Science.gov

Sample records for ct based polymer

  1. Dose rate properties of NIPAM-based x-ray CT polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Johnston, H.; Hilts, M.

    2015-06-01

    In this work we investigate radiation dose rate dependencies of N-isopropylacrylamide (NIPAM) based polymer gel dosimeters (PGDs) used in conjunction with x-ray computed tomography imaging for radiotherapy dose verification. We define four primary forms of dose rate variation: constant mean dose rate where beam on and beam off times both vary, variable mean dose rate where beam on time varies, variable mean dose rate where beam off time varies and machine dose rate (MU min-1). We utilize both small (20 mL) vials and large volume (1L) gel containers to identify and characterize dose rate dependence in NIPAM PGDs. Results indicate that all investigated constant and variable mean dose rates had negligible affect on PGD dose response with the exception of machine dose rates (100-600 MU min-1) which produced variations in dose response significantly lower than previously reported. Explanations of the reduced variability in dose response are given. It is also shown that NIPAM PGD dose response is not affected by variations in dose rate that may occur in modulated treatment deliveries. Finally, compositional changes in NIPAM PGDs are investigated as potential mitigating strategies for dose rate-dependent response variability.

  2. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  3. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  4. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    SciTech Connect

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  5. SU-E-T-70: Commissioning a Multislice CT Scanner for X-Ray CT Polymer Gel Dosimetry

    SciTech Connect

    Johnston, H; Hilts, M; Jirasek, A

    2014-06-01

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the single slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering

  6. An x-ray CT polymer gel dosimetry prototype: I. Remnant artefact removal.

    PubMed

    Jirasek, A; Carrick, J; Hilts, M

    2012-05-21

    In this study a new x-ray CT polymer gel dosimetry (PGD) filtering technique is presented for the removal of (i) remnant ring and streak artefacts, and (ii) 'structured' noise in the form of minute, intrinsic gel density fluctuations. It is shown that the noise present within x-ray CT PGD images is not purely stochastic (pixel by pixel) in nature, but rather is 'structured', and hence purely stochastic-based noise-removal filters fail in removing this significant, unwanted noise component. The remnant artefact removal (RAR) technique is based on a class of signal stripping (i.e. baseline-estimation) algorithms typically used in the estimation of unwanted non-uniform baselines underlying spectral data. Here the traditional signal removal algorithm is recast, whereby the 'signal' that is removed is the structured noise and remnant artefacts, leaving the desired polymer gel dose distribution. The algorithm is extended to 2D and input parameters are optimized for PGD images. RAR filter results are tested on (i) synthetic images with measured gel background images added, in order to accurately represent actual noise present in PGD images, and (ii) PGD images of a three-field gel irradiation. RAR results are compared to a top-performing noise filter (adaptive mean, AM), used in previous x-ray CT PGD studies. It is shown that, in all cases, the RAR filter outperforms the AM filter, particularly in cases where either (i) a low-dose gel image has been acquired or (ii) the signal-to-noise ratio of the PG image is low, as in the case when a low number of image averages are acquired within a given experiment. Guidelines for the implementation of the RAR filter are given.

  7. An x-ray CT polymer gel dosimetry prototype: I. Remnant artefact removal

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Carrick, J.; Hilts, M.

    2012-05-01

    In this study a new x-ray CT polymer gel dosimetry (PGD) filtering technique is presented for the removal of (i) remnant ring and streak artefacts, and (ii) ‘structured’ noise in the form of minute, intrinsic gel density fluctuations. It is shown that the noise present within x-ray CT PGD images is not purely stochastic (pixel by pixel) in nature, but rather is ‘structured’, and hence purely stochastic-based noise-removal filters fail in removing this significant, unwanted noise component. The remnant artefact removal (RAR) technique is based on a class of signal stripping (i.e. baseline-estimation) algorithms typically used in the estimation of unwanted non-uniform baselines underlying spectral data. Here the traditional signal removal algorithm is recast, whereby the ‘signal’ that is removed is the structured noise and remnant artefacts, leaving the desired polymer gel dose distribution. The algorithm is extended to 2D and input parameters are optimized for PGD images. RAR filter results are tested on (i) synthetic images with measured gel background images added, in order to accurately represent actual noise present in PGD images, and (ii) PGD images of a three-field gel irradiation. RAR results are compared to a top-performing noise filter (adaptive mean, AM), used in previous x-ray CT PGD studies. It is shown that, in all cases, the RAR filter outperforms the AM filter, particularly in cases where either (i) a low-dose gel image has been acquired or (ii) the signal-to-noise ratio of the PG image is low, as in the case when a low number of image averages are acquired within a given experiment. Guidelines for the implementation of the RAR filter are given.

  8. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  9. A Wiki Based CT Protocol Management System.

    PubMed

    Szczykutowicz, Timothy P; Rubert, Nicholas; Belden, Daryn; Ciano, Amanda; Duplissis, Andrew; Hermanns, Ashley; Monette, Stephen; Saldivar, Elliott Janssen

    2015-01-01

    At the University of Wisconsin Madison Department of Radiology, CT protocol management requires maintenance of thousands of parameters for each scanner. Managing CT protocols is further complicated by the unique configurability of each scanner. Due to recent Joint Commission requirements, now all CT protocol changes must be documented and reviewed by a site's CT protocol optimization team. The difficulty of managing the CT protocols was not in assembling the protocols, but in managing and implementing changes. This is why a wiki based solution for protocol management was implemented. A wiki inherently keeps track of all changes, logging who made the changes and when, allowing for editing and viewing permissions to be controlled, as well as allowing protocol changes to be instantly relayed to all scanner locations.

  10. Polymer compositions based on PXE

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  11. Conductive polymer-based material

    SciTech Connect

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  12. Polyphosphazine-based polymer materials

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  13. Medipix-based Spectral Micro-CT

    PubMed Central

    Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  14. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  15. Development of CCD-based optical computed tomography and comparison with single-beam optical CT scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.

    2015-01-01

    This study reports on the development of CCD-based optical computed tomography (CT) CT-s2. A commercially available 10× fast optical computed tomography scanner (OCTOPUSTM-10X, MGS Research, Inc., Madison, CT, USA) was used for comparison. NIPAM polymer gel dosimeter was used to validate the performance of CT-s2. The gamma pass rate can reach 96.00% when using a 3% dose difference and 3 mm dose-to-agreement criteria. The results of CT-s2 are as good as those of the single-beam optical-CT scanner, but the scanning time of CT-s2 is only one-tenth of that of the single-beam optical-CT scanner.

  16. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show

  17. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  ‑180 to  ‑7 for adipose tissue (AT), ‑6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051–65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303–11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1–12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM

  18. Evaluation of CT-based SUV normalization.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients' lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show independence

  19. Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Sammons, Daniel; Winfree, William P.; Burke, Eric; Ji, Shuiwang

    2016-02-01

    Nondestructive evaluation (NDE) utilizes a variety of techniques to inspect various materials for defects without causing changes to the material. X-ray computed tomography (CT) produces large volumes of three dimensional image data. Using the task of identifying delaminations in carbon fiber reinforced polymer (CFRP) composite CT, this work shows that it is possible to automate the analysis of these large volumes of CT data using a machine learning model known as a convolutional neural network (CNN). Further, tests on simulated data sets show that with a robust set of experimental data, it may be possible to go beyond just identification and instead accurately characterize the size and shape of the delaminations with CNNs.

  20. Synthesis of cyanopyridine based conjugated polymer.

    PubMed

    Hemavathi, B; Ahipa, T N; Pillai, Saju; Pai, Ranjith Krishna

    2016-06-01

    This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV) application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled 'Cyanopyridine based conjugated polymer-synthesis and characterisation' (Hemavathi et al., 2015) [3]. PMID:27158642

  1. Conversion in denture base polymers.

    PubMed

    Ruyter, I E; Oysaed, H

    1982-09-01

    The purpose of this investigation was to determine residual monomers, the insoluble gel fraction, and singly reacted dimethacrylate monomers in heat-polymerized, auto-polymerized conventional and pour-type denture base materials. Residual monomers were determined by HPLC analysis of tetrahydrofuran extracts of denture base polymers. The gel fraction was determined by gravimetric analysis of the nonextractable portion. The pendant methacrylate groups in the gel fraction were determined by quantitative IR (infrared) spectrometry. It was demonstrated that the heat-polymerized materials had the lowest content of residual monomers. Generally, the content of pendant methacrylate groups in the gel was dependent on the initial quantity of crosslinking agent in the monomer liquids. The gel fractions of the heat-polymerized materials were larger than the quantity of reacted monomers and were also dependent on the quantity of crosslinking agent. These findings showed that some of the linear prepolymer, poly(methyl methacrylate) (PMMA), had been incorporated into the crosslinked polymer system. The gel fraction of the auto-polymerized pour-type materials corresponded to the quantity of reacted monomers, whereas the conventional auto-polymerized materials took an intermediate position between pour type materials and heat-polymerized materials in this respect.

  2. CCD-based optical CT scanning of highly attenuating phantoms

    NASA Astrophysics Data System (ADS)

    Al-Nowais, Shamsa; Doran, Simon J.

    2009-05-01

    The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.

  3. Polymer-Based Carbon Monoxide Sensors

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  4. Electrochemical Sensors Based on Organic Conjugated Polymers

    PubMed Central

    Rahman, Md. Aminur; Kumar, Pankaj; Park, Deog-Su; Shim, Yoon-Bo

    2008-01-01

    Organic conjugated polymers (conducting polymers) have emerged as potential candidates for electrochemical sensors. Due to their straightforward preparation methods, unique properties, and stability in air, conducting polymers have been applied to energy storage, electrochemical devices, memory devices, chemical sensors, and electrocatalysts. Conducting polymers are also known to be compatible with biological molecules in a neutral aqueous solution. Thus, these are extensively used in the fabrication of accurate, fast, and inexpensive devices, such as biosensors and chemical sensors in the medical diagnostic laboratories. Conducting polymer-based electrochemical sensors and biosensors play an important role in the improvement of public health and environment because rapid detection, high sensitivity, small size, and specificity are achievable for environmental monitoring and clinical diagnostics. In this review, we summarized the recent advances in conducting polymer-based electrochemical sensors, which covers chemical sensors (potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensors, immunosensors, DNA sensors).

  5. Statistical atlas based extrapolation of CT data

    NASA Astrophysics Data System (ADS)

    Chintalapani, Gouthami; Murphy, Ryan; Armiger, Robert S.; Lepisto, Jyri; Otake, Yoshito; Sugano, Nobuhiko; Taylor, Russell H.; Armand, Mehran

    2010-02-01

    We present a framework to estimate the missing anatomical details from a partial CT scan with the help of statistical shape models. The motivating application is periacetabular osteotomy (PAO), a technique for treating developmental hip dysplasia, an abnormal condition of the hip socket that, if untreated, may lead to osteoarthritis. The common goals of PAO are to reduce pain, joint subluxation and improve contact pressure distribution by increasing the coverage of the femoral head by the hip socket. While current diagnosis and planning is based on radiological measurements, because of significant structural variations in dysplastic hips, a computer-assisted geometrical and biomechanical planning based on CT data is desirable to help the surgeon achieve optimal joint realignments. Most of the patients undergoing PAO are young females, hence it is usually desirable to minimize the radiation dose by scanning only the joint portion of the hip anatomy. These partial scans, however, do not provide enough information for biomechanical analysis due to missing iliac region. A statistical shape model of full pelvis anatomy is constructed from a database of CT scans. The partial volume is first aligned with the statistical atlas using an iterative affine registration, followed by a deformable registration step and the missing information is inferred from the atlas. The atlas inferences are further enhanced by the use of X-ray images of the patient, which are very common in an osteotomy procedure. The proposed method is validated with a leave-one-out analysis method. Osteotomy cuts are simulated and the effect of atlas predicted models on the actual procedure is evaluated.

  6. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    NASA Astrophysics Data System (ADS)

    Chain, J. N. M.; Jirasek, A.; Schreiner, L. J.; McAuley, K. B.

    2011-04-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (~0.88 H Gy-1) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (~0.80 H Gy-1). This new gel formulation results in enhanced dose resolution (~0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  7. Polymer based nanocomposites with tailorable optical properties

    NASA Astrophysics Data System (ADS)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  8. Accelerated Compressed Sensing Based CT Image Reconstruction.

    PubMed

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  9. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  10. Polymer-based electrocaloric cooling devices

    DOEpatents

    Zhang, Qiming; Lu, Sheng-Guo; Li, Xinyu; Gorny, Lee; Cheng, Jiping; Neese, Bret P; Chu, Baojin

    2014-10-28

    Cooling devices (i.e., refrigerators or heat pumps) based on polymers which exhibit a temperature change upon application or removal of an electrical field or voltage, (e.g., fluoropolymers or crosslinked fluoropolymers that exhibit electrocaloric effect).

  11. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  12. RONI Based Secured and Authenticated Indexing of Lung CT Images

    PubMed Central

    Jasmine Selvakumari Jeya, I.; Suganthi, J.

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  13. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks.

  14. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  15. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    SciTech Connect

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  16. Sensitivity calibration procedures in optical-CT scanning of BANG®3 polymer gel dosimeters

    PubMed Central

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-01-01

    The dose response of the BANG®3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS™ laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4×4 cm2 photon fields or 6×6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6×6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG®3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752±3%, 0.0756±3%, 0.0767±3%, and 0.0759±3% cm−1 Gy−1) and the PDD matching methods (0.0768±3% and 0.0761±3% cm−1 Gy−1) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6×6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse

  17. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  18. Polymer containing functional end groups is base for new polymers

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  19. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G.; Jirasek, Andrew; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for

  20. Nonodontogenic mandibular lesions: differentiation based on CT attenuation

    PubMed Central

    Özgür, Anıl; Kara, Engin; Arpacı, Rabia; Arpacı, Taner; Esen, Kaan; Kara, Taylan; Duce, Meltem Nass; Apaydın, Feramuz Demir

    2014-01-01

    Mandibular lesions are classified as odontogenic and nonodontogenic based on the cell of origin. Odontogenic lesions are frequently encountered at head and neck imaging. However, several nonodontogenic pathologies may also involve mandible and present further diagnostic dilemma. Awareness of the imaging features of nonodontogenic lesions is crucial in order to guide clinicians in proper patient management. Computed tomography (CT) may provide key information to narrow diagnostic considerations. Nonodontogenic mandibular lesions may have lytic, sclerotic, ground-glass, or mixed lytic and sclerotic appearances on CT. In this article, our aim is to present various nonodontogenic lesions of the mandible by categorizing them according to their attenuations on CT. PMID:25297390

  1. Classification of CT-brain slices based on local histograms

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  2. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Wilson, Thomas S.; Hamilton, Julie K.; Benett, William J.; Tovar, Armando R.

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  3. Dynamic gold nanoparticle, polymer-based composites

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Junghans, Ann; Hayden, Steven; Majeski, Jaroslaw; CINT, Lujan Team

    2014-03-01

    Artificial polymer-based biomembranes may serve as a foundational architecture for the integration and spatial organization of metal nanoparticles forming functional nanocomposites. Nonionic triblock copolymer (PEO-PPO-PEO), lipid-based gels, containing Au nanoparticles (NPs) can be prepared by either external doping of the preformed nanoparticles or by in-situ reduction of Au 3+. Neutron reflectivity on quartz supported thin films of the Au NP -doped polymer-based biomembranes was used to determine the location of the Au. The nanoparticles were found to preferentially reside within the ethylene oxide chains located at the interface of the bulk water channels and the amphiphile bilayers. The embedded Au nanoparticles can act as localized heat sinks, inducing changes in the polymer conformation. The collective, thermally-triggered expansion and contraction of the EO chains modulate the mesophase structure of the gels. Synchrotron X-ray scattering (SAXS) was used to monitor mesophase structure as a function of both temperature and photo-irradiation. These studies represent a first step towards designingexternally-responsive polymer-nanoparticle composites.

  4. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  9. Polyalkene-based shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Alonso, J.; Cuevas, J. M.; Dios, J. R.; Vilas, J. L.; León, L. M.

    2007-07-01

    A series of polymers showing shape memory properties were developed based on polyalkenes derived from cyclooctene and related structures. These polymeric systems were synthesized via ring-opening metathesis polymerization (ROMP) using a well-defined ruthenium catalyst (Grubbs' type) by varying reaction conditions and proportions. Control over molecular weight was achieved by the inclusion of a chain transfer agent (CTA) and its influence on the behaviour of the obtained materials was evaluated. In order to provide them with shape memory behaviour the compounds were subjected to suitable chemical-thermal treatments and its characterization was accomplished by means of several techniques: differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), etc. Thus polymers developed herein could become a different alternative to the most studied and commercially available polyurethane based systems.

  10. Surface-based registration of liver in ultrasound and CT

    NASA Astrophysics Data System (ADS)

    Dehghan, Ehsan; Lu, Kongkuo; Yan, Pingkun; Tahmasebi, Amir; Xu, Sheng; Wood, Bradford J.; Abi-Jaoudeh, Nadine; Venkatesan, Aradhana; Kruecker, Jochen

    2015-03-01

    Ultrasound imaging is an attractive modality for real-time image-guided interventions. Fusion of US imaging with a diagnostic imaging modality such as CT shows great potential in minimally invasive applications such as liver biopsy and ablation. However, significantly different representation of liver in US and CT turns this image fusion into a challenging task, in particular if some of the CT scans may be obtained without contrast agents. The liver surface, including the diaphragm immediately adjacent to it, typically appears as a hyper-echoic region in the ultrasound image if the proper imaging window and depth setting are used. The liver surface is also well visualized in both contrast and non-contrast CT scans, thus making the diaphragm or liver surface one of the few attractive common features for registration of US and non-contrast CT. We propose a fusion method based on point-to-volume registration of liver surface segmented in CT to a processed electromagnetically (EM) tracked US volume. In this approach, first, the US image is pre-processed in order to enhance the liver surface features. In addition, non-imaging information from the EM-tracking system is used to initialize and constrain the registration process. We tested our algorithm in comparison with a manually corrected vessel-based registration method using 8 pairs of tracked US and contrast CT volumes. The registration method was able to achieve an average deviation of 12.8mm from the ground truth measured as the root mean square Euclidean distance for control points distributed throughout the US volume. Our results show that if the US image acquisition is optimized for imaging of the diaphragm, high registration success rates are achievable.

  11. Accuracy of CT-Based Attenuation Correction in PET/CT Bone Imaging

    PubMed Central

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-01-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well-tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9±0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers range from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important. PMID:22481547

  12. Accuracy of CT-based attenuation correction in PET/CT bone imaging.

    PubMed

    Abella, Monica; Alessio, Adam M; Mankoff, David A; MacDonald, Lawrence R; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a (68)Ga/(68)Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  13. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  14. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.

  15. Mutual-information-based registration for ultrasound and CT datasets

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Dold, Christian

    2004-05-01

    In many applications for minimal invasive surgery the acquisition of intra-operative medical images is helpful if not absolutely necessary. Especially for Brachytherapy imaging is critically important to the safe delivery of the therapy. Modern computed tomography (CT) and magnetic resonance (MR) scanners allow minimal invasive procedures to be performed under direct imaging guidance. However, conventional scanners do not have real-time imaging capability and are expensive technologies requiring a special facility. Ultrasound (U/S) is a much cheaper and one of the most flexible imaging modalities. It can be moved to the application room as required and the physician sees what is happening as it occurs. Nevertheless it may be easier to interpret these 3D intra-operative U/S images if they are used in combination with less noisier preoperative data such as CT. The purpose of our current investigation is to develop a registration tool for automatically combining pre-operative CT volumes with intra-operatively acquired 3D U/S datasets. The applied alignment procedure is based on the information theoretic approach of maximizing the mutual information of two arbitrary datasets from different modalities. Since the CT datasets include a much bigger field of view we introduced a bounding box to narrow down the region of interest within the CT dataset. We conducted a phantom experiment using a CIRS Model 53 U/S Prostate Training Phantom to evaluate the feasibility and accuracy of the proposed method.

  16. A model for clubfoot based on micro-CT data.

    PubMed

    Windisch, Gunther; Salaberger, Dietmar; Rosmarin, Walter; Kastner, Johann; Exner, Gerhard Ulrich; Haldi-Brändle, Verena; Anderhuber, Friedrich

    2007-06-01

    The pathological anatomy of idiopathic clubfoot has been investigated for more than 180 years using anatomy, computed tomography (CT), histology and microscopy. Seven idiopathic clubfeet and two normal feet of aborted fetuses were dissected in the present study, with special emphasis on the shape of the cartilage and bones. A three-dimensional (3D) micro-CT system, which generates a series of X-ray attenuation measurements, was used to produce computed reconstructed 3D data sets of each of the separated bones. Based on the micro-CT data scans a high-definition 3D colour printing system was used to make a four times enlarged clubfoot model, precisely presenting all the bony malformations. This model reflects the complexity of the anatomy of this disease and is designed to be used in the workshops of orthopaedic surgeons and physiotherapists, for training in new surgical and manipulation techniques.

  17. CT Scanning Imaging Method Based on a Spherical Trajectory.

    PubMed

    Chen, Ping; Han, Yan; Gui, Zhiguo

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.

  18. CT Scanning Imaging Method Based on a Spherical Trajectory

    PubMed Central

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object’s complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning. PMID:26934744

  19. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  20. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    PubMed Central

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  1. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    SciTech Connect

    Yang, Xiaofeng Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian; Mao, Hui

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  2. Sci—Fri PM: Dosimetry—01: Radiation-induced refraction artefacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G; Jirasek, Andrew; Wells, Derek M

    2014-08-15

    Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can have on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.

  3. Biomimetic, polymer-based microcantilever infrared sensors

    NASA Astrophysics Data System (ADS)

    Mueller, Michael Thomas

    This dissertation describes the initial development of a polymer-based, microcantilever infrared sensor. The development of the sensor is bio-inspired and based upon the long-range infrared sensor found in the pyrophilous jewel beetle Melanophila acuminata, which is able to seek out forest fires from more than 50 km away. Based on several proposed models of the infrared detector found in Melanophila acuminata, as well as published in vivo experiments, the feasibility of polymer-based infrared thermal sensors was explored and developed. Polymer materials were chosen due to their high absorptivity in the infrared range due to vibrational resonance modes characteristic of their organic bonds. Polymeric materials investigated in the course of this work include the polysaccharide and biomaterial chitin, its deacetylated derivative, chitosan, and the work-horse polymer of the semiconductor industry, novolak-resin-based photoresist. Chitin and chitosan are particularly noteworthy polymers for exploration in infrared detection due to their natural absorbance of infrared radiation near the 3 mum and 10 mum bands, which are important for the detection of the temperatures of warm engines and human body temperature, respectively. Because only limited work (primarily focused on electrodeposition) has been focused on the microscale patterning of chitosan, a photolithography process for chitosan and chitin was developed to allow the integration of the material into a variety of microelectromechanical systems processes. In addition to optical/infrared sensing, this process has a variety of potential applications in tissue engineering, protein engineering, and lab-on-a-chip devices. To demonstrate these areas of use, surface functionalization was demonstrated using bioconjugation to attach a protein to a patterned chitosan surface. Thin films of chitosan and chitin were characterized using laser profilometry to identify the effect of temperature on the film stress, and contact

  4. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma

    PubMed Central

    Topkan, Erkan; Yavuz, Ali A; Aydin, Mehmet; Onal, Cem; Yapar, Fuat; Yavuz, Melek N

    2008-01-01

    Background To compare computed tomography (CT) with co-registered positron emission tomography-computed tomography (PET-CT) as the basis for delineating gross tumor volume (GTV) in unresectable, locally advanced pancreatic carcinoma (LAPC). Methods Fourteen patients with unresectable LAPC had both CT and PET images acquired. For each patient, two three-dimensional conformal plans were made using the CT and PET-CT fusion data sets. We analyzed differences in treatment plans and doses of radiation to primary tumors and critical organs. Results Changes in GTV delineation were necessary in 5 patients based on PET-CT information. In these patients, the average increase in GTV was 29.7%, due to the incorporation of additional lymph node metastases and extension of the primary tumor beyond that defined by CT. For all patients, the GTVCT versus GTVPET-CT was 92.5 ± 32.3 cm3 versus 104.5 ± 32.6 cm3 (p = 0.009). Toxicity analysis revealed no clinically significant differences between two plans with regard to doses to critical organs. Conclusion Co-registration of PET and CT information in unresectable LAPC may improve the delineation of GTV and theoretically reduce the likelihood of geographic misses. PMID:18808725

  5. Tactile sensors based on conductive polymers

    NASA Astrophysics Data System (ADS)

    Castellanos-Ramos, Julian; Navas-Gonzalez, Rafael; Macicior, Haritz; Ochoteco, Estibalitz; Vidal-Verdú, Fernando

    2009-05-01

    This paper presents results from a few tactile sensors we have designed and fabricated. These sensors are based on a common approach that consists of placing a sheet of piezoresistive material on the top of a set of electrodes. If a force is exerted against the surface of the so obtained sensor, the contact area between the electrodes and the piezoresistive material changes. Therefore, the resistance at the interface changes. This is exploited as transconduction principle to measure forces and build advanced tactile sensors. For this purpose, we use a thin film of conductive polymers as the piezoresistive material. Specifically, a conductive water-based ink of these polymers is deposited by spin coating on a flexible plastic sheet, giving as a result a smooth, homogeneous and conducting thin film on it. The main interest in this procedure is it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made with two technologies. First, we have used a Printed Circuit Board technology to fabricate the set of electrodes and addressing tracks. Then we have placed the flexible plastic sheet with the conductive polymer film on them to obtain the sensor. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with a screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. There is a very interesting difference with the other sensors, that consists of the use of an elastomer as insulation material between conductive layers. Besides of its role as insulator, this elastomer allows the modification of the force versus resistance relationship. It also improves the dynamic response of the sensor because it implements a restoration force that helps the sensor to relax quicker when the force is taken off.

  6. The ROI CT problem: a shearlet-based regularization approach

    NASA Astrophysics Data System (ADS)

    Bubba, T. A.; Porta, F.; Zanghirati, G.; Bonettini, S.

    2016-10-01

    The possibility to significantly reduce the X-ray radiation dose and shorten the scanning time is particularly appealing, especially for the medical imaging community. Region- of-interest Computed Tomography (ROI CT) has this potential and, for this reason, is currently receiving increasing attention. Due to the truncation of projection images, ROI CT is a rather challenging problem. Indeed, the ROI reconstruction problem is severely ill-posed in general and naive local reconstruction algorithms tend to be very unstable. To obtain a stable and reliable reconstruction, under suitable noise circumstances, we formulate the ROI CT problem as a convex optimization problem with a regularization term based on shearlets, and possibly nonsmooth. For the solution, we propose and analyze an iterative approach based on the variable metric inexact line-search algorithm (VMILA). The reconstruction performance of VMILA is compared against different regularization conditions, in the case of fan-beam CT simulated data. The numerical tests show that our approach is insensitive to the location of the ROI and remains very stable also when the ROI size is rather small.

