2016-12-01
In the last ten years, conjugated polymers started to be used in the immobilization of nucleic acids via non-covalent interactions. In the present study, we describe the construction and use of an electrochemical DNA biosensor based on a nanostructured polyaniline-gold composite, specifically developed for the detection of the BCR/ABL chimeric oncogene. This chromosome translocation is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The working principle of the biosensor rests on measuring the conductivity resulting from the non-covalent interactions between the hybrid nanocomposite and the DNA probe. The nanostructured platform exhibits a large surface area that enhances the conductivity. Positive cases, which result from the hybridization between DNA probe and targeted gene, induce changes in the amperometric current and in the charge transfer resistance (R CT ) responses. Atomic force microscopy (AFM) images showed changes in the genosensor surface after exposure to cDNA sample of patient with leukemia, evidencing the hybridization process. This new hybrid sensing-platform displayed high specificity and selectivity, and its detection limit is estimated to be as low as 69.4 aM. The biosensor showed excellent analytical performance for the detection of the BCR/ABL oncogene in clinical samples of patients with leukemia. Hence, this electrochemical sensor appears as a simple and attractive tool for the molecular diagnosis of the BCR/ABL oncogene even in early-stage cases of leukemia and for the monitoring of minimum levels of residual disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh
2016-08-10
In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells.
Electrochemical testing of industrially produced PEO-based polymer electrolytes
NASA Astrophysics Data System (ADS)
Appetecchi, G. B.; Alessandrini, F.; Duan, R. G.; Arzu, A.; Passerini, S.
The present report describes the results of the electrochemical tests performed on polyethyleneoxide-based polymer electrolyte thin films industrially manufactured by blown-extrusion. The polymer electrolyte composition was PEO 20 LiCF 3SO 3: 16.7% γLiAlO 2. The polymer electrolyte film was tested to evaluate the ionic conductivity as well as the interfacial properties with lithium metal anodes. The work was developed within the advanced lithium polymer electrolyte (ALPE) project, an Italian project devoted to the realization of lithium polymer batteries for electric vehicle applications, in collaboration with Union Carbide.
Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases.
Zhang, Bao-Yan; Meng, Fan-Bao; Cong, Yue-Hua
2007-08-06
The optical properties of polymer liquid crystal cell exhibiting polymer blue phases (PBPs) have been determined using ultraviolet-visible spectrophotometry, polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X-ray measurements, FTIR imaging and optical rotation technique. PBPs are thermodynamically stabile mesophases, which appear in chiral systems between isotropic and liquid crystal phases. A series of cyclosiloxane-based blue phase polymers were synthesized using a cholesteric LC monomer and a nematic LC monomer, and some of the polymers exhibit PBPs in temperature range over 300 degrees in cooling cycles. The unique property based on their structure and different twists formed and expect to open up new photonic application and enrich polymer blue phase contents and theory.
Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.
2014-01-01
Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686
Liu, He; Liu, Chaoyi; Gu, Yue; Li, Cong; Yan, Xiaoyi; Zhang, Tingting; Lu, Nannan; Zheng, Bo; Li, Yaru; Zhang, Zhiquan; Yang, Ming
2018-01-15
Donor-Acceptor (D-A) structure like host-guest pair serves as an organic charge-transfer (C-T) material with pregnant electrochemical and photochemical properties. Phenothiazine, a conjugated nitrogen-sulfur heterocyclic compound with broad pharmaceutical profile, is a strong electron donating system and applied in the synthesis of various classic antipsychotic drugs. In this proposal, a novel D-A molecule, 2,3-bis(4-(10H-phenothiazin-10-yl)phenyl)fumaronitrile (PTBFN), containig a diphenylfumaronitrile as the electrophilic central core and two phenothiazines as the peripheral electron donor functional groups is first designed and synthesized. Subsequently, the C-T layer based on the PTBFN polymer, poly(PTBFN), is obtained via a straightforward electrochemical method and used as an efficient electrocatalyst for dopamine (DA) detection. The logarithm of oxidation peak currents present an outstanding linear response to that of the DA concentration varying from 0.005 to 350μM with a detection limit down to 0.70nM, wherein the interferences of uric acid (UA) and ascorbic acid (AA) could be eliminated effectively. Moreover, the biosensor displays decent stability, excellent selectivity for different interfering compounds and applicability in real samples analysis. The favorable sensing performance suggests that the nontrivial D-A architecture is one of the promising bioaffinity catalysts for electrocatalysis and expected to provide wider application potential for biosensing construction and medical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Büther, Florian; Schäfers, Klaus; Schäfers, Michael; Eich, Hans Theodor
2016-05-01
New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins) plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.
Chen, Aileen B; Neville, Bridget A; Sher, David J; Chen, Kun; Schrag, Deborah
2011-06-10
Technical studies suggest that computed tomography (CT) -based simulation improves the therapeutic ratio for thoracic radiation therapy (TRT), although few studies have evaluated its use or impact on outcomes. We used the Surveillance, Epidemiology and End Results (SEER) -Medicare linked data to identify CT-based simulation for TRT among Medicare beneficiaries diagnosed with stage III non-small-cell lung cancer (NSCLC) between 2000 and 2005. Demographic and clinical factors associated with use of CT simulation were identified, and the impact of CT simulation on survival was analyzed by using Cox models and propensity score analysis. The proportion of patients treated with TRT who had CT simulation increased from 2.4% in 1994 to 34.0% in 2000 to 77.6% in 2005. Of the 5,540 patients treated with TRT from 2000 to 2005, 60.1% had CT simulation. Geographic variation was seen in rates of CT simulation, with lower rates in rural areas and in the South and West compared with those in the Northeast and Midwest. Patients treated with chemotherapy were more likely to have CT simulation (65.2% v 51.2%; adjusted odds ratio, 1.67; 95% CI, 1.48 to 1.88; P < .01), although there was no significant association between use of surgery and CT simulation. Controlling for demographic and clinical characteristics, CT simulation was associated with lower risk of death (adjusted hazard ratio, 0.77; 95% CI, 0.73 to 0.82; P < .01) compared with conventional simulation. CT-based simulation has been widely, although not uniformly, adopted for the treatment of stage III NSCLC and is associated with higher survival among patients receiving TRT.
Estimating Glenoid Width for Instability-Related Bone Loss: A CT Evaluation of an MRI Formula.
Giles, Joshua W; Owens, Brett D; Athwal, George S
2015-07-01
Determining the magnitude of glenoid bone loss in cases of shoulder instability is an important step in selecting the optimal reconstructive procedure. Recently, a formula has been proposed that estimates native glenoid width based on magnetic resonance imaging (MRI) measurements of height (1/3 × glenoid height + 15 mm). This technique, however, has not been validated for use with computed tomography (CT), which is often the preferred imaging modality to assess bone deficiencies. The purpose of this project was 2-fold: (1) to determine if the MRI-based formula that predicts glenoid width from height is valid with CT and (2) to determine if a more accurate regression can be resolved for use specifically with CT data. Descriptive laboratory study. Ninety normal shoulder CT scans with preserved osseous anatomy were drawn from an existing database and analyzed. Measurements of glenoid height and width were performed by 2 observers on reconstructed 3-dimensional models. After assessment of reliability, the data were correlated, and regression models were created for male and female shoulders. The accuracy of the MRI-based model's predictions was then compared with that of the CT-based models. Intra- and interrater reliabilities were good to excellent for height and width, with intraclass correlation coefficients of 0.765 to 0.992. The height and width values had a strong correlation of 0.900 (P < .001). Regression analyses for male and female shoulders produced CT-specific formulas: for men, glenoid width = 2/3 × glenoid height + 5 mm; for women, glenoid width = 2/3 × glenoid height + 3 mm. Comparison of predictions from the MRI- and CT-specific formulas demonstrated good agreement (intraclass correlation coefficient = 0.818). The CT-specific formulas produced a root mean squared error of 1.2 mm, whereas application of the MRI-specific formula to CT images resulted in a root mean squared error of 1.5 mm. Use of the MRI-based formula on CT scans to predict glenoid width produced estimates that were nearly as accurate as the CT-specific formulas. The CT-specific formulas, however, are more accurate at predicting native glenoid width when applied to CT data. Imaging-specific (CT and MRI) formulas have been developed to estimate glenoid bone loss in patients with instability. The CT-specific formula can accurately predict native glenoid width, having an error of only 2.2% of average glenoid width. © 2015 The Author(s).
Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue
2016-10-01
This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Parach, A
Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Christner, Jodie A.; Duan Xinhui
2012-11-15
Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
Comparison of two DSC-based methods to predict drug-polymer solubility.
Rask, Malte Bille; Knopp, Matthias Manne; Olesen, Niels Erik; Holm, René; Rades, Thomas
2018-04-05
The aim of the present study was to compare two DSC-based methods to predict drug-polymer solubility (melting point depression method and recrystallization method) and propose a guideline for selecting the most suitable method based on physicochemical properties of both the drug and the polymer. Using the two methods, the solubilities of celecoxib, indomethacin, carbamazepine, and ritonavir in polyvinylpyrrolidone, hydroxypropyl methylcellulose, and Soluplus® were determined at elevated temperatures and extrapolated to room temperature using the Flory-Huggins model. For the melting point depression method, it was observed that a well-defined drug melting point was required in order to predict drug-polymer solubility, since the method is based on the depression of the melting point as a function of polymer content. In contrast to previous findings, it was possible to measure melting point depression up to 20 °C below the glass transition temperature (T g ) of the polymer for some systems. Nevertheless, in general it was possible to obtain solubility measurements at lower temperatures using polymers with a low T g . Finally, for the recrystallization method it was found that the experimental composition dependence of the T g must be differentiable for compositions ranging from 50 to 90% drug (w/w) so that one T g corresponds to only one composition. Based on these findings, a guideline for selecting the most suitable thermal method to predict drug-polymer solubility based on the physicochemical properties of the drug and polymer is suggested in the form of a decision tree. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuro; Zhou, Xiangrong; Chen, Huayue; Hara, Takeshi; Miyamoto, Kei; Kobayashi, Tatsunori; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi
2010-03-01
X-ray CT images have been widely used in clinical routine in recent years. CT images scanned by a modern CT scanner can show the details of various organs and tissues. This means various organs and tissues can be simultaneously interpreted on CT images. However, CT image interpretation requires a lot of time and energy. Therefore, support for interpreting CT images based on image-processing techniques is expected. The interpretation of the spinal curvature is important for clinicians because spinal curvature is associated with various spinal disorders. We propose a quantification scheme of the spinal curvature based on the center line of spinal canal on CT images. The proposed scheme consists of four steps: (1) Automated extraction of the skeletal region based on CT number thresholding. (2) Automated extraction of the center line of spinal canal. (3) Generation of the median plane image of spine, which is reformatted based on the spinal canal. (4) Quantification of the spinal curvature. The proposed scheme was applied to 10 cases, and compared with the Cobb angle that is commonly used by clinicians. We found that a high-correlation (for the 95% confidence interval, lumbar lordosis: 0.81-0.99) between values obtained by the proposed (vector) method and Cobb angle. Also, the proposed method can provide the reproducible result (inter- and intra-observer variability: within 2°). These experimental results suggested a possibility that the proposed method was efficient for quantifying the spinal curvature on CT images.
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
2010-01-01
angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Bennett, William R.
2003-01-01
A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.
Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping
2014-04-01
18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.
Clinically advancing and promising polymer-based therapeutics.
Souery, Whitney N; Bishop, Corey J
2018-02-01
In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Diagnostic performance of a Lattice Boltzmann-based method for CT-based fractional flow reserve.
Giannopoulos, Andreas A; Tang, Anji; Ge, Yin; Cheezum, Michael K; Steigner, Michael L; Fujimoto, Shinichiro; Kumamaru, Kanako K; Chiappino, Dante; Della Latta, Daniele; Berti, Sergio; Chiappino, Sara; Rybicki, Frank J; Melchionna, Simone; Mitsouras, Dimitrios
2018-02-20
Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischaemia. We aimed to develop and validate a fast CT-FFR algorithm utilising the Lattice Boltzmann method for blood flow simulation (LBM CT-FFR). Sixty-four patients with clinically indicated CTA and invasive FFR measurement from three institutions were retrospectively analysed. CT-FFR was performed using an onsite tool interfacing with a commercial Lattice Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR ≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR ≤0.8 were compared using area under the receiver operating characteristic curve (AUC). Sixty patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR ≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792-0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR ≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, and accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischaemia (FFR ≤0.8) and can be performed in less than one hour.
SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, R; Sun, B; Zhao, T
Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less
Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.
Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro
2018-06-01
We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.
Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.
2001-01-01
Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599
Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook
2015-06-01
⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.
Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook
2015-01-01
Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323
Johannesdottir, Fjola; Allaire, Brett; Bouxsein, Mary L
2018-05-30
This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures. CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment. CT-based techniques provide a robust approach for osteoporosis diagnosis and fracture prediction. It remains to be seen if further technical advances will improve fracture prediction compared to DXA aBMD. Future work should include more standardization in CT analyses, establishment of treatment intervention thresholds, and more studies to determine whether routine CT scans can be efficiently used to expand the number of individuals who undergo evaluation for fracture risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maspero, M.; Meijer, G.J.; Lagendijk, J.J.W.
2015-06-15
Purpose: To develop an image processing method for MRI-based generation of electron density maps, known as pseudo-CT (pCT), without usage of model- or atlas-based segmentation, and to evaluate the method in the pelvic and head-neck region against CT. Methods: CT and MRI scans were obtained from the pelvic region of four patients in supine position using a flat table top only for CT. Stratified CT maps were generated by classifying each voxel based on HU ranges into one of four classes: air, adipose tissue, soft tissue or bone.A hierarchical region-selective algorithm, based on automatic thresholding and clustering, was used tomore » classify tissues from MR Dixon reconstructed fat, In-Phase (IP) and Opposed-Phase (OP) images. First, a body mask was obtained by thresholding the IP image. Subsequently, an automatic threshold on the Dixon fat image differentiated soft and adipose tissue. K-means clustering on IP and OP images resulted in a mask that, via a connected neighborhood analysis, allowing the user to select the components corresponding to bone structures.The pCT was estimated through assignment of bulk HU to the tissue classes. Bone-only Digital Reconstructed Radiographs (DRR) were generated as well. The pCT images were rigidly registered to the stratified CT to allow a volumetric and voxelwise comparison. Moreover, pCTs were also calculated within the head-neck region in two volunteers using the same pipeline. Results: The volumetric comparison resulted in differences <1% for each tissue class. A voxelwise comparison showed a good classification, ranging from 64% to 98%. The primary misclassified classes were adipose/soft tissue and bone/soft tissue. As the patients have been imaged on different table tops, part of the misclassification error can be explained by misregistration. Conclusion: The proposed approach does not rely on an anatomy model providing the flexibility to successfully generate the pCT in two different body sites. This research is founded by ZonMw IMDI Programme, project name: “RASOR sharp: MRI based radiotherapy planning using a single MRI sequence”, project number: 10-104003010.« less
A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J
2014-03-01
The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, Guillaume, E-mail: g.landry@lmu.de; Nijhuis, Reinoud; Thieke, Christian
2015-03-15
Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigatedmore » deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT. Results: The DIR accuracy was better than 1.4 mm according to the SIFT evaluation. The mean WET differences between vCT (pCT) and rpCT were below 1 mm (2.6 mm). The amount of voxels passing 3%/3 mm gamma criteria were above 95% for the vCT vs rpCT. When using the rpCT contour set to derive DVH statistics from dose distributions calculated on the rpCT and vCT the differences, expressed in terms of 30 fractions of 2 Gy, were within [−4, 2 Gy] for parotid glands (D{sub mean}), spinal cord (D{sub 2%}), brainstem (D{sub 2%}), and CTV (D{sub 95%}). When using DIR generated contours for the vCT, those differences ranged within [−8, 11 Gy]. Conclusions: In this work, the authors generated CBCT based stopping power distributions using DIR of the pCT to a CBCT scan. DIR accuracy was below 1.4 mm as evaluated by the SIFT algorithm. Dose distributions calculated on the vCT agreed well to those calculated on the rpCT when using gamma index evaluation as well as DVH statistics based on the same contours. The use of DIR generated contours introduced variability in DVH statistics.« less
Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection
Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk; Dean, Deborah
2012-01-01
Developing materials that are effective against sexually transmitted pathogens such as Chlamydia trachomatis (Ct) and HIV-1 is challenging both in terms of material selection and improving bio-membrane and cellular permeability at desired mucosal sites. Here, we engineered the prokaryotic bacterial virus (M13 phage) carrying two functional peptides, integrin binding peptide (RGD) and a segment of the polymorphic membrane protein D (PmpD) from Ct, as a phage-based material that can ameliorate Ct infection. Ct is a globally prevalent human pathogen for which there are no effective vaccines or microbicides. We show that engineered phage stably express both RGD motifs and Ct peptides and traffic intracellularly and into the lumen of the inclusion in which the organism resides within the host cell. Engineered phage were able to significantly reduce Ct infection in both HeLa and primary endocervical cells compared with Ct infection alone. Polyclonal antibodies raised against PmpD and co-incubated with constructs prior to infection did not alter the course of infection, indicating that PmpD is responsible for the observed decrease in Ct infection. Our results suggest that phage-based design approaches to vector delivery that overcome mucosal cellular barriers may be effective in preventing Ct and other sexually transmitted pathogens. PMID:22494890
Assessment of circulating copy number variant detection for cancer screening.
Molparia, Bhuvan; Nichani, Eshaan; Torkamani, Ali
2017-01-01
Current high-sensitivity cancer screening methods, largely utilizing correlative biomarkers, suffer from false positive rates that lead to unnecessary medical procedures and debatable public health benefit overall. Detection of circulating tumor DNA (ctDNA), a causal biomarker, has the potential to revolutionize cancer screening. Thus far, the majority of ctDNA studies have focused on detection of tumor-specific point mutations after cancer diagnosis for the purpose of post-treatment surveillance. However, ctDNA point mutation detection methods developed to date likely lack either the scope or analytical sensitivity necessary to be useful for cancer screening, due to the low (<1%) ctDNA fraction derived from early stage tumors. On the other hand, tumor-derived copy number variant (CNV) detection is hypothetically a superior means of ctDNA-based cancer screening for many tumor types, given that, relative to point mutations, each individual tumor CNV contributes a much larger number of ctDNA fragments to the overall pool of circulating free DNA (cfDNA). A small number of studies have demonstrated the potential of ctDNA CNV-based screening in select cancer types. Here we perform an in silico assessment of the potential for ctDNA CNV-based cancer screening across many common cancers, and suggest ctDNA CNV detection shows promise as a broad cancer screening methodology.
Riaz, Saima; Bashir, Humayun; Niazi, Imran Khalid; Butt, Sumera; Qamar, Faisal
2018-06-01
Mirels' scoring system quantifies the risk of sustaining a pathologic fracture in osseous metastases of weight bearing long bones. Conventional Mirels' scoring is based on radiographs. Our pilot study proposes Tc MDP bone SPECT-CT based modified Mirels' scoring system and its comparison with conventional Mirels' scoring. Cortical lysis was noted in 8(24%) by SPECT-CT versus 2 (6.3%) on X-rays. Additional SPECT-CT parameters were; circumferential involvement [1/4 (31%), 1/2 (3%), 3/4 (37.5%), 4/4 (28%)] and extra-osseous soft tissue [3%]. Our pilot study suggests the potential role of SPECT-CT in predicting risk of fracture in osseous metastases.
NASA Astrophysics Data System (ADS)
Innes-Gold, Sarah N.; Morgan, Ian L.; Saleh, Omar A.
2018-03-01
Single-molecule measurements of polymer elasticity are powerful, direct probes of both biomolecular structure and principles of polymer physics. Recent work has revealed low-force regimes in which biopolymer elasticity is understood through blob-based scaling models. However, the small tensions required to observe these regimes have the potential to create measurement biases, particularly due to the increased interactions of the polymer chain with tethering surfaces. Here, we examine one experimentally observed bias, in which fluctuation-based estimates of elasticity report an unexpectedly low chain compliance. We show that the effect is in good agreement with predictions based on quantifying the exclusion effect of the surface through an image-method calculation of available polymer configurations. The analysis indicates that the effect occurs at an external tension inversely proportional to the polymer's zero-tension radius of gyration. We exploit this to demonstrate a self-consistent scheme for estimating the radius of gyration of the tethered polymer. This is shown in measurements of both hyaluronic acid and poly(ethylene glycol) chains.
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp
2016-06-07
Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Greskovich, J; Xia, P
Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr
This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacymore » of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.« less
Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr; ...
2016-11-02
This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacymore » of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.« less
Nyangoga, Hervé; Mercier, Philippe; Libouban, Hélène; Baslé, Michel Félix; Chappard, Daniel
2011-01-01
Background Angiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography). They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities. Methodology/Principal Findings We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer) was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts) were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels) was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter. Conclusion This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular bed can be identified by a double reconstruction and allowed a quantitative evaluation of angiogenesis upon time. PMID:21464932
Precision analysis of a quantitative CT liver surface nodularity score.
Smith, Andrew; Varney, Elliot; Zand, Kevin; Lewis, Tara; Sirous, Reza; York, James; Florez, Edward; Abou Elkassem, Asser; Howard-Claudio, Candace M; Roda, Manohar; Parker, Ellen; Scortegagna, Eduardo; Joyner, David; Sandlin, David; Newsome, Ashley; Brewster, Parker; Lirette, Seth T; Griswold, Michael
2018-04-26
To evaluate precision of a software-based liver surface nodularity (LSN) score derived from CT images. An anthropomorphic CT phantom was constructed with simulated liver containing smooth and nodular segments at the surface and simulated visceral and subcutaneous fat components. The phantom was scanned multiple times on a single CT scanner with adjustment of image acquisition and reconstruction parameters (N = 34) and on 22 different CT scanners from 4 manufacturers at 12 imaging centers. LSN scores were obtained using a software-based method. Repeatability and reproducibility were evaluated by intraclass correlation (ICC) and coefficient of variation. Using abdominal CT images from 68 patients with various stages of chronic liver disease, inter-observer agreement and test-retest repeatability among 12 readers assessing LSN by software- vs. visual-based scoring methods were evaluated by ICC. There was excellent repeatability of LSN scores (ICC:0.79-0.99) using the CT phantom and routine image acquisition and reconstruction parameters (kVp 100-140, mA 200-400, and auto-mA, section thickness 1.25-5.0 mm, field of view 35-50 cm, and smooth or standard kernels). There was excellent reproducibility (smooth ICC: 0.97; 95% CI 0.95, 0.99; CV: 7%; nodular ICC: 0.94; 95% CI 0.89, 0.97; CV: 8%) for LSN scores derived from CT images from 22 different scanners. Inter-observer agreement for the software-based LSN scoring method was excellent (ICC: 0.84; 95% CI 0.79, 0.88; CV: 28%) vs. good for the visual-based method (ICC: 0.61; 95% CI 0.51, 0.69; CV: 43%). Test-retest repeatability for the software-based LSN scoring method was excellent (ICC: 0.82; 95% CI 0.79, 0.84; CV: 12%). The software-based LSN score is a quantitative CT imaging biomarker with excellent repeatability, reproducibility, inter-observer agreement, and test-retest repeatability.
WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, K; Patton, T; Bayouth, J
Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhalemore » 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.« less
SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qayyum, F; Armato, S; Straus, C
Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volumemore » of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.« less
Kamran, Sophia C; Manuel, Matthias M; Catalano, Paul; Cho, Linda; Damato, Antonio L; Lee, Larissa J; Schmidt, Ehud J; Viswanathan, Akila N
To compare clinical outcomes of MR-based versus CT-based high-dose-rate interstitial brachytherapy (ISBT) for vaginal recurrence of endometrioid endometrial cancer (EC). We reviewed 66 patients with vaginal recurrent EC; 18 had MR-based ISBT on a prospective clinical trial and 48 had CT-based treatment. Kaplan-Meier survival modeling was used to generate estimates for local control (LC), disease-free interval (DFI), and overall survival (OS), and multivariate Cox modeling was used to assess prognostic factors. Toxicities were evaluated and compared. Median followup was 33 months (CT 30 months, MR 35 months). Median cumulative equivalent dose in 2-Gy fractions was 75.5 Gy for MR-ISBT and 73.8 Gy for CT-ISBT (p = 0.58). MR patients were older (p = 0.03) and had larger tumor size (>4 cm vs. ≤ 4 cm) compared to CT patients (p = 0.04). For MR-based versus CT-based ISBT, 3-year KM rate for local control was 100% versus 78% (p = 0.04), DFI was 69% versus 55% (p = 0.1), and OS was 63% versus 75% (p = 0.81), respectively. On multivariate analysis, tumor Grade 3 was associated with worse OS (HR 3.57, 95% CI 1.25, 11.36) in a model with MR-ISBT (HR 0.56, 95% CI 0.16, 1.89). Toxicities were not significantly different between the two modalities. Despite worse patient prognostic features, MR-ISBT was associated with a significantly better (100%) 3-year local control, comparable survival, and improved DFI rates compared to CT. Toxicities did not differ compared to CT-ISBT patients. Tumor grade contributed as the most significant predictor for survival. Larger prospective studies are needed to assess the impact of MR-ISBT on survival outcomes. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Achieving high performance polymer tandem solar cells via novel materials design
NASA Astrophysics Data System (ADS)
Dou, Letian
Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.
Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho
2017-11-22
We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.
Harman-Ware, Anne E; Happs, Renee M; Davison, Brian H; Davis, Mark F
2017-01-01
Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H), and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10, and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid-state NMR spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.
TU-G-BRA-02: Can We Extract Lung Function Directly From 4D-CT Without Deformable Image Registration?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipritidis, J; Woodruff, H; Counter, W
Purpose: Dynamic CT ventilation imaging (CT-VI) visualizes air volume changes in the lung by evaluating breathing-induced lung motion using deformable image registration (DIR). Dynamic CT-VI could enable functionally adaptive lung cancer radiation therapy, but its sensitivity to DIR parameters poses challenges for validation. We hypothesize that a direct metric using CT parameters derived from Hounsfield units (HU) alone can provide similar ventilation images without DIR. We compare the accuracy of Direct and Dynamic CT-VIs versus positron emission tomography (PET) images of inhaled {sup 68}Ga-labelled nanoparticles (‘Galligas’). Methods: 25 patients with lung cancer underwent Galligas 4D-PET/CT scans prior to radiation therapy.more » For each patient we produced three CT- VIs. (i) Our novel method, Direct CT-VI, models blood-gas exchange as the product of air and tissue density at each lung voxel based on time-averaged 4D-CT HU values. Dynamic CT-VIs were produced by evaluating: (ii) regional HU changes, and (iii) regional volume changes between the exhale and inhale 4D-CT phase images using a validated B-spline DIR method. We assessed the accuracy of each CT-VI by computing the voxel-wise Spearman correlation with free-breathing Galligas PET, and also performed a visual analysis. Results: Surprisingly, Direct CT-VIs exhibited better global correlation with Galligas PET than either of the dynamic CT-VIs. The (mean ± SD) correlations were (0.55 ± 0.16), (0.41 ± 0.22) and (0.29 ± 0.27) for Direct, Dynamic HU-based and Dynamic volume-based CT-VIs respectively. Visual comparison of Direct CT-VI to PET demonstrated similarity for emphysema defects and ventral-to-dorsal gradients, but inability to identify decreased ventilation distal to tumor-obstruction. Conclusion: Our data supports the hypothesis that Direct CT-VIs are as accurate as Dynamic CT-VIs in terms of global correlation with Galligas PET. Visual analysis, however, demonstrated that different CT-VI algorithms might have varying accuracy depending on the underlying cause of ventilation abnormality. This research was supported by a National Health and Medical Research Council (NHMRC) Australia Fellowship, an Cancer Institute New South Wales Early Career Fellowship 13-ECF-1/15 and NHMRC scholarship APP1038399. No commercial funding was received for this work.« less
Liquid scintillators with near infrared emission based on organoboron conjugated polymers.
Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki
2015-11-15
The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atomistic simulation of graphene-based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis
2016-05-01
Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.
The second green revolution? Production of plant-based biodegradable plastics.
Mooney, Brian P
2009-03-01
Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.
Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.
Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer
2017-01-01
Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meer, Skadi van der; Camps, Saskia M.; Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE
Purpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (US{sub sim}), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CT{sub ps}) image that is more representative of the patients’ geometry during treatment than the CT acquired at simulation stage (CT{sub sim}). Methods: The three prostatemore » patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US–CT datasets each and the third one had five US–CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding US{sub sim} scan to yield a new deformed CT{sub ps} scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CT{sub gt}) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (γ) evaluations on both the Hounsfield units (HUs) and the dose. Results: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (γ{sub Dose}, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (γ{sub CT}, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate. Conclusions: This new technique may generate CT{sub ps} images that are more representative of the actual patient anatomy than the CT{sub sim} scan.« less
Karimi, Davood; Ward, Rabab K
2016-10-01
Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.
Analytical theory of polymer-network-mediated interaction between colloidal particles
Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika
2012-01-01
Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289
Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng
2010-06-25
The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.
An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe,P.; Cherdack, D.; Guertin, R.
2006-01-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanicalmore » properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.« less
Assessment of an organ-based tube current modulation in thoracic computed tomography.
Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-03-08
Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B
2018-02-01
Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang
2014-12-15
Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less
Selenium-substituted polymers for improved photovoltaic performance.
Yu, Jiangsheng; Ding, Guanqun; Hai, Jiefeng; Zhu, Enwei; Yin, Xinxing; Xu, Zhongsheng; Zhou, Baojing; Zhang, Fujun; Ma, Wanli; Tang, Weihua
2016-03-21
Four isostructural donor-acceptor alternating polymers of benzodithiophene (BDT)/naphthodifuran (NDF) and benzoselenadiazole (BSe)/benzothiadiazole (BT) have been developed and evaluated for organic photovoltaics. The substitution of one-atom (Se for S) in the accepting units exerts remarkable impact on the optoelectronic properties of polymers. Extended absorption, narrowed bandgap and higher HOMO energy levels were observed for Se-containing polymers in comparison to their S-containing counterparts. Theoretical calculations confirmed the measurable effect on energy levels as found in experimental studies. Bulk-heterojuction solar cells based on the BDT-BSe copolymer and [6,6]-phenyl-C71-butyric acid methyl ester (1 : 2, w/w) blend films deliver the best PCE of 5.40%. BSe-based polymers showed enhanced photovoltaic performances than BT-based polymers. The device performance is found to be strongly dependent on the processing conditions and morphology of the active layers.
Radiation-resistant composite for biological shield of personnel
NASA Astrophysics Data System (ADS)
Barabash, D. E.; Barabash, A. D.; Potapov, Yu B.; Panfilov, D. V.; Perekalskiy, O. E.
2017-10-01
This article presents the results of theoretical and practical justification for the use of polymer concrete based on nonisocyanate polyurethanes in biological shield structures. We have identified the impact of ratio: polymer - radiation-resistant filling compound on the durability and protection properties of polymer concrete. The article expounds regression dependence of the change of basic properties of the aforementioned polymer concrete on the absorbed radiation dose rate. Synergy effect in attenuation of radioactivity release in case of conjoint use of hydrogenous polymer base and radiation-resistant powder is also addressed herein.
Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy
NASA Astrophysics Data System (ADS)
Matveeva, Larisa; Belentsov, Yuri
2017-10-01
The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.
Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum
ERIC Educational Resources Information Center
de Lill, Daniel T.; Carraher, Charles E., Jr.
2017-01-01
Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…
ERIC Educational Resources Information Center
Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia
2011-01-01
This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…
2015-07-29
a. “Engineering Optoelectronically-active Macromolecules for Polymer-based Photovoltaic and Thermoelectric Devices,” Boudouris, B. W. Current...Presentation. Oral Presentation. “Non-conjugated Radical Polymers as an Emerging Class of Transparent Conductors in Organic Photovoltaic and Thermoelectric ...for Polymer-based Photovoltaic and Thermoelectric Devices,” Boudouris, B. W. Current Opinion in Chemical Engineering 2013, 2, 294-301. 2. “Controlled
NASA Astrophysics Data System (ADS)
Raghavan, Prasanth; Zhao, Xiaohui; Shin, Chorong; Baek, Dong-Ho; Choi, Jae-Won; Manuel, James; Heo, Min-Yeong; Ahn, Jou-Hyeon; Nah, Changwoon
Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10 -3 S cm -1 at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions.
Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk
2018-05-14
For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindran, V. R.; Sreelakshmi, C.; Vibin
2008-09-26
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcu, Loredana G., E-mail: loredana@marcunet.com; Faculty of Science, University of Oradea; School of Chemistry and Physics, University of Adelaide, South Australia
2013-10-01
Postimplant dosimetry (PID) after Iodine-125 ({sup 125}I) implant of the prostate should offer a reliable qualitative assessment. So far, there is no consensus regarding the optimum PID method, though the latest literature is in favor of magnetic resonance imaging (MRI). This study aims to simultaneously compare 3 PID techniques: (1) MRI-computed tomography (CT) fusion; (2) ultrasound (US)-CT fusion; and (3) manual target delineation on CT. The study comprised 10 patients with prostate cancer. CT/MR scans with urinary catheters in place for PID were done either on day 0 or day 1 postimplantation. The main parameter evaluated and compared among methodsmore » was target D90. The results show that CT-based D90s are lower than US-CT D90s (median difference,−6.85%), whereas MR-CT PID gives higher D90 than US-CT PID (median difference, 4.25%). Manual contouring on CT images tends to overestimate the prostate volume compared with transrectal ultrasound (TRUS) (median difference, 23.33%), whereas on US images the target is overestimated compared with MR-based contouring (median difference, 13.25%). Although there are certain differences among the results given by various PID techniques, the differences are statistically insignificant for this small group of patients. Any dosimetric comparison between 2 PID techniques should also account for the limitations of each technique, to allow for an accurate quantification of data. Given that PID after permanent radioactive seed implant is mandatory for quality assurance, any imaging method–based PID (MR-CT, US-CT, and CT) available in a radiotherapy department can be indicative of the quality of the procedure.« less
Polymer Nomenclature--or What's in a Name?
ERIC Educational Resources Information Center
Carraher, Charles, E., Jr.; And Others
1987-01-01
Discusses the diversity of names used for various types of polymeric materials. Concentrates on the naming of linear organic polymers. Delineates these polymers by discussing common names, source-based names, characteristic group names, and structure-based names. Introduces the specifications of tacticity and geometric isomerism. (TW)
Study of soybean oil-based polymers for controlled release anticancer drugs
USDA-ARS?s Scientific Manuscript database
Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...
Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A
2017-09-15
The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.
Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou
2017-07-01
In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.
Generating patient specific pseudo-CT of the head from MR using atlas-based regression
NASA Astrophysics Data System (ADS)
Sjölund, J.; Forsberg, D.; Andersson, M.; Knutsson, H.
2015-01-01
Radiotherapy planning and attenuation correction of PET images require simulation of radiation transport. The necessary physical properties are typically derived from computed tomography (CT) images, but in some cases, including stereotactic neurosurgery and combined PET/MR imaging, only magnetic resonance (MR) images are available. With these applications in mind, we describe how a realistic, patient-specific, pseudo-CT of the head can be derived from anatomical MR images. We refer to the method as atlas-based regression, because of its similarity to atlas-based segmentation. Given a target MR and an atlas database comprising MR and CT pairs, atlas-based regression works by registering each atlas MR to the target MR, applying the resulting displacement fields to the corresponding atlas CTs and, finally, fusing the deformed atlas CTs into a single pseudo-CT. We use a deformable registration algorithm known as the Morphon and augment it with a certainty mask that allows a tailoring of the influence certain regions are allowed to have on the registration. Moreover, we propose a novel method of fusion, wherein the collection of deformed CTs is iteratively registered to their joint mean and find that the resulting mean CT becomes more similar to the target CT. However, the voxelwise median provided even better results; at least as good as earlier work that required special MR imaging techniques. This makes atlas-based regression a good candidate for clinical use.
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers
NASA Astrophysics Data System (ADS)
Kaneto, K.
2016-04-01
Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.
Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, P., E-mail: pechinlo@mednet.edu.ucla; Brown, M. S.; Kim, H.
Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select amore » small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.« less
Athanasiou, Lambros S; Rigas, George A; Sakellarios, Antonis I; Exarchos, Themis P; Siogkas, Panagiotis K; Naka, Katerina K; Panetta, Daniele; Pelosi, Gualtiero; Vozzi, Federico; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I
2015-10-01
A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kong, S. C.
2008-01-01
Two cycles of design-based research of a cognitive tool (CT) for teaching fractions have been completed. Following the success of a quasi-experimental study of the enhanced CT derived from the second cycle of design-based research, this article reports the findings of a pre-test-post-test control group empirical study using the enhanced CT in the…
Tan, A. C. W.; Polo‐Cambronell, B. J.; Provaggi, E.; Ardila‐Suárez, C.; Ramirez‐Caballero, G. E.; Baldovino‐Medrano, V. G.