  7. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  8. Improvement of the cine-CT based 4D-CT imaging

    SciTech Connect

    Pan Tinsu; Sun Xiaojun; Luo Dershan

    2007-11-15

    An improved 4D-CT utility has been developed on the GE LightSpeed multislice CT (MSCT) and Discovery PET/CT scanners, which have the cine CT scan capability. Two new features have been added in this 4D-CT over the commercial Advantage 4D-CT from GE. One feature was a new tool for disabling parts of the respiratory signal with irregular respiration and improving the accuracy of phase determination for the respiratory signal from the Varian real-time positioning and monitoring (RPM) system before sorting of the cine CT images into the 4D-CT images. The second feature was to allow generation of the maximum-intensity-projection (MIP), average (AVG) and minimum-intensity-projection (mip) CT images from the cine CT images without a respiratory signal. The implementation enables the assessment of tumor motion in treatment planning with the MIP, AVG, and mip CT images on the GE MSCT and PET/CT scanners without the RPM and the Advantage 4D-CT with a GE Advantage windows workstation. Several clinical examples are included to illustrate this new application.

  9. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  10. Pericardium based model fusion of CT and non-contrasted C-arm CT for visual guidance in cardiac interventions.

    PubMed

    Zheng, Yefeng

    2014-01-01

    Minimally invasive transcatheter cardiac interventions are being adopted rapidly to treat a range of cardiovascular diseases. Pre-operative imaging, e.g., computed tomography (CT), plays an important role in surgical planning and simulation of cardiac interventions. Overlaying a 3D cardiac model extracted from pre-operative images onto real-time fluoroscopic images provides valuable visual guidance during the intervention. However, direct 3D to 2D fusion is difficult and may require quite amounts of user interaction. Intra-operative non-contrasted C-arm CT can be used as an intermedium for model fusion. The cardiac model is first warped to C-arm CT and later overlaid onto fluoroscopy. The C-arm CT to fluoroscopy overlay is straightforward since both images are captured on the same machine and the C-arm projection geometry can be directly used for overlay. Though various image registration methods may be used to fuse pre-operative images and C-arm CT, cross-modality image registration is not robust due to the significant difference in image characteristics (contrasted vs. non-contrasted). In this work we propose a model based fusion method using the pericardium to align pre-operative CT to intra-operative C-arm CT. After automatic segmentation of the pericardium in both CT and C-arm CT, the deformation field is estimated and then applied to warp the cardiac model extracted from CT to C-arm CT. The proposed method can be applied to fuse different cardiac models (e.g., chambers, aorta, coronary arteries, and cardiac valves). A feasibility study on aortic root model fusion shows that a reasonable accuracy can be achieved using a generic model (from a different patient), while more accurate results come from a patient-specific model. Intelligently weighted fusion can further improve the accuracy by using all available cardiac models in a pre-collected training set.

  11. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William; Krulevitch, Peter; Maghribi, Mariam; Hamilton, Julie; Rose, Klint; Wang, Amy W.

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  12. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  13. Polymer and small molecule based hybrid light source

    DOEpatents

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  14. LSO based dual slice helical CT and PET demonstrators

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Kerek, A.; Imrek, J.; Hegyesi, G.; Kalinka, G.; Molnár, J.; Novák, D.

    2011-05-01

    Two demonstrators, a spiralCT and a miniPET, have been designed and constructed for educational purposes. Computed tomographs (CTs) and positron emission tomographs (PETs) are some of the most commonly used structural and functional imaging devices in medicine, respectively. There is a need for transparent demonstrators where the principles of the different modalities and their functions are presented. The aim of the developments of these systems was to present the major building blocks of CT and PET for undergraduate students. Photon detection in both systems is based on small pixelised scintillation crystals with position sensitive PMT readout. Similar analogue and digital data processing based on FPGA technique is applied for the demonstrators and common image reconstruction and presentation software components are used.

  15. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  16. Polymer waveguide couplers based on metal nanoparticle-polymer nanocomposites.

    PubMed

    Signoretto, M; Suárez, I; Chirvony, V S; Abargues, R; Rodríguez-Cantó, P J; Martínez-Pastor, J

    2015-11-27

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP-Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404-780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. PMID:26526708

  17. Supramolecular polymers constructed by crown ether-based molecular recognition.

    PubMed

    Zheng, Bo; Wang, Feng; Dong, Shengyi; Huang, Feihe

    2012-03-01

    Supramolecular polymers, polymeric systems beyond the molecule, have attracted more and more attention from scientists due to their applications in various fields, including stimuli-responsive materials, healable materials, and drug delivery. Due to their good selectivity and convenient enviro-responsiveness, crown ether-based molecular recognition motifs have been actively employed to fabricate supramolecular polymers with interesting properties and novel applications in recent years. In this tutorial review, we classify supramolecular polymers based on their differences in topology and cover recent advances in the marriage between crown ether-based molecular recognition and polymer science.

  18. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  19. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries.

  20. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  1. Active media for tunable lasers based on hybrid polymers

    SciTech Connect

    Kopylova, T N; Eremina, N S; Vaitulevich, E A; Samsonova, L G; Maier, G V; Tel'minov, E N; Solodova, T A; Solodov, A M

    2008-02-28

    The lasing properties of rhodamine 6G (chloride and perchlorate) in synthesised hybrid polymers based on an organic polymer (methyl methacrylate with hydroxyethyl methacrylate) and an inorganic precursor (tetraethoxysilane) are studied. Rhodamine 6G samples were transversely pumped by the second harmonic of a Nd{sup 3+}:YAG laser. It is found that the active media based on hybrid polymers have a considerably longer service life compared to the active media based on organic polymers. The structure of the hybrid polymer is studied by the methods of IR Fourier spectroscopy, X-ray diffraction, and thermogravimetry. It is shown that the longer service life of hybrid-polymer active media is explained by the formation of an inorganic nanostructure network in them, which improves the thermooptic properties of the material and reduces the efficiency of thermal decomposition of active molecules. (lasers. amplifiers)

  2. Lignin-Based Triple Shape Memory Polymers.

    PubMed

    Sivasankarapillai, Gopakumar; Li, Hui; McDonald, Armando G

    2015-09-14

    Lignin-based triple shape memory polymers comprised of both permanent covalent cross-links and physical cross-links have been synthesized. A mixing phase with poly(ester-amine) and poly(ester-amide) network having two distinct glass transitions was hot mixed with more structurally homogenized methanol soluble lignin fraction by one-pot, two-step method. Triple shape properties arise from the combined effect of the glass transition of polyester copolymers and lignin and the dissociation of self-complementary hydrogen bonding and cross-link density. The percentage of recovery in each stage was investigated and it was proved that the first recovery is related with lignin-poly(ester-amine) rich network and the second recovery stage is related with lignin-poly(ester-amide) rich network. The thermal and mechanical properties of the lignin-copolymer networks were also investigated using differential scanning calorimetry and dynamic mechanical analysis.

  3. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  4. CT-based manual segmentation and evaluation of paranasal sinuses.

    PubMed

    Pirner, S; Tingelhoff, K; Wagner, I; Westphal, R; Rilk, M; Wahl, F M; Bootz, F; Eichhorn, Klaus W G

    2009-04-01

    Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots' workspace definition. A total of 50 preselected CT datasets were each segmented in 150-200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8-10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm(3), left side 17.9 cm(3), right frontal sinus 4.2 cm(3), left side 4.0 cm(3), total frontal sinuses 7.9 cm(3), sphenoid sinus right side 5.3 cm(3), left side 5.5 cm(3), total sphenoid sinus volume 11.2 cm(3). Our manually segmented 3D-models present the patient's individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot's maximum distance to the segmented border can be adjusted according to the differently colored areas.

  5. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    PubMed

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems. PMID:27326694

  6. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    PubMed

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems.

  7. NIPAM polymer gel dosimetry for IMRT four-field box irradiation using optical-CT scanner

    NASA Astrophysics Data System (ADS)

    Yao, C. H.; Hsu, W. T.; Hsu, S. M.; Ma, P. Y. L.; Hsieh, B. T.; Chang, Y. J.

    2013-06-01

    The study assessed the dosimetric characteristics of the N-isopropylacrylamide (NIPAM) polymer gel dosimeter. Experiments on the intra-dosimeter consistency and reproducibility of NIPAM polymer gels were performed. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated using the four-field box treatment with a field size of 3 cm × 3 cm. A fast, optical computerized tomography scanner was used to scan the gel phantoms. The results showed that the dose profiles were consistent at various depths. The isodose lines agreed quantitatively with the calculated TPS dose and the measured NIPAM polymer gel dose within the 30 to 90 percentage isodose lines. In addition, the Gamma pass rates were determined to be 94.9%, 95.2%, and 95.7% at depths of 40 mm, 45 mm, and 50 mm, respectively, using 5% dose difference and 5 mm distance-to-agreement criteria. Using the same Gamma criteria, the Gamma pass rates were 95.1%, 95.3%, and 95.7% for the three replicated. The results indicated that the NIPAM polymer gel dosimeter was stable and reliable. The dosimetric characteristics highlighted the potential of NIPAM polymer gel dosimeter in radiotherapy.

  8. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  9. Comparison between x-ray tube-based and synchrotron radiation-based μCT

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Brockdorf, Kathleen; Drews, Susanne; Müller, Bert; Donath, Tilman; Herzen, Julia; Beckmann, Felix

    2008-08-01

    Nowadays, X-ray tube-based high-resolution CT systems are widely used in scientific research and industrial applications. But the potential, convenience and economy of these lab systems is often underestimated. The present paper shows the comparison of sophisticated conventional μCT with synchrotron radiation-based μCT (SRμCT). The different aspects and characteristics of both approaches like spatial and density resolution, penetration depth, scanning time or sample size is described in detail. The tube-based μCT measurements were performed with a granite-based nanotom®-CT system (phoenix|x-ray, Wunstorf, Germany) equipped with a 180 kV - 15 W high-power nanofocus® tube with tungsten or molybdenum targets. The tube offers a wide range of applications from scanning low absorbing samples in nanofocus® mode with voxel sizes below 500 nm and highly absorbing objects in the high power mode with focal spot and voxel sizes of a few microns. The SRμCT measurements were carried out with the absorption contrast set-up at the beamlines W 2 and BW 2 at HASYLAB/DESY, operated by the GKSS Research Center. The range of samples examined covers materials of very different absorption levels and related photon energies for the CT scans. Both quantitative and qualitative comparisons of CT scans using biomedical specimens with rather low X-ray absorption such as parts of the human spine as well as using composites from the field of materials science are shown.

  10. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    PubMed

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes.

  11. Polymer Based Nanocomposites for Solar Energy Conversion

    SciTech Connect

    Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

    2005-01-01

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

  12. Molecular cloning of protein-based polymers.

    PubMed

    Mi, Lixin

    2006-07-01

    Protein-based biopolymers have become a promising class of materials for both biomedical and pharmaceutical applications, as they have well-defined molecular weights, monomer compositions, as well as tunable chemical, biological, and mechanical properties. Using standard molecular biology tools, it is possible to design and construct genes encoding artificial proteins or protein-based polymers containing multiple repeats of amino acid sequences. This article reviews some of the traditional methods used for constructing DNA duplexes encoding these repeat-containing genes, including monomer generation, concatemerization, iterative oligomerization, and seamless cloning. A facile and versatile method, called modules of degenerate codons (MDC), which uses PCR and codon degeneracy to overcome some of the disadvantages of traditional methods, is introduced. Re-engineering of the random coil spacer domain of a bioactive protein, WPT2-3R, is used to demonstrate the utility of the MDC method. MDC re-constructed coding sequences facilitate further manipulations, such as insertion, deletion, and swapping of various sequence modules. A summary of some promising emerging techniques for synthesizing repetitive sequence-containing artificial proteins is also provided. PMID:16827576

  13. Polymer based interfaces as bioinspired 'smart skins'.

    PubMed

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction.

  14. Superacid-Based Lithium Salts For Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  15. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    SciTech Connect

    Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.

  16. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    SciTech Connect

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan; Kumar, Rajesh

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm

  17. Interfacial Aspects of Polymer Based Photovoltaic Structures

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    2011-03-01

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. Poly(3- hexylthiophene) and [6,6]-penyl-C61 butyric acid methyl ester (P3HT:PCBM) based solar cell performance is dictated by nanostructure of the active layer, the interfaces between the active layer and the electrodes, and the P3HT chain orientation in the thin film. The above parameters were systematically studied by scanning transmission electron microscopy, scanning force microscopy, optical microscopy, grazing incident angle x- ray diffraction., dynamic secondary ion mass spectroscopy and near edge x-ray absorption fine structure analysis. The influence of thermal annealing on the morphology, interfaces and crystal structure was investigated in films that were either initially confined by two electrodes or confined by only one electrode. While the bulk morphology in these films were identical, significant differences in the concentration of components at the electrode interfaces were found, giving rise to a marked difference in performance. In addition, a model was established, based on the crystallization of the P3HTand the diffusion of the PCBM to describe the origins of the nanoscale morphology found in the active layer. The device performance parameters were quantitatively studied. In collaboration with D. Chen, H. Liu, Y. Gu and F. Lu at UMass Amherst, A. Nakahara at Kuraray Co., D. Wei at Carl Zeiss NTS LLC, D. Nordlund at SSRL and supported by the DOE-supported EFRC at the UMass Amherst (DE-PS02-08ER15944).

  18. Conducting Polymer Based Nucleic Acid Sensor for Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi Dhar; Prabhakar, Nirmal; Solanki, Pratima R.

    Nucleic acid sensor based on polyaniline has been fabricated by covalently immobilizing double stranded calf thymus (dsCT) DNA onto perchlorate (ClO-4) doped polyaniline (PANI) film deposited onto indium-tin-oxide (ITO) glass plate using 1-(3-(dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS) chemistry. These dsCT-DNA-PANI/ITO and PANI/ITO electrodes have been characterized using square wave voltammetry, electrochemical impedance, and Fourier-transform-infra-red (FTIR) measurements. This disposable dsCT-DNA-PANI/ITO bioelectrode is stable for about four months, can be used to detect arsenic trioxide (0.1ppm) in 30s.

  19. Optical sensor based on sensitive polymer layer

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Müller, Ralf; Brodersen, Olaf; Mohr, Gerhard J.

    2008-11-01

    In chemical, oil, and food industries, there are still higher requirements on miniaturization of optical sensors for a concentration measurement of gases e.g. a CO2, O2, and NH3. The paper deals with development of miniaturised optical sensor for an aqueous carbon dioxide measurement using a sensitive polymer layer. The optical sensor module consists of two parts, a remission sensor and a removable layered structure (with incorporated dyed polymer) which is closely placed on the surface of a remission sensor. A dyed polymer film is used as an optical-chemical transducer working on a principle of colour changes caused by a chemical reaction of an analyte and indicator dye. A novel remission sensor module was developed for an evaluation of the spectral absorption changes of sensitive polymer layer. The remission sensor module composed of LED diodes located in a central cavity of the sensor module and PIN diodes situated around the cavity. The LEDs emit light with optimised wavelengths and irradiate the polymer film. Light response (the changes of the spectral absorption) of the irradiated polymer film is detected by PIN diodes. A colour shift is further analyzed and evaluated by electronics without using a photometer.

  20. Nonlocal means-based regularizations for statistical CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Ma, Jianhua; Liu, Yan; Han, Hao; Li, Lihong; Wang, Jing; Liang, Zhengrong

    2014-03-01

    Statistical iterative reconstruction (SIR) methods have shown remarkable gains over the conventional filtered backprojection (FBP) method in improving image quality for low-dose computed tomography (CT). They reconstruct the CT images by maximizing/minimizing a cost function in a statistical sense, where the cost function usually consists of two terms: the data-fidelity term modeling the statistics of measured data, and the regularization term reflecting a prior information. The regularization term in SIR plays a critical role for successful image reconstruction, and an established family of regularizations is based on the Markov random field (MRF) model. Inspired by the success of nonlocal means (NLM) algorithm in image processing applications, we proposed, in this work, a family of generic and edgepreserving NLM-based regularizations for SIR. We evaluated one of them where the potential function takes the quadratic-form. Experimental results with both digital and physical phantoms clearly demonstrated that SIR with the proposed regularization can achieve more significant gains than SIR with the widely-used Gaussian MRF regularization and the conventional FBP method, in terms of image noise reduction and resolution preservation.

  1. Norbornene-Based Polymer Electrolytes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Cheung, Iris; Smart, Marshall; Prakash, Surya; Miyazawa, Akira; Hu, Jinbo

    2007-01-01

    Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors. Single-ion-conducting polymers that can be used in lithium cells have long been sought. Single-ion conductors are preferred to multiple-ion conductors as solid electrolytes because concentration gradients associated with multiple-ion conduction lead to concentration polarization. By minimizing concentration polarization, one can enhance charge and discharge rates. Norbornene sulfonic acid esters have been synthesized by a ring-opening metathesis polymerization technique, using ruthenium-based catalysts. The resulting polymer structures (see figure) include sulfonate ionomers attached to the backbones of the polymer molecules. These molecules are single-ion conductors in that they conduct mobile Li+ ions only; the SO3 anions in these polymers, being tethered to the backbones, do not contribute to ionic conduction. This molecular system is especially attractive in that it is highly amenable to modification through functionalization of the backbone or copolymerization with various monomers. Polymers of this type have been blended with poly(ethylene oxide) to lend mechanical integrity to free-standing films, and the films have been fabricated into solid polymer electrolytes. These electrolytes have been demonstrated to exhibit conductivity of 2 10(exp -5)S/cm (which is high, relative to the conductivities of other solid electrolytes) at ambient temperature, plus acceptably high stability. This type of norbornene-based polymeric solid electrolyte is in the early stages of development. Inasmuch as the method of synthesis of these polymers is inherently flexible and techniques for the fabrication of the polymers into solid electrolytes are amenable to optimization, there is reason to anticipate further improvements.

  2. Cationic Polymer Based Gene Delivery: Uptake and Intracellular Trafficking

    NASA Astrophysics Data System (ADS)

    Ho, Yoonkhei; Too, Heng-Phon

    2014-04-01

    To date, low transfection efficiency remains the major drawback of polymer based gene delivery. Many cell types including stem cells, fibroblast and neurons are known to be poorly transfected with polymer based gene carriers and the high toxicity severely restrict their utility in gene delivery. Continual efforts are made to identify cellular barriers to efficient transfection as these carriers have low immunogenicity, ease of manufacturing and scalability. Here, we summarize the current status of understanding on uptake mechanism of polymer-DNA complexes (polyplexes), their endosomal escape, cytosolic transport and nuclear entry of pDNA.

  3. A stationary wavelet transform based approach to registration of planning CT and setup cone beam-CT images in radiotherapy.

    PubMed

    Deng, Jun-Min; Yue, Hai-Zhen; Zhuo, Zhi-Zheng; Yan, Hua-Gang; Liu, Di; Li, Hai-Yun

    2014-05-01

    Image registration between planning CT images and cone beam-CT (CBCT) images is one of the key technologies of image guided radiotherapy (IGRT). Current image registration methods fall roughly into two categories: geometric features-based and image grayscale-based. Mutual information (MI) based registration, which belongs to the latter category, has been widely applied to multi-modal and mono-modal image registration. However, the standard mutual information method only focuses on the image intensity information and overlooks spatial information, leading to the instability of intensity interpolation. Due to its use of positional information, wavelet transform has been applied to image registration recently. In this study, we proposed an approach to setup CT and cone beam-CT (CBCT) image registration in radiotherapy based on the combination of mutual information (MI) and stationary wavelet transform (SWT). Firstly, SWT was applied to generate gradient images and low frequency components produced in various levels of image decomposition were eliminated. Then inverse SWT was performed on the remaining frequency components. Lastly, the rigid registration of gradient images and original images was implemented using a weighting function with the normalized mutual information (NMI) being the similarity measure, which compensates for the lack of spatial information in mutual information based image registration. Our experiment results showed that the proposed method was highly accurate and robust, and indicated a significant clinical potential in improving the accuracy of target localization in image guided radiotherapy (IGRT).

  4. Atomistic simulation of graphene-based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-05-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  5. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  6. Polymer composites based on gypsum matrix

    NASA Astrophysics Data System (ADS)

    Mucha, Maria; Mróz, Patrycja; Kocemba, Aleksandra

    2016-05-01

    The role of polymers as retarder additives is to prolong the workability connected with setting time of gypsum. Various cellulose derivatives, soluble in water in concentration up to 1,5% by weight were applied taking different water/binder ratio. The hydration process of calcium sulfate hemihydrate (gypsum binder) into dihydrate (gypsum plaster) was observed by setting and calorimetric techniques. Scanning electron microscopy confirmed that the gypsum microstructure was varied when polymers are used. The mechanical properties of gypsum plasters were studied by bending strength test and they are correlated with sample microstructure

  7. Machine-learning based comparison of CT-perfusion maps and dual energy CT for pancreatic tumor detection

    NASA Astrophysics Data System (ADS)

    Goetz, Michael; Skornitzke, Stephan; Weber, Christian; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Stiller, Wolfram; Maier-Hein, Klaus H.

    2016-03-01

    Perfusion CT is well-suited for diagnosis of pancreatic tumors but tends to be associated with a high radiation exposure. Dual-energy CT (DECT) might be an alternative to perfusion CT, offering correlating contrasts while being acquired at lower radiation doses. While previous studies compared intensities of Dual Energy iodine maps and CT-perfusion maps, no study has assessed the combined discriminative power of all information that can be generated from an acquisition of both functional imaging methods. We therefore propose the use of a machine learning algorithm for assessing the amount of information that becomes available by the combination of multiple images. For this, we train a classifier on both imaging methods, using a new approach that allows us to train only from small regions of interests (ROIs). This makes our study comparable to other - ROI-based analysis - and still allows comparing the ability of both classifiers to discriminate between healthy and tumorous tissue. We were able to train classifiers that yield DICE scores over 80% with both imaging methods. This indicates that Dual Energy Iodine maps might be used for diagnosis of pancreatic tumors instead of Perfusion CT, although the detection rate is lower. We also present tumor risk maps that visualize possible tumorous areas in an intuitive way and can be used during diagnosis as an additional information source.

  8. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    PubMed

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  9. Vegetable-oil-based polymers as future polymeric biomaterials.

    PubMed

    Miao, Shida; Wang, Ping; Su, Zhiguo; Zhang, Songping

    2014-04-01

    Vegetable oils are one of the most important classes of bio-resources for producing polymeric materials. The main components of vegetable oils are triglycerides - esters of glycerol with three fatty acids. Several highly reactive sites including double bonds, allylic positions and the ester groups are present in triglycerides from which a great variety of polymers with different structures and functionalities can be prepared. Vegetable-oil-based polyurethane, polyester, polyether and polyolefin are the four most important classes of polymers, many of which have excellent biocompatibilities and unique properties including shape memory. In view of these characteristics, vegetable-oil-based polymers play an important role in biomaterials and have attracted increasing attention from the polymer community. Here we comprehensively review recent developments in the preparation of vegetable-oil-based polyurethane, polyester, polyether and polyolefin, all of which have potential applications as biomaterials.

  10. Optimal ''image-based'' weighting for energy-resolved CT

    SciTech Connect

    Schmidt, Taly Gilat

    2009-07-15

    This paper investigates a method of reconstructing images from energy-resolved CT data with negligible beam-hardening artifacts and improved contrast-to-nosie ratio (CNR) compared to conventional energy-weighting methods. Conceptually, the investigated method first reconstructs separate images from each energy bin. The final image is a linear combination of the energy-bin images, with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image. The investigated weighting method is referred to as ''image-based'' weighting, although, as will be described, the weights can be calculated and the energy-bin data combined prior to reconstruction. The performance of optimal image-based energy weighting with respect to CNR and beam-hardening artifacts was investigated through simulations and compared to that of energy integrating, photon counting, and previously studied optimal ''projection-based'' energy weighting. Two acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-resolving detector was simulated with five energy bins. Four methods of estimating the optimal weights were investigated, including task-specific and task-independent methods and methods that require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal image-based weighting improved the CNR compared to energy-integrating weighting by factors of 1.15-1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal image-based weighting reduced the cupping to 0.6%. Overall, optimal image-based energy weighting

  11. Estimation of Radiation Dose in CT Based on Projection Data.

    PubMed

    Tian, Xiaoyu; Yin, Zhye; De Man, Bruno; Samei, Ehsan

    2016-10-01

    Managing and optimizing radiation dose has become a core problem for the CT community. As a fundamental step for dose optimization, accurate and computationally efficient dose estimates are crucial. The purpose of this study was to devise a computationally efficient projection-based dose metric. The absorbed energy and object mass were individually modeled using the projection data. The absorbed energy was estimated using the difference between intensity of the primary photon and the exit photon. The mass was estimated using the volume under the attenuation profile. The feasibility of the approach was evaluated across phantoms with a broad size range, various kVp settings, and two bowtie filters, using a simulation tool, the Computer Assisted Tomography SIMulator (CATSIM) software. The accuracy of projection-based dose estimation was validated against Monte Carlo (MC) simulations. The relationship between projection-based dose metric and MC dose estimate was evaluated using regression models. The projection-based dose metric showed a strong correlation with Monte Carlo dose estimates (R (2) > 0.94). The prediction errors for the projection-based dose metric were all below 15 %. This study demonstrated the feasibility of computationally efficient dose estimation requiring only the projection data.

  12. Li conductivity in siloxane-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Stacy, Eric; Fan, Fei; Feng, Hongbo; Gainaru, Catalin; Mays, Jimmy; Sokolov, Alexei

    Polymer electrolytes containing lithium ions are ideal candidates for electrochemical devices and energy storage applications. Understanding their ionic transport mechanism is the key for rational designing of highly conductive polymer matrices. Complementing dielectric spectroscopy investigations by results from rheology and differential scanning calorimetry we focused on the interplay between dynamics of lithium ions and the polymer matrix based on polysiloxane backbone. Our results demonstrate that the conductivity and the degree of decoupling between ion dynamics and structural relaxation depend strongly not only on the ions concentration, but also on the polarity and size of the polymeric side-groups. Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

  13. A novel supramolecular polymer gel constructed by crosslinking pillar[5]arene-based supramolecular polymers through metal-ligand interactions.

    PubMed

    Wang, Pi; Xing, Hao; Xia, Danyu; Ji, Xiaofan

    2015-12-21

    A novel heteroditopic A-B monomer was synthesized and used to construct linear supramolecular polymers utilizing pillar[5]arene-based host-guest interactions. Specifically, upon addition of Cu(2+) ions, the supramolecular polymer chains are crosslinked through metal-ligand interactions, resulting in the formation of a supramolecular polymer gel. Interestingly, this self-organized supramolecular polymer can be used as a novel fluorescent sensor for detecting Cu(2+) ions. PMID:26466511

  14. A self-sensing fiber reinforced polymer composite using mechanophore-based smart polymer

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Liu, Yingtao; Chattopadhyay, Aditi; Dai, Lenore

    2015-04-01

    Polymer matrix composites (PMCs) are ubiquitous in engineering applications due to their superior mechanical properties at low weight. However, they are susceptible to damage due to their low interlaminar mechanical properties and poor heat and charge transport in the transverse direction to the laminate. Moreover, methods to inspect and ensure the reliability of composites are expensive and labor intensive. Recently, mechanophore-based smart polymer has attracted significant attention, especially for self-sensing of matrix damage in PMCs. A cyclobutane-based self-sensing approach using 1,1,1-tris (cinnamoyloxymethyl) ethane (TCE) and poly (vinyl cinnamate) (PVCi) has been studied in this paper. The self-sensing function was investigated at both the polymer level and composite laminate level. Fluorescence emissions were observed on PMC specimens subjected to low cycle fatigue load, indicating the presence of matrix cracks. Results are presented for graphite fiber reinforced composites.

  15. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  16. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  17. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  18. Microparticles prepared from sulfenamide-based polymers

    PubMed Central

    D’Mello, Sheetal R.; Yoo, Jun; Bowden, Ned B.; Salem, Aliasger K.

    2015-01-01

    Polysulfenamides (PSN), with a SN linkage (RSNR2) along the polymer backbone, are a new class of biodegradable and biocompatible polymers. These polymers were unknown prior to 2012 when their synthesis and medicinally relevant properties were reported. The aim of this study was to develop microparticles as a controlled drug delivery system using polysulfenamide as the matrix material. The microparticles were prepared by a water-in-oil-in-water double emulsion solvent evaporation method. For producing drug-loaded particles, FITC-dextran was used as a model hydrophilic compound. At the optimal formulation conditions, the external morphology of the PSN microparticles was examined by scanning electron microscopy to show the formation of smooth-surfaced spherical particles with low polydispersity. The microparticles had a net negative surface charge (−23 mV) as analyzed by the zetasizer. The drug encapsulation efficiency of the particles and the drug loading were found to be dependent on the drug molecular weight, amount of FITC-dextran used in fabricating FITC-dextran loaded microparticles, concentration of PSN and surfactant, and volume of the internal and external water phases. FITC-dextran was found to be distributed throughout the PSN microparticles and was released in an initial burst followed by more continuous release over time. Confocal laser scanning microscopy was used to qualitatively observe the cellular uptake of PSN microparticles and indicated localization of the particles in both the cytoplasm and the nucleus. PMID:23862723

  19. A limited-angle CT reconstruction method based on anisotropic TV minimization

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge

    2013-04-01

    This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.

  20. Estimation of critical conditions of polymers based on monitoring the polymer recovery.

    PubMed

    Bhati, S S; Macko, T; Brüll, R

    2016-06-17

    Liquid chromatography at critical conditions (LCCC) is a very attractive chromatographic technique on the border between the size exclusion and liquid adsorption mode of the liquid chromatography. The strong interest in LCCC arises from the fact that it is well suited to analyze the block lengths in segmented copolymers or the heterogeneities with regard to end groups present, for example, in functionalized polymers e.g., telechelics. In this paper a new method for identification of the critical conditions of synthetic polymers is proposed, which requires only one polymer sample with higher molar mass. The method is based on monitoring the recovery of the polymer sample from a column. The composition of the mobile phase is modified until the polymer sample is fully recovered from the column. The corresponding composition of the mobile phase is composition corresponding to LCCC. This new method was applied for the determination of critical conditions for polyethylene, syndiotactic polypropylene and isotactic polypropylene. The results of the new method will be compared to those of classical approaches and advantages will be pointed out.

  1. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells.

    PubMed

    Hu, Huawei; Jiang, Kui; Yang, Guofang; Liu, Jing; Li, Zhengke; Lin, Haoran; Liu, Yuhang; Zhao, Jingbo; Zhang, Jie; Huang, Fei; Qu, Yongquan; Ma, Wei; Yan, He

    2015-11-11

    We report a series of difluorobenzothiadizole (ffBT) and oligothiophene-based polymers with the oligothiophene unit being quaterthiophene (T4), terthiophene (T3), and bithiophene (T2). We demonstrate that a polymer based on ffBT and T3 with an asymmetric arrangement of alkyl chains enables the fabrication of 10.7% efficiency thick-film polymer solar cells (PSCs) without using any processing additives. By decreasing the number of thiophene rings per repeating unit and thus increasing the effective density of the ffBT unit in the polymer backbone, the HOMO and LUMO levels of the T3 polymers are significantly deeper than those of the T4 polymers, and the absorption onset of the T3 polymers is also slightly red-shifted. For the three T3 polymers obtained, the positions and size of the alkyl chains play a critical role in achieving the best PSC performances. The T3 polymer with a commonly known arrangement of alkyl chains (alkyl chains sitting on the first and third thiophenes in a mirror symmetric manner) yields poor morphology and PSC efficiencies. Surprisingly, a T3 polymer with an asymmetric arrangement of alkyl chains (which is later described as having an "asymmetric bi-repeating unit") enables the best-performing PSCs. Morphological studies show that the optimized ffBT-T3 polymer forms a polymer:fullerene morphology that differs significantly from that obtained with T4-based polymers. The morphological changes include a reduced domain size and a reduced extent of polymer crystallinity. The change from T4 to T3 comonomer units and the novel arrangement of alkyl chains in our study provide an important tool to tune the energy levels and morphological properties of donor polymers, which has an overall beneficial effect and leads to enhanced PSC performance.

  2. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates.

    PubMed

    Jiang, Yanyan; Stenzel, Martina

    2016-06-01

    Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA.

  3. Network-based reading system for lung cancer screening CT

    NASA Astrophysics Data System (ADS)

    Fujino, Yuichi; Fujimura, Kaori; Nomura, Shin-ichiro; Kawashima, Harumi; Tsuchikawa, Megumu; Matsumoto, Toru; Nagao, Kei-ichi; Uruma, Takahiro; Yamamoto, Shinji; Takizawa, Hotaka; Kuroda, Chikazumi; Nakayama, Tomio

    2006-03-01

    This research aims to support chest computed tomography (CT) medical checkups to decrease the death rate by lung cancer. We have developed a remote cooperative reading system for lung cancer screening over the Internet, a secure transmission function, and a cooperative reading environment. It is called the Network-based Reading System. A telemedicine system involves many issues, such as network costs and data security if we use it over the Internet, which is an open network. In Japan, broadband access is widespread and its cost is the lowest in the world. We developed our system considering human machine interface and security. It consists of data entry terminals, a database server, a computer aided diagnosis (CAD) system, and some reading terminals. It uses a secure Digital Imaging and Communication in Medicine (DICOM) encrypting method and Public Key Infrastructure (PKI) based secure DICOM image data distribution. We carried out an experimental trial over the Japan Gigabit Network (JGN), which is the testbed for the Japanese next-generation network, and conducted verification experiments of secure screening image distribution, some kinds of data addition, and remote cooperative reading. We found that network bandwidth of about 1.5 Mbps enabled distribution of screening images and cooperative reading and that the encryption and image distribution methods we proposed were applicable to the encryption and distribution of general DICOM images via the Internet.

  4. Task-based optimization of image reconstruction in breast CT

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  5. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  6. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  7. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  8. Improved Tumor Targeting of Polymer-based Nanovesicles Using Polymer-Lipid Blends

    PubMed Central

    Cheng, Zhiliang; Elias, Drew R.; Kamat, Neha P.; Johnston, Eric D.; Poloukhtine, Andrei; Popik, Vladimir; Hammer, Daniel A.; Tsourkas, Andrew

    2011-01-01

    Block copolymer-based vesicles have recently garnered a great deal of interest as nanoplatforms for drug delivery and molecular imaging applications due to their unique structural properties. These nanovesicles have been shown to direct their cargo to disease sites either through enhanced permeability and retention or even more efficiently via active targeting. Here we show that the efficacy of nanovesicle targeting can be significantly improved when prepared from polymer-lipid blends compared with block copolymer alone. Polymer-lipid hybrid nanovesicles were produced from the aqueous co-assembly of the diblock copolymer, poly(ethylene oxide)-block-polybutadiene (PEO-PBD), and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC). The PEG-based vesicles, 117 nm in diameter, were functionalized with either folic acid or anti-HER2/neu affibodies as targeting ligands to confer specificity for cancer cells. Our results revealed that nanovesicles prepared from polymer-lipid blends led to significant improvement in cell binding compared to nanovesicles prepared from block copolymer alone in both in vitro cell studies and murine tumor models. Therefore, it is envisioned that nanovesicles composed of polymer-lipid blends may constitute a preferred embodiment for targeted drug delivery and molecular imaging applications. PMID:21899335

  9. Web-based video monitoring of CT and MRI procedures

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Dahlbom, Magdalena; Kho, Hwa T.; Valentino, Daniel J.; McCoy, J. Michael

    2000-05-01

    A web-based video transmission of images from CT and MRI consoles was implemented in an Intranet environment for real- time monitoring of ongoing procedures. Images captured from the consoles are compressed to video resolution and broadcasted through a web server. When called upon, the attending radiologists can view these live images on any computer within the secured Intranet network. With adequate compression, these images can be displayed simultaneously in different locations at a rate of 2 to 5 images/sec through standard LAN. The quality of the images being insufficient for diagnostic purposes, our users survey showed that they were suitable for supervising a procedure, positioning the imaging slices and for routine quality checking before completion of a study. The system was implemented at UCLA to monitor 9 CTs and 6 MRIs distributed in 4 buildings. This system significantly improved the radiologists productivity by saving precious time spent in trips between reading rooms and examination rooms. It also improved patient throughput by reducing the waiting time for the radiologists to come to check a study before moving the patient from the scanner.

  10. Ring artifact corrections in flat-panel detector based cone beam CT

    NASA Astrophysics Data System (ADS)

    Anas, Emran Mohammad Abu; Kim, Jaegon; Lee, Soo Yeol; Hasan, Md. Kamrul

    2011-03-01

    The use of flat-panel detectors (FPDs) is becoming increasingly popular in the cone beam volume and multi-slice CT imaging. But due to the deficient semiconductor array processing, the diagnostic quality of the FPD-based CT images in both CT systems is degraded by different types of artifacts known as the ring and radiant artifacts. Several techniques have been already published in eliminating the stripe artifacts from the projection data of the multi-slice CT system or in other words, from the sinogram image with a view to suppress the ring and radiant artifacts from the 2-D reconstructed CT images. On the other hand, till now a few articles have been reported to remove the artifacts from the cone beam CT images. In this paper, an effective approach is presented to eliminate the artifacts from the cone beam projection data using the sinogram based stripe artifact removal methods. The improvement in the required diagnostic quality is achieved by applying them both in horizontal and vertical sinograms constituted sequentially from the stacked cone beam projections. Finally, some real CT images have been used to demonstrate the effectiveness of the proposed technique in eliminating the ring and radiant artifacts from the cone beam volume CT images. A comparative study with the conventional sinogram based approaches is also presented to see the effectiveness of the proposed technique.

  11. Polymer-based vehicles for therapeutic peptide delivery.

    PubMed

    Zhang, Jinjin; Desale, Swapnil S; Bronich, Tatiana K

    2015-01-01

    During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.

  12. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    SciTech Connect

    Yin, Zhye De Man, Bruno; Yao, Yangyang; Wu, Mingye; Montillo, Albert; Edic, Peter M.; Kalra, Mannudeep

    2015-05-15

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  13. Significantly elevated dielectric permittivity of Si-based semiconductor/polymer 2-2 composites induced by high polarity polymers

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-02-01

    To disclose the essential influence of polymer polarity on dielectric properties of polymer composites filled with semiconductive fillers, a series of Si-based semiconductor/polymer 2-2 composites in a series model was fabricated. The dielectric permittivity of composites is highly dependant on the polarity of polymer layers as well as the electron mobility in Si-based semiconductive sheets. The huge dielectric permittivity achieved in Si-based semiconductive sheets after being coated with high polarity polymer layers is inferred to originate from the strong induction of high polarity polymers. The increased mobility of the electrons in Si-based semiconductive sheets coated by high polarity polymer layers should be responsible for the significantly enhanced dielectric properties of composites. This could be facilely achieved by either increasing the polarity of polymer layers or reducing the percolative electric field of Si-based semiconductive sheets. The most promising 2-2 dielectric composite was found to be made of α-SiC with strong electron mobility and poly(vinyl alcohol) (PVA) with high polarity, and its highest permittivity was obtained as 372 at 100 Hz although the permittivity of α-SiC and PVA is 3-5 and 15, respectively. This work may help in the fabrication of high dielectric constant (high-k) composites by tailoring the induction effect of high polarity polymers to semiconductors.

  14. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers.

    PubMed

    Mu, Cheng; Liu, Peng; Ma, Wei; Jiang, Kui; Zhao, Jingbo; Zhang, Kai; Chen, Zhihua; Wei, Zhanhua; Yi, Ya; Wang, Jiannong; Yang, Shihe; Huang, Fei; Facchetti, Antonio; Ade, Harald; Yan, He

    2014-11-12

    All-polymer solar cells based on a pair of crystalline low-bandgap polymers (NT and N2200) are demonstrated to achieve a high short-circuit current density of 11.5 mA cm-2 and a power conversion efficiency of up to 5.0% under the standard AM1.5G spectrum with one sun intensity. The high performance of these NT:N2200-based cells can be attributed to the low optical bandgaps of the polymers and the reasonably high and balanced electron and hole mobilities of the NT:N2200 blends due to the crystalline nature of the two polymers.

  15. Competency Based Modular Experiments in Polymer Science and Technology.

    ERIC Educational Resources Information Center

    Pearce, Eli M; And Others

    1980-01-01

    Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)

  16. A Zn based coordination polymer exhibiting long-lasting phosphorescence.

    PubMed

    Cepeda, Javier; Sebastian, Eider San; Padro, Daniel; Rodríguez-Diéguez, Antonio; García, Jose A; Ugalde, Jesus M; Seco, Jose M

    2016-07-01

    A new Zn(ii) based coordination polymer (CP) built by the cohesive pilling of 2D Shubnikov type layers is reported. This material exhibits time dependent multicoloured emission, part of which shows a persistent green phosphorescence visible for up to two seconds to the naked eye, which originates from multiple charge transfer mechanisms. PMID:27297330

  17. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  18. DESIGN OF BIODEGRADATION EXPERIMENTS FOR FLUOROTELOMER-BASED POLYMERS

    EPA Science Inventory

    Fluorotelomer-based polymers (FBPs) are used in a wide variety of consumer products and are widely distributed throughout society. Accordingly, there is great interest in whether and how fast these materials might degrade in various environmental settings. A useful quality of FB...

  19. Large magnetoelectric response in multiferroic polymer-based composites

    NASA Astrophysics Data System (ADS)

    Nan, Ce-Wen; Cai, N.; Shi, Z.; Zhai, J.; Liu, G.; Lin, Y.

    2005-01-01

    A type of multiferroic polymer-based composite is presented which exhibits a giant magnetoelectric sensitivity. Such a multiferroic composite prepared via a simple low-temperature hot-molding technique for common polymer-based composites has a laminate structure with one lead-zirconate-titanate (PZT)/polyvinylidene-fluoride (PVDF) composite layer sandwiched between two TbDyFe alloy (Terfenol-D)/PVDF composite layers. The PZT/PVDF layer in the middle dominates the dielectric and piezoelectric behavior of the polymer based composites. The coupling elastic interaction between two outer Terfenol-D/PVDF layers and the middle PZT/PVDF layer in such polymer-based composites produces the giant magnetoelectric response as demonstrated by the experimental results, especially at high frequency at which the electromechanical resonance appears. The maximum magnetoelectric sensitivity of the composites can reach up to as high as about 300mV/cmOe at frequency below 50kHz and about 6000mV/cmOe at the resonance frequency of around 80kHz .

  20. Polysiloxane Based Interpenetrating Polymer Networks: synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Fichet, Odile; Vidal, Frédéric; Darras, Vincent; Boileau, Sylvie; Teyssié, Dominique

    This article summarizes a large amount of work carried out in our laboratory on polysiloxane based Interpenetrating Polymer Networks (IPNs). First, a polydimethylsiloxane (PDMS) network has been combined with a cellulose acetate butyrate (CAB) network in order to improve its mechanical properties. Second, a PDMS network was combined with a fluorinated polymer network. Thanks to a perfect control of the respective rates of formation of each network it has been possible to avoid polymer phase separation during the IPN synthesis. Physico-chemical analyses of these materials led to classify them as "true" IPNs according to Sperling's definition. In addition, synergy of the mechanical properties, on the one hand, and of the surface properties, on the other hand, was displayed.

  1. Polymer-based sensor array for phytochemical detection

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.

    2012-05-01

    Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.

  2. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  3. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  4. Metal artifacts reduction in x-ray CT based on segmentation and forward-projection.

    PubMed

    Nawaz, Shoukat; Fu, Jian; Fan, Dekai

    2014-01-01

    X-ray computed tomography (CT) is a powerful clinical diagnosis tool and has been used widely in many clinical and biological settings. Metal artifacts, caused by high density implants, are commonly encountered in clinical CT applications, thereby affecting the detection of abnormal structures and undermining CT's diagnostic value. In this paper, we developed a metal artifact reduction approach based on image segmentation and forward-projection. We further demonstrate the usefulness of our approach by using a biomedical specimen consisting of muscles, bones and metals. Our aim is to remove the inaccurate metal artifact pixels in the original CT slices and exactly reconstruct the soft-tissue using the forward projections with no metal information. During the reconstruction, artifacts are reduced by replacing the metal projection using the forward projection. The presented work is of interest for CT biomedical applications.

  5. Computerized methodology for micro-CT and histological data inflation using an IVUS based translation map.

    PubMed

    Athanasiou, Lambros S; Rigas, George A; Sakellarios, Antonis I; Exarchos, Themis P; Siogkas, Panagiotis K; Naka, Katerina K; Panetta, Daniele; Pelosi, Gualtiero; Vozzi, Federico; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I

    2015-10-01

    A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively). PMID:25771781

  6. Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas

    NASA Astrophysics Data System (ADS)

    Schena, E.; Saccomandi, P.; Giurazza, F.; Caponero, M. A.; Mortato, L.; Di Matteo, F. M.; Panzera, F.; Del Vescovo, R.; Beomonte Zobel, B.; Silvestri, S.

    2013-08-01

    Laser interstitial thermotherapy (LITT) is employed to destroy tumors in organs, and its outcome strongly depends on the temperature distribution inside the treated tissue. The recent introduction of computed tomography (CT) scan thermometry, based on the CT number dependence of the tissue with temperature, overcomes the invasiveness of other techniques used to monitor temperature during LITT. The averaged CT number (ROI = 0.02 cm2) of an ex vivo swine pancreas is monitored during LITT (Nd:YAG laser power of 3 W, treatment time: 120 s) at different distances from the applicator (from 4 to 30 mm). The averaged CT number shows a clear decrease during treatment: it is highest at 4 mm from the applicator (mean variation in the whole treatment of -0.256 HU s-1) and negligible at 30 mm, since the highest temperature increase is present close to the applicator (i.e., 45 °C at 4 mm and 25 °C at 6 mm). To obtain the relationship between CT numbers and pancreas temperature, the reference temperature was measured by 12 fiber Bragg grating sensors. The CT number decreases as a function of temperature, showing a nonlinear trend with a mean thermal sensitivity of -0.50 HU °C-1. Results here reported are the first assessment of pancreatic CT number dependence on temperature, at the best of our knowledge. Findings can be useful to further investigate CT scan thermometry during LITT on the pancreas.

  7. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  8. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    SciTech Connect

    Verhaart, René F. Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Lugt, Aad van der

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  9. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity

    NASA Astrophysics Data System (ADS)

    Koeva, V. I.; Olding, T.; Jirasek, A.; Schreiner, L. J.; McAuley, K. B.

    2009-05-01

    This study reports on efforts to increase the dose sensitivity of polymer gel dosimeters used in 3D radiation dosimetry. The potential of several different cosolvents is investigated, with the aim of increasing the solubility of N,N'-methylene-bisacrylamide crosslinker in polymer gel dosimeters. Glycerol and isopropanol increase the limit for the crosslinker solubility from approximately 3% to 5% and 10% by weight, respectively. This enables the manufacture of polymer gel dosimeters with much higher levels of crosslinking than was previously possible. New dosimeter recipes containing up to 5 wt% N,N'-methylene-bisacrylamide were subjected to spatially uniform radiation and were studied using nuclear magnetic resonance (NMR), as well as x-ray and optical CT techniques. The resulting dosimeters exhibit dose sensitivities that are up to 2.7 times higher than measured for a typical dosimeters with 3% N,N'-methylene-bisacrylamide without the addition of cosolvent. Two additional cosolvents (n-propanol and sec-butanol) were deemed unsuitable for practical dosimeters due to incompatibility with gelatin, cloudiness prior to irradiation, and immiscibility with water when large quantities of cosolvent were used. The dosimeters with high N,N'-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had high optical clarity prior to irradiation, but did not produce suitable optical CT results for non-uniformly irradiated gels due to polymer development outside of the high dose regions of the pencil beams and significant light scatter. Further experiments are required to determine whether cosolvents can be used to manufacture gels with sufficiently high dose sensitivity for readout using x-ray computed tomography.

  10. Polymer waveguide based hybrid opto-electric integration technology

    NASA Astrophysics Data System (ADS)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  11. Fluorescence-Tuned Polyhedral Oligomeric Silsesquioxane-Based Porous Polymers.

    PubMed

    Wang, Dengxu; Feng, Shengyu; Liu, Hongzhi

    2016-09-26

    Two series of new polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers, HPP-1 and HPP-2, have been prepared by the Heck reaction of octavinylsilsesquioxane with 2,2',7,7'-tetrabromo-9,9'-spirobifluorene and 1,3,6,8-tetrabromopyrene, respectively. Three sets of reaction conditions were employed to assess their effect on fluorescence. These materials exhibit tunable fluorescence from nearly no fluorescence to bright fluorescence both in the solid state and dispersed in ethanol under UV light irradiation by simply altering the reaction conditions. We speculated that the difference may be attributable to the fluorescence quenching induced by Et3 N, P(o-CH3 Ph)3 , and their hydrogen bromide salts employed in the reactions. This finding could give valuable suggestions for the construction of porous polymers with tunable/controllable fluorescence, especially those prepared by Heck and Sonogashira reactions in which these quenchers are used as organic bases or co-catalysts. In addition, the porosities can also be tuned, but different trends in porosity have been found in these two series of polymers, which suggests that various factors should be carefully considered in the preparation of porous polymers with tunable/controllable porosity. Furthermore, HPP-1 c showed moderate CO2 uptake and fluorescence that was efficiently quenched by nitroaromatic explosives, thereby indicating that these materials could be utilized as solid absorbents for the capture and storage of CO2 and as sensing agents for the detection of explosives. PMID:27533795

  12. Polymer-based chips for surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  13. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches.

    PubMed

    Fonte, Pedro; Araújo, Francisca; Silva, Cátia; Pereira, Carla; Reis, Salette; Santos, Hélder A; Sarmento, Bruno

    2015-11-01

    Diabetes mellitus is a high prevalence and one of the most severe and lethal diseases in the world. Insulin is commonly used to treat diabetes in order to give patients a better life condition. However, due to bioavailability problems, the most common route of insulin administration is the subcutaneous route, which may present patients compliance problems to treatment. The oral administration is thus considered the most convenient alternative to deliver insulin, but it faces important challenges. The low stability of insulin in the gastrointestinal tract and low intestinal permeation, are problems to overcome. Therefore, the encapsulation of insulin into polymer-based nanoparticles is presented as a good strategy to improve insulin oral bioavailability. In the last years, different strategies and polymers have been used to encapsulate insulin and deliver it orally. Polymers with distinct properties from natural or synthetic sources have been used to achieve this aim, and among them may be found chitosan, dextran, alginate, poly(γ-glutamic acid), hyaluronic acid, poly(lactic acid), poly(lactide-co-glycolic acid), polycaprolactone (PCL), acrylic polymers and polyallylamine. Promising studies have been developed and positive results were obtained, but there is not a polymeric-based nanoparticle system to deliver insulin orally available in the market yet. There is also a lack of long term toxicity studies about the safety of the developed carriers. Thus, the aims of this review are first to provide a deep understanding on the oral delivery of insulin and the possible routes for its uptake, and then to overview the evolution of this field in the last years of research of insulin-loaded polymer-based nanoparticles in the academic and industrial fields. Toxicity concerns of the discussed nanocarriers are also addressed. PMID:25728065

  14. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOEpatents

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  15. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites

    NASA Astrophysics Data System (ADS)

    Brigandi, Paul James

    The use of multiphase polymer blends provides unique morphologies and properties to reduce the percolation concentration and increase conductivity of carbon-based polymer composites. These systems offer improved conductivity, temperature stability and selective distribution of the conductive filler through unique morphologies at significantly lower conductive filler concentration. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The polymer blend phase morphology, filler distribution, electrical conductivity, and rheological properties of CB-filled PP/PMMA/EAA conductive polymer composites were determined. Thermodynamic and kinetic parameters were found to influence the morphology development and final composite properties. The morphology and CB distribution were found to be kinetically driven when annealed for a short period of time following the shear-intensive mixing process, whereas the three-phase polymer blend morphology is driven by thermodynamics when given sufficient time under high temperature annealing conditions in the melt state. At short annealing times, the CB distribution was influenced by the compounding sequence where the CB was added after being premixed with one of the polymer phases or directly added to the three phase polymer melt, but again was thermodynamically driven at longer annealing times with the CB migrating to the EAA phase. The resistivity was found to decrease by a statistically significant amount to similar levels for all of the composite systems with increasing annealing time, providing evidence of gradual phase coalescence to a tri-continuous morphology and CB migration. The addition of CB via the PP and EAA masterbatch results in significantly faster percolation and lower resistivity compared to when added direct to the system during compounding after 30 minutes annealing by a statistically significant amount. Dynamic oscillatory shear rheology using

  16. Detection of Primary Malignancy and Metastases with FDG PET/CT in Patients with Cholangiocarcinomas: Lesion-based Comparison with Contrast Enhanced CT

    PubMed Central

    Elias, Youssef; Mariano, Aladin T.; Lu, Yang

    2016-01-01

    The current National Comprehensive Cancer Network (NCCN) Guidelines consider the role of 2-deoxy-2-18F-fluoro-d-glucose positron emission tomography/computer tomography (FDG PET/CT) in the evaluation of cholangiocarcinoma (CCA) as "uncertain," and have recommended contrast enhanced computed tomography (CECT) but not FDG PET/CT as a routine imaging test for CCA workup. We set out to compare the diagnostic performance of FDG PET/CT and CECT in patients with CCA. The retrospective study included patients with CCA who underwent FDG PET/CT and CECT within 2-month interval between 2011 and 2013 in our hospital. Lesion-based comparison was conducted. Final diagnoses were made based on the composite clinical and imaging data with minimal 6-month follow-up. A total of 18 patients with 28-paired tests were included. There is a total of 142 true malignant lesions as revealed by the 6-paired pre-treatment and 22-paired post-treatment tests. On a lesion-based analysis, the sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and accuracies of PET/CT and CECT for detection of CCA were 96.5%, 55.5%, 97.2%, 50.0%, 94.1% and 62.2%, 66.7%, 96.7%, 10.0%, 62.5%, respectively. FDG PET/CT detected more intrahepatic malignant and extrahepatic metastases; and had significant higher sensitivity, NPV, and accuracy than CECT, while similar in specificity and PPV. No true positive lesion detected on CECT that was missed on PET/CT, and none of the false negative lesions on PET/CT were detected on CECT. Six patients had paired pretreatment tests, and FDG PET/CT results changed planned management in three patients. Our data suggest that FDG PET/CT detect more primary and metastatic lesions and lead to considerable changes in treatment plan in comparison with CECT. PMID:27651736

  17. Detection of Primary Malignancy and Metastases with FDG PET/CT in Patients with Cholangiocarcinomas: Lesion-based Comparison with Contrast Enhanced CT

    PubMed Central

    Elias, Youssef; Mariano, Aladin T.; Lu, Yang

    2016-01-01

    The current National Comprehensive Cancer Network (NCCN) Guidelines consider the role of 2-deoxy-2-18F-fluoro-d-glucose positron emission tomography/computer tomography (FDG PET/CT) in the evaluation of cholangiocarcinoma (CCA) as "uncertain," and have recommended contrast enhanced computed tomography (CECT) but not FDG PET/CT as a routine imaging test for CCA workup. We set out to compare the diagnostic performance of FDG PET/CT and CECT in patients with CCA. The retrospective study included patients with CCA who underwent FDG PET/CT and CECT within 2-month interval between 2011 and 2013 in our hospital. Lesion-based comparison was conducted. Final diagnoses were made based on the composite clinical and imaging data with minimal 6-month follow-up. A total of 18 patients with 28-paired tests were included. There is a total of 142 true malignant lesions as revealed by the 6-paired pre-treatment and 22-paired post-treatment tests. On a lesion-based analysis, the sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and accuracies of PET/CT and CECT for detection of CCA were 96.5%, 55.5%, 97.2%, 50.0%, 94.1% and 62.2%, 66.7%, 96.7%, 10.0%, 62.5%, respectively. FDG PET/CT detected more intrahepatic malignant and extrahepatic metastases; and had significant higher sensitivity, NPV, and accuracy than CECT, while similar in specificity and PPV. No true positive lesion detected on CECT that was missed on PET/CT, and none of the false negative lesions on PET/CT were detected on CECT. Six patients had paired pretreatment tests, and FDG PET/CT results changed planned management in three patients. Our data suggest that FDG PET/CT detect more primary and metastatic lesions and lead to considerable changes in treatment plan in comparison with CECT.