2017-01-01
Abstract In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications. PMID:29159831
Rahaghi, Farbod N; Vegas-Sanchez-Ferrero, Gonzalo; Minhas, Jasleen K; Come, Carolyn E; De La Bruere, Isaac; Wells, James M; González, Germán; Bhatt, Surya P; Fenster, Brett E; Diaz, Alejandro A; Kohli, Puja; Ross, James C; Lynch, David A; Dransfield, Mark T; Bowler, Russel P; Ledesma-Carbayo, Maria J; San José Estépar, Raúl; Washko, George R
2017-05-01
Imaging-based assessment of cardiovascular structure and function provides clinically relevant information in smokers. Non-cardiac-gated thoracic computed tomographic (CT) scanning is increasingly leveraged for clinical care and lung cancer screening. We sought to determine if more comprehensive measures of ventricular geometry could be obtained from CT using an atlas-based surface model of the heart. Subcohorts of 24 subjects with cardiac magnetic resonance imaging (MRI) and 262 subjects with echocardiography were identified from COPDGene, a longitudinal observational study of smokers. A surface model of the heart was manually initialized, and then automatically optimized to fit the epicardium for each CT. Estimates of right and left ventricular (RV and LV) volume and free-wall curvature were then calculated and compared to structural and functional metrics obtained from MRI and echocardiograms. CT measures of RV dimension and curvature correlated with similar measures obtained using MRI. RV and LV volume obtained from CT inversely correlated with echocardiogram-based estimates of RV systolic pressure using tricuspid regurgitation jet velocity and LV ejection fraction respectively. Patients with evidence of RV or LV dysfunction on echocardiogram had larger RV and LV dimensions on CT. Logistic regression models based on demographics and ventricular measures from CT had an area under the curve of >0.7 for the prediction of elevated right ventricular systolic pressure and ventricular failure. These data suggest that non-cardiac-gated, non-contrast-enhanced thoracic CT scanning may provide insight into cardiac structure and function in smokers. Copyright © 2017. Published by Elsevier Inc.
2015-10-01
malignant PNs treated with stereotactic ablative radiotherapy ( SABR ) with those of the lung. Methods: We analyzed breath-hold images of 30...patients with malignant PNs who underwent SABR in our department. A parametric nonrigid transformation model based on multi-level B-spline guided by Sum of...and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy ( SABR ). The
A global CT to US registration of the lumbar spine
NASA Astrophysics Data System (ADS)
Nagpal, Simrin; Hacihaliloglu, Ilker; Ungi, Tamas; Rasoulian, Abtin; Osborn, Jill; Lessoway, Victoria A.; Rohling, Robert N.; Borschneck, Daniel P.; Abolmaesumi, Purang; Mousavi, Parvin
2014-03-01
During percutaneous lumbar spine needle interventions, alignment of the preoperative computed tomography (CT) with intraoperative ultrasound (US) can augment anatomical visualization for the clinician. We propose an approach to rigidly align CT and US data of the lumbar spine. The approach involves an intensity-based volume registration step, followed by a surface segmentation and a point-based registration of the entire lumbar spine volume. A clinical feasibility study resulted in mean registration error of approximately 3 mm between CT and US data.
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
Sekine, Tetsuro; Buck, Alfred; Delso, Gaspar; Ter Voert, Edwin E G W; Huellner, Martin; Veit-Haibach, Patrick; Warnock, Geoffrey
2016-02-01
Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing (18)F-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. (18)F-FDG uptake in all VOIs was compared using Bland-Altman analysis. The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain (18)F-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% ± 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% ± 1.43%, 3.25% ± 1.42%, and 3.05% ± 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of (18)F-FDG uptake was minor (<4%) but significant in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.
The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices withmore » efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.« less
Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman-Ware, Anne E.; Happs, Renee M.; Davison, Brian H.
Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H) and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10 and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid state NMRmore » spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.« less
Harman-Ware, Anne E.; Happs, Renee M.; Davison, Brian H.; ...
2017-11-30
Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H) and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10 and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid state NMRmore » spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li
2013-09-15
Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less
Last, Anna; Burr, Sarah; Alexander, Neal; Harding-Esch, Emma; Roberts, Chrissy H; Nabicassa, Meno; Cassama, Eunice Teixeira da Silva; Mabey, David; Holland, Martin; Bailey, Robin
2017-07-31
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infection and infectious cause of blindness (trachoma) worldwide. Understanding the spatial distribution of Ct infection may enable us to identify populations at risk and improve our understanding of Ct transmission. In this study, we sought to investigate the spatial distribution of Ct infection and the clinical features associated with high Ct load in trachoma-endemic communities on the Bijagós Archipelago (Guinea Bissau). We collected 1507 conjunctival samples and corresponding detailed clinical data during a cross-sectional population-based geospatially representative trachoma survey. We used droplet digital PCR to estimate Ct load on conjunctival swabs. Geostatistical tools were used to investigate clustering of ocular Ct infections. Spatial clusters (independent of age and gender) of individuals with high Ct loads were identified using local indicators of spatial association. We did not detect clustering of individuals with low load infections. These data suggest that infections with high bacterial load may be important in Ct transmission. These geospatial tools may be useful in the study of ocular Ct transmission dynamics and as part of trachoma surveillance post-treatment, to identify clusters of infection and thresholds of Ct load that may be important foci of re-emergent infection in communities. © FEMS 2017.
Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.
2011-01-01
Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270
Polymer containing functional end groups is base for new polymers
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.
Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites.
Mistretta, Maria Chiara; Botta, Luigi; Morreale, Marco; Rifici, Sebastiano; Ceraulo, Manuela; La Mantia, Francesco Paolo
2018-04-17
The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.
Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites
Mistretta, Maria Chiara; Rifici, Sebastiano; Ceraulo, Manuela
2018-01-01
The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives. PMID:29673143
Hu, Zhaolong; Ho, James C S; Nallani, Madhavan
2017-08-01
A plethora of polymer-based scaffolds have been designed to facilitate biochemical and biophysical investigation of membrane proteins, with a common goal to stabilize and present them in a functional format. In this review, an up-to-date account of such polymer-based supports and incorporation methodologies are presented. Furthermore, conceptual and imminent technological advances, with associated technical challenges are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
Meng, Bin; Ren, Yi; Liu, Jun; Jäkle, Frieder; Wang, Lixiang
2018-02-19
p-π conjugation with embedded heteroatoms offers unique opportunities to tune the electronic structure of conjugated polymers. An approach is presented to form highly electron-deficient p-π conjugated polymers based on triarylboranes, demonstrate their n-type behavior, and explore device applications. By combining alternating [2,4,6-tris(trifluoromethyl)phenyl]di(thien-2-yl)borane (FBDT) and electron-deficient isoindigo (IID)/pyridine-flanked diketopyrrolopyrrole (DPPPy) units, we achieve low-lying lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, high electron mobilities, and broad absorptions in the visible region. All-polymer solar cells with these polymers as electron acceptors exhibit encouraging photovoltaic performance with power conversion efficiencies of up to 2.83 %. These results unambiguously prove the n-type behavior and demonstrate the photovoltaic applications of p-π conjugated polymers based on triarylborane. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.; Denisov, N. D.; Chekis, V. I.
2017-12-01
The influence of a polymer coating applied in the manufacture of magnetic shields on magnetic properties has been studied based on the example of ribbons of a cobalt-based soft magnetic alloy (Co-Fe-Ni-Cr-Mn-Si-B) with the saturation magnetostriction close to zero. The influence of polymer coating has been separated from the effect of the compacting pressure applied upon its formation. The polymer coating was formed on the ribbon in the states with different signs of the saturation magnetostriction. It has been shown that the compacting pressure and the polymer coating have opposite effects on the properties of the ribbon and that these impacts partly level off upon the formation of the coating. The degree of the influence of the polymer coating on the magnetic properties depends on the state of the ribbon and on the sign of the saturation magnetostriction in this state.
Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong
2016-03-09
In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.
Chan, Tao
2012-01-01
CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.
Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang
2016-10-05
It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shengqiang; Li, Jie; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn
A color tuning index (I{sub CT}) parameter for evaluating the color change capability of color-tunable organic light-emitting diodes (CT-OLEDs) was proposed and formulated. And a series of CT-OLEDs, consisting of five different carrier/exciton adjusting interlayers (C/EALs) inserted between two complementary emitting layers, were fabricated and applied to disclose the relationship between I{sub CT} and C/EALs. The result showed that the trend of electroluminescence spectra behavior in CT-OLEDs has good accordance with I{sub CT} values, indicating that the I{sub CT} parameter is feasible for the evaluation of color variation. Meanwhile, by changing energy level and C/EAL thickness, the optimized device withmore » the widest color tuning range was based on N,N′-dicarbazolyl-3,5-benzene C/EAL, exhibiting the highest I{sub CT} value of 41.2%. Based on carrier quadratic hopping theory and exciton transfer model, two fitting I{sub CT} formulas derived from the highest occupied molecular orbital (HOMO) energy level and triplet energy level were simulated. Finally, a color tuning prediction (CTP) model was developed to deduce the I{sub CT} via C/EAL HOMO and triplet energy levels, and verified by the fabricated OLEDs with five different C/EALs. We believe that the CTP model assisted with I{sub CT} parameter will be helpful for fabricating high performance CT-OLEDs with a broad range of color tuning.« less
Polymer composites containing nanotubes
NASA Technical Reports Server (NTRS)
Bley, Richard A. (Inventor)
2008-01-01
The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.
Diez, Alejandro; Powelson, John; Sundaram, Chandru P; Taber, Tim E; Mujtaba, Muhammad A; Yaqub, Muhammad S; Mishler, Dennis P; Goggins, William C; Sharfuddin, Asif A
2014-06-01
Living donor evaluation involves imaging to determine the choice of kidney for nephrectomy. Our aim was to study the diagnostic accuracy and correlation between CT-based volume measurements and split renal function (SRF) as measured by nuclear renography in potential living donors and its impact on kidney selection decision. We analyzed 190 CT-based volume measurements in healthy donors, of which 65 donors had a radionuclide study performed to determine SRF. There were no differences in demographics, anthropometric measurements, total volumes, eGFR, creatinine clearances between those who required a nuclear scan and those who did not. There was a significant correlation between CT-volume-measurement-based SRF and nuclear-scan-based SRF (Pearson coefficient r 0.59; p < 0.001). Furthermore, selective nuclear-based SRF allowed careful selection of donor nephrectomy, leaving the donor with the higher functioning kidney in most cases. There was also a significantly higher number of right-sided nephrectomies selected after nuclear-based SRF studies. CT-based volume measurements in living donor imaging have sufficient correlation with nuclear-based SRF. Selective use of nuclear-scan-based SRF allows careful selection for donor nephrectomy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Improved patient size estimates for accurate dose calculations in abdomen computed tomography
NASA Astrophysics Data System (ADS)
Lee, Chang-Lae
2017-07-01
The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.
2014-08-14
to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2
Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M
2007-11-15
Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.
Assessment of an organ‐based tube current modulation in thoracic computed tomography
Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-01-01
Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390
Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.
Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung
2016-08-02
Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.
Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends
Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung
2016-01-01
Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772
Zhang, Maojie; Guo, Xia; Ma, Wei; Zhang, Shaoqing; Huo, Lijun; Ade, Harald; Hou, Jianhui
2014-04-02
Attaching meta-alkoxy-phenyl groups as conjugated side chains is an easy and effective way to modulate the molecular energy level of D-A polymer for photovoltaic application, and the polymer solar cells based on the polymer consisting meta-alkoxy-phenyl groups as conjugated side chain, PBT-OP, shows an enhanced open circuit voltage and thus higher efficiency of 7.50%, under the illumination of AM 1.5G, 100 mW/cm(2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long-Life Self-Renewing Solar Reflector Stack
Butler, Barry Lynn
1997-07-08
A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin
2014-04-01
Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D frameworkmore » with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.« less
The Beck Initiative: Training School-Based Mental Health Staff in Cognitive Therapy
ERIC Educational Resources Information Center
Creed, Torrey A.; Jager-Hyman, Shari; Pontoski, Kristin; Feinberg, Betsy; Rosenberg, Zachary; Evans, Arthur; Hurford, Matthew O.; Beck, Aaron T.