  18. Detection of Primary Malignancy and Metastases with FDG PET/CT in Patients with Cholangiocarcinomas: Lesion-based Comparison with Contrast Enhanced CT.

    PubMed

    Elias, Youssef; Mariano, Aladin T; Lu, Yang

    2016-09-01

    The current National Comprehensive Cancer Network (NCCN) Guidelines consider the role of 2-deoxy-2-(18)F-fluoro-d-glucose positron emission tomography/computer tomography (FDG PET/CT) in the evaluation of cholangiocarcinoma (CCA) as "uncertain," and have recommended contrast enhanced computed tomography (CECT) but not FDG PET/CT as a routine imaging test for CCA workup. We set out to compare the diagnostic performance of FDG PET/CT and CECT in patients with CCA. The retrospective study included patients with CCA who underwent FDG PET/CT and CECT within 2-month interval between 2011 and 2013 in our hospital. Lesion-based comparison was conducted. Final diagnoses were made based on the composite clinical and imaging data with minimal 6-month follow-up. A total of 18 patients with 28-paired tests were included. There is a total of 142 true malignant lesions as revealed by the 6-paired pre-treatment and 22-paired post-treatment tests. On a lesion-based analysis, the sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and accuracies of PET/CT and CECT for detection of CCA were 96.5%, 55.5%, 97.2%, 50.0%, 94.1% and 62.2%, 66.7%, 96.7%, 10.0%, 62.5%, respectively. FDG PET/CT detected more intrahepatic malignant and extrahepatic metastases; and had significant higher sensitivity, NPV, and accuracy than CECT, while similar in specificity and PPV. No true positive lesion detected on CECT that was missed on PET/CT, and none of the false negative lesions on PET/CT were detected on CECT. Six patients had paired pretreatment tests, and FDG PET/CT results changed planned management in three patients. Our data suggest that FDG PET/CT detect more primary and metastatic lesions and lead to considerable changes in treatment plan in comparison with CECT. PMID:27651736

  19. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  20. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  1. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  2. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  3. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  4. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    SciTech Connect

    Zhao, B; Tan, Y; Tsai, W; Lu, L; Schwartz, L; So, J; Goldman, J; Lu, Z

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six image series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to

  5. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  6. Segmentation of brain PET-CT images based on adaptive use of complementary information

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Wen, Lingfeng; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2009-02-01

    Dual modality PET-CT imaging provides aligned anatomical (CT) and functional (PET) images in a single scanning session, which can potentially be used to improve image segmentation of PET-CT data. The ability to distinguish structures for segmentation is a function of structure and modality and varies across voxels. Thus optimal contribution of a particular modality to segmentation is spatially variant. Existing segmentation algorithms, however, seldom account for this characteristic of PET-CT data and the results using these algorithms are not optimal. In this study, we propose a relative discrimination index (RDI) to characterize the relative abilities of PET and CT to correctly classify each voxel into the correct structure for segmentation. The definition of RDI is based on the information entropy of the probability distribution of the voxel's class label. If the class label derived from CT data for a particular voxel has more certainty than that derived from PET data, the corresponding RDI will have a higher value. We applied the RDI matrix to balance adaptively the contributions of PET and CT data to segmentation of brain PET-CT images on a voxel-by-voxel basis, with the aim to give the modality with higher discriminatory power a larger weight. The resultant segmentation approach is distinguished from traditional approaches by its innovative and adaptive use of the dual-modality information. We compared our approach to the non-RDI version and two commonly used PET-only based segmentation algorithms for simulation and clinical data. Our results show that the RDI matrix markedly improved PET-CT image segmentation.

  7. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  8. Magnetic Resonance Based Diagnostics for Polymer Production and Surveillance

    SciTech Connect

    Chinn, S; Herberg, J; Gjersing, E; Cook, A; Sawvel, A M; Maxwell, R; Wheeler, H; Wilson, M

    2006-09-27

    In an effort to develop a magnetic resonance based diagnostic tool to be used for polymer production and surveillance, we have investigated the use of magnetic resonance imaging (MRI) and unilateral relaxometry. MRI provides a spatial map of the polymer, which can be correlated to the structure heterogeneity. Though highly detailed information can be obtained with MRI, the high equipment cost and expertise required to operate the system makes it a poor choice for a production setting. Unilateral relaxometry via the NMR MOUSE provides rapid, inexpensive polymer screening, useful in the development in new polymer parts or to identify potentially defective components. The NMR ProFiler (originally called the NMR MOUSE) was procured by Kansas City originally for production support of the W80 LEP with future applications as a surveillance diagnostic. A robotic autosampler has been designed allowing the detection of several components without the need for any human interaction. A summary of the qualification experiments and results to date from the ProFiler and the robotic unit will be presented.

  9. Hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) polymers

    SciTech Connect

    Haddad, T.S.; Choe, E.; Lichtenhan, J.D.

    1996-12-31

    The authors have taken a unique approach to the synthesis and study of hybrid organic/inorganic materials. The method involves synthesizing nano-size inorganic P{sub 1}R{sub 7}Si{sub 8}O{sub 12} clusters which contain seven inert R groups for solubility and only one functional P group for polymerization. This strategy permits the synthesis of melt processable, linear hybrid polymers containing pendent inorganic clusters and allows one to study the effect these clusters have on chain motions and polymer properties. The synthesis of styrene-based polyhedral oligomeric silsesquioxane (POSS) macromers, their free radical homopolymerization and copolymerizations with varying amounts of 4-methylstyrene, and analysis of the effect of the pendent POSS group is presented. All of these polymers decompose under nitrogen between 365 and 400 C, and the glass transitions for these materials vary from around 110 C up to the decomposition point. Both T{sub dec} and T{sub g} increase with increasing POSS content. The shorter the spacer unit between the POSS group and the polymer chain the higher the T{sub g}. Interestingly, a slight change in the inert R groups on the POSS cluster has a large effect on the glass transition indicating that POSS-POSS interactions have an effect on chain mobility.

  10. Permeability of rayon based polymer composites

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    Several types of anomalous rayon based phenolic behavior have been observed in post-fired nozzles and exit cones. Many of these events have been shown to be related to the development of internal gas pressure within the material. The development of internal gas pressure is a function of the amount of gas produced within the material and the rate at which that gas is allowed to escape. The latter property of the material is referred to as the material's permeability. The permeability of two dimensional carbonized rayon based phenolic composites is a function of material direction, temperature, and stress/strain state. Recently significant differences in the permeability of these materials has been uncovered which may explain their inconsistent performance. This paper summarizes what is known about the permeability of these materials to date and gives possible implications of these finding to the performance of these materials in an ablative environment.

  11. Improving low-dose cardiac CT images using 3D sparse representation based processing

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Luo, Limin

    2015-03-01

    Cardiac computed tomography (CCT) has been widely used in diagnoses of coronary artery diseases due to the continuously improving temporal and spatial resolution. When helical CT with a lower pitch scanning mode is used, the effective radiation dose can be significant when compared to other radiological exams. Many methods have been developed to reduce radiation dose in coronary CT exams including high pitch scans using dual source CT scanners and step-and-shot scanning mode for both single source and dual source CT scanners. Additionally, software methods have also been proposed to reduce noise in the reconstructed CT images and thus offering the opportunity to reduce radiation dose while maintaining the desired diagnostic performance of a certain imaging task. In this paper, we propose that low-dose scans should be considered in order to avoid the harm from accumulating unnecessary X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. Accordingly, in this paper, a 3D dictionary representation based image processing method is proposed to reduce CT image noise. Information on both spatial and temporal structure continuity is utilized in sparse representation to improve the performance of the image processing method. Clinical cases were used to validate the proposed method.

  12. Edge extraction of CT medical image based on wavelet transform algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Li, Xinzheng; Lai, Weidong

    2011-06-01

    Since computer tomography (CT) image has been widely applied in clinic diagnostics, while for many applications the information directly provided by CT images is incomplete corrupted by noise or instrument defect, there has great demand to further the processing methods for improving the CT image quality. Among all image features, the edge profile of clinic focus has obvious influence on accurately translating CT image. In this paper, the wavelet filtering algorithm based on modulus maximum method is put forward to extract and enhance the CT image edges. Edges in the brain lobe CT image can be outlined after wavelet transform, during which the wavelet assigned as the first order derivative of Gauss function. Further manipulation through maximum threshold checking to the modulus have been attenuated the pseudo-edges. After segmented with the original CT image, the edge structure has been distinctly enhanced, and high contrast is achieved between the brain lobe microstructure and the artificially established edges. The proposed algorithm is more efficient than the common first order differential operator, for the latter it even deteriorates the edge features. The algorithm proposed in this article can be integrated in medical image analyzing software to obtain higher accuracy for symptom interpretation.

  13. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    PubMed Central

    Olding, Timothy; Holmes, Oliver; DeJean, Paul; McAuley, Kim B.; Nkongchu, Ken; Santyr, Giles; Schreiner, L. John

    2011-01-01

    This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM)-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI). For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low's gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery). When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low's gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a) from the same gel batch and (b) from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration. PMID:21430853

  14. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry.

    PubMed

    Olding, Timothy; Holmes, Oliver; Dejean, Paul; McAuley, Kim B; Nkongchu, Ken; Santyr, Giles; Schreiner, L John

    2011-01-01

    This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM)-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI). For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low's gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery). When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low's gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a) from the same gel batch and (b) from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration. PMID:21430853

  15. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  16. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  17. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  18. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  19. Nanostructured conducting polymer based reagentless capacitive immunosensor.

    PubMed

    Bandodkar, Amay Jairaj; Dhand, Chetna; Arya, Sunil K; Pandey, M K; Malhotra, Bansi D

    2010-02-01

    Nanostructured polyaniline (PANI) film electrophoretically fabricated onto indium-tin-oxide (ITO) coated glass plate has been utilized for development of an immunosensor based on capacitance change of a parallel plate capacitor (PPC) by covalently immobilizing anti-human IgG (Anti-HIgG) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. These fabricated PANI/ITO and Anti-HIgG/PANI/ITO plates have been characterized using scanning electron microscopy, cyclic voltammetry, differential pulse voltammetry and Fourier transform infra-red studies. The capacitance measurements indicate that dielectric medium of this biologically modified PPC (Anti-HIgG/PANI/ITO) is sensitive to HIgG in 5 - 5 x 10(5) ng mL(-1) range and has lower detection limit of 1.87 ng mL(-1). The observed results reveal that this Anti-HIgG modified PPC can be used as a robust, easy-to-use, reagentless, sensitive and selective immunosensor for estimation of human IgG.

  20. [A novel denoising approach to SVD filtering based on DCT and PCA in CT image].

    PubMed

    Feng, Fuqiang; Wang, Jun

    2013-10-01

    Because of various effects of the imaging mechanism, noises are inevitably introduced in medical CT imaging process. Noises in the images will greatly degrade the quality of images and bring difficulties to clinical diagnosis. This paper presents a new method to improve singular value decomposition (SVD) filtering performance in CT image. Filter based on SVD can effectively analyze characteristics of the image in horizontal (and/or vertical) directions. According to the features of CT image, we can make use of discrete cosine transform (DCT) to extract the region of interest and to shield uninterested region so as to realize the extraction of structure characteristics of the image. Then we transformed SVD to the image after DCT, constructing weighting function for image reconstruction adaptively weighted. The algorithm for the novel denoising approach in this paper was applied in CT image denoising, and the experimental results showed that the new method could effectively improve the performance of SVD filtering.

  1. Allowable forward model misspecification for accurate basis decomposition in a silicon detector based spectral CT.

    PubMed

    Bornefalk, Hans; Persson, Mats; Danielsson, Mats

    2015-03-01

    Material basis decomposition in the sinogram domain requires accurate knowledge of the forward model in spectral computed tomography (CT). Misspecifications over a certain limit will result in biased estimates and make quantum limited (where statistical noise dominates) quantitative CT difficult. We present a method whereby users can determine the degree of allowed misspecification error in a spectral CT forward model and still have quantification errors that are limited by the inherent statistical uncertainty. For a particular silicon detector based spectral CT system, we conclude that threshold determination is the most critical factor and that the bin edges need to be known to within 0.15 keV in order to be able to perform quantum limited material basis decomposition. The method as such is general to all multibin systems.

  2. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  3. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  4. Improved total variation based CT reconstruction algorithm with noise estimation

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Li, Liang; Shen, Le; Chen, Zhiqiang

    2012-10-01

    Nowadays a famous way to solve Computed Tomography (CT) inverse problems is to consider a constrained minimization problem following the Compressed Sensing (CS) theory. The CS theory proves the possibility of sparse signal recovery using under sampled measurements which gives a powerful tool for CT problems that have incomplete measurements or contain heavy noise. Among current CS reconstruction methods, one widely accepted reconstruction framework is to perform a total variation (TV) minimization process and a data fidelity constraint process in an alternative way by two separate iteration loops. However because the two processes are done independently certain misbalance may occur which leads to either over-smoothed or noisy reconstructions. Moreover, such misbalance is usually difficult to adjust as it varies according to the scanning objects and protocols. In our work we try to make good balance between the minimization and the constraint processes by estimating the variance of image noise. First, considering that the noise of projection data follows a Poisson distribution, the Anscombe transform (AT) and its inversion is utilized to calculate the unbiased variance of the projections. Second, an estimation of image noise is given through a noise transform model from projections to the image. Finally a modified CS reconstruction method is proposed which guarantees the desired variance on the reconstructed image thus prevents the block-wising or over-noised caused by misbalanced constrained minimizations. Results show the advantage in both image quality and convergence speed.

  5. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  6. Investigation of ITO free transparent conducting polymer based electrode

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  7. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  8. Polymer-based optical interconnects using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Boersma, Arjen; Wiegersma, Sjoukje; Offrein, Bert J.; Duis, Jeroen; Delis, Jos; Ortsiefer, Markus; van Steenberge, Geert; Karpinen, Mikko; van Blaaderen, Alfons; Corbett, Brian

    2013-02-01

    The increasing request for higher data speeds in the information and communication technology leads to continuously increasing performance of microprocessors. This has led to the introduction of optical data transmission as a replacement of electronic data transmission in most transmission applications longer than 10 meters. However, a need remains for optical data transmission for shorter distances inside the computer. This paper gives an overview of the Joint European project FIREFLY, in which new polymer based single mode waveguides are developed for integration with VCSELs, splitters and fibers that will be manufactured using multi-layer nanoimprint lithography (NIL). Innovative polymers, new applications of nano-technology, new methods for optical coupling between components, and the integration of all these new components are the technical ingredients of this ambitious project.

  9. Soft linear electroactive polymer actuators based on polypyrrole

    NASA Astrophysics Data System (ADS)

    Maziz, Ali; Khaldi, Alexandre; Persson, Nils-Krister; Jager, Edwin W. H.

    2015-04-01

    There is a growing demand for human-friendly robots that can interact and work closely with humans. Such robots need to be compliant, lightweight and equipped with silent and soft actuators. Electroactive polymers such as conducting polymers (CPs) are "smart" materials that deform in response to electrical simulation and are often addressed as artificial muscles due to their functional similarity with natural muscles. They offer unique possibilities and are perfect candidates for such actuators since they are lightweight, silent, and driven at low voltages. Most CP actuators are fabricated using electrochemical oxidative synthesis. We have developed new CP based fibres employing both vapour phase and liquid phase electrochemical synthesis. We will present the fabrication and characterisation of these fibres as well as their performance as linear actuators.

  10. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  11. Multifunctional non-viral delivery systems based on conjugated polymers.

    PubMed

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  12. Group-wise feature-based registration of CT and ultrasound images of spine

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Mousavi, Parvin; Hedjazi Moghari, Mehdi; Foroughi, Pezhman; Abolmaesumi, Purang

    2010-02-01

    Registration of pre-operative CT and freehand intra-operative ultrasound of lumbar spine could aid surgeons in the spinal needle injection which is a common procedure for pain management. Patients are always in a supine position during the CT scan, and in the prone or sitting position during the intervention. This leads to a difference in the spinal curvature between the two imaging modalities, which means a single rigid registration cannot be used for all of the lumbar vertebrae. In this work, a method for group-wise registration of pre-operative CT and intra-operative freehand 2-D ultrasound images of the lumbar spine is presented. The approach utilizes a pointbased registration technique based on the unscented Kalman filter, taking as input segmented vertebrae surfaces in both CT and ultrasound data. Ultrasound images are automatically segmented using a dynamic programming approach, while the CT images are semi-automatically segmented using thresholding. Since the curvature of the spine is different between the pre-operative and the intra-operative data, the registration approach is designed to simultaneously align individual groups of points segmented from each vertebra in the two imaging modalities. A biomechanical model is used to constrain the vertebrae transformation parameters during the registration and to ensure convergence. The mean target registration error achieved for individual vertebrae on five spine phantoms generated from CT data of patients, is 2.47 mm with standard deviation of 1.14 mm.

  13. What is the benefit of CT-based attenuation correction in myocardial perfusion SPET?

    PubMed

    Apostolopoulos, Dimitrios J; Savvopoulos, Christos

    2016-01-01

    In multimodality imaging, CT-derived transmission maps are used for attenuation correction (AC) of SPET or PET data. Regarding SPET myocardial perfusion imaging (MPI), however, the bene����t of CT-based AC (CT-AC) has been questioned. Although most attenuation-related artifacts are removed by this technique, new false defects may appear while some true perfusion abnormalities may be masked. The merits and the drawbacks of CT-AC in MPI SPET are reviewed and discussed in this editorial. In conclusion, CT-AC is most helpful in men, overweight in particular, and in those with low or low to intermediate pre-test probability of coronary artery disease (CAD). It is also useful for the evaluation of myocardial viability. In high-risk patients though, CT-AC may underestimate the presence or the extent of CAD. In any case, corrected and non-corrected images should be viewed side-by-side and both considered in the interpretation of the study. PMID:27331200

  14. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  15. Adaptive non-local means filtering based on local noise level for CT denoising

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando

    2012-03-01

    Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.

  16. Computer-aided diagnosis system for lung cancer based on retrospective helical CT image

    NASA Astrophysics Data System (ADS)

    Ukai, Yuji; Niki, Noboru; Satoh, Hitoshi; Eguchi, Kenji; Mori, Kiyoshi; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Moriyama, Noriyuki

    2000-06-01

    In this paper, we present a computer-aided diagnosis (CAD) system for lung cancer to detect nodule candidates at an early stage from the present and the early helical CT screening of the thorax. We developed an algorithm that can compare automatically the slice images of present and early CT scans for the assistance of comparative reading in retrospect. The algorithm consists of the ROI detection and shape analysis based on comparison of each slice image in the present and the early CT scans. The slice images of present and early CT scans are both displayed in parallel and analyzed quantitatively in order to detect the changes in size and intensity affection. We validated the efficiency of this algorithm by application to image data for mass screening of 50 subjects (total: 150 CT scans). The algorithm could compare the slice images correctly in most combinations with respect to physician's point of view. We validated the efficiency of the algorithm which automatically detect lung nodule candidates using CAD system. The system was applied to the helical CT images of 450 subjects. Currently, we are carrying out the clinical field test program using the CAD system. The results of our CAD system have indicated good performance when compared with physician's diagnosis. The experimental results of the algorithm indicate that our CAD system is useful to increase the efficiency of the mass screening process. CT screening of thorax will be performed by using the CAD system as a counterpart to the double reading technique actually used in herical CT screening program, not by using the film display.

  17. Computer-aided diagnosis system for lung cancer based on retrospective helical CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Ukai, Yuji; Niki, Noboru; Eguchi, Kenji; Mori, Kiyoshi; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Moriyama, Noriyuki

    1999-05-01

    In this paper, we present a computer-aided diagnosis (CAD) system for lung cancer to detect nodule candidates at an early stage from the present and the early helical CT screening of the thorax. We developed an algorithm that can compare automatically the slice images of present and early CT scans for the assistance of comparative reading in retrospect. The algorithm consists of the ROI detection and shape analysis based on comparison of each slice image in the present and the early CT scans. The slice images of present and early CT scans are both displayed in parallel and analyzed quantitatively in order to detect the changes in size and intensity affection. We validated the efficiency of this algorithm by application to image data for mass screening of 50 subjects (total: 150 CT scans). The algorithm could compare the slice images correctly in most combinations with respect to physician's point of view. We validated the efficiency of the algorithm which automatically detect lung nodule candidates using CAD system. The system was applied to the helical CT images of 450 subjects. Currently, we are carrying out the clinical field test program using the CAD system. The results of our CAD system have indicated good performance when compared with physician's diagnosis. The experimental results of the algorithm indicate that our CAD system is useful to increase the efficiency of the mass screening process. CT screening of thorax will be performed by using the CAD system as a counterpart to the double reading technique actually used in herical CT screening program, not by using the film display.

  18. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    SciTech Connect

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  19. Noise suppression for energy-resolved CT using similarity-based non-local filtration

    NASA Astrophysics Data System (ADS)

    Harms, Joe; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei

    2016-03-01

    In energy-resolved CT, images are reconstructed independently at different energy levels, resulting in images with different qualities but the same structures. We propose a similarity-based non-local filtration method to extract structural information from these images for noise suppression. For each pixel, we calculate its similarity to other pixels based on CT number. The calculation is repeated on each image at different energy levels and similarity values are averaged to generate a similarity matrix. Noise suppression is achieved by multiplying the image vector by the similarity matrix. Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. Phantom studies show that the proposed method improves average contrast-to-noise ratio (CNR) of seven materials on the 75 kVp image by a factor of 22. Compared with averaging CT images for noise suppression, our method achieves a higher CNR and reduces the CT number error of iodine solutions from 16.5% to 3.5% and the overall image root of mean-square error (RMSE) from 3.58% to 0.93%. On the phantom with line-pair structures, our algorithm reduces noise standard deviation (STD) by a factor of 23 while maintaining 7 lp/cm spatial resolution. Additionally, anthropomorphic head phantom studies show noise STD reduction by a factor or 26 with no loss of spatial resolution. The noise suppression achieved by the similarity-based method is clinically attractive, especially for CNRs of iodine in contrast-enhanced CT.

  20. A minimum spanning forest based classification method for dedicated breast CT images

    SciTech Connect

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  1. Protein-based supramolecular polymers: progress and prospect.

    PubMed

    Luo, Quan; Dong, Zeyuan; Hou, Chunxi; Liu, Junqiu

    2014-09-11

    Proteins are naturally evolved macromolecules with highly sophisticated structures and diverse properties. The design and controlled self-assembly of proteins into polymeric architectures via supramolecular interactions offers unique advantages in understanding the spontaneously self-organisational process and fabrication of various bioactive materials. This feature article highlights recent advances and future trends in supramolecular polymers that are directly assembled from the building blocks of proteins. Non-covalent interactions capable of inducing polymerization include aromatic π-π stacking, host-guest interactions, metal coordination, and interprotein interactions combined with site-selective protein modification to explore the dynamic and specific unidirectional aggregation behaviours among protein units. We also discuss some extended supramolecular protein polymers achieved by rational design and fine-tuning the protein-protein interactions, which may help to inspire future design of more complicated polymeric protein assemblies. The protein-based supramolecular polymer system provides a versatile platform for functionalization and thereby shows great potential in the development of novel biomaterials with controlled structures and properties. PMID:25005829

  2. The Structural Bases for Polymer Glass-Transition Temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Jialong; Tonelli, Alan

    2015-03-01

    The glass-transition temperatures (Tgs) observed for chemically distinct polymers range over several hundred K, and the molecular bases for this wide variability are largely unknown, though the following three factors are often mentioned as being pivotal: 1. Their inherent conformational flexibilities; 2. The sizes or steric bulk of their side-chains; and 3. Their inter-chain interactions. These three factors are generally interdependent, making it difficult to predict or even rationalize the Tgs of polymers. Structurally analogous aliphatic copolyesters, copolyamides, and copoly(ester/amide)s can be synthesized to produce amorphous samples with Tgs that are unaffected either by crystallinity or polymer chain lengths. Their conformations are virtually identical, and each can be synthesized with or without side-chains, so we can begin to evaluate the relative importance of the above three factors. The Tgs of un-branched analogous samples should differ solely due to factor 3., while analogous samples with singly-branched repeat units should provide a measure of the relative importance of factors 1. and 2.

  3. Time dependent mechanical modeling for polymers based on network theory

    NASA Astrophysics Data System (ADS)

    Billon, Noëlle

    2016-05-01

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physicl meaning.

  4. Temperature and Humidity Dependence of a Polymer-Based Gas Sensor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Buehler, M. G.

    1997-01-01

    This paper quantifies the temperature and humidity dependence of a polymer-based gas sensor. The measurement and analysis of three polymers indicates that resistance changes in the polymer films, due to temperature and humidity, can be positive or negative. The temperature sensitivity ranged from +1600 to -320 ppm/nd the relative sensitivity ranged from +1100 to -260 ppm/%.

  5. A computational study of a phenolic based polymer with a spring-like structure

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.

    2016-07-01

    We report the stretching potentials for a helical phenolic-based polymer with high symmetry and a spring-like structure that can be stretched by a factor of 4 along the spring direction and still return to its original structure. We hope that synthetic polymer chemists assess if this polymer or a similar one can be synthesized and tested.

  6. Review on State-of-the-art in Polymer Based pH Sensors

    PubMed Central

    Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian

    2007-01-01

    This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring.

  7. Proton conduction in Mo(VI)-based metallo-supramolecular polymers.

    PubMed

    Pandey, Rakesh K; Hossain, Md Delwar; Chakraborty, Chanchal; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-07-14

    High proton conduction (8.5 × 10(-2) mS cm(-1)) was observed in a Mo(vi)-based metallo-supramolecular polymer with carboxylic acids at 95%RH. The integration of OH groups into the polymer was analysed using FTIR spectroscopy and found to be crucial for the proton transport in the polymer. PMID:26051550

  8. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  9. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles

  10. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  11. Predicting arterial injuries after penetrating brain trauma based on scoring signs from emergency CT studies.

    PubMed

    Bodanapally, Uttam K; Krejza, Jaroslaw; Saksobhavivat, Nitima; Jaffray, Paul M; Sliker, Clint W; Miller, Lisa A; Shanmuganathan, Kathirkamanathan; Dreizin, David

    2014-04-01

    The objective of this study was to determine the accuracy of individual radiologists in detection of vascular injury in patients after penetrating brain injury (PBI) based on head CT findings at admission. We retrospectively evaluated 54 PBI patients who underwent admission head CT and digital subtraction angiography (DSA), used here as a reference standard. Two readers reviewed the CT images to determine the presence or absence of the 29 CT variables of injury profile and quantified selected variables. Four experienced trauma radiologists and one neuroradiologist assigned their own specific scores for each CT variable, a high score indicative of a high probability of artery injury. A sixth set consisted of the average score obtained from the five sets, generated by five experts. Receiver operating characteristic (ROC) curves were constructed for each set to assess the diagnostic performance of an individual radiologist in predicting an underlying vascular injury. The area under ROC curve (AUC) was higher for CT scores obtained from the sixth set (average of five sets of scores) of variable rank score 0.75 (95% CI 0.62-0.88) and for the rest of the data sets, the value ranged from 0.70 (95% CI 0.56-0.84) to 0.74 (95% CI 0.6-0.88). In conclusion, radiologists may be able to recommend DSA with a fair accuracy rate in selected patients, deemed 'high-risk' for developing intracranial vascular injuries after PBI based on admission CT studies. A better approach needs to be developed to reduce the false positive rate to avoid unnecessary emergency DSA.

  12. Predicting Arterial Injuries after Penetrating Brain Trauma Based on Scoring Signs from Emergency CT Studies

    PubMed Central

    Bodanapally, Uttam K; Krejza, Jaroslaw; Saksobhavivat, Nitima; Jaffray, Paul M; Sliker, Clint W; Miller, Lisa A; Shanmuganathan, Kathirkamanathan; Dreizin, David

    2014-01-01

    Summary The objective of this study was to determine the accuracy of individual radiologists in detection of vascular injury in patients after penetrating brain injury (PBI) based on head CT findings at admission. We retrospectively evaluated 54 PBI patients who underwent admission head CT and digital subtraction angiography (DSA), used here as a reference standard. Two readers reviewed the CT images to determine the presence or absence of the 29 CT variables of injury profile and quantified selected variables. Four experienced trauma radiologists and one neuroradiologist assigned their own specific scores for each CT variable, a high score indicative of a high probability of artery injury. A sixth set consisted of the average score obtained from the five sets, generated by five experts. Receiver operating characteristic (ROC) curves were constructed for each set to assess the diagnostic performance of an individual radiologist in predicting an underlying vascular injury. The area under ROC curve (AUC) was higher for CT scores obtained from the sixth set (average of five sets of scores) of variable rank score 0.75 (95% CI 0.62-0.88) and for the rest of the data sets, the value ranged from 0.70 (95% CI 0.56-0.84) to 0.74 (95% CI 0.6-0.88). In conclusion, radiologists may be able to recommend DSA with a fair accuracy rate in selected patients, deemed ‘high-risk' for developing intracranial vascular injuries after PBI based on admission CT studies. A better approach needs to be developed to reduce the false positive rate to avoid unnecessary emergency DSA. PMID:24750698

  13. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells.

    PubMed

    Long, Xiaojing; Ding, Zicheng; Dou, Chuandong; Zhang, Jidong; Liu, Jun; Wang, Lixiang

    2016-08-01

    A novel polymer acceptor based on the double B←N bridged bipyridine building block is reported. All-polymer solar cells based on the new polymer acceptor show a power conversion efficiency of as high as 6.26% at a photon energy loss of only 0.51 eV.

  14. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells.

    PubMed

    Long, Xiaojing; Ding, Zicheng; Dou, Chuandong; Zhang, Jidong; Liu, Jun; Wang, Lixiang

    2016-08-01

    A novel polymer acceptor based on the double B←N bridged bipyridine building block is reported. All-polymer solar cells based on the new polymer acceptor show a power conversion efficiency of as high as 6.26% at a photon energy loss of only 0.51 eV. PMID:27167123

  15. A visualization system for CT based pulmonary fissure analysis

    NASA Astrophysics Data System (ADS)

    Pu, Jiantao; Zheng, Bin; Park, Sang Cheol

    2009-02-01

    In this study we describe a visualization system of pulmonary fissures depicted on CT images. The purpose is to provide clinicians with an intuitive perception of a patient's lung anatomy through an interactive examination of fissures, enhancing their understanding and accurate diagnosis of lung diseases. This system consists of four key components: (1) region-of-interest segmentation; (2) three-dimensional surface modeling; (3) fissure type classification; and (4) an interactive user interface, by which the extracted fissures are displayed flexibly in different space domains including image space, geometric space, and mixed space using simple toggling "on" and "off" operations. In this system, the different visualization modes allow users not only to examine the fissures themselves but also to analyze the relationship between fissures and their surrounding structures. In addition, the users can adjust thresholds interactively to visualize the fissure surface under different scanning and processing conditions. Such a visualization tool is expected to facilitate investigation of structures near the fissures and provide an efficient "visual aid" for other applications such as treatment planning and assessment of therapeutic efficacy as well as education of medical professionals.

  16. Validation of high-resolution 3D patient QA for proton PBS and IMPT using laser CT of improved polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Cardin, A.; Ding, X.; Kassaee, A.; Lin, L.; Maryanski, M. J.; Avery, S.

    2015-01-01

    Laser CT scanning of LET-independent BANG3-Pro2® polymer gel dosimeters has recently shown potential in proton dosimetry. However, raw materials' impurities impart some variability. This study aimed to validate a new method of compensating for this variability, and to validate the suitability of the improved dosimeter for patient-specific QA in pencil beam scanning (PBS) and IMPT. Six modifications of the BANG3-Pro2® gel dosimeter were analysed for their sensitivity to proton dose and to LET. One formulation was selected for a clinical QA feasibility study, in which one composite IMPT plan, two single-field IMPT plans, and one SFUD plan were delivered to identical gel phantoms. New commercial VOLQATM software (beta version) was used for data analysis. Both validations were successful.

  17. Automatic lesion tracking for a PET/CT based computer aided cancer therapy monitoring system

    NASA Astrophysics Data System (ADS)

    Opfer, Roland; Brenner, Winfried; Carlsen, Ingwer; Renisch, Steffen; Sabczynski, Jörg; Wiemker, Rafael

    2008-03-01

    Response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. However, dealing simultaneously with several PET/CT scans poses a serious workflow problem. It can be a difficult and tedious task to extract response criteria based upon an integrated analysis of PET and CT images and to track these criteria over time. In order to improve the workflow for serial analysis of PET/CT scans we introduce in this paper a fast lesion tracking algorithm. We combine a global multi-resolution rigid registration algorithm with a local block matching and a local region growing algorithm. Whenever the user clicks on a lesion in the base-line PET scan the course of standardized uptake values (SUV) is automatically identified and shown to the user as a graph plot. We have validated our method by a data collection from 7 patients. Each patient underwent two or three PET/CT scans during the course of a cancer therapy. An experienced nuclear medicine physician manually measured the courses of the maximum SUVs for altogether 18 lesions. As a result we obtained that the automatic detection of the corresponding lesions resulted in SUV measurements which are nearly identical to the manually measured SUVs. Between 38 measured maximum SUVs derived from manual and automatic detected lesions we observed a correlation of 0.9994 and a average error of 0.4 SUV units.

  18. Excitations and Optical Properties of Phenylene Based Polymers

    SciTech Connect

    Kirova, N.; Brazovskii, S.; Bishop, A.R.; McBranch, D.; Klimov, V.

    1998-07-01

    A complex picture of phenylene-based polymers is developed which unifies features of band and molecular exciton models. It incorporates major experimental finding in direct, and photoinduced optical absorption, stimulated photoemission and photoconductivity. The authors give new assignments for the most disputed features and identify new ones as edge states. The authors confirm a low binding energy for the principle emitting exciton and show that it dominates also in the fundamental absorption. Contradictions in the current modeling state-of-art are displayed and discussed.

  19. New polymer-based phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yasushi; Iwazaki, Hideaki; Ida, Taiichiro; Nishi, Taiji; Tanikawa, Yukari; Nitta, Naotaka

    2014-03-01

    We will report newly developed polymer-based phantom for photoacoustic (PA) imaging systems. Phantoms are important for performance evaluation and calibration of new modalities; however, there is no established method for making phantoms with no long-term change. We have developed skin mimicking phantoms simulating both optical and acoustic properties (i.e. optical scattering and absorption coefficients, and sound velocity). Furthermore, the phantoms are able to give accurate simulation of blood vessels by Inkjet-printing. Newly developed phantoms are consisted of castor oil included acrylic block copolymer and we can fabricate 0.8mm or less thick sheets and pile them using their self-adhesiveness.

  20. Ab-initio study of napthelene based conducting polymer

    SciTech Connect

    Ruhela, Ankur; Kanchan, Reena; Srivastava, Anurag; Sinha, O. P.

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  1. Resistive switching memory based on bioinspired natural solid polymer electrolytes.

    PubMed

    Raeis Hosseini, Niloufar; Lee, Jang-Sik

    2015-01-27

    A solution-processed, chitosan-based resistive-switching memory device is demonstrated with Pt/Ag-doped chitosan/Ag structure. The memory device shows reproducible and reliable bipolar resistive switching characteristics. A memory device based on natural organic material is a promising device toward the next generation of nonvolatile nanoelectronics. The memory device based on chitosan as a natural solid polymer electrolyte can be switched reproducibly between high and low resistance states. In addition, the data retention measurement confirmed the reliability of the chitosan-based nonvolatile memory device. The transparent Ag-embedded chitosan film showed an acceptable and comparable resistive switching behavior on the flexible plastic substrate as well. A cost-effective, environmentally benign memory device using chitosan satisfies the functional requirements of nonvolatile memory operations.

  2. [Bio-based pharmaceutical polymers, possibility of their chemical modification and the applicability of modified polymers].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    Different types of polymers are widely used in biomedical, pharmaceutical and cosmetic purposes. Their applications are curbed, if the polymers can not break down by the body or if the polymer itself is harmful or decompose to harmful material. Authors provide an overview of different types of pharmaceutical polymers of various sources, of the structural characterization and possibilities of their chemical modification and of the classical and instrumental analytical examination methods. The paper deals with the limitations of the use of biopolymers, as well.

  3. [Bio-based pharmaceutical polymers, possibility of their chemical modification and the applicability of modified polymers].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    Different types of polymers are widely used in biomedical, pharmaceutical and cosmetic purposes. Their applications are curbed, if the polymers can not break down by the body or if the polymer itself is harmful or decompose to harmful material. Authors provide an overview of different types of pharmaceutical polymers of various sources, of the structural characterization and possibilities of their chemical modification and of the classical and instrumental analytical examination methods. The paper deals with the limitations of the use of biopolymers, as well. PMID:23444721

  4. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine.

    PubMed

    Song, Kyung-Mi; Jeong, Euiyoung; Jeon, Weejeong; Jo, Hunho; Ban, Changill

    2012-03-15

    A polymer-based aptasensor, which consisted of fluorescein amidite (FAM)-modified aptamers and coordination polymer nanobelts (CPNBs), was developed utilizing the fluorescence quenching effect to detect sulfadimethoxine residue in food products. A single-stranded DNA (ssDNA) aptamer, which was a specific bio-probe for sulfadimethoxine (Su13; 5'-GAGGGCAACGAGTGTTTATAGA-3'), was discovered by a magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technique, and the fluorescent quenchers CPNBs were produced by mixing AgNO(3) and 4,4'-bipyridine. This aptasensor easily and sensitively detected sulfadimethoxine in solution with a limit of detection (LOD) of 10ng/mL. Furthermore, the antibiotic dissolved in milk was also effectively detected with the same LOD value. In addition, this aptamer probe offered high specificity for sulfadimethoxine compared to other antibiotics. These valuable results provide ample evidence that the CPNB-based aptasensor can be used to quantify sulfadimethoxine residue in food products. PMID:22244734

  5. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  6. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    SciTech Connect

    Kumarasiri, Akila Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  7. Evaluation of bone substitute materials: comparison of flat-panel based volume CT to conventional multidetector CT.

    PubMed

    Sauerbier, Sebastian; Duttenhoefer, Fabian; Sachlos, Elefterios; Haberstroh, Jörg; Scheifele, Christian; Wrbas, Karl-Thomas; Voss, Pit Jacob; Veigel, Egle; Smedek, Jörg; Ganter, Philip; Tuna, Taskin; Gutwald, Ralf; Palmowski, Moritz

    2013-10-01

    Over the last decade tissue engineering has emerged as a key factor in bone regeneration within the field of cranio-maxillofacial surgery. Despite this in vivo analysis of tissue-engineered-constructs to monitor bone rehabilitation are difficult to conduct. Novel high-resolving flat-panel based volume CTs (fp-VCT) are increasingly used for imaging bone structures. This study compares the potential value of novel fp-VCT with conventional multidetector CT (MDCT) based on a sheep sinus floor elevation model. Calcium-hydroxyapatite reinforced collagen scaffolds were populated with autologous osteoblasts and implanted into sheep maxillary sinus. After 8, 16 and 24 weeks MDCT and fp-VCT scans were performed to investigate the volume of the augmented area; densities of cancellous and compact bone were assessed as comparative values. fp-VCT imaging resulted in higher spatial resolution, which was advantageous when separating closely related anatomical structures (i.e. trabecular and compact bone, biomaterials). Fp-VCT facilitated imaging of alterations occurring in test specimens over time. fp-VCTs therefore displayed high volume coverage, dynamic imaging potential and superior performance when investigating superfine bone structures and bone remodelling of biomaterials. Thus, fp-VCTs may be a suitable instrument for intraoperative imaging and future in vivo tissue-engineering studies.

  8. Design and Application of Nanogel-Based Polymer Networks

    NASA Astrophysics Data System (ADS)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating

  9. Traveling wave ultrasonic motor using polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-01-01

    With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.

  10. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  11. Feature-based US to CT registration of the aortic root

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.

    2011-03-01

    A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.

  12. Novel polymer electrolytes based on gelatin and ionic liquids

    NASA Astrophysics Data System (ADS)

    Leones, Rita; Sentanin, F.; Rodrigues, Luísa C.; Ferreira, Rute A. S.; Marrucho, Isabel M.; Esperança, José M. S. S.; Pawlicka, Agnieszka; Carlos, Luís D.; Manuela Silva, M.

    2012-12-01

    This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 °C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C2mim)(OAc) (1.18 × 10-4 S cm-1 at 30 °C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc.

  13. Polymer-based tubular microbots: role of composition and preparation.

    PubMed

    Gao, Wei; Sattayasamitsathit, Sirilak; Uygun, Aysegul; Pei, Allen; Ponedal, Adam; Wang, Joseph

    2012-04-01

    The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s(-1) at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.

  14. Sparse angular CT reconstruction using non-local means based iterative-correction POCS.

    PubMed

    Huang, Jing; Ma, Jianhua; Liu, Nan; Zhang, Hua; Bian, Zhaoying; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2011-04-01

    In divergent-beam computed tomography (CT), sparse angular sampling frequently leads to conspicuous streak artifacts. In this paper, we propose a novel non-local means (NL-means) based iterative-correction projection onto convex sets (POCS) algorithm, named as NLMIC-POCS, for effective and robust sparse angular CT reconstruction. The motivation for using NLMIC-POCS is that NL-means filtered image can produce an acceptable priori solution for sequential POCS iterative reconstruction. The NLMIC-POCS algorithm has been tested on simulated and real phantom data. The experimental results show that the presented NLMIC-POCS algorithm can significantly improve the image quality of the sparse angular CT reconstruction in suppressing streak artifacts and preserving the edges of the image.

  15. A hybrid registration-based method for whole-body micro-CT mice images.

    PubMed

    Qu, Xiaochao; Gao, Xueyuan; Xu, Xianhui; Zhu, Shouping; Liang, Jimin

    2016-07-01

    The widespread use of whole-body small animal in vivo imaging in preclinical research has proposed the new demands on imaging processing and analysis. Micro-CT provides detailed anatomical structural information for continuous detection and different individual comparison, but the body deformation happened during different data acquisition needs sophisticated registration. In this paper, we propose a hybrid method for registering micro-CT mice images, which combines the strengths of point-based and intensity-based registration methods. Point-based non-rigid method using thin-plate spline robust point matching algorithm is utilized to acquire a coarse registration. And then intensity-based non-rigid method using normalized mutual information, Halton sampling and adaptive stochastic gradient descent optimization is used to acquire precise registration. Two accuracy metrics, Dice coefficient and average surface distance are used to do the quantitative evaluation. With the intra- and intersubject micro-CT mice images registration assessment, the hybrid method has been proven capable of excellent performance on micro-CT mice images registration.

  16. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  17. A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis

    NASA Astrophysics Data System (ADS)

    Hirohata, K.; Kano, A.; Goryu, A.; Ooga, J.; Hongo, T.; Higashi, S.; Fujisawa, Y.; Wakai, S.; Arakita, K.; Ikeda, Y.; Kaminaga, S.; Ko, B. S.; Seneviratne, S. K.

    2015-03-01

    Non invasive fractional flow reserve derived from CT coronary angiography (CT-FFR) has to date been typically performed using the principles of fluid analysis in which a lumped parameter coronary vascular bed model is assigned to represent the impedance of the downstream coronary vascular networks absent in the computational domain for each coronary outlet. This approach may have a number of limitations. It may not account for the impact of the myocardial contraction and relaxation during the cardiac cycle, patient-specific boundary conditions for coronary artery outlets and vessel stiffness. We have developed a novel approach based on 4D-CT image tracking (registration) and structural and fluid analysis, to address these issues. In our approach, we analyzed the deformation variation of vessels and the volume variation of vessels, primarily from 70% to 100% of cardiac phase, to better define boundary conditions and stiffness of vessels. We used a statistical estimation method based on a hierarchical Bayes model to integrate 4D-CT measurements and structural and fluid analysis data. Under these analysis conditions, we performed structural and fluid analysis to determine pressure, flow rate and CT-FFR. The consistency of this method has been verified by a comparison of 4D-CTFFR analysis results derived from five clinical 4D-CT datasets with invasive measurements of FFR. Additionally, phantom experiments of flexible tubes with/without stenosis using pulsating pumps, flow sensors and pressure sensors were performed. Our results show that the proposed 4D-CT-FFR analysis method has the potential to accurately estimate the effect of coronary artery stenosis on blood flow.

  18. Scalable electro-photonic integration concept based on polymer waveguides

    NASA Astrophysics Data System (ADS)

    Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-03-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.

  19. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    PubMed

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions. PMID:26240030

  20. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    PubMed

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions.

  1. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  2. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes

    PubMed Central

    Burba, Christopher M.; Woods, Lauren; Millar, Sarah Y.; Pallie, Jonathan

    2011-01-01

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm-1 bands are used to probe the crystalline PEO and P(EO)3LiCF3SO3 domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  3. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    PubMed

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte.

  4. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region.

  5. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.

    PubMed

    Zhang, Hao; Ma, Jianhua; Wang, Jing; Liu, Yan; Lu, Hongbing; Liang, Zhengrong

    2014-09-01

    Low-dose computed tomography (CT) imaging without sacrifice of clinical tasks is desirable due to the growing concerns about excessive radiation exposure to the patients. One common strategy to achieve low-dose CT imaging is to lower the milliampere-second (mAs) setting in data scanning protocol. However, the reconstructed CT images by the conventional filtered back-projection (FBP) method from the low-mAs acquisitions may be severely degraded due to the excessive noise. Statistical image reconstruction (SIR) methods have shown potentials to significantly improve the reconstructed image quality from the low-mAs acquisitions, wherein the regularization plays a critical role and an established family of regularizations is based on the Markov random field (MRF) model. Inspired by the success of nonlocal means (NLM) in image processing applications, in this work, we propose to explore the NLM-based regularization for SIR to reconstruct low-dose CT images from low-mAs acquisitions. Experimental results with both digital and physical phantoms consistently demonstrated that SIR with the NLM-based regularization can achieve more gains than SIR with the well-known Gaussian MRF regularization or the generalized Gaussian MRF regularization and the conventional FBP method, in terms of image noise reduction and resolution preservation.

  6. Large-Scale, Exhaustive Lattice-Based Structural Auditing of SNOMED CT

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang

    One criterion for the well-formedness of ontologies is that their hierarchical structure form a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT. We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the 518K non-lattice pairs, among over 34 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA computational pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. This work is based on collaboration with Olivier Bodenreider from the National Library of Medicine, Bethesda, USA.

  7. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%.

    PubMed

    Gao, Liang; Zhang, Zhi-Guo; Xue, Lingwei; Min, Jie; Zhang, Jianqi; Wei, Zhixiang; Li, Yongfang

    2016-03-01

    High-efficiency all-polymer solar cells with less thickness-dependent behavior are demonstrated by using a low bandgap n-type conjugated polymer N2200 as acceptor and an absorption-complementary difluorobenzotriazole-based medium-bandgap polymer J51 as donor.

  8. Logic-gate devices based on printed polymer semiconducting nanostripes.

    PubMed

    Gentili, Denis; Sonar, Prashant; Liscio, Fabiola; Cramer, Tobias; Ferlauto, Laura; Leonardi, Francesca; Milita, Silvia; Dodabalapur, Ananth; Cavallini, Massimiliano

    2013-08-14

    The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm(2) V(-1) s(-1) for electrons and 0.70 cm(2) V(-1) s(-1) for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.

  9. Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Muhammad, F. H.; Subban, R. H. Y.; Wime, Tan

    2009-06-01

    Hexanoyl chitosan-based nanocomposite polymer electrolytes were prepared using solution casting technique. The effect of addition of nanosize titanium oxide, TiO2 as the filler on the electrical properties of the prepared electrolyte system was investigated by impedance spectroscopy. The maximum conductivity of 3.06×10-4 S cm-1 was achieved with addition of 6 wt%. TiO2 which is 1 order of magnitude higher than the filler-free electrolyte sample (σ = 1.83×10-5 S cm-1). The Rice and Roth model was proposed to explain the conductivity variation for the prepared electrolyte system. The ac conductivity of hexanoyl chitosan-based nanocomposite electrolytes was also analyzed.

  10. Potential for Adult-Based Epidemiological Studies to Characterize Overall Cancer Risks Associated with a Lifetime of CT Scans

    PubMed Central

    Shuryak, Igor; Lubin, Jay H.; Brenner, David J.

    2014-01-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25–65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans. PMID:24828111

  11. Fabrication and characterisation of polymer based solar cells

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.; Böhme, S.; Eerenstein, W.; Veenstra, S. C.; Verhees, W.; Kroon, J. M.; Söderström, T.

    2008-08-01

    Tandem solar cells, in which two individual cells are stacked on top of each other, offer the potential to increase the efficiency significantly compared to a single cell on the same area. To reach maximum efficiency, each cell in the stack must have a distinctive spectral response and the current in each cell must be similar. This requires smart selection of materials, proper cell design and appropriate layer thickness. Tandem polymer solar cells can be made by processing two individual cells from solvent based liquids, separated by a recombination layer. Potential candidates for the recombination layer are 1) a combination of a ZnO layer and a pH-neutral PEDOT:PSS layer, 2) a TiOx layer combined with a normal PEDOT:PSS layer. We will discuss the properties of the suggested recombination layers. To determine the performance of tandem cells, accurate spectral response measurements are crucial. Spectral response measurements of a polymer tandem cell show that the response of each subcell can be measured only when a bias light with sufficient intensity and suitable spectrum is applied. We will discuss the special requirements for the spectral response set-up that are needed in order to successfully discriminate between the responses of each subcell.

  12. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    NASA Astrophysics Data System (ADS)

    Semirov, A. V.; Derevyanko, M. S.; Bukreev, D. A.; Moiseev, A. A.; Kudryavtsev, V. O.; Safronov, A. P.

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co75Fe5Si4B16 ribbons. Both as-cast amorphous ribbons and Co75Fe5Si4B16/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current.

  13. Planar integrated polymer-based optical strain sensor

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Reithmeier, Eduard; Roth, Bernhard

    2014-03-01

    In this work we present a new type of optical strain sensor that can be manufactured by MEMS typical processes such as photolithography or by hot embossing. Such sensors can be of interest for a range of new applications in structural health monitoring for buildings and aircraft, process control and life science. The approach aims at high sensitivity and dynamic range for 1D and 2D sensing of mechanical strain and can also be extended to quantities such as pressure, force, and humidity. The sensor consists of an array of planar polymer-based multimode waveguides whose output light is guided through a measurement area and focused onto a second array of smaller detection waveguides by using micro-optical elements. Strain induced in the measurement area varies the distance between the two waveguide arrays, thus, changing the coupling efficiency. This, in turn, leads to a variation in output intensity or wavelength which is monitored. We performed extensive optical simulations in order to identify the optimal sensor layout with regard to either resolution or measurement range or both. Since the initial approach relies on manufacturing polymer waveguides with cross sections between 20×20 μm2 and 100×100 μm2 the simulations were carried out using raytracing models. For the readout of the sensor a simple fitting algorithm is proposed.

  14. Humidity micro switch based on humidity-sensitive polymers

    NASA Astrophysics Data System (ADS)

    Bellmann, C.; Steinke, A.; Frank, T.; Gerlach, G.

    2015-04-01

    We present recent results on a binary threshold sensor based on the binary zero-power sensor (BIZEPS) platform which is able to use the energy provided directly from the measured relative humidity of the ambient air to mechanically switch an electrical micro contact. This zero-power switch behavior is realized by using the humidity-sensitive volume swelling of a polymer layer as the detection element deflecting a mechanically deformable silicon boss structure, thus closing the electrical contacts of the switch. For the humidity-sensitive sensor switch considered here, a humidity-sensitive hydrogel blend of poly(vinyl alcohol) and poly(acryl acid) was used. The sensitive part affected by the measurand is completely separated from the electrical part, thus providing long-term stability. By using an inverse silicone stamping technique the polymer layer with a thickness of about 15 μm was patterned on test structures possessing a thin silicon flexure plate of 5 mm x 5 mm in size and 20 μm in thickness. Reproducible deformations of up to 15 … 24 μm has been measured. Investigations of the swelling kinetics showed for several discrete relative humidity values a saturation of the water load. The time to reach this saturation state is reduced from 5 hours down to approx. 20 min by increasing the relative humidity beyond the threshold value of 70% r.H. A significant influence of the temperature to the humidity load could not be observed.

  15. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  16. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  17. Clinical evaluation of semi-automatic landmark-based lesion tracking software for CT-scans

    PubMed Central

    2014-01-01

    Background To evaluate a semi-automatic landmark-based lesion tracking software enabling navigation between RECIST lesions in baseline and follow-up CT-scans. Methods The software automatically detects 44 stable anatomical landmarks in each thoraco/abdominal/pelvic CT-scan, sets up a patient specific coordinate-system and cross-links the coordinate-systems of consecutive CT-scans. Accuracy of the software was evaluated on 96 RECIST lesions (target- and non-target lesions) in baseline and follow-up CT-scans of 32 oncologic patients (64 CT-scans). Patients had to present at least one thoracic, one abdominal and one pelvic RECIST lesion. Three radiologists determined the deviation between lesions’ centre and the software’s navigation result in consensus. Results The initial mean runtime of the system to synchronize baseline and follow-up examinations was 19.4 ± 1.2 seconds, with subsequent navigation to corresponding RECIST lesions facilitating in real-time. Mean vector length of the deviations between lesions’ centre and the semi-automatic navigation result was 10.2 ± 5.1 mm without a substantial systematic error in any direction. Mean deviation in the cranio-caudal dimension was 5.4 ± 4.0 mm, in the lateral dimension 5.2 ± 3.9 mm and in the ventro-dorsal dimension 5.3 ± 4.0 mm. Conclusion The investigated software accurately and reliably navigates between lesions in consecutive CT-scans in real-time, potentially accelerating and facilitating cancer staging. PMID:25609496

  18. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  19. Novel reticular cyclen-based polymer as gene vector in DNA transfection.