2013-01-01
A growing literature supports cognitive therapy (CT) as an efficacious treatment for youth struggling with emotional or behavioral problems. Recently, work in this area has extended the dissemination of CT to school-based settings. The current study has two aims: 1) to examine the development of therapists' knowledge and skills in CT, an…
Diketopyrrolopyrrole Polymers for Organic Solar Cells.
Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J
2016-01-19
Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future.
Echocardiography as an indication of continuous-time cardiac quiescence
NASA Astrophysics Data System (ADS)
Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.
2016-07-01
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.
Xue, Guobiao; Zhao, Xikang; Qu, Ge; Xu, Tianbai; Gumyusenge, Aristide; Zhang, Zhuorui; Zhao, Yan; Diao, Ying; Li, Hanying; Mei, Jianguo
2017-08-02
The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor-acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adopt a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm 2 V -1 s -1 with a maximum value of 5.1 cm 2 V -1 s -1 , in comparison with 0.47 and 0.51 cm 2 V -1 s -1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.
Processing and characterization of natural cellulose fibers/thermoset polymer composites.
Thakur, Vijay Kumar; Thakur, Manju Kumari
2014-08-30
Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Green polymer chemistry: biocatalysis and biomaterials
USDA-ARS?s Scientific Manuscript database
This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Shuai; Yu, Lifeng; Wang, Jia
Purpose: Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Methods: Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i)more » numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. Results: The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Conclusions: Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.« less
Soft 3D-Printed Phantom of the Human Kidney with Collecting System.
Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer
2017-04-01
Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.
Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid
2016-01-01
Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.
NASA Astrophysics Data System (ADS)
El Rhazi, Mama; Majid, Sanaa; Elbasri, Miloud; Salih, Fatima Ezzahra; Oularbi, Larbi; Lafdi, Khalid
2018-06-01
Over the years, intensive research works have been devoted to conducting polymers due to their potential application in many fields such as fuel cell, sensors, and capacitors. To improve the properties of these compounds, several new approaches have been developed which consist in combining conducting polymers and nanoparticles. Then, this review intends to give a clear overview on nanocomposites based on conducting polymers, synthesis, characterization, and their application as electrochemical sensors. For this, the paper is divided into two parts: the first part will highlight the nanocomposites synthesized by combination of carbon nanomaterials (CNMs) and conducting polymers. The preparation of polymer/CNMs such as graphene and carbon nanotube modified electrode is presented coupled with relevant applications. The second part consists of a review of nanocomposites synthesized by combination of metal nanoparticles and conducting polymers.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Han, Young-Geun
2014-05-01
A highly sensitive current sensor based on an optical microfiber loop resonator (MLR) incorporating low index polymer is proposed and experimentally demonstrated. The microfiber with a waist diameter of 1 μm is wrapped around the nicrhrome wire with low index polymer coating and the optical MLR is realized. The use of the microfiber and low index polymer with high thermal property can effectively improve the current sensitivity of the proposed MLR-based sensing probe to be 437.9 pm/A2, which is ~10 times higher than the previous result.
Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S
2010-04-01
To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.; Wallace, C. J.
1973-01-01
The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Zhang, J; Happersett, L
2016-06-15
Purpose: evaluate a commercial synthetic CT (syn-CT) software for use in prostate radiotherapy Methods: Twenty prostate patients underwent CT and MR simulation scans in treatment position on a 3T Philips scanner. The MR protocol consisted of a T2w turbo spin-echo for soft tissue contrast, a 2D balanced-fast field echo (b-FFE) for fiducial identification, a dual-echo 3D FFE B0 map for distortion analysis and a 3D mDIXON FFE sequence to generate syn-CT. Two echoes are acquired during mDIXON scan, allowing water, fat, and in-phase images to be derived using the frequency shift of the fat and water protons. Tissues were classifiedmore » as: air, adipose, water, trabecular/spongy bone and compact/cortical bone and assigned specific bulk HU values. Bone structures are segmented based on a pelvis bone atlas. Accuracy of syn-CT for patient treatment planning was analyzed by transferring the original plan and structures from the CT to syn-CT via rigid registration and recalculating dose. In addition, new IMRT plans were generated on the syn-CT using structures contoured on MR and transferred to the syn-CT. Accuracy of fiducial-based localization at the treatment machine performed using syn-CT or DRRs generated from syn-CT was assessed by comparing to orthogonal kV radiographs or CBCT. Results: Dosimetric comparison between CT and syn-CT was within 0.5% for all structures. The de-novo optimized plans generated on the syn-CT met our institutional clinical objectives for target and normal structures. Patient-induced susceptibility distortion based on B0 maps was within 1mm and 0.4 mm in the body and prostate. The rectal and bladder outlines on the syn-CT were deemed sufficient for assessing rectal and bladder filling on the CBCT at the time of treatment. CBCT localization showed a median error of < ±1 mm in LR, AP and SI direction. Conclusion: MRI derived syn-CT can be used clinically in MR-alone planning and treatment process for prostate. Drs. Deasy, Hunt and Tyagi have Master research agreement with Philips healthcare.« less
Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J
2015-01-01
Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) "conventional" 4D CT that uses a constant imaging and couch-shift frequency, (ii) "beam paused" 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) "respiratory-gated" 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm(3) spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10(-19)). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%-1.4%), false positives (4.0%-2.6%), and false negatives (2.7%-1.3%). These percentage reductions correspond to gating reducing image artifacts by 24-90 cm(3) of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm(3) of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.
Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.
Alp, Gülce; Murat, Sema; Yilmaz, Burak
2018-01-28
To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p < 0.05). CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p < 0.05), and conventional PMMA (p < 0.0001), and significantly lower flexural strength compared to CAD/CAM PMMA-based M (p < 0.05). The flexural strength of CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.
Kolodziejczyk, Milena; Kepka, Lucyna; Dziuk, Miroslaw; Zawadzka, Anna; Szalus, Norbert; Gizewska, Agnieszka; Bujko, Krzysztof
2011-07-15
To evaluate prospectively how positron emission tomography (PET) information changes treatment plans for non-small-cell lung cancer (NSCLC) patients receiving or not receiving elective nodal irradiation (ENI). One hundred consecutive patients referred for curative radiotherapy were included in the study. Treatment plans were carried out with CT data sets only. For stage III patients, mediastinal ENI was planned. Then, patients underwent PET-CT for diagnostic/planning purposes. PET/CT was fused with the CT data for final planning. New targets were delineated. For stage III patients with minimal N disease (N0-N1, single N2), the ENI was omitted in the new plans. Patients were treated according to the PET-based volumes and plans. The gross tumor volume (GTV)/planning tumor volume (PTV) and doses for critical structures were compared for both data sets. The doses for areas of potential geographical misses derived with the CT data set alone were compared in patients with and without initially planned ENI. In the 75 patients for whom the decision about curative radiotherapy was maintained after PET/CT, there would have been 20 cases (27%) with potential geographical misses by using the CT data set alone. Among them, 13 patients would receive ENI; of those patients, only 2 patients had the PET-based PTV covered by 90% isodose by using the plans based on CT alone, and the mean of the minimum dose within the missed GTV was 55% of the prescribed dose, while for 7 patients without ENI, it was 10% (p = 0.006). The lung, heart, and esophageal doses were significantly lower for plans with ENI omission than for plans with ENI use based on CT alone. PET/CT should be incorporated in the planning of radiotherapy for NSCLC, even in the setting of ENI. However, if PET/CT is unavailable, ENI may to some extent compensate for an inadequate dose coverage resulting from diagnostic uncertainties. Copyright © 2011 Elsevier Inc. All rights reserved.
A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk
Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less
TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Jani, A; Rossi, P
Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns aremore » similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of radiotherapy, is therefore well-suited for a number of MRI-guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.« less
NASA Astrophysics Data System (ADS)
Kim, Ji-Seon; Ho, Peter K. H.; Murphy, Craig E.; Seeley, Alex J. A. B.; Grizzi, Ilaria; Burroughes, Jeremy H.; Friend, Richard H.
2004-03-01
Although much progress has been made in improving polymer light-emitting diode performance, there has been little work to address device intrinsic degradation mechanisms due to the challenge of tracking minute chemical reactions in the 100-nm-thick buried active layers during operation. Here we have elucidated a hole-mediated electrical degradation of triarylamine-based blue polymer diodes using in situ Raman microspectroscopy. A slow irreversible hole-doping of polymer adjacent to the hole-injecting conducting-polymer leads to formation of oxidised triarylamine species counterbalanced by anions from the conducting-polymer. These charged species act as luminescence quenchers and hinder further hole injection across the interface leading to significant decreases in current density at low voltages.
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.
Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C
2015-11-01
To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury
NASA Astrophysics Data System (ADS)
Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo
2010-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Peter C.; Schreibmann, Eduard; Roper, Justin
2015-03-15
Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR.more » Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.« less
Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias
2018-01-01
Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.
NASA Astrophysics Data System (ADS)
Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan
2017-09-01
Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (C{{V}RHD} ) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology.
Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan
2017-01-01
Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (MeanRHD, and STDRHD CVRHD) of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (CVRHD) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology. PMID:28786399
Plant oil-based polymers prepared in green media and functionalized into useful materials
USDA-ARS?s Scientific Manuscript database
The conversion of plant oils to polymers has attracted renewed attention in recent years in order to replace or augment the traditional petro-chemical based polymers and resins. This is due to concern for the environment, waste disposal, and depletion of fossil and non renewable feedstocks. In this ...
21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.
Code of Federal Regulations, 2014 CFR
2014-04-01
... film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may contain optional adjuvant substances... Limitations (i) Resins and polymers: Acrylic acid polymer and its ethyl or methyl esters Acrylamide...
Hepatic CT image query using Gabor features
NASA Astrophysics Data System (ADS)
Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange
2004-07-01
A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.
Selection of new Kynar-based electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.
New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.
Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra
2016-09-06
A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra
2014-05-13
A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M
2018-02-01
In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.
Radiation risk from CT: implications for cancer screening.
Albert, Jeffrey M
2013-07-01
The cancer risks associated with patient exposure to radiation from medical imaging have become a major topic of debate. The higher doses necessary for technologies such as CT and the increasing utilization of these technologies further increase medical radiation exposure to the population. Furthermore, the use of CT for population-based cancer screening continues to be explored for common malignancies such as lung cancer and colorectal cancer. Given the known carcinogenic effects of ionizing radiation, this warrants evaluation of the balance between the benefit of early cancer detection and the risk of screening-induced malignancy. This report provides a brief review of the process of radiation carcino-genesis and the literature evaluating the risk of malignancy from CT, with a focus on the risks and benefits of CT for cancer screening. The available data suggest a small but real risk of radiation-induced malignancy from CT that could become significant at the population level with widespread use of CT-based screening. However, a growing body of literature suggests that the benefits of CT screening for lung cancer in high-risk patients and CT colonography for colorectal cancer may significantly outweigh the radiation risk. Future studies evaluating the benefits of CT screening should continue to consider potential radiation risks.
Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles
Cormode, David P.; Naha, Pratap C.; Fayad, Zahi A.
2014-01-01
Computed tomography (CT) is an X-ray based whole body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times, and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, due to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing non-targeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade. PMID:24470293
Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.
Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong
2011-01-01
Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.
SNOMED CT module-driven clinical archetype management.
Allones, J L; Taboada, M; Martinez, D; Lozano, R; Sobrido, M J
2013-06-01
To explore semantic search to improve management and user navigation in clinical archetype repositories. In order to support semantic searches across archetypes, an automated method based on SNOMED CT modularization is implemented to transform clinical archetypes into SNOMED CT extracts. Concurrently, query terms are converted into SNOMED CT concepts using the search engine Lucene. Retrieval is then carried out by matching query concepts with the corresponding SNOMED CT segments. A test collection of the 16 clinical archetypes, including over 250 terms, and a subset of 55 clinical terms from two medical dictionaries, MediLexicon and MedlinePlus, were used to test our method. The keyword-based service supported by the OpenEHR repository offered us a benchmark to evaluate the enhancement of performance. In total, our approach reached 97.4% precision and 69.1% recall, providing a substantial improvement of recall (more than 70%) compared to the benchmark. Exploiting medical domain knowledge from ontologies such as SNOMED CT may overcome some limitations of the keyword-based systems and thus improve the search experience of repository users. An automated approach based on ontology segmentation is an efficient and feasible way for supporting modeling, management and user navigation in clinical archetype repositories. Copyright © 2013 Elsevier Inc. All rights reserved.
Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L
2015-08-01
Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
Smith, James O; Tayton, Edward R; Khan, Ferdous; Aarvold, Alexander; Cook, Richard B; Goodship, Allen; Bradley, Mark; Oreffo, Richard O C
2017-04-01
Binary blend polymers offer the opportunity to combine different desirable properties into a single scaffold, to enhance function within the field of tissue engineering. Previous in vitro and murine in vivo analysis identified a polymer blend of poly(l-lactic acid)-poly(ε-caprolactone) (PLLA:PCL 20:80) to have characteristics desirable for bone regeneration. Polymer scaffolds in combination with marrow-derived skeletal stem cells (SSCs) were implanted into mid-shaft ovine 3.5 cm tibial defects, and indices of bone regeneration were compared to groups implanted with scaffolds alone and with empty defects after 12 weeks, including micro-CT, mechanical testing and histological analysis. The critical nature of the defect was confirmed via all modalities. Both the scaffold and scaffold/SSC groups showed enhanced quantitative bone regeneration; however, this was only found to be significant in the scaffold/SSCs group (p = 0.04) and complete defect bridging was not achieved in any group. The mechanical strength was significantly less than that of contralateral control tibiae (p < 0.01) and would not be appropriate for full functional loading in a clinical setting. This study explored the hypothesis that cell therapy would enhance bone formation in a critical-sized defect compared to scaffold alone, using an external fixation construct, to bridge the scale-up gap between small animal studies and potential clinical translation. The model has proved a successful critical defect and analytical techniques have been found to be both valid and reproducible. Further work is required with both scaffold production techniques and cellular protocols in order to successfully scale-up this stem cell/binary blend polymer scaffold. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Chung-Yun Hse
2009-01-01
To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...
Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor
Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei
2014-01-01
A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750
[Precision of navigation-assisted surgery of the thoracic and lumbar spine].
Arand, M; Schempf, M; Hebold, D; Teller, S; Kinzl, L; Gebhard, F
2003-11-01
The goal of these studies was to evaluate the accuracy of in vivo and in vitro application of CT- and C-arm-based navigation at the thoracic and lumbar spine. With CT based navigation, 82 pedicle screws were consecutively inserted, 53 into the thoracic and 29 into the lumbar spine. Seven (13%) perforations were detected at the thoracic spine and two (7%) at the lumbar spine. Additionally, minor perforations below the thread depth were seen in six (11%) thoracic and in two (7%) lumbar instrumentation. With C-arm-based navigation, 74 screws were consecutively placed into 38 thoracic and 36 lumbar pedicles. Perforations were noted in ten (26%) thoracic and four (11%) lumbar implants. Minor perforations were observed in another nine (24%) thoracic and ten (28%) lumbar pedicles. The observer-independent and standardized in vitro study based on a transpedicular 3.2-mm drill hole aiming a 4-mm steel ball in a plastic bone model showed pedicle perforations of the drill canal only in thoracic vertebrae, 1 of 15 in CT-based and 3 of 15 in C-arm navigation. The quantitative calculation of the smallest distance between the central line through the drill canal and the center of the steel ball resulted in 1.4 mm (0.5-4.8 mm) for the CT-based navigation at the thoracic spine and in 1.8 mm (0.5-3 mm) at the lumbar spine. For the C-arm based navigation the distance was 2.6 mm (0.9-4.8 mm) for the thoracic spine and 2 mm (1.2-3 mm) for the lumbar spine. In our opinion, the clinical results of the comparative accuracy of CT- and C-arm-based navigation in the present study showed moderate advantages of the CT-based technique in the thoracic spine, whereas CT- and C-arm based navigation had comparable perforation rates at the lumbar pedicle. The results of the experimental study correlated with the clinical data.
Green polymer chemistry: Some recent developments and examples
USDA-ARS?s Scientific Manuscript database
Green polymer chemistry continues to be a popular field, with many books and publications in print. Research is being conducted in several areas within this field, including: 1) green catalysis, 2) diverse feedstock base, 3) degradable polymers and waste minimization, 4) recycling of polymer produc...
Green polymer chemistry: a brief review
USDA-ARS?s Scientific Manuscript database
This review briefly surveys the research done on green polymer chemistry in the past few years. For convenience, these research activities can be grouped into 8 themes: 1) greener catalysis, 2) diverse feedstock base, 3) degradable polymers and waste minimization, 4) recycling of polymer products a...
Lee, Younghen; Kim, Ji-Hoon; Baek, Jung Hwan; Jung, So Lyung; Park, Sun-Won; Kim, Jinna; Yun, Tae Jin; Ha, Eun Ju; Lee, Kyu Eun; Kwon, Soon Young; Yang, Kyung-Sook; Na, Dong Gyu
2018-05-13
The benefit of CT for the diagnosis of lymph node metastasis in patients with thyroid cancer is still unclear. Three hundred fifty-one patients with thyroid cancers from 7 hospitals were prospectively enrolled in order to compare diagnostic performance between a combination of ultrasound and CT (ultrasound/CT) and ultrasound alone for prediction of lymph node metastasis and to calculate patient-based benefits of CT added to ultrasound. Of 801 pathologically proven neck levels, ultrasound/CT showed higher sensitivities in both central and lateral compartments and improved accuracy in the lateral compartment compared to ultrasound alone. In the retropharyngeal/superior mediastinal compartment, although CT could detect lymph node metastasis an ultrasound could not. Patient-based benefit was demonstrated in 13.1% of patients (46/351), and was higher in patients with cancers >1 cm than cancers ≤1 cm. In patients with thyroid cancer, CT improved surgical planning by enhancing the sensitivity for lymph node metastasis and by detecting lymph node metastasis that was overlooked with ultrasound alone. © 2018 Wiley Periodicals, Inc.
Algorithm for lung cancer detection based on PET/CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki
2009-02-01
The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.
NASA Astrophysics Data System (ADS)
Yamamoto, Tokihiro; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; von Berg, Jens; Blaffert, Thomas; Loo, Billy W., Jr.; Keall, Paul J.
2011-04-01
A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIRsur) and volumetric (DIRvol), and two metrics: Hounsfield unit (HU) change (VHU) and Jacobian determinant of deformation (VJac), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. VHU resulted in statistically significant differences for both DIRsur (0.14 ± 0.14 versus 0.29 ± 0.16, p = 0.01) and DIRvol (0.13 ± 0.13 versus 0.27 ± 0.15, p < 0.01). However, VJac resulted in non-significant differences for both DIRsur (0.15 ± 0.07 versus 0.17 ± 0.08, p = 0.20) and DIRvol (0.17 ± 0.08 versus 0.19 ± 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A further study is needed to confirm these results.
Implications of Use of Coal-Tar-Based Pavement Sealcoat on Urban Water Quality
NASA Astrophysics Data System (ADS)
Van Metre, P. C.
2015-12-01
Coal-tar-based (CT) sealcoat is used to protect and improve the appearance of asphalt pavement of driveways and parking lots primarily in the central and eastern U.S. and in Canada. CT sealcoat typically is 20 to 35% crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg polycyclic aromatic hydrocarbons (PAH), about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—median total PAH concentrations in dust from CT-sealcoated pavement are 2,200 mg/kg compared to a median concentration of 11 mg/kg for dust from unsealed pavement. Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, often resulting in sediment concentrations above toxicity thresholds based on effects-based sediment quality guidelines. Acute 2-day laboratory toxicity testing of simulated runoff from CT-sealcoated pavement to a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas) demonstrated that toxicity continues for samples collected for weeks or months following sealcoat application and that toxicity is enhanced by exposure to UV light. Using the fish-liver cell line RTL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.
Toward High Performance Photovoltaic Cells based on Conjugated Polymers
2016-12-26
AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...Conjugated Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4113 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kung-Hwa Wei 5d. PROJECT...gap polymer with good packing order as the active layer for a single-junction photovoltaic device. The light absorptions for the small molecule and the
Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib
2008-10-01
Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
Kang, Eunhee; Min, Junhong; Ye, Jong Chul
2017-10-01
Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from large data sets. Therefore, we believe that the proposed algorithm opens a new direction in the area of low-dose CT research. © 2017 American Association of Physicists in Medicine.
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
Polymer nanofiber-carbon nanotube network generating circuits
NASA Astrophysics Data System (ADS)
Mutlu, Mustafa Umut; Akın, Osman; Yildiz, Ümit Hakan
2018-02-01
The polymer nanofiber carbon nanotube (CNT) based devices attracts attention since they promise high performance for next generation devices such as wearable electronics, ultra-light weighted appliances and foldable devices. This abstract describes the utilization of polymer nanofibers and CNT as major component of low cost foldable photo-resistor. We use polymer nanofiber as template guiding CNTs to generate nanocircuits and conductive sensing network. The controlled combination of CNTs and polymer nanofibers provide opportunities for device miniaturization without loss of performance. The nanofiber-CNT network based photo-resistor exhibits broad band response 400 to 1600 nm that holding promises for ultra-thin devices and new sensing platforms.
Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.
2015-06-04
We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C 71-butyric acid methyl ester (PC 71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.
Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy
2016-06-14
We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers
Brostow, Witold; Lobland, Haley E. Hagg; Hnatchuk, Nathalie; Perez, Jose M.
2017-01-01
Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention. PMID:28336900
Leng, Shuai; Yu, Lifeng; Wang, Jia; Fletcher, Joel G; Mistretta, Charles A; McCollough, Cynthia H
2011-09-01
Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i) numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.
Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal
2014-01-01
We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709
Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui
2016-10-06
Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer dynamics in turbulent flow
NASA Astrophysics Data System (ADS)
Muthukumar, Murugappan
2014-03-01
Presence of dilute amounts of high-molecular weight polymers in liquids undergoing turbulent wall-bounded shear flows leads to significant drag reduction. There are two major proposed mechanisms of drag reduction in the literature. One is based on enhanced viscosity due to chain extension; the other is based on the assumption that elastic energy stored in polymer conformations is comparable to the kinetic energy in some eddies. Using the Navier-Stokes equation for the fluid and the Kirkwood-Riseman-Zimm equation for polymer chains, we have addressed the coupling between the near-wall turbulence dynamics and polymer dynamics. Our theoretical results show that the torque associated with polymer conformations contributes more significantly than the chain stretching and that the characteristic dimensions of polymer coils are much smaller than eddy sizes required for possible exchange of energy. We thus emphasize an additional mechanism to the existing two schools of thought in the search of an understanding of drag reduction.
Process for crosslinking and extending conjugated diene-containing polymers
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1977-01-01
A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.
Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.
2017-12-01
Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.
Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J
2017-07-14
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Photochemically Initiated Single Polymer Immobilization
2015-01-01
This Concept article surveys methods for attaching single polymer molecules on solid substrates. A general approach to single polymer immobilization based on the photochemistry of perfluorophenylazides is elaborated. PMID:17444538
Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora
2017-10-01
To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.
2017-04-01
In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.
Understanding the origins of metal-organic framework/polymer compatibility.
Semino, R; Moreton, J C; Ramsahye, N A; Cohen, S M; Maurin, G
2018-01-14
The microscopic interfacial structures for a series of metal-organic framework/polymer composites consisting of the Zr-based UiO-66 coupled with different polymers are systematically explored by applying a computational methodology that integrates density functional theory calculations and force field-based molecular dynamics simulations. These predictions are correlated with experimental findings to unravel the structure-compatibility relationship of the MOF/polymer pairs. The relative contributions of the intermolecular MOF/polymer interactions and the flexibility/rigidity of the polymer with respect to the microscopic structure of the interface are rationalized, and their impact on the compatibility of the two components in the resulting composite is discussed. The most compatible pairs among those investigated involve more flexible polymers, i.e. polyvinylidene fluoride (PVDF) and polyethylene glycol (PEG). These polymers exhibit an enhanced contact surface, due to a better adaptation of their configuration to the MOF surface. In these cases, the irregularities at the MOF surface are filled by the polymer, and even some penetration of the terminal groups of the polymer into the pores of the MOF can be observed. As a result, the affinity between the MOF and the polymer is very high; however, the pores of the MOF may be sterically blocked due to the strong MOF/polymer interactions, as evidenced by UiO-66/PEG composites. In contrast, composites involving polymers that exhibit higher rigidity, such as the polymer of intrinsic microporosity-1 (PIM-1) or polystyrene (PS), present interfacial microvoids that contribute to a decrease in the contact surface between the two components, thus reducing the MOF/polymer affinity.
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong
2005-01-01
In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.