    PubMed

    Zhou, Li-Hong; Yang, Mu; Zhou, Hong; Zhang, Ji; Li, Kun; Xiang, Yong-Zhe; Wang, Na; Tian, Yun-Fei; Yu, Xiao-Qi

    2009-02-01

    This study provided an experimental evidence for the use of cyclen (1, 4, 7, 10-tetraazacyclododecane)-based polymer for gene delivery. The interesting interaction of the polymer with plasmid DNA was studied by using fluorescence titration, circular dichroism spectra, agarose gel electrophoresis and atomic force microscopy. It was found that polyplex was formed between the polycation and plasmid DNA. The results demonstrated that the cyclen-based polymer could act as non-viral gene vector with relatively low cytotoxicity.

  20. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  1. CT contrast predicts pancreatic cancer treatment response to verteporfin-based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Davis, Scott C.; Dehghani, Hamid; Huggett, Matthew T.; Hasan, Tayyaba; Pereira, Stephen P.; Bown, Stephen G.; Pogue, Brian W.

    2014-04-01

    The goal of this study was to determine dominant factors affecting treatment response in pancreatic cancer photodynamic therapy (PDT), based on clinically available information in the VERTPAC-01 trial. This trial investigated the safety and efficacy of verteporfin PDT in 15 patients with locally advanced pancreatic adenocarcinoma. CT scans before and after contrast enhancement from the 15 patients in the VERTPAC-01 trial were used to determine venous-phase blood contrast enhancement and this was correlated with necrotic volume determined from post-treatment CT scans, along with estimation of optical absorption in the pancreas for use in light modeling of the PDT treatment. Energy threshold contours yielded estimates for necrotic volume based on this light modeling. Both contrast-derived venous blood content and necrotic volume from light modeling yielded strong correlations with observed necrotic volume (R2 = 0.85 and 0.91, respectively). These correlations were much stronger than those obtained by correlating energy delivered versus necrotic volume in the VERTPAC-01 study and in retrospective analysis from a prior clinical study. This demonstrates that contrast CT can provide key surrogate dosimetry information to assess treatment response. It also implies that light attenuation is likely the dominant factor in the VERTPAC treatment response, as opposed to other factors such as drug distribution. This study is the first to show that contrast CT provides needed surrogate dosimetry information to predict treatment response in a manner which uses standard-of-care clinical images, rather than invasive dosimetry methods.

  2. Novel bio-based and biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  3. Performance of standard fluoroscopy antiscatter grids in flat-detector-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias; Schaefer, Dirk; Conrads, Norbert; Timmer, Jan; Aach, Til; Rose, Georg

    2004-05-01

    In this paper, the performance of focused lamellar anti-scatter grids, which are currently used in fluoroscopy, is studied in order to determine guidelines of grid usage for flat detector based cone beam CT. The investigation aims at obtaining the signal to noise ratio improvement factor by the use of anti-scatter grids. First, the results of detailed Monte Carlo simulations as well as measurements are presented. From these the general characteristics of the impinging field of scattered and primary photons are derived. Phantoms modeling the head, thorax and pelvis regions have been studied for various imaging geometries with varying phantom size, cone and fan angles and patient-detector distances. Second, simulation results are shown for ideally focused and vacuum spaced grids as best case approach as well as for grids with realistic spacing materials. The grid performance is evaluated by means of the primary and scatter transmission and the signal to noise ratio improvement factor as function of imaging geometry and grid parameters. For a typical flat detector cone beam CT setup, the grid selectivity and thus the performance of anti-scatter grids is much lower compared to setups where the grid is located directly behind the irradiated object. While for small object-to-grid distances a standard grid improves the SNR, the SNR for geometries as used in flat detector based cone beam CT is deteriorated by the use of an anti-scatter grid for many application scenarios. This holds even for the pelvic region. Standard fluoroscopy anti-scatter grids were found to decrease the SNR in many application scenarios of cone beam CT due to the large patient-detector distance and have, therefore, only a limited benefit in flat detector based cone beam CT.

  4. Precision of cortical bone reconstruction based on 3D CT scans.

    PubMed

    Wang, Jianping; Ye, Ming; Liu, Zhongtang; Wang, Chengtao

    2009-04-01

    The precision and accuracy of human cortical bone reconstruction using 3D CT scans was evaluated using machined bone segments. Both linear and angular errors were measured. Cadaver adult femoral and tibial cortical bone segments were obtained and machined in six orthogonal planes with a precision milling machine. CT scans were then obtained and the bone segments were reconstructed as digital replicas. Dimensional and angular measurements errors were evaluated for the machined bone segments and the results were compared with known dimensions based on milling machine settings to calculate errors due to scanning and model reconstruction. The model dimensional error in the coronal, sagittal and axial directions had a mean of 0.21 mm, with standard a deviation of 0.12 mm and a maximum error of 0.47 mm. The mean percent error was 0.74% and the maximum percent error was 1.9%. The angular error of models in the coronal, sagittal and axial directions was calculated, yielding a mean of 0.47 degrees with a standard deviation of 0.37 degrees and a maximum of 1.33 degrees. The error in the cross-sectional axial direction had a mean of 0.54 mm with a maximum error of 0.83 mm, depending on the slice interval. The main error source was of the image processing, which was about 70% of the total error. We found that machining cortical bone segments prior to CT scanning is an effective method for accuracy evaluation of CT-based bone reconstruction. This method can provide a reference for assessing the sensitivity, reliability and accuracy of CT-based applications in the study of movement, finite element modeling, and prosthesis construction.

  5. Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research

    NASA Astrophysics Data System (ADS)

    Burk, Laurel May

    Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation

  6. Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Alessandro; Baiocco, Serena

    2016-03-01

    Computed tomography (CT) technologies have been considered for a long time as one of the most effective medical imaging tools for morphological analysis of body parts. Contrast Enhanced CT (CE-CT) also allows emphasising details of tissue structures whose heterogeneity, inspected through visual analysis, conveys crucial information regarding diagnosis and prognosis in several clinical pathologies. Recently, Dynamic CE-CT (DCE-CT) has emerged as a promising technique to perform also functional hemodynamic studies, with wide applications in the oncologic field. DCE-CT is based on repeated scans over time performed after intravenous administration of contrast agent, in order to study the temporal evolution of the tracer in 3D tumour tissue. DCE-CT pushes towards an intensive use of computers to provide automatically quantitative information to be used directly in clinical practice. This requires that visual analysis, representing the gold-standard for CT image interpretation, gains objectivity. This work presents the first automatic approach to quantify and classify the lung tumour heterogeneities based on DCE-CT image sequences, so as it is performed through visual analysis by experts. The approach developed relies on the spatio-temporal indices we devised, which also allow exploiting temporal data that enrich the knowledge of the tissue heterogeneity by providing information regarding the lesion status.

  7. Validation of a deformable image registration technique for cone beam CT-based dose verification

    SciTech Connect

    Moteabbed, M. Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M.

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  8. Field effect type devices based on highly doped conducting polymer

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Park, J. H.; Hsu, F. C.; Chiou, N. R.; Kim, Y. R.; Epstein, A. J.

    2003-03-01

    Field-effect type devices based on the highly doped polymer poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid (PEDOT/PSS) show a reversible change of the source-drain current by several orders of magnitude upon application of appropriate gate voltages. However, the underlying physical mechanism of their operation is little understood so far. A field-effect like operation, dopant ion diffusion, or electrochemical process has been conjectured. In this work, we investigated devices fabricated on glass substrates with polyvinyl phenol and aluminum as dielectric layer and gate, respectively. We applied a saw tooth shaped voltage profile to the gate electrode and a very small source-drain voltage while measuring gate and source-drain currents. These measurements resemble capacitance-voltage measurements used to study the field-effect in inorganic devices as well as cyclic voltammetry used in electrochemical work. Conclusions concerning the operation principle will be discussed. Supported in part by ONR.

  9. Polymer-based tubular microbots: role of composition and preparation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Sattayasamitsathit, Sirilak; Uygun, Aysegul; Pei, Allen; Ponedal, Adam; Wang, Joseph

    2012-03-01

    The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s-1 at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal

  10. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  11. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  12. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    PubMed Central

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-01-01

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared

  13. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  14. Thiophene-based oligomers, polymers and dendrimers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    Demand for inexpensive renewable energy sources has stimulated new approaches for the production of efficient, low cost photovoltaic (PV) solar cell devices. This thesis research has focused on developing thiophene-based oligomers, polymers and dendrimers for this purpose. The key results are summarized as follows: First, three fully characterized polynorbornenes with electronically active pendant oligothiophene side chains have been synthesized and incorporated as active electronic components into single-layer photovoltaic cells. The device tests along with the electrochemical experiments demonstrate that incorporating chemically stable end-groups on the oligothiophene unit is responsible for the improvement of operation stability under ambient conditions. Second, in-situ surface-initiated polymerization of thiophene inside nanoporous networks has been realized. The resulting organic-inorganic hybrids with polythiophene covalently bound inside nanopores can achieve better interface contact, larger surface coverage and more complete filling of the pores. These result in more efficient photoinjection of electrons into the conduction band of nanocrystalline TiO2 than an analogous nanoporous structure infiltrated by polymer synthesized outside the network. The last part of this thesis covers the synthesis and characterization of a new series of semi-flexible oligothiophene-based dendrimers, which show pronounced solvatochromic and thermochromic properties. Microscopic fluorescence investigation of such surface adhered dendrimers provides the evidence that the intramolecular interactions inside these dendritic structures mainly account for the origin of the morphology-related chromism properties. This architecture is promising to make processable light harvesting structures having scaffolded donors covalently integrated with acceptors such as fullerenes in order to fabricate photovoltaics where phase segregation is suppressed.

  15. Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    NASA Astrophysics Data System (ADS)

    Torrado-Carvajal, A.; Alcain, E.; Montemayor, A. S.; Herraiz, J. L.; Rozenholc, Y.; Hernandez-Tamames, J. A.; Adalsteinsson, E.; Wald, L. L.; Malpica, N.

    2015-12-01

    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications.

  16. A New Method of Detecting Pulmonary Nodules with PET/CT Based on an Improved Watershed Algorithm

    PubMed Central

    Zhao, Juanjuan; Ji, Guohua; Qiang, Yan; Han, Xiaohong; Pei, Bo; Shi, Zhenghao

    2015-01-01

    Background Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with few false-positives. Method Our proposed method combines the features of positron-emission tomography (PET) and computed tomography (CT). A dynamic threshold segmentation method was used to identify lung parenchyma in CT images and suspicious areas in PET images. Then, an improved watershed method was used to mark suspicious areas on the CT image. Next, the support vector machine (SVM) method was used to classify SPNs based on textural features of CT images and metabolic features of PET images to validate the proposed method. Results Our proposed method was more efficient than traditional methods and methods based on the CT or PET features alone (sensitivity 95.6%; average of 2.9 false positives per scan). PMID:25853496

  17. Compressive sampling based interior reconstruction for dynamic carbon nanotube micro-CT.

    PubMed

    Yu, Hengyong; Cao, Guohua; Burk, Laurel; Lee, Yueh; Lu, Jianping; Santago, Pete; Zhou, Otto; Wang, Ge

    2009-01-01

    In the computed tomography (CT) field, one recent invention is the so-called carbon nanotube (CNT) based field emission x-ray technology. On the other hand, compressive sampling (CS) based interior tomography is a new innovation. Combining the strengths of these two novel subjects, we apply the interior tomography technique to local mouse cardiac imaging using respiration and cardiac gating with a CNT based micro-CT scanner. The major features of our method are: (1) it does not need exact prior knowledge inside an ROI; and (2) two orthogonal scout projections are employed to regularize the reconstruction. Both numerical simulations and in vivo mouse studies are performed to demonstrate the feasibility of our methodology. PMID:19923686

  18. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  19. A Review of Thermal Spray Metallization of Polymer-Based Structures

    NASA Astrophysics Data System (ADS)

    Gonzalez, R.; Ashrafizadeh, H.; Lopera, A.; Mertiny, P.; McDonald, A.

    2016-06-01

    A literature review on the thermal spray deposition of metals onto polymer-based structures is presented. The deposition of metals onto polymer-based structures has been developed to enhance the thermal and electrical properties of the resulting metal-polymer material system. First, the description of the thermal spray metallization processes and technologies for polymer-based materials are outlined. Then, polymer surface preparation methods and the deposition of metal bond-coats are explored. Moreover, the thermal spray process parameters that affect the properties of metal deposits on polymers are described, followed by studies on the temperature distribution within the polymer substrate during the thermal spray process. The objective of this review is devoted to testing and potential applications of thermal-sprayed metal coatings deposited onto polymer-based substrates. This review aims to summarize the state-of-the-art contributions to research on the thermal spray metallization of polymer-based materials, which has gained recent attention for potential and novel applications.

  20. Self-guided clinical cases for medical students based on postmortem CT scans of cadavers.

    PubMed

    Bohl, Michael; Francois, Webster; Gest, Thomas

    2011-07-01

    In the summer of 2009, we began full body computed tomography (CT) scanning of the pre-embalmed cadavers in the University of Michigan Medical School (UMMS) dissection lab. We theorized that implementing web-based, self-guided clinical cases based on postmortem CT (PMCT) scans would result in increased student appreciation for the clinical relevance of anatomy, increased knowledge of cross-sectional anatomy, and increased ability to identify common pathologies on CT scans. The PMCT scan of each cadaver was produced as a DICOM dataset, and then converted into a Quicktime movie file using Osirix software. Clinical cases were researched and written by the authors, and consist of at least one Quicktime movie of a PMCT scan surrounded by a novel navigation interface. To assess the value of these clinical cases we surveyed medical students at UMMS who are currently using the clinical cases in their coursework. Students felt the clinical cases increased the clinical relevance of anatomy (mean response 7.77/10), increased their confidence finding anatomical structures on CT (7.00/10), and increased their confidence recognizing common pathologies on CT (6.17/10). Students also felt these clinical cases helped them synthesize material from numerous courses into an overall picture of a given disease process (7.01/10). These results support the conclusion that our clinical cases help to show students why the anatomy they are learning is foundational to their other coursework. We would recommend the use of similar clinical cases to any medical school utilizing cadaver dissection as a primary teaching method in anatomy education.

  1. Endoscopic-CT: learning-based photometric reconstruction for endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    Reiter, A.; Leonard, S.; Sinha, A.; Ishii, M.; Taylor, R. H.; Hager, G. D.

    2016-03-01

    In this work we present a method for dense reconstruction of anatomical structures using white light endoscopic imagery based on a learning process that estimates a mapping between light reflectance and surface geometry. Our method is unique in that few unrealistic assumptions are considered (i.e., we do not assume a Lambertian reflectance model nor do we assume a point light source) and we learn a model on a per-patient basis, thus increasing the accuracy and extensibility to different endoscopic sequences. The proposed method assumes accurate video-CT registration through a combination of Structure-from-Motion (SfM) and Trimmed-ICP, and then uses the registered 3D structure and motion to generate training data with which to learn a multivariate regression of observed pixel values to known 3D surface geometry. We demonstrate with a non-linear regression technique using a neural network towards estimating depth images and surface normal maps, resulting in high-resolution spatial 3D reconstructions to an average error of 0.53mm (on the low side, when anatomy matches the CT precisely) to 1.12mm (on the high side, when the presence of liquids causes scene geometry that is not present in the CT for evaluation). Our results are exhibited on patient data and validated with associated CT scans. In total, we processed 206 total endoscopic images from patient data, where each image yields approximately 1 million reconstructed 3D points per image.

  2. Study of a Holographic Grating based on Dye-Doped Polymer-Ball-Type Polymer-Dispersed Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Fuh, Andy Ying-Guey; Lee, Chia-Rong; Ho, Ya-Hui; Mo, Ting-Shan; Liu, Pin-Miao

    2001-12-01

    This study investigates the characteristics of the holographic grating formed in polymer-ball-type polymer-dispersed-liquid crystal (PBT-PDLC) films, doped with a diazo dye (G206). A dye-doped PBT-PDLC sample was fabricated, and used to write a holographic grating. Experimental results indicated that the grating had memory of the polarization of the writing beams. This polarization memory effect was inerasable if the sample was heated to the isotropic phase, and then cooled down to room temperature. Based on these observations, we believe that the memory of the grating effect does not relate to the intrinsic memory in the transmission versus applied voltage curve of PBT-PDLC films, which is thermally erasable. Rather, the effect is due to a feature of the grating, resulting from the reorientation of the liquid crystals through their interaction with the photo-induced adsorption of the doped dyes on the surface of the polymer balls.

  3. Peritoneal transport characteristics with glucose polymer based dialysate.

    PubMed

    Ho-dac-Pannekeet, M M; Schouten, N; Langendijk, M J; Hiralall, J K; de Waart, D R; Struijk, D G; Krediet, R T

    1996-09-01

    Dialysate fluids containing glucose polymers as osmotic agent are different from the conventional solutions, because they are iso-osmotic to plasma and produce transcapillary ultrafiltration (TCUF) by colloid osmosis. To investigate the effects on fluid and solute kinetics, a comparison was made between a 7.5% glucose polymer based dialysate (icodextrin) and 1.36% and 3.86% glucose based dialysate in 10 stable CAPD patients. In each patient three standard peritoneal permeability analyses (SPA) were done with the osmotic agents and concentrations mentioned above. Dextran 70 was added to the glucose solutions to calculate fluid kinetics. In the glucose polymer SPAs fluid kinetics were calculated from the dilution and disappearance of dextrin. The TCUF rate with icodextrin was closer to that obtained with 3.86% glucose than to 1.36% glucose. Extrapolation of the fluid profiles revealed sustained ultrafiltration with icodextrin. TCUF increased linearly in time in the icodextrin tests, whereas a hyperbola best described the glucose profiles. The effective lymphatic absorption rate with icodextrin was similar to the glucose based solutions. Mass transfer area coefficients of low molecular weight solutes with icodextrin were also similar to the values obtained with glucose, as was D/P creatinine. A positive correlation was present between the MTAC creatinine and the TCUF rate with icodextrin (r = 0.66, P = 0.05), which was absent in the glucose SPAs. This suggests that in patients with a larger effective peritoneal surface area, more ultrafiltration can be achieved by glucose polymer solutions. Clearances of beta 2-microglobulin (beta 2m) were higher with icodextrin than with 3.86% glucose and 1.36% glucose dialysate (P < 0.05). No differences were found for the larger serum proteins albumin, IgG and alpha 2-macroglobulin. Initial D/PNa-->was higher (0.96) with icodextrin than with the glucose based solutions (0.92), due to the higher Na+ concentration of icodextrin, and

  4. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    SciTech Connect

    Yusof, Mohd Fahmi Mohd Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  5. Chord-based image reconstruction in cone-beam CT with a curved detector

    SciTech Connect

    Zuo Nianming; Xia Dan; Zou Yu; Jiang Tianzi; Pan Xiaochuan

    2006-10-15

    Modern computed tomography (CT) scanners use cone-beam configurations for increasing volume coverage, improving x-ray-tube utilization, and yielding isotropic spatial resolution. Recently, there have been significant developments in theory and algorithms for exact image reconstruction from cone-beam projections. In particular, algorithms have been proposed for image reconstruction on chords; and advantages over the existing algorithms offered by the chord-based algorithms include the high flexibility of exact image reconstruction for general scanning trajectories and the capability of exact reconstruction of images within a region of interest from truncated data. These chord-based algorithms have been developed only for flat-panel detectors. Many cone-beam CT scanners employ curved detectors for important practical considerations. Therefore, in this work, we have derived chord-based algorithms for a curved detector so that they can be applied to reconstructing images directly from data acquired by use of a CT scanner with a curved detector. We have also conducted preliminary numerical studies to demonstrate and evaluate the reconstruction properties of the derived chord-based algorithms for curved detectors.

  6. Pulmonary embolism detection using localized vessel-based features in dual energy CT

    NASA Astrophysics Data System (ADS)

    Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2015-03-01

    Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.

  7. Electronic transport in poly(CG) and poly(CT) DNA segments with diluted base pairing

    NASA Astrophysics Data System (ADS)

    de Moura, F. A. B. F.; Lyra, M. L.; Albuquerque, E. L.

    2008-02-01

    We present a model for describing electrical conductivity along poly(CG) and poly(CT) DNA segments with diluted base pairing within a tight-binding Hamiltonian approach. The base pairing is restricted to occurring at a fraction p of the cytosine (C) nucleotides at which a guanine (G) nucleotide is attached. We show that the Schrödinger equation can be mapped exactly onto that of the one-dimensional Anderson model with diluted disorder. Using a Green function formalism as well as exact diagonalization of the full one-dimensional Hamiltonian of finite segments, we compute the density of states, the wavefunction of all energy eigenstates and their corresponding localization lengths. We show that the effective disorder introduced by the diluted base pairing is much stronger in poly(CG) than in poly(CT) segments, with significant consequences for the electronic transport properties. The electronic wavepacket remains localized in the poly(CT) case, while it acquires a diffusive spread for the poly(CG)-based sequence.

  8. Projection domain denoising method based on dictionary learning for low-dose CT image reconstruction.

    PubMed

    Zhang, Haiyan; Zhang, Liyi; Sun, Yunshan; Zhang, Jingyu

    2015-01-01

    Reducing X-ray tube current is one of the widely used methods for decreasing the radiation dose. Unfortunately, the signal-to-noise ratio (SNR) of the projection data degrades simultaneously. To improve the quality of reconstructed images, a dictionary learning based penalized weighted least-squares (PWLS) approach is proposed for sinogram denoising. The weighted least-squares considers the statistical characteristic of noise and the penalty models the sparsity of sinogram based on dictionary learning. Then reconstruct CT image using filtered back projection (FBP) algorithm from the denoised sinogram. The proposed method is particularly suitable for the projection data with low SNR. Experimental results show that the proposed method can get high-quality CT images when the signal to noise ratio of projection data declines sharply.

  9. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    PubMed

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using

  10. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    SciTech Connect

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  11. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect.

  12. Magnetic field sensor using a polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1–570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T‑1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  13. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  14. ROMP-based polymer composites and biorenewable rubbers

    SciTech Connect

    Jeong, Wonje

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  15. Magnetic field sensor using a polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  16. ROMP-based polymer composites and biorenewable rubbers

    NASA Astrophysics Data System (ADS)

    Jeong, Wonje

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (T g) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  17. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. PMID:22807200

  18. A New Approach to Prepare Vegetable Oil-Based Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers from vegetable oils, such as soybean oil, were prepared by cationic polymerization in supercritical carbon dioxide (scCO2) medium. Boron trifluoride diethyl etherate (BF3.OEt2) was selected as catalyst. The resulting polymers have molecular weight ranging from 21,842 to 118,300 g/mol. Nu...

  19. Norbornylene-based polymer systems for dielectric applications

    DOEpatents

    Dirk, Shawn M.; Wheeler, David R.

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  20. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    PubMed

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  1. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  2. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  3. MRI-based treatment planning with pseudo CT generated through atlas registration

    SciTech Connect

    Uh, Jinsoo Merchant, Thomas E.; Hua, Chiaho; Li, Yimei; Li, Xingyu

    2014-05-15

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the

  4. Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts

    PubMed Central

    Wu, Weiwei; Zhou, Zhuhuang; Wu, Shuicai; Zhang, Yanhua

    2016-01-01

    Accurate segmentation of liver from abdominal CT scans is critical for computer-assisted diagnosis and therapy. Despite many years of research, automatic liver segmentation remains a challenging task. In this paper, a novel method was proposed for automatic delineation of liver on CT volume images using supervoxel-based graph cuts. To extract the liver volume of interest (VOI), the region of abdomen was firstly determined based on maximum intensity projection (MIP) and thresholding methods. Then, the patient-specific liver VOI was extracted from the region of abdomen by using a histogram-based adaptive thresholding method and morphological operations. The supervoxels of the liver VOI were generated using the simple linear iterative clustering (SLIC) method. The foreground/background seeds for graph cuts were generated on the largest liver slice, and the graph cuts algorithm was applied to the VOI supervoxels. Thirty abdominal CT images were used to evaluate the accuracy and efficiency of the proposed algorithm. Experimental results show that the proposed method can detect the liver accurately with significant reduction of processing time, especially when dealing with diseased liver cases. PMID:27127536

  5. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    PubMed

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  6. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    PubMed

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.

  7. Three-dimensional display based on refreshable volume holograms in photochromic diarylethene polymer

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Wang, Zheng; Li, Chengmingyue; Li, Cunpu; Zhang, Fushi; Jin, Guofan

    2015-03-01

    Holographic display is a promising technique for three-dimensional (3D) display because it has the ability to reconstruct both the intensity and wavefront of a 3D object. Real-time holographic display has been demonstrated in photorefractive polymers. It is expected to carry out dynamic 3D display by recording holograms into a volume holographic polymer due to its high-density storage capacity, good multiplexing property. In this work an updatable 3D display based on volume holographic polymer of photochromic diarylethene is proposed. The photochromic diarylethene polymer is a promising rewritable recording material for holograms with high resolution, fatigue resistance and quick responding of erasure. The computer-generated holograms carrying with wavefronts of 3D objects are written to the diarylethene polymer, and the recorded holograms in the polymer can be easily erased when exposed in ultraviolet light. The 3D scenes can be reconstructed for the write/erase cycles.

  8. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    PubMed

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities. PMID:26970795

  9. Texture-learning-based system for three-dimensional segmentation of renal parenchyma in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Peng, Cong-Qi; Chang, Yuan-Hsiang; Wang, Li-Jen; Wong, Yon-Choeng; Chiang, Yang-Jen; Jiang, Yan-Yau

    2009-02-01

    Abdominal CT images are commonly used for the diagnosis of kidney diseases. With the advances of CT technology, processing of CT images has become a challenging task mainly because of the large number of CT images being studied. This paper presents a texture-learning based system for the three-dimensional (3D) segmentation of renal parenchyma in abdominal CT images. The system is designed to automatically delineate renal parenchyma and is based on the texturelearning and the region-homogeneity-based approaches. The first approach is achieved with the texture analysis using the gray-level co-occurrence matrix (GLCM) features and an artificial neural network (ANN) to determine if a pixel in the CT image is likely to fall within the renal parenchyma. The second approach incorporates a two-dimensional (2D) region growing to segment renal parenchyma in single CT image slice and a 3D region growing to propagate the segmentation results to neighboring CT image slices. The criterion for the region growing is a test of region-homogeneity which is defined by examining the ANN outputs. In system evaluation, 10 abdominal CT image sets were used. Automatic segmentation results were compared with manually segmentation results using the Dice similarity coefficient. Among the 10 CT image sets, our system has achieved an average Dice similarity coefficient of 0.87 that clearly shows a high correlation between the two segmentation results. Ultimately, our system could be incorporated in applications for the delineation of renal parenchyma or as a preprocessing in a CAD system of kidney diseases.

  10. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    SciTech Connect

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu Xuan; Sasov, Alexander; Mohr, Juergen; Walter, Marco; Pfeiffer, Franz

    2012-07-31

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  11. Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.

    PubMed

    Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K

    2016-02-01

    Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.

  12. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    PubMed

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products. PMID:26258440

  13. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  14. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  15. CT image-based computer-aided system for orbital prosthesis rehabilitation.

    PubMed

    Li, Shuang; Xiao, Caiwen; Duan, Liuyao; Fang, Chunlong; Huang, Yuanliang; Wang, Lisheng

    2015-10-01

    In this paper, a computer-aided system for orbital prosthesis rehabilitation is introduced. With the system, a 3D model of the orbital prosthesis can be easily reconstructed from the CT image of a patient by referring to the normal eye of the patient, and the rehabilitation result by the model can be simulated before the surgery. This facilitates surgeons to design appropriate orbital prosthesis and improve rehabilitation esthetics. Based on the system, the preoperative surgery planning for orbital implant can also be made. This improves the reliability, safety and intuition of the rehabilitation surgery well. The system has been applied to clinical CT images of patients, and the experimental results show effectiveness and acceptability of the system in the clinic.

  16. A CT-based software tool for evaluating compensator quality in passively scattered proton therapy

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zhang, Lifei; Dong, Lei; Sahoo, Narayan; Gillin, Michael T.; Zhu, X. Ronald

    2010-11-01

    We have developed a quantitative computed tomography (CT)-based quality assurance (QA) tool for evaluating the accuracy of manufactured compensators used in passively scattered proton therapy. The thickness of a manufactured compensator was measured from its CT images and compared with the planned thickness defined by the treatment planning system. The difference between the measured and planned thicknesses was calculated with use of the Euclidean distance transformation and the kd-tree search method. Compensator accuracy was evaluated by examining several parameters including mean distance, maximum distance, global thickness error and central axis shifts. Two rectangular phantoms were used to validate the performance of the QA tool. Nine patients and 20 compensators were included in this study. We found that mean distances, global thickness errors and central axis shifts were all within 1 mm for all compensators studied, with maximum distances ranging from 1.1 to 3.8 mm. Although all compensators passed manual verification at selected points, about 5% of the pixels still had maximum distances of >2 mm, most of which correlated with large depth gradients. The correlation between the mean depth gradient of the compensator and the percentage of pixels with mean distance <1 mm is -0.93 with p < 0.001, which suggests that the mean depth gradient is a good indicator of compensator complexity. These results demonstrate that the CT-based compensator QA tool can be used to quantitatively evaluate manufactured compensators.

  17. 4D micro-CT-based perfusion imaging in small animals

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  18. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve.

    PubMed

    Koo, Hyun Jung; Yang, Dong Hyun; Kim, Young-Hak; Kang, Joon-Won; Kang, Soo-Jin; Kweon, Jihoon; Kim, Hyun Jung; Lim, Tae-Hwan

    2016-06-01

    The detection of hemodynamically significant stenosis is important because ischemia-guided revascularization improves overall patient outcomes. Fractional flow reserve (FFR), which is measured during invasive coronary angiography, is regarded as the gold standard for determining hemodynamically significant coronary stenosis. Although coronary computed tomography angiography (CCTA) has been widely used to exclude significant coronary artery disease in patients with low to intermediate pretest probability, anatomic assessment by CCTA using diameter stenosis ≥50 % does not correlate well with the functional assessment of FFR. To overcome the weaknesses of conventional CCTA, such as its low specificity and positive predictive value, especially in patients with a small-diameter artery, poor image quality, or high calcium score, more sophisticated CCTA analysis methods have been developed to detect hemodynamically significant coronary stenosis. Studies that use the quantification of coronary plaque, transluminal attenuation gradient (TAG), CT myocardial perfusion (CTP), and CT-derived FFR have been conducted to validate their diagnostic performances, though each method has its pros and cons. This review provides details on the quantification of coronary plaque, TAG, CTP, and CT-derived FFR, including a definition of each, how to gather and interpret data, and the strengths and limitations of each. Further, we provide an overview of recent clinical studies.

  19. Molecular Interactions between a Novel Soybean Oil-Based Polymer and Doxorubicin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel soybean oil-based polymer, hydrolyzed polymers of epoxidized soybean oil (HPESO), was developed and investigated for drug delivery. This work was aimed at determining the molecular interactions between HPESO and doxorubicin (DOX), an anticancer drug. Powder X-ray diffraction, ATR-FTIR and ...

  20. Designing polymers with sugar-based advantages for bioactive delivery applications.

    PubMed

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  1. Plant oil-based polymers prepared in green media and functionalized into useful materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of plant oils to polymers has attracted renewed attention in recent years in order to replace or augment the traditional petro-chemical based polymers and resins. This is due to concern for the environment, waste disposal, and depletion of fossil and non renewable feedstocks. In this ...

  2. Study of soybean oil-based polymers for controlled release anticancer drugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...

  3. A photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition in aqueous solution.

    PubMed

    Yao, Xuyang; Li, Teng; Wang, Sheng; Ma, Xiang; Tian, He

    2014-07-11

    A photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition with a dithienylethene derivative in aqueous solution was fabricated. The resultant polymer showed good photochromic behaviour with obvious colour switching and a morphology change under alternative UV/Vis light stimuli. PMID:24853232

  4. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    PubMed

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization.

  5. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    PubMed

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. PMID:27424262

  6. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. PMID:21719257

  7. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images.

  8. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  9. Texture-based CAD improves diagnosis for low-dose CT colonography

    NASA Astrophysics Data System (ADS)

    Liang, Zhengrong; Cohen, Harris; Posniak, Erica; Fiore, Eddie; Wang, Zigang; Li, Bin; Andersen, Joseph; Harrington, Donald

    2008-03-01

    Computed tomography (CT)-based virtual colonoscopy or CT colonography (CTC) currently utilizes oral contrast solutions to tag the colonic fluid and possibly residual stool for differentiation from the colon wall and polyps. The enhanced image density of the tagged colonic materials causes a significant partial volume (PV) effect into the colon wall as well as the lumen space (filled with air or CO II). The PV effect on the colon wall can "bury" polyps of size as large as 5mm by increasing their image densities to a noticeable level, resulting in false negatives. It can also create false positives when PV effect goes into the lumen space. We have been modeling the PV effect for mixture-based image segmentation and developing text-based computer-aided detection of polyp (CADpolyp) by utilizing the PV mixture-based image segmentation. This work presents some preliminary results of developing and applying texture-based CADpolyp technique to low-dose CTC studies. A total of 114 studies of asymptomatic patients older than 50, who underwent CTC and then optical colonoscopy (OC) on the same day, were selected from a database, which was accumulated in the past decade and contains various bowel preparations and CT scanning protocols. The participating radiologists found ten polyps of greater than 5 mm from a total of 16 OC proved polyps, i.e., a detection sensitivity of 63%. They scored 23 false positives from the database, i.e., a 20% false positive rate. Approximately 70% of the datasets were marked as imperfect bowel cleansing and/or presence of image artifacts. The impact of imperfect bowel cleansing and image artifacts on VC performance is significant. The texture-based CADpolyp detected all the polyps with an average of 2.68 false positives per patient. This indicates that texture-based CADpolyp can improve the CTC performance in the cases of imperfect cleansed bowels and presence of image artifacts.

  10. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  11. Convolution-based estimation of organ dose in tube current modulated CT

    PubMed Central

    Tian, Xiaoyu; Segars, W Paul; Dixon, Robert L; Samei, Ehsan

    2016-01-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients (hOrgan) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate (CTDIvol)organ, convolution values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying (CTDIvol)organ, convolution with the organ dose coefficients (hOrgan). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the

  12. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled

  13. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  14. Self-Healing of a Polyurethane-based Polymer Composite

    NASA Astrophysics Data System (ADS)

    Considine, Melissa

    2005-03-01

    An attempt has been made to extend the development of a self-healing polymer system to polyurethane polymers. Self-healing materials can improve reliability and prevent catastrophic failure of critical components that are inaccessible for routine maintenance and inspection. Previous work by others has shown that monomer-filled microcapsules embedded in an epoxy matrix containing dispersed solid catalyst can autonomously heal stress induced cracking. Synthesis of in-situ dicyclopentadiene (DCPD) encapsulated in poly(urea-formaldehyde) is embedded in a two-part (rigid) polyurethane matrix containing dispersed Grubb's catalyst. The modified composite is subsequently characterized. Characterization and testing of the as-fabricated polymer composite samples includes optical microscopy, scanning electron microscopy, FTIR spectroscopy, tensile testing and Izod impact testing. Following microcracking, induced toughening of the polymer matrix is anticipated as a result of microcapsule rupture that will release monomer to polymerize upon reaction with the embedded catalyst.

  15. Poly(arylene)-based anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  16. Synthesis and study of novel silicon-based unsaturated polymers

    SciTech Connect

    Lin, J.

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  17. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  18. Shape memory-based tunable resistivity of polymer composites

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng; Zhou, Xingdong; Ma, Yuanyuan; Yi, Guobin; Cheng, Xiaoling; Zhu, Yong; Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang

    2016-02-01

    A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (Rs) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The Rs-strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent Rs was disclosed. The findings provided a new avenue to tailor the conductivity of the polymeric nano-composites by combining the composition method and a thermo-mechanical programming, which may greatly benefit the application of intelligent polymers in flexible electronics and sensors fields.

  19. Host-guest binding motifs based on hyperbranched polymers.

    PubMed

    Mou, Quanbing; Ma, Yuan; Jin, Xin; Yan, Deyue; Zhu, Xinyuan

    2016-10-11

    Host-guest chemistry involves the binding of a substrate molecule (guest) to a receptor molecule (host). Various molecules, including crown ethers, cryptands, cyclophanes, calixarenes, cyclodextrins, and so on, have been used as molecular hosts. However, only limited small molecules or simple ions can be encapsulated in these hosts. Fortunately, as a class of unique host molecules, hyperbranched polymers (HBPs) can bind to numerous guests through topological entrapment, electrostatic bonding, hydrogen bonding or hydrophobic interactions in the core, at the branching points or at the periphery. Hence, hyperbranched polymeric hosts have received increasing attention in the past few decades because of their specific and unique properties. This review briefly summarizes these unique properties related to HBPs serving as hosts. In addition, HBP-based host-guest systems will be classified according to the types of guests encapsulated. Besides, the corresponding applications will be presented as well. We hope to motivate an increased understanding of molecular recognition in HBPs, and further facilitate the optimization of future host-guest systems. PMID:27464846

  20. Switchable Solar Window Devices Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Ma, Dakang; Munday, Jeremy

    Windows are an interesting target for photovoltaics due to the potential for large area of deployment and because glass is already a ubiquitous component of solar cell devices. Many demonstrations of solar windows in recent years have used photovoltaic devices which are semitransparent in the visible region. Much research has focused on enhancing device absorption in the UV and IR ranges as a means to circumvent the basic tradeoff between efficiency and transparency to visible light. Use of switchable solar window is a less investigated alternative approach; these windows utilize the visible spectrum but can toggle between high transparency and high efficiency as needed. We present a novel switchable solar window device based on Polymer Dispersed Liquid Crystals (PDLC). By applying an electric field to the PDLC layer, the device can be switched from an opaque, light diffusing, efficient photovoltaic cell to a clear, transparent window. In the off state (i.e. scattering state), these devices have the added benefits of increased reflectivity for reduced lighting and cooling costs and haze for privacy. Further, we demonstrate that these windows have the potential for self-powering due to the very low power required to maintain the on, or high transparency, state. Support From: University of Maryland and Maryland Nano-center and its Fablab.

  1. Host-guest binding motifs based on hyperbranched polymers.

    PubMed

    Mou, Quanbing; Ma, Yuan; Jin, Xin; Yan, Deyue; Zhu, Xinyuan

    2016-10-11

    Host-guest chemistry involves the binding of a substrate molecule (guest) to a receptor molecule (host). Various molecules, including crown ethers, cryptands, cyclophanes, calixarenes, cyclodextrins, and so on, have been used as molecular hosts. However, only limited small molecules or simple ions can be encapsulated in these hosts. Fortunately, as a class of unique host molecules, hyperbranched polymers (HBPs) can bind to numerous guests through topological entrapment, electrostatic bonding, hydrogen bonding or hydrophobic interactions in the core, at the branching points or at the periphery. Hence, hyperbranched polymeric hosts have received increasing attention in the past few decades because of their specific and unique properties. This review briefly summarizes these unique properties related to HBPs serving as hosts. In addition, HBP-based host-guest systems will be classified according to the types of guests encapsulated. Besides, the corresponding applications will be presented as well. We hope to motivate an increased understanding of molecular recognition in HBPs, and further facilitate the optimization of future host-guest systems.

  2. Electroencephalogram measurement using polymer-based dry microneedle electrode

    NASA Astrophysics Data System (ADS)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  3. Characterization of a boron carbide-based polymer neutron sensor

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  4. Conducting-polymer-based radar-absorbing materials

    NASA Astrophysics Data System (ADS)

    Truong, Vo-Van; Turner, Ben D.; Muscat, Richard F.; Russo, M. S.

    1997-11-01

    The controllability of conductivity and the ease of manufacturing/coating of conducting polymers enable tailor- made dielectric loss components for radar absorbing materials (RAM). Different polypyrrole (PPy) based RAM, e.g. paint/rubber containing PPy powder and PPy coated structural phenolic foams with a gradient of impedance, have been examined. Reflection loss strongly depends on thickness and complex permittivity of the material. For a single layer material, the optimum values of the real part, (epsilon) ', and imaginary part, (epsilon) ", of the complex permittivity required to achieve a minimum reflectivity at a given sample thickness are found by theoretical calculations. The conductivity of the PPy powder is controlled to obtain RAM with lowest reflectivity according to the calculated optimum values of (epsilon) ' and (epsilon) ". A paint panel containing 2 wt% of the PPy powder with a thickness of 2.5 mm exhibits a reflectivity less than $minus 10 dB over 12 to 18 GHz. Blending and milling in the manufacturing process can destroy the original fibrous shape of PPy aggregates leading to low absorbing performances. PPy can be coated on rigid or flexible open cell foams to provide a lightweight broadband RAM. In particular, a coating technique on phenolic foams (12 - 15 mm thick) with a pore size of micrometer order has been developed to generate a gradient of conductivity across the foam thickness. The PPy coated foams are broadband RAM.

  5. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  6. Azobenzene-based supramolecular polymers for processing MWCNTs

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M.; Yoosaf, K.; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2012-12-01

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy

  7. A reconfigurable tactile display based on polymer MEMS technology

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong

    . Compared to present technologies, the microvalve developed can achieve large flow rate control due to its amplification mechanism, can avoid complex sealing problem because solid rather than liquid medium is used, and can form a dense valve array due to the small lateral dimension of the actuator used. To further reduce the cost of the microvalve, a laterally-laminated multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes. This fabrication process is simple and straightforward compared to previous lateral lamination approaches. An 8-layer device has shown a displacement of 0.63 micron at 100V driving voltage, which agrees well with simulation results. The lateral lamination fabrication process provides a valuable alternative for making compact, low-voltage, multilayer piezoelectric micro-actuators as microvalve driving element. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate.

  8. Preliminary Study on Appearance-Based Detection of Anatomical Point Landmarks in Body Trunk CT Images

    NASA Astrophysics Data System (ADS)

    Nemoto, Mitsutaka; Nomura, Yukihiro; Hanaoka, Shohei; Masutani, Yoshitaka; Yoshikawa, Takeharu; Hayashi, Naoto; Yoshioka, Naoki; Ohtomo, Kuni

    Anatomical point landmarks as most primitive anatomical knowledge are useful for medical image understanding. In this study, we propose a detection method for anatomical point landmark based on appearance models, which include gray-level statistical variations at point landmarks and their surrounding area. The models are built based on results of Principal Component Analysis (PCA) of sample data sets. In addition, we employed generative learning method by transforming ROI of sample data. In this study, we evaluated our method with 24 data sets of body trunk CT images and obtained 95.8 ± 7.3 % of the average sensitivity in 28 landmarks.

  9. SU-E-T-505: CT-Based Independent Dose Verification for RapidArc Plan as a Secondary Check

    SciTech Connect

    Tachibana, H; Baba, H; Kamima, T; Takahashi, R

    2014-06-01

    Purpose: To design and develop a CT-based independent dose verification for the RapidArc plan and also to show the effectiveness of inhomogeneous correction in the secondary check for the plan. Methods: To compute the radiological path from the body surface to the reference point and equivalent field sizes from the multiple MLC aperture shapes in the RapidArc MLC sequences independently, DICOM files of CT image, structure and RapidArc plan were imported to our in-house software. The radiological path was computed using a three-dimensional CT arrays for each segment. The multiple MLC aperture shapes were used to compute tissue maximum ratio and phantom scatter factor using the Clarkson-method. In this study, two RapidArc plans for oropharynx cancer were used to compare the doses in CT-based calculation and water-equivalent phantom calculation using the contoured body structure to the dose in a treatment planning system (TPS). Results: The comparison in the one plan shows good agreement in both of the calculation (within 1%). However, in the other case, the CT-based calculation shows better agreement compared to the water-equivalent phantom calculation (CT-based: -2.8% vs. Water-based: -3.8%). Because there were multiple structures along the multiple beam paths and the radiological path length in the CT-based calculation and the path in the water-homogenous phantom calculation were comparatively different. Conclusion: RapidArc treatments are performed in any sites (from head, chest, abdomen to pelvis), which includes inhomogeneous media. Therefore, a more reliable CT-based calculation may be used as a secondary check for the independent verification.

  10. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved. PMID:26753717

  11. Fast model-based restoration of noisy and undersampled spectral CT data

    NASA Astrophysics Data System (ADS)

    Rigie, David; La Riviere, Patrick J.

    2014-03-01

    In this work we propose a fast, model-based restoration scheme for noisy or undersampled spec- tral CT data and demonstrate its potential utility with two simulation studies. First, we show how one can denoise photon counting CT images, post- reconstruction, by using a spectrally averaged im- age formed from all detected photons as a high SNR prior. Next, we consider a slow slew-rate kV switch- ing scheme, where sparse sinograms are obtained at peak voltages of 80 and 140 kVp. We show how the missing views can be restored by using a spectrally av- eraged, composite sinogram containing all of the views as a fully sampled prior. We have chosen these ex- amples to demonstrate the versatility of the proposed approach and because they have been discussed in the literature before3,6 but we hope to convey that it may be applicable to a fairly general class of spectral CT systems. Comparisons to several sparsity-exploiting, iterative reconstructions are provided for reference.

  12. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method. PMID:25570484

  13. Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.

    PubMed

    Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin

    2012-01-01

    In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.

  14. Image-based computational models for TAVI planning: from CT images to implant deployment.

    PubMed

    Grbic, Sasa; Mansi, Tommaso; Ionasec, Razvan; Voigt, Ingmar; Houle, Helene; John, Matthias; Schoebinger, Max; Navab, Nassir; Comaniciu, Dorin

    2013-01-01

    Transcatheter aortic valve implantation (TAVI) is becoming the standard choice of care for non-operable patients suffering from severe aortic valve stenosis. As there is no direct view or access to the affected anatomy, accurate preoperative planning is crucial for a successful outcome. The most important decision during planning is selecting the proper implant type and size. Due to the wide variety in device sizes and types and non-circular annulus shapes, there is often no obvious choice for the specific patient. Most clinicians base their final decision on their previous experience. As a first step towards a more predictive planning, we propose an integrated method to estimate the aortic apparatus from CT images and compute implant deployment. Aortic anatomy, which includes aortic root, leaflets and calcifications, is automatically extracted using robust modeling and machine learning algorithms. Then, the finite element method is employed to calculate the deployment of a TAVI implant inside the patient-specific aortic anatomy. The anatomical model was evaluated on 198 CT images, yielding an accuracy of 1.30 +/- 0.23 mm. In eleven subjects, pre- and post-TAVI CT images were available. Errors in predicted implant deployment were of 1.74 +/- 0.40 mm in average and 1.32 mm in the aortic valve annulus region, which is almost three times lower than the average gap of 3 mm between consecutive implant sizes. Our framework may thus constitute a surrogate tool for TAVI planning.

  15. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method.

  16. μCT based assessment of mechanical deformation of designed PTMC scaffolds

    PubMed Central

    Narra, Nathaniel; Blanquer, Sébastien B.G.; Haimi, Suvi P.; Grijpma, Dirk W.; Hyttinen, Jari

    2015-01-01

    Abstract BACKGROUND: Advances in rapid-prototyping and 3D printing technologies have enhanced the possibilities in preparing designed architectures for tissue engineering applications. A major advantage in custom designing is the ability to create structures with desired mechanical properties. While the behaviour of a designed scaffold can be simulated using bulk material properties, it is important to verify the behaviour of a printed scaffold at the microstructure level. OBJECTIVE: In this study we present an effective method in validating the mechanical behaviour of designed scaffolds using a μCT with an in-situ mechanical deformation device. METHODS: The scaffolds were prepared from biodegradable poly(trimethylene carbonate) (PTMC) by stereolithography and images obtained using a high-resolution μCT with 12.25μm isometric voxels. The data was processed (filtering, segmentation) and analysed (surface generation, registration) to extract relevant deformation features. RESULTS: The computed local deformation fields, calculated at sub-pore resolutions, displayed expected linear behaviour within the scaffold along the compressions axis. On planes perpendicular to this axis, the deformations varied by 150– 200μm. CONCLUSIONS: μCT based imaging with in-situ deformation provides a vital tool in validating the design parameters of printed scaffolds. Deformation fields obtained from micro-tomographic image volumes can serve to corroborate the simulated ideal design with the realized product. PMID:25818150

  17. A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods

    PubMed Central

    Tan, Hanqing; Fujita, Hiroshi

    2013-01-01

    This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016

  18. A Priori Knowledge and Probability Density Based Segmentation Method for Medical CT Image Sequences

    PubMed Central

    Tan, Hanqing; Yang, Benqiang

    2014-01-01

    This paper briefly introduces a novel segmentation strategy for CT images sequences. As first step of our strategy, we extract a priori intensity statistical information from object region which is manually segmented by radiologists. Then we define a search scope for object and calculate probability density for each pixel in the scope using a voting mechanism. Moreover, we generate an optimal initial level set contour based on a priori shape of object of previous slice. Finally the modified distance regularity level set method utilizes boundaries feature and probability density to conform final object. The main contributions of this paper are as follows: a priori knowledge is effectively used to guide the determination of objects and a modified distance regularization level set method can accurately extract actual contour of object in a short time. The proposed method is compared to other seven state-of-the-art medical image segmentation methods on abdominal CT image sequences datasets. The evaluated results demonstrate our method performs better and has the potential for segmentation in CT image sequences. PMID:24967402

  19. A hybrid method for pancreas extraction from CT image based on level set methods.

    PubMed

    Jiang, Huiyan; Tan, Hanqing; Fujita, Hiroshi

    2013-01-01

    This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction.

  20. Image-based computational models for TAVI planning: from CT images to implant deployment.

    PubMed

    Grbic, Sasa; Mansi, Tommaso; Ionasec, Razvan; Voigt, Ingmar; Houle, Helene; John, Matthias; Schoebinger, Max; Navab, Nassir; Comaniciu, Dorin

    2013-01-01

    Transcatheter aortic valve implantation (TAVI) is becoming the standard choice of care for non-operable patients suffering from severe aortic valve stenosis. As there is no direct view or access to the affected anatomy, accurate preoperative planning is crucial for a successful outcome. The most important decision during planning is selecting the proper implant type and size. Due to the wide variety in device sizes and types and non-circular annulus shapes, there is often no obvious choice for the specific patient. Most clinicians base their final decision on their previous experience. As a first step towards a more predictive planning, we propose an integrated method to estimate the aortic apparatus from CT images and compute implant deployment. Aortic anatomy, which includes aortic root, leaflets and calcifications, is automatically extracted using robust modeling and machine learning algorithms. Then, the finite element method is employed to calculate the deployment of a TAVI implant inside the patient-specific aortic anatomy. The anatomical model was evaluated on 198 CT images, yielding an accuracy of 1.30 +/- 0.23 mm. In eleven subjects, pre- and post-TAVI CT images were available. Errors in predicted implant deployment were of 1.74 +/- 0.40 mm in average and 1.32 mm in the aortic valve annulus region, which is almost three times lower than the average gap of 3 mm between consecutive implant sizes. Our framework may thus constitute a surrogate tool for TAVI planning. PMID:24579165

  1. Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.

    PubMed

    Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin

    2012-01-01

    In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region. PMID:23286081

  2. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  3. Male and Female Human Body Tissue Radiation Shielding Models Based upon CT-scan Data for Organ Dose Prediction

    NASA Astrophysics Data System (ADS)

    Qualls, G.; Nealy, J.; Wilson, J.; Cucinotta, F.

    As present and future human space mission lengths are extended, it becomes increasingly important and valuable to have accurate analytic predictions of radiation doses to specific tissues within the body. New computational models are being developed to help predict the effective radiation shielding to points inside the human body provided by the surrounding body tissue. A female body tissue model, based upon a full-body CT-scan from the Visible Human Project, is presented along with a male body tissue model based upon a full-body CT-scan data set obtained from Johns Hopkins University. The advantages of using CT-scan based models are presented along with initial results and comparisons to previous models. Details of the data processing required to transform a raw CT-scan into a tissue shielding model are also presented.

  4. Micro-computed tomography (CT) based assessment of dental regenerative therapy in the canine mandible model

    NASA Astrophysics Data System (ADS)

    Khobragade, P.; Jain, A.; Setlur Nagesh, S. V.; Andreana, S.; Dziak, R.; Sunkara, S. K.; Sunkara, S.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2015-03-01

    High-resolution 3D bone-tissue structure measurements may provide information critical to the understanding of the bone regeneration processes and to the bone strength assessment. Tissue engineering studies rely on such nondestructive measurements to monitor bone graft regeneration area. In this study, we measured bone yield, fractal dimension and trabecular thickness through micro-CT slices for different grafts and controls. Eight canines underwent surgery to remove a bone volume (defect) in the canine's jaw at a total of 44 different locations. We kept 11 defects empty for control and filled the remaining ones with three regenerative materials; NanoGen (NG), a FDA-approved material (n=11), a novel NanoCalcium Sulfate (NCS) material (n=11) and NCS alginate (NCS+alg) material (n=11). After a minimum of four and eight weeks, the canines were sacrificed and the jaw samples were extracted. We used a custombuilt micro-CT system to acquire the data volume and developed software to measure the bone yield, fractal dimension and trabecular thickness. The software used a segmentation algorithm based on histograms derived from volumes of interest indicated by the operator. Using bone yield and fractal dimension as indices we are able to differentiate between the control and regenerative material (p<0.005). Regenerative material NCS showed an average 63.15% bone yield improvement over the control sample, NCS+alg showed 55.55% and NanoGen showed 37.5%. The bone regeneration process and quality of bone were dependent upon the position of defect and time period of healing. This study presents one of the first quantitative comparisons using non-destructive Micro-CT analysis for bone regenerative material in a large animal with a critical defect model. Our results indicate that Micro-CT measurement could be used to monitor invivo bone regeneration studies for greater regenerative process understanding.

  5. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  6. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  7. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition. Triennial performance report, August 1, 1989--July 31, 1992

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  8. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  9. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    SciTech Connect

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-03-15

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  10. Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Dedes, George; Zöllner, Christoph; Handrack, Josefine; Janssens, Guillaume; Orban de Xivry, Jonathan; Reiner, Michael; Paganelli, Chiara; Riboldi, Marco; Kamp, Florian; Söhn, Matthias; Wilkens, Jan J.; Baroni, Guido; Belka, Claus; Parodi, Katia

    2015-01-01

    The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region. The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation. Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom

  11. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  12. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    NASA Astrophysics Data System (ADS)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  13. Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty.

    PubMed

    Kim, Kyungsang; Ye, Jong Chul; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; El Fakhri, Georges; Li, Quanzheng

    2015-03-01

    Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.