Generation of synthetic CT data using patient specific daily MR image data and image registration
NASA Astrophysics Data System (ADS)
Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja
2017-02-01
To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.
SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S; Cao, Y; Jolly, S
2014-06-15
Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.« less
NASA Astrophysics Data System (ADS)
Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher
2017-12-01
A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (<1.5% ). The median proton range difference was 0.1 mm, with on average 96% of all BEV dose profiles showing a range agreement better than 3 mm. Results suggest that accurate MR-based proton dose calculation using an automatic commercial bulk-assignment pCT generation method, originally designed for photon radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.
Development of Rhizo-Columns for Nondestructive Root System Architecture Laboratory Measurements
NASA Astrophysics Data System (ADS)
Oostrom, M.; Johnson, T. J.; Varga, T.; Hess, N. J.; Wietsma, T. W.
2016-12-01
Numerical models for root water uptake in plant-soil systems have been developing rapidly, increasing the demand for laboratory experimental data to test and verify these models. Most of the increasingly detailed models are either compared to long-term field crop data or do not involve comparisons at all. Ideally, experiments would provide information on dynamic root system architecture (RSA) in combination with soil-pant hydraulics such as water pressures and volumetric water contents. Data obtained from emerging methods such as Spectral Induced Polarization (SIP) and x-ray computed tomography (x-ray CT) may be used to provide laboratory RSA data needed for model comparisons. Point measurements such as polymer tensiometers (PT) may provide soil moisture information over a large range of water pressures, from field capacity to the wilting point under drought conditions. In the presentation, we demonstrate a novel laboratory capability allowing for detailed RSA studies in large columns under controlled conditions using automated SIP, X-ray CT, and PT methods. Examples are shown for pea and corn root development under various moisture regimes.
New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility.
Borkowski, Leszek; Sroka-Bartnicka, Anna; Polkowska, Izabela; Pawlowska, Marta; Palka, Krzysztof; Zieba, Emil; Slosarczyk, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna
2017-09-01
Regeneration of bone defects was promoted by a novel β-glucan/carbonate hydroxyapatite composite and characterized by Raman spectroscopy, microCT and electron microscopy. The elastic biomaterial with an apatite-forming ability was developed for bone tissue engineering and implanted into the critical-size defects of rabbits' tibiae. The bone repair process was analyzed on non-decalcified bone/implant sections during a 6-month regeneration period. Using spectroscopic methods, we were able to determine the presence of amides, lipids and assign the areas of newly formed bone tissue. Raman spectroscopy was also used to assess the chemical changes in the composite before and after the implantation process. SEM analyses showed the mineralization degree in the defect area and that the gap size decreased significantly. Microscopic images revealed that the implant debris were interconnected to the poorly mineralized inner side of a new bone tissue. Our study demonstrated that the composite may serve as a biocompatible background for collagen ingrowth and exhibits the advantages of applying Raman spectroscopy, SEM and microCT in studying these samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunk, Peter Randall; King, William P.; Sun, Amy Cha-Tien
2006-08-01
This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measuresmore » polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.« less
Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering
NASA Astrophysics Data System (ADS)
Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.
2009-02-01
In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi
2018-01-01
Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity components.
Polymer-based oral rehydration solution for treating acute watery diarrhoea
Gregorio, Germana V; Gonzales, Maria Liza M; Dans, Leonila F; Martinez, Elizabeth G
2016-01-01
Background Acute diarrhoea is one of the main causes of morbidity and mortality among children in low-income countries. Glucose-based oral rehydration solution (ORS) helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization (WHO) has recommended the osmolarity of less than 270 mOsm/L (ORS ≤ 270) versus greater than 310 mOsm/L formulation (ORS ≥ 310). Polymer-based ORS (for example, prepared using rice or wheat) slowly releases glucose and may be superior to glucose-based ORS. Objectives To compare polymer-based oral rehydration solution (polymer-based ORS) with glucose-based oral rehydration solution (glucose-based ORS) for treating acute watery diarrhoea. Search methods We searched the following sources up to 5 September 2016: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (1966 to 5 September 2016), EMBASE (1974 to 5 September 2016), LILACS (1982 to 5 September 2016), and mRCT (2007 to 5 September 2016). We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists. Selection criteria We included randomized controlled trials (RCTs) of people with acute watery diarrhoea (cholera and non-cholera associated) that compared polymer-based and glucose-based ORS (with identical electrolyte contents). Data collection and analysis Two review authors independently assessed the search results and risk of bias, and extracted data. In multiple-treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group. Main results Thirty-five trials that included 4284 participants met the inclusion criteria: 28 trials exclusively included children, five included adults, and two included both adults and children. Polymer-based ORS versus glucose-based ORS (osmolarity ≤ 270) Eight trials (752 participants) evaluated this comparison, and seven trials used rice as a polymer source. Polymer-based ORS may decrease mean stool output in the first 24 hours by 24 mL/kg (mean difference (MD) −24.60 mL/kg, 95% CI −40.69 to −8.51; one trial, 99 participants, low quality evidence). The average duration of diarrhoea may be reduced by eight hours (MD −8.24 hours, 95% CI −13.17 to −3.30; I² statistic = 86%, five trials, 364 participants, low quality evidence) with polymer ORS but results are heterogeneous. Limited trials showed no observed difference in the risk of unscheduled use of intravenous fluid (RR 0.66, 95% CI 0.43 to 1.02; I² statistic = 30%; four trials, 376 participants, very low quality evidence), vomiting (very low quality evidence), and hyponatraemia (very low quality evidence). Polymer-based ORS versus glucose-based ORS (osmolarity ≥ 310) Twenty-seven trials (3532 participants) evaluated this comparison using a variety of polymers. On average, polymer ORS may reduce the total stool output in the first 24 hours by around 65 mL/kg (MD −65.47 mL/kg, 95% CI −83.92 to −47.03; 16 trials, 1483 participants, low quality evidence), and may reduce the duration of diarrhoea by around eight hours (MD −8.57 hours; SD −13.17 to −4.03; 16 trials, 1137 participants, low quality evidence) with substantial heterogeneity. The proportion of participants that required intravenous hydration was low in most trials with fewer in the polymer ORS group (RR 0.75, 95% CI 0.57 to 0.98; 19 trials, 1877 participant, low quality evidence) . Subgroup analysis by type of pathogen suggested an effect on unscheduled intravenous fluid in those infected with mixed pathogens (RR 0.63, 95% CI 0.41 to 0.96; 11 trials, 928 participants, low quality evidence), but not in participants positive for Vibrio cholerae (RR 0.94, 95% CI 0.66 to 1.34; 7 trials, 535 participants, low quality evidence). No difference was observed in the number of patients who developed vomiting (RR 0.91, 95% CI 0.72 to 1.14; 10 trials, 584 participants, very low quality evidence), hyponatraemia (RR 1.82, 95% CI 0.52 to 6.44; 4 trials, 385 participants, very low quality evidence), hypokalaemia (RR 1.29, 95% CI 0.74 to 2.25; 2 trials, 260 participants, low quality evidence), or persistent diarrhoea (RR 1.28, 95% CI 0.68 to 2.41; 2 trials, 885 participants, very low quality evidence). Authors' conclusions Polymer-based ORS shows advantages compared to glucose-based ORS (at ≥ 310 mOsm/L). Comparisons favoured polymer-based ORS over ORS ≤ 270 but analysis was underpowered. Food-based oral rehydration solution for acute diarrhoea What is polymer-based ORS and how might it help Acute diarrhoea is a common cause of death and illness in developing countries. Oral rehydration solutions (ORS) have had a massive impact worldwide in reducing the number of deaths related to diarrhoea. The original ORS was based on glucose and had an osmolarity of ≥ 310 mOsm/L (ORS ≥ 310). Glucose-based ORS with a lower osmolarity was later introduced in attempts to improve efficacy, and is considered better at reducing the amount and duration of diarrhoea. Most ORS is in the form of a sugar–salt solution, but over the years people have tried adding a variety of compounds ('glucose polymers') such as whole rice, wheat, sorghum, and maize. The aim is to slowly release glucose into the gut and improve the absorption of the water and salt in the solution. This review updates a Cochrane Review published in 2009, and assesses the available evidence on the use of polymer-based ORS (both rice and non-rice based) versus glucose-based ORS. What the research says Cochrane researchers examined the available evidence up to 5 September 2016. Thirty-five trials including 4284 participants met the inclusion criteria: 28 trials included children; five included adults; and two included both. Most trials compared polymer-based ORS with a sugar–salt ORS with a particular strength (ORS ≥ 310), which is slightly more salty than the currently agreed best formula (≤ 270 mOsm/L). The trials' methodological quality varied. In people given polymer-based ORS versus sugar-salt ORS ≤ 270 mOsm/L there was insufficient evidence to show that one is better than the other (low tovery low quality of evidence). In those given polymer-based ORS versus sugar-salt ORS ≥ 310 mOsm/L, there was a lower amount of stool and shorter time of diarrhoea in the polymer-based ORS group. No difference was observed between the two groups regarding the number of people who needed a drip to be rehydrated. Adverse events were similar (low tovery low quality of evidence). PMID:27959472
Rohde, Max; Nielsen, Anne L; Pareek, Manan; Johansen, Jørgen; Sørensen, Jens A; Diaz, Anabel; Nielsen, Mie K; Christiansen, Janus M; Asmussen, Jon T; Nguyen, Nina; Gerke, Oke; Thomassen, Anders; Alavi, Abass; Høilund-Carlsen, Poul Flemming; Godballe, Christian
2018-04-01
Our purpose was to examine whether staging of head and neck squamous cell carcinoma (HNSCC) by upfront 18 F-FDG PET/CT (i.e., on the day of biopsy and before the biopsy) discriminates survival better than the traditional imaging strategies based on chest x-ray plus head and neck MRI (CXR/MRI) or chest CT plus head and neck MRI (CCT/MRI). Methods: We performed a masked prospective cohort study based on paired data. Consecutive patients with histologically verified primary HNSCC were recruited from Odense University Hospital from September 2013 to March 2016. All patients underwent CXR/MRI, CCT/MRI, and PET/CT on the same day. Tumors were categorized as localized (stages I and II), locally advanced (stages III and IVB), or metastatic (stage IVC). Discriminative ability for each imaging modality with respect to HNSCC staging were compared using Kaplan-Meier analysis, Cox proportional hazards regression with the Harrell C-index, and net reclassification improvement. Results: In total, 307 patients with histologically verified HNSCC were included. Use of PET/CT significantly altered the stratification of tumor stage when compared with either CXR/MRI or CCT/MRI (χ 2 , P < 0.001 for both). Cancer stages based on PET/CT, but not CXR/MRI or CCT/MRI, were associated with significant differences in mortality risk on Kaplan-Meier analyses ( P ≤ 0.002 for all PET/CT-based comparisons). Furthermore, overall discriminative ability was significantly greater for PET/CT (C-index, 0.712) than for CXR/MRI (C-index, 0.675; P = 0.04) or CCT/MRI (C-index, 0.657; P = 0.02). Finally, PET/CT was significantly associated with a positive net reclassification improvement when compared with CXR/MRI (0.184, P = 0.03) but not CCT/MRI (0.094%, P = 0.31). Conclusion: Tumor stages determined by PET/CT were associated with more distinct prognostic properties in terms of survival than those determined by standard imaging strategies. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Kraepelien, T; Forander, P
2014-06-01
Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
Kondo, Yumi; Matsunaga, Satoru; Mochizuki, Manabu; Kadosawa, Tsuyoshi; Nakagawa, Takayuki; Nishimura, Ryohei; Sasaki, Nobuo
2008-03-01
To evaluate the efficacy of clinical staging based on computed tomography (CT) imaging over the World Health Organization (WHO) staging system based on radiography for nasal tumors in dogs, a retrospective study was conducted. This study used 112 dogs that had nasal tumors; they had undergone radiography and CT and had been histologically confirmed as having nasal tumors. Among 112 dogs, 85 (75.9%) were diagnosed as adenocarcinoma. Then they were analyzed for survival time according to each staging system. More than 70% of the patients with adenocarcinoma were classified as having WHO stage III. The patients classified under WHO stage II tended to survive longer than those classified under WHO stage III. Dogs classified under WHO stage III were further grouped into CT stages III and IV, and CT stage III patients had a significantly longer survival time than CT stage IV patients. In addition, patients treated with a combination of surgery and radiation had a significantly longer survival time than the patients who did not receive any treatment in CT stage III. On the other hand, different treatment modalities did not show a significant difference in the survival time of CT stage IV dogs. The results suggest that WHO stage III dogs may have various levels of tumor progression, indicating that the CT staging system may be more accurate than the WHO staging system.
Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie
2018-06-01
The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-01-01
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
NASA Astrophysics Data System (ADS)
Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.
2016-03-01
Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.
NASA Astrophysics Data System (ADS)
Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto
2011-03-01
Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.
Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure
NASA Astrophysics Data System (ADS)
Grunlan, Jaime; Gerberich, William; Francis, Lorraine
2000-03-01
In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.
2007-08-01
Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.
Integrated circuits based on conjugated polymer monolayer
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...
2018-01-31
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less
Integrated circuits based on conjugated polymer monolayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less
Investigation on wear characteristic of biopolymer gear
NASA Astrophysics Data System (ADS)
Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir
2017-10-01
Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.
Integrated circuits based on conjugated polymer monolayer.
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal
2018-01-31
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.
Polymer-phyllosilicate nanocomposites and their preparation
Chaiko, David J.
2007-01-09
Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.
Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark
2014-06-01
The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Properties of the Mean Momentum Balance in Polymer Drag Reduced Channel Flow
NASA Astrophysics Data System (ADS)
White, Christopher; Dubief, Yves; Klewicki, Joseph
2014-11-01
The redistribution of mean momentum and the underlying mechanisms of the redistribution process in polymer drag reduced channel flow are investigated by employing a mean momentum equation based analysis. The work is motivated by recent studies that showed (contrary to long-held views) that polymers modify the von Karman coefficient, κ, at low drag reduction, and at some relatively high drag reduction eradicate the inertially dominated logarithmic region. Since κ is a manifestation of the underlying dynamical behaviors of wall-bounded flow, understanding how polymers modify κ is inherently important to understanding the dynamics of polymer drag reduced flow, and, consequently, the phenomenon of polymer drag reduction. The goal of the present study is to explore and quantify these effects within the framework of a mean momentum based analysis.
NASA Astrophysics Data System (ADS)
Medeiros, Maria C. R.; Mestre, Ana L. G.; Inácio, Pedro M. C.; Santos, José M. L.; Araujo, Inês M.; Bragança, José; Biscarini, Fabio; Gomes, Henrique L.
2016-09-01
Conducting polymer electrodes based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) are used to record extracellular signals from autonomous cardiac contractile cells and glioma cell cultures. The performance of these conducting polymer electrodes is compared with Au electrodes. A small-signal impedance analysis shows that in the presence of an electrolyte, both Au and polymer electrodes establish high capacitive double-layers. However, the polymer/electrolyte interfacial resistance is 3 orders of magnitude lower than the resistance of the metal/electrolyte interface. The polymer low interfacial resistance minimizes the intrinsic thermal noise and increases the system sensitivity. However, when measurements are carried out in current mode a low interfacial resistance partially acts as a short circuit of the interfacial capacitance, this affects the signal shape.
A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.
Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard
2017-07-25
A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).
Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite
Srinivasan, K.; Samuel, E. James Jabaseelan
2017-01-01
Context: Lead is the conventional shielding material against gamma/X-rays. It has some limitations such as toxic, high density, nonflexibility, and also bremsstrahlung production during electron interaction. It may affect the accuracy of radiotherapy outcome. Aims: To theoretically analyze the radiation shielding properties of flexible polyvinyl alcohol/iron oxide polymer composite with five different concentrations of magnetite over the energy range of 15 KeV–20 MeV. Subjects and Methods: Radiological properties were calculated based on the published literature. Attenuation coefficients of pure elements are generated with the help of WinXCOM database. Results: Effective atomic numbers and electron density are increased with the concentration of magnetite. On the other hand, the number of electrons per gram decreased. Mass attenuation coefficient (μ/ϼ) and linear attenuation coefficients (μ) are higher in the lower energy <100 KeV, and their values decreased when the energy increased. Computed tomography numbers (CT) show the significant variation between the concentrations in <60 KeV. Half-value layer and tenth-value layers are directly proportional to the energy and indirectly proportional to the concentration of magnetite. Transmission curve, relaxation length (ƛ), kinetic energy released in the matter, and elemental weight fraction are also calculated and the results are discussed. Conclusions: 0.5% of the magnetite gives superior shielding properties compared with other concentrations. It may be due to the presence of 0.3617% of Fe. Elemental weight fraction, atomic number, photon energy, and mass densities are the important parameters to understand the shielding behavior of any material. PMID:29296043
NASA Astrophysics Data System (ADS)
Jones, Ryan M.; Hynynen, Kullervo
2016-01-01
Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n = 4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections. Although presented in an imaging context, our results may also be applicable to the problem of transmit focusing through the skull.
Solid polymeric electrolytes for lithium batteries
Angell, Charles A.; Xu, Wu; Sun, Xiaoguang
2006-03-14
Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Guobiao; Zhao, Xikang; Qu, Ge
The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor–acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adoptmore » a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm2 V–1 s–1 with a maximum value of 5.1 cm2 V–1 s–1, in comparison with 0.47 and 0.51 cm2 V–1 s–1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.« less
NASA Astrophysics Data System (ADS)
Liu, Demin; Poon, Christopher; Lu, Kuangda; He, Chunbai; Lin, Wenbin
2014-06-01
Nanoscale coordination polymers (NCPs) are self-assembled from metal ions and organic bridging ligands, and can overcome many drawbacks of existing drug delivery systems by virtue of tunable compositions, sizes and shapes, high drug loadings, ease of surface modification and intrinsic biodegradability. Here we report the self-assembly of zinc bisphosphonate NCPs that carry 48±3 wt% cisplatin prodrug and 45±5 wt% oxaliplatin prodrug. In vivo pharmacokinetic studies in mice show minimal uptake of pegylated NCPs by the mononuclear phagocyte system and excellent blood circulation half-lives of 16.4±2.9 and 12.0±3.9 h for the NCPs carrying cisplatin and oxaliplatin, respectively. In all tumour xenograft models evaluated, including CT26 colon cancer, H460 lung cancer and AsPC-1 pancreatic cancer, pegylated NCPs show superior potency and efficacy compared with free drugs. As the first example of using NCPs as nanotherapeutics with enhanced antitumour activities, this study establishes NCPs as a promising drug delivery platform for cancer therapy.
Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe
2018-05-08
Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.
Polymer based tunneling sensor
NASA Technical Reports Server (NTRS)
Wang, Jing (Inventor); Zhao, Yongjun (Inventor); Cui, Tianhong (Inventor)
2006-01-01
A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.
21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.
Code of Federal Regulations, 2012 CFR
2012-04-01
... coating is applied as a continuous film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may... as are provided: List of substances Limitations (i) Resins and polymers: Acrylic acid polymer and its...
21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.
Code of Federal Regulations, 2013 CFR
2013-04-01
... coating is applied as a continuous film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may... as are provided: List of substances Limitations (i) Resins and polymers: Acrylic acid polymer and its...
Synthetic biodegradable functional polymers for tissue engineering: a brief review.
BaoLin, Guo; Ma, Peter X
2014-04-01
Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.
Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)
NASA Astrophysics Data System (ADS)
Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki
2007-03-01
Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.
Zhou, Yuanyuan; Li, Miao; Guo, Yijing; Lu, Heng; Song, Jinsheng; Bo, Zhishan; Wang, Hua
2016-11-16
With the efficient synthesis of the crucial dibenzopyran building block, a series of PDBPTBT polymers containing different alkyl side chains and/or fluorine substitution were designed and synthesized via the microwave-assisted Suzuki polycondensation. Quantum chemistry calculations based on density functional theory indicated that different substitutions have significant impacts on the planarity and rigidity of the polymer backbones. Interestingly, the alkyloxy chains of PDBPTBT-4 tend to stay in the same plane with the benzothiadiazole unit, but the others appear to be out of plane. With the S···O and F···H/F···S supramolecular interactions, the conformations of the four polymers will be locked in different ways as predicted by the quantum chemistry calculation. Such structural variation resulted in varied solid stacking and photophysical properties as well as the final photovoltaic performances. Conventional devices based on these four polymers were fabricated, and PDBPTBT-5 displayed the best PCE of 5.32%. After optimization of the additive types, ratios, and the interlayers at the cathode, a high PCE of 7.06% (V oc = 0.96 V, J sc = 11.09 mA/cm 2 , and FF = 0.67) is obtained for PDBPTBT-5 with 2.0% DIO as the additive and PFN-OX as the electron-transporting layer. These results indicated DBP-based conjugated polymers are promising wide band gap polymer donors for high-efficiency polymer solar cells.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogg, P; Aland, T; West, M
Purpose: To investigate the effects of external surrogate and tumour motion by observing the reconstructed phases and AveCT in an Amplitude and Time based 4DCT. Methods: Based on patient motion studies, Cos6 and sinusoidal motions were simulated as external surrogate and tumour motions in a motion phantom. The diaphragm and tumour motions may or may not display the same waveform therefore the same and different waveforms were programmed into the phantom, scanned and reconstructed based on Amplitude and Time. The AveCT and phases were investigated with these different scenarios. The AveCT phantom images were also compared with CBCT phantom imagesmore » programmed with the same motions. Results: For the same surrogate and tumour sin motions, the phases (Amplitude and Time) and AveCT indicated similar motions based on the position of the BB at the slice and displayed contrast values respectively. For cos6 motions, due to the varied time the tumour spends at each position, the Amplitude and Time based phases differed. The AveCT images represented the actual tumour motions and the Time and Amplitude based phases were represented by the surrogate with varied times. Conclusion: Different external surrogate and tumour motions may result in different displayed image motions when observing the AveCT and reconstructed phases. During the 4DCT, the surrogate motion is readily available for observation of the amplitude and time of the diaphragm position. Following image reconstruction, the user may need to observe the AveCT in addition to the reconstructed phases to comprehend the time weightings of the tumour motion during the scan. This may also apply to 3D CBCT images where the displayed tumour position in the images is influenced by the long duration of the CBCT. Knowledge of the tumour motion represented by the greyscale of the AveCT may also assist in CBCT treatment beam verification matching.« less
Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik
2017-07-01
After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2 = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and supramolecular assembly of biomimetic polymers
NASA Astrophysics Data System (ADS)
Marciel, Amanda Brittany
A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.
Raw materials for wood-polymer composites.
Craig Clemons
2008-01-01
To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...
Polymer Electrolytes for Lithium/Sulfur Batteries
Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu
2012-01-01
This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.
Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R
2018-05-01
To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
TU-AB-BRA-02: An Efficient Atlas-Based Synthetic CT Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, X
2016-06-15
Purpose: A major obstacle for MR-only radiotherapy is the need to generate an accurate synthetic CT (sCT) from MR image(s) of a patient for the purposes of dose calculation and DRR generation. We propose here an accurate and efficient atlas-based sCT generation method, which has a computation speed largely independent of the number of atlases used. Methods: Atlas-based sCT generation requires a set of atlases with co-registered CT and MR images. Unlike existing methods that align each atlas to the new patient independently, we first create an average atlas and pre-align every atlas to the average atlas space. When amore » new patient arrives, we compute only one deformable image registration to align the patient MR image to the average atlas, which indirectly aligns the patient to all pre-aligned atlases. A patch-based non-local weighted fusion is performed in the average atlas space to generate the sCT for the patient, which is then warped back to the original patient space. We further adapt a PatchMatch algorithm that can quickly find top matches between patches of the patient image and all atlas images, which makes the patch fusion step also independent of the number of atlases used. Results: Nineteen brain tumour patients with both CT and T1-weighted MR images are used as testing data and a leave-one-out validation is performed. Each sCT generated is compared against the original CT image of the same patient on a voxel-by-voxel basis. The proposed method produces a mean absolute error (MAE) of 98.6±26.9 HU overall. The accuracy is comparable with a conventional implementation scheme, but the computation time is reduced from over an hour to four minutes. Conclusion: An average atlas space patch fusion approach can produce highly accurate sCT estimations very efficiently. Further validation on dose computation accuracy and using a larger patient cohort is warranted. The author is a full time employee of Elekta, Inc.« less
Identification of functional bitter taste receptors and their antagonist in chickens.
Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji
2017-01-22
Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons
Tan, Carlyn Rose C.; Zhou, Lanlan
2016-01-01
Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned. PMID:27516729
Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.
Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S
2016-06-01
Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.
Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.
Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André
2017-10-20
The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.