  14. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs).

    PubMed

    Hu, Ming; Reboul, Julien; Furukawa, Shuhei; Radhakrishnan, Logudurai; Zhang, Yuanjian; Srinivasu, Pavuluri; Iwai, Hideo; Wang, Hongjing; Nemoto, Yoshihiro; Suzuki, Norihiro; Kitagawa, Susumu; Yamauchi, Yusuke

    2011-07-28

    We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.

  15. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  16. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  17. A variation-based ring artifact correction method with sparse constraint for flat-detector CT.

    PubMed

    Yan, Luxin; Wu, Tao; Zhong, Sheng; Zhang, Qiude

    2016-02-01

    The reconstructed slice quality of flat-detector computed tomography (CT) is often disturbed by concentric-ring artifacts. Since concentric rings in CT slices appear as straight stripes when transformed into polar coordinates, a variation-based model is proposed to suppress the stripes. The method is motivated by two observations about stripes in polar coordinates: (1) ring artifacts attenuate gradually along the radial direction, leading to a sparse distribution of stripes and (2) stripes greatly distort the image gradient across the stripes, while slightly affecting the image gradient along the stripes. Thus, a [Formula: see text]-norm-based data fidelity term and a [Formula: see text]-norm/[Formula: see text]-norm unidirectional variation-based regularization term are presented to characterize the stripes. The alternating direction method of multipliers is introduced to solve the resulting minimization problem. Moreover, we discuss the interpolation methods used in coordinate transformation and find that the nearest neighbor interpolation is optimal. Experimental results on simulated and real data demonstrate that our method can correct ring artifacts effectively compared with state-of-the-art coordinate transformation-based methods, as well as preserve the structures and details of slices. PMID:26789081

  18. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  19. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    SciTech Connect

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Wilson, David L.

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  20. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    PubMed Central

    Eck, Brendan L.; Fahmi, Rachid; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Miao, Jun; Wilson, David L.

    2015-01-01

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, PC. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and

  1. Sub percolation threshold carbon nanotube based polyvinylidene fluoride polymer-polymer composites

    NASA Astrophysics Data System (ADS)

    Jacob, Cedric Antony

    The study of piezoelectric materials has traditionally focused largely on homogeneous crystalline or semi-crystalline materials. This research focuses on the concept of piezoelectric composites using selective microstructural reinforcement in the piezoelectric material to improve the piezoelectric properties. This is done using a polyvinylidene fluoride (PVDF) and carbon nanotube composite as the model system. A multi-tiered engineering approach is taken to understand the material (experimental and computational analyses) and design a composite system which provides an effective platform for future research in piezoelectric improvement. A finite element analysis is used to evaluate the ability of carbon nanotubes to generate a heterogeneous electric field where local improvements in electric field produce an increase in the effective piezoelectric strength. The study finds that weight percent and aspect ratio of the carbon nanotubes are of key importance while formations of percolating networks are detrimental to performance. This motivates investigation into electrospinning into a method of producing sub percolation threshold composites with large carbon nanotube content. However, the electrospun fabrics have too low of a dielectric strength to sustain high strength electric fields. This is studied within the context of high voltage physics and a solution inspired by traditional composites manufacturing is proposed wherein the electrospun fiber mat is used as the fiber reinforcing component of a polymer-polymer composite. This composite is thoroughly analyzed to show that it allows for a high dielectric strength combined with high carbon nanotube content. It is also shown that the PVDF contains the proper crystal structure to allow for piezoelectric properties. Furthermore, the addition of carbon nanotubes greatly improves the strength and stiffness of the composite, as well as affecting the internal electric field response to an applied voltage. These qualities

  2. Glass ceramic and polymer impact-resistant materials and protective constructions based on them (Review)

    NASA Astrophysics Data System (ADS)

    Arzhakov, M. S.; Zhirnov, A. E.; Arzhakov, S. A.; Lukovkin, G. M.; Kolmakov, A. G.; Zabolotnyi, V. T.

    2015-10-01

    The behavior of protective impact-resistant transparent constructions based on glass ceramic and polymer materials during an impact action is studied. Technological solutions are suggested to increase the functional properties of such materials and constructions.

  3. WILL FLUOROTELOMER ALCOHOL BASED POLYMER FORMULATIONS BIODEGRADE DURING AEROBIC BIOLOGICAL WASTEWATER TREATMENT?

    EPA Science Inventory

    The release of fluorotelomer alcohol (FTOH) based polymer formulations (PFs) to wastewater treatment plants (WWTPs) may be an important source of the perfluoroalkyl carboxylic acids (PFCAs) observed in many environmental matrices. Working with the Office of Pollution, Prevention,...

  4. Metallated porphyrin based porous organic polymers as efficient electrocatalysts.

    PubMed

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-11-21

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. PMID:26486413

  5. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor.

    PubMed

    Yu, Seong Hoon; Cho, Jangwhan; Sim, Kyu Min; Ha, Jae Un; Chung, Dae Sung

    2016-03-01

    Developing high-performance gas sensors based on polymer field-effect transistors (PFETs) requires enhancing gas-capture abilities of polymer semiconductors without compromising their high charge carrier mobility. In this work, cohesive energies of polymer semiconductors were tuned by strategically inserting buffer layers, which resulted in dramatically different semiconductor surface morphologies. Elucidating morphological and structural properties of polymer semiconductor films in conjunction with FET studies revealed that surface morphologies containing large two-dimensional crystalline domains were optimal for achieving high surface areas and creating percolation pathways for charge carriers. Ammonia molecules with electron lone pairs adsorbed on the surface of conjugated semiconductors can serve as efficient trapping centers, which negatively shift transfer curves for p-type PFETs. Therefore, morphology optimization of polymer semiconductors enhances their gas sensing abilities toward ammonia, leading to a facile method of manufacturing high-performance gas sensors.

  6. Cellulose-based sustainable polymers: state of the art and future trends.

    PubMed

    Rose, Marcus; Palkovits, Regina

    2011-09-01

    Nowadays, nearly all polymeric materials are produced from crude oil-derived monomers. With the steadily increasing demand for oil-based products and their decreasing availability in the near future, one of the main challenges of mankind is the replacement of crude oil as raw material by renewable resources such as biomass. So far, only a few polymers are available derived directly from cellulose as a main component of biomass by regeneration. On the other hand, a significant potential lies in the production of polymers from cellulose-derived monomers. A huge variety of different monomers is already available by convenient catalytic processes. This feature article focuses on the current status of mono- and resulting polymers derived either directly from cellulose processing and regeneration or by catalytic conversion to a number of monomers for the production of novel polymers and co-polymers. PMID:21661072

  7. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor.

    PubMed

    Yu, Seong Hoon; Cho, Jangwhan; Sim, Kyu Min; Ha, Jae Un; Chung, Dae Sung

    2016-03-01

    Developing high-performance gas sensors based on polymer field-effect transistors (PFETs) requires enhancing gas-capture abilities of polymer semiconductors without compromising their high charge carrier mobility. In this work, cohesive energies of polymer semiconductors were tuned by strategically inserting buffer layers, which resulted in dramatically different semiconductor surface morphologies. Elucidating morphological and structural properties of polymer semiconductor films in conjunction with FET studies revealed that surface morphologies containing large two-dimensional crystalline domains were optimal for achieving high surface areas and creating percolation pathways for charge carriers. Ammonia molecules with electron lone pairs adsorbed on the surface of conjugated semiconductors can serve as efficient trapping centers, which negatively shift transfer curves for p-type PFETs. Therefore, morphology optimization of polymer semiconductors enhances their gas sensing abilities toward ammonia, leading to a facile method of manufacturing high-performance gas sensors. PMID:26927929

  8. First principles-based multiscale modeling of ferroelectric polymers

    SciTech Connect

    Strachan, A. H.; Su, Haibin; Goddard, W. A. , III

    2004-01-01

    We use Density Functional Theory [within the generalized gradient approximation (DFT-GGA)] and molecular dynamics (MD) to characterize electromechanical properties of PVDF and its random copolymer with TrFE. Our simulations predict that large electrostrictive strains ({approx}5%) at extremely high frequencies (up to 10{sup 9} Hz) can be obtained in a poly(vinylidene fluoride) (PVDF) nano-actuator if the inter-chain packing density is appropriately chosen. We control the packing density by assembling the polymer chains on a Si <111> surface with 1/2 coverage. Under these conditions the equilibrium conformation of the polymer contains a combination of Gauche and Trans bonds which can be easily transformed to an all-Trans conformation by applying an electric field. Such molecular transformation is accompanied by a large deformation along the polymer chain direction.

  9. [Image segmentation in tumor CT based on the improved C-V model].

    PubMed

    Zhang, Jianguo; Zhang, Rongguo; Xue, Fei; Liu, Kun

    2012-04-01

    Aiming at the shortcomings of slow convergence and inaccuracy segmentation in non-homogeneous images, improvements were made on the traditional C-V model in two aspects. Firstly, using a novel model based on local gradient, the initial contour of the C-V model was quickly moved near the target border, greatly reducing the evolution time. Secondly, combining the characteristics of GVF model from two directions to the target border, an adaptive velocity reconciling item was added for velocity equation of the C-V model to make the model converge to the true border. The segmentation experiments for liver tumors in CT showed that the proposed method could be effective.

  10. A web-based procedure for liver segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Yuan, Rong; Luo, Ming; Wang, Luyao; Xie, Qingguo

    2015-03-01

    Liver segmentation in CT images has been acknowledged as a basic and indispensable part in systems of computer aided liver surgery for operation design and risk evaluation. In this paper, we will introduce and implement a web-based procedure for liver segmentation to help radiologists and surgeons get an accurate result efficiently and expediently. Several clinical datasets are used to evaluate the accessibility and the accuracy. This procedure seems a promising approach for extraction of liver volumetry of various shapes. Moreover, it is possible for user to access the segmentation wherever the Internet is available without any specific machine.

  11. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    PubMed Central

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  12. Bis(oxazoline)-based coordination polymers: a recoverable system for enantioselective Henry reactions.

    PubMed

    Angulo, Beatriz; García, José I; Herrerías, Clara I; Mayoral, José A; Miñana, Ana C

    2012-07-01

    An efficient release-capture strategy for the recovery and reuse of enantioselective catalysts in the Henry reaction is described. This strategy is based on the precipitation of an insoluble coordination polymer at the end of each reaction, allowing easy separation from products. The coordination polymer is formed through aggregation of Cu(II) ions with ditopic bisoxazoline-based chiral ligands. Up to 11 catalytic cycles have been conducted keeping good yields and enantioselectivities.

  13. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics.

  14. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  15. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT

    PubMed Central

    Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine

    2016-01-01

    Background Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. Purpose To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Material and Methods Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. Results The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. Conclusion The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique.

  16. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT

    PubMed Central

    Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine

    2016-01-01

    Background Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. Purpose To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Material and Methods Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. Results The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. Conclusion The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique. PMID:27635253

  17. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    PubMed

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation.

  18. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    PubMed

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation. PMID:26462240

  19. Potential of software-based scatter corrections in cone-beam volume CT

    NASA Astrophysics Data System (ADS)

    Bertram, Matthias; Wiegert, Jens; Rose, Georg

    2005-04-01

    This study deals with a systematic assessment of the potential of different schemes for computerized scatter correction in flat detector based cone-beam X-ray computed tomography. The analysis is based on simulated scatter of a CT image of a human head. Using a Monte-Carlo cone-beam CT simulator, the spatial distribution of scattered radiation produced by this object has been calculated with high accuracy for the different projected views of a circular tomographic scan. Using this data and, as a reference, a scatter-free forward projection of the phantom, the potential of different schemes for scatter correction has been evaluated. In particular, the ideally achievable degree of accuracy of schemes based on estimating a constant scatter level in each projection was compared to approaches aiming at estimation of a more complex spatial shape of the scatter distribution. For each scheme, remaining cupping artifacts in the reconstructed volumetric image were quantified and analyzed. It was found that already accurate estimation of a constant scatter level for each projection allows for comparatively accurate compensation of scatter-caused artifacts.

  20. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  1. Hybrid point-and-intensity-based deformable registration for abdominal CT images

    NASA Astrophysics Data System (ADS)

    West, Jay B.; Maurer, Calvin R., Jr.; Dooley, John R.

    2005-04-01

    In this paper, we examine the problem of non-rigid, image-to-image registration for CT images of the abdomen. This problem has been previously addressed in many different contexts (e.g., visualization using different imaging modalities, modelling of organ deformation after surgical resection). The particular application in which we are interested is modelling of respiratory motion of abdominal organs, so that we may achieve a more accurate representation of the dose distribution in both targeted structures and non-targeted areas during radiosurgical treatment. Our goal is to register two CT images, each acquired at different positions in the respiratory cycle. We use a transformation model based on B-splines, and take advantage of B-splines' "locality" or "compact support" property to ensure computational efficiency and robust convergence to a satisfactory result. We demonstrate that, although a purely intensity-based registration metric performs well in matching the deformation of the lungs during the respiratory cycle, the movement of other organs (e.g., liver and kidney) is poorly represented due to the poor contrast within and between these organs in the CT images. We introduce a registration metric that is a weighted combination of intensity difference and distance between corresponding points that are manually identified in the two images being registered; we show how the influence of these points can be elegantly added to the metric so that it remains differentiable with respect to the spline control points. Visual inspection reveals that resulting registrations appear to be superior to the intensity-only ones in terms of representation of visceral organ deformation and movement.

  2. Ultrafast laser-based micro-CT system for small-animal imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Kieffer, Jean-Claude; Nees, John; Chen, Liming; Toth, R.; Hou, Bixue; Kincaid, Russell E., Jr.; Coman, Ioana L.; Lipson, Edward D.; Mourou, Gerard

    2004-05-01

    We investigated ultrafast laser-based x-ray (ULX) source as an attractive alternative to a microfocal x-ray tube used in micro-CT systems. The laser pulse duration was in the 30 fs-200 fs range, the repetition rate in the 10 Hz - 1 kHz range. A number of solid targets including Ge, Mo, Rh, Ag, Sn, Ba, La, Nd with matching filters was used. We optimized conditions for x-rays generation and measured: x-ray spectra, conversion efficiency (from laser light to x-rays), x-ray fluence, effective x-ray focal spot size and spatial resolution, contrast resolution and radiation dose. Good quality projection images of small animals in single-and dual-energy mode were obtained. ULX generates narrow x-ray spectra that consist mainly of characteristic lines that can be easily tailored (by changing laser beam target) to the imaging task, (e.g. to maximize contrast while minimizing radiation dose). X-ray fluence can exceed fluence produced by conventional microfocal tube with 10 μm focal-spot hence allowing for faster scans with very high spatial resolution. Changing the laser target, and thus matching the characteristic emission lines with the investigated animal's thickness and composition, can be done quickly and easily. Using narrow emission lines for imaging, instead of broad bremsstrahlung, offers superior dose utilization and limits beam-hardening effects. Employing two narrow emission lines-above and below the absorption edge of a contrast agent-in quick succession allows dual-energy-subtraction micro-CT for imaging with a contrast medium. Dual-energy-subtraction is not practical with a microfocal tube. Compact, robust, ultrafast lasers are commercially available, and their characteristics are rapidly improving. We plan to construct a prototype in vivo ultrafast laser-based micro-CT system.

  3. Charge carrier mobility in conjugated organic polymers: simulation of an electron mobility in a carbazole-benzothiadiazole-based polymer

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Lagowski, Jolanta B.

    2011-08-01

    Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.

  4. Altering the Conjugation Pathway for Improved Performance of Benzobisoxazole-Based Polymer Guest Emitters in Polymer Light-Emitting Diodes

    SciTech Connect

    Intemann, Jeremy J.; Hellerich, Emily S.; Tlach, Brian C.; Ewan, Monique D.; Barnes, Charles A.; Bhuwalka, Achala; Cai, Min; Shinar, Joseph; Shinar, Ruth; Jeffries-EL, Malika

    2012-08-27

    Benzobisoxazoles (BBOs) are known to increase the electron affinities and improve the electron transporting properties of materials containing them. However, BBO copolymers generally do not perform well as emissive guests in guest–host PLEDs due to inefficient Förster resonance energy transfer (FRET) between host and guest. The incomplete FRET results in a large amount of host emission and limits the potential efficiencies of the devices. In all previously reported BBO copolymers, the conjugation pathway was through the oxazole rings. Herein we report six new BBO copolymers with backbone connectivity directly on the central benzene ring, resulting in a conjugation pathway for the polymers that is perpendicular to the previously reported pathway. Guest–host PLEDs made using these polymers show that the new conjugation pathway improves FRET between the poly(N-vinylcarbazole) host and the BBO-containing polymer guest. Because of highly efficient FRET, no host emission is observed even at lower guest concentrations. The improved energy transfer results in devices with luminous efficiencies up to 3.1 Cd/A, a 3-fold improvement over previously reported BBO-based PLEDs. These results indicate that the conjugation pathway plays a critical role in designing emissive materials for guest–host PLEDs.

  5. Thermo-Responsive Polymers for Cell-based Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    James, Hodari-Sadiki

    Poly (N-isopropylacrylamide) (PNIPAAm) is a well-known thermo-responsive polymer that has be shown to be biocompatible, with surfaces coated with PNIPAAm supporting the culture of cells. These surfaces support the adhesion and proliferation of multiple cell phenotypes at 37 °C, when surface is hydrophobic, as the polymer chains are collapse and lose their affinity for water. Reducing the temperature below the polymers lower critical solution temperature (LCST) elicits hydration and swelling of the polymer chains and leads to cell detachment. In vitro culture on thermo-responsive surfaces can be used to produce cell sheets for the use of different therapeutic treatments. PNIPAAm coated membranes were used to culture human keratinocyte cells to confluence, with cell release possible after exposing the membranes to room temperature (˜25 °C) for 10 minutes. Cell sheet transfer was possible from the coated membrane to cell culture dishes using a protocol that we developed. There was also a trend towards similar cell apoptosis on both PNIPAAm coated and uncoated surfaces.

  6. Soft actuators based on conducting polymers: recent progress

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Somekawa, H.; Takashima, Wataru

    2003-07-01

    Deformations of conducting polymer films, such as polyaniline, polypyrrole and polythiophene, induced by electrochemical oxidation and reduction are presented and discussed in terms of the mechanisms. Soft actuators with variety of motions such as bending stick, breathing ring and shouting lip utilizing polypyrrole films are demonstrated. A new operation method is proposed using electrodeposited polypyrrole films.

  7. Diclofenac sodium (DS) loaded bioerodible polymer based constructs

    NASA Astrophysics Data System (ADS)

    Piras, M.; Chiellini, F.; Nikkola, L.; Ashammakhi, N.; Chiellini, E.

    2008-02-01

    Pain is a prevalent problem that can raise morbidity of patients. Pain killer releasing biodegradable materials have been developed by using different techniques and biomaterials. The objective of the current study is to evaluate the use of a new bioerodible polymer for release of diclofenac sodium (DS). 1-butanol hemiester poly(maleic anhydride-alt-2-methoxyethyl vinyl ether) (PAM14) was prepared in the university of Pisa and selected as polymer of choice for the study. Polymer solutions of 5-10% (in ethanol or in acetic acid) were prepared, half of them containing 2% DS. The solutions were then electrospun to produce nanomats that were subsequently characterized using SEM. Fiber diameter was 160 nm 1 μm. Increasing polymer concentration increased the size of the fibers but reduced the number of beads (with or without DS). In the specimens obtained from acetic acid solution, the addition of DS resulted in a reduction in fiber diameter and an increase in the inter-bead distance. Corresponding ethanol solutions gave more homogeneous specimens than did acetic acid, having a lower number of beads. With the addition of DS a reduction in fiber diameter was observed for the acetic acid specimens. However, in ethanol, adding DS resulted in increased fiber diameter. Accordingly, it can be concluded that it is feasible to develop electrospun diclofenac releasing bioerodible nanostructures that have potential use in pain management. Their further evaluation is however, needed both in vitro and in vivo.

  8. Electrochemical biosensor based on immobilized enzymes and redox polymers

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Hale, Paul D.

    1992-01-01

    The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

  9. Degradation Testing of Fluorotelomer-based polymers (FTPs)

    EPA Science Inventory

    Over the last decade, concern about sources of per and polyfluorochemicals (PFCs) have led to an increasing need for information on the microbial and/or abiotic degradation of polymer materials that contain PFC structural fragments that may be released. EPA, OECD, ASTM and other...

  10. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  11. New Development of Polymer-Based Cotton for Breathable Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we converted the poly (ethylene oxide) dibromide to poly (ethylene oxide) diazides and reacted to study cycloaddition polymerization with bisphenol-A dipropargyl ether to produce elastomers compatible with cotton (Polymer Preprints, 2005, 46(1), 737-738). The reactants were characterized w...

  12. Electrochromic artificial muscles based on nanoporous metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Detsi, E.; Onck, P. R.; De Hosson, J. T. M.

    2013-11-01

    This work shows that a nano-coating of electrochromic polymer grown onto the ligaments of nanoporous gold causes reversible dimensional and color changes during electrochemical actuation. This combination of electromechanical and optical properties opens additional avenues for the applications of artificial muscles, i.e., a metallic muscle exhibits its progress during work by changing color that can be detected by optical means.

  13. Correlation of Nano Edge Roughness in Resist Patterns with Base Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Yamamoto, Jiro; Okazaki, Shinji

    1993-12-01

    The origin of ultra small edge roughness in delineated resist patterns (nano edge roughness) is investigated from the viewpoint of molecular structures of the base polymers of the resists. In this article, conventional two-component negative-type electron beam resists are studied to clarify the correlation of the nano edge roughness with base polymers. The base polymers are cresol novolak and polyvinylphenol mixed with the same concentrations of photoactive azide compound. The weight-average molecular weight (Mw) and polydispersity (Mw/Mn) of the base resins are controlled. Nanometer feature microscopic surface characteristics obtained with an atomic force microscope (AFM) show that the cresol novolak-based resist exhibits a rougher surface than the polyvinylphenol-based one. Nano edge roughness can be suppressed by using base resins with lower Mw and Mw/Mn, suggesting that nano edge roughness reflects the molecular characteristics of the base polymers. There is nanometer level swelling in resist patterns (nano swelling) in polyvinylphenol-based resist. These results suggest that the structures of the base polymers and the interaction with developers affect the nano edge roughness.

  14. Hybrid light emitting diodes based on solution processed polymers, colloidal quantum dots, and colloidal metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    This dissertation focuses on solution-processed light-emitting devices based on polymer, polymer/PbS quantum dot, and polymer/silver nanoparticle hybrid materials. Solution based materials and organic/inorganic hybrid light emitting diodes attracted significant interest recently due to many of their advantages over conventional light emitting diodes (LEDs) including low fabrication cost, flexible, high substrate compatibility, as well as tunable emission wavelength of the quantum dot materials. However, the application of these novel solution processed materials based devices is still limited due to their low performances. Material properties and fabrication parameters need to be carefully examined and understood for further device improvement. This thesis first investigates the impact of solvent property and evaporation rate on the polymer molecular chain morphology and packaging in device structures. Solvent is a key component to make the active material solution for spin coating fabrication process. Their impacts are observed and examined on both polymer blend system and mono-polymer device. Secondly, PbS colloidal quantum dot are introduced to form hybrid device with polymer and to migrate the device emission into near-IR range. As we show, the dithiol molecules used to cross-link quantum dots determine the optical and electrical property of the resulting thin films. By choosing a proper ligand for quantum dot ligand exchange, a high performance polymer/quantum dot hybrid LED is fabricated. In the end, the interaction of polymer exciton with surface plasmon mode in colloidal silver nanoparticles and the use of this effect to enhance solution processed LEDs' performances are investigated.

  15. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers.

    PubMed

    Hu, Zhongjian; Liu, Jianhua; Simón-Bower, Lauren; Zhai, Lei; Gesquiere, Andre J

    2013-04-25

    Structural order of conjugated polymers at different length scales directs the optoelectronic properties of the corresponding materials; thus it is of critical importance to understand and control conjugated polymer morphology for successful application of these materials in organic optoelectronics. Herein, with the aim of probing the dependence of single chain folding properties on the chemical structure and rigidness of the polymer backbones, single molecule fluorescence spectroscopy was applied to four thiophene-based conjugated polymers. These include regioregular poly(3-hexylthiophene) (RR-P3HT), poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-14), poly(2,5-bis(3-tetradecylthiophen-2-yl)thiophene-2-yl)thiophen-2-ylthiazolo[5,4-d]thiazole) (PTzQT-12), and poly(3,3-didodecylquaterthiophene)] (PQT-12). Our previous work has shown that RR-P3HT and PBTTT-14 polymer chains fold in their nanostructures, whereas PQT-12 and PTzQT-12 do not fold in their nanostructures. At the single molecule level, it was found that RR-P3HT single chains almost exclusively fold into loosely and strongly aggregated conformations, analogous to the folding properties in nanostructures. PQT-12 displays significant chain folding as well, but only into loosely aggregated conformations, showing an absence of strongly aggregated polymer chains. PBTTT-14 exhibits a significant fraction of rigid polymer chain. The findings made for single molecules of PQT-12 and PBTTT-14 are thus in contrast with the observations made in their corresponding nanostructures. PTzQT-12 appears to be the most rigid and planar conjugated polymer of these four polymers. However, although the presumably nonfolding polymers PQT-12 and PTzQT-12 exhibit less folding than RR-P3HT, there is still a significant occurrence of chain folding for these polymers at the single molecule level. These results suggest that the folding properties of conjugated polymers can be influenced by the architecture of the

  16. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials. PMID:25262768

  17. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    SciTech Connect

    Cebe,P.; Cherdack, D.; Guertin, R.; Haas, T.; S. Ince, B.; Valluzzi, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  18. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials.

  19. Transfection of immortalized keratinocytes by low toxic poly(2-(dimethylamino)ethyl methacrylate)-based polymers.

    PubMed

    Van Overstraeten-Schlögel, Nancy; Ho-Shim, Yong; Tevel, Virginie; Bontems, Sébastien; Dubois, Philippe; Raes, Martine

    2012-01-01

    Skin carcinoma are among the most spread diagnosed tumours in the world. In this study, we investigated the transfection of immortalized keratinocytes, used as an in vitro model for skin carcinoma, using antisense technology and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)-based polymers, with original architecture and functionalities. We tested PDMAEMA polymers with different structures: linear, with two (DEA-PDMAEMA) or three (TEA-PDMAEMA) arms. The cytotoxicity of these polymers was assessed over a wide range of apparent M n (from 7600 to 64 600). At a N/P ratio of 7.38, cytotoxicity increases with the M n. Keratinocytes were transfected with a fluorescent oligonucleotide and then analyzed by flow cytometry. For the three architectures tested, the percentage of transfected cells and abundance of internalized oligonucleotide were closely related to the M n of the polymer. Confocal microscopy and FACS analyses showed a wide spread fine granular distribution of the oligonucleotide up to 3 days post-transfection. Then, we assessed the silencing efficiency of the polymers, targeting GFP in GFP expressing keratinocytes. The maximal silencing effect (±40%) was obtained using a DEA-PDMAEMA polymer (M n = 30 300). These results suggest that PDMAEMA-based polymers can be efficiently used to transfect immortalized keratinocytes and, thus, open new perspectives in the therapy of skin carcinoma.

  20. Surface eroding, liquid injectable polymers based on 5-ethylene ketal ε-caprolactone.

    PubMed

    Babasola, Oladunni Iyabo; Amsden, Brian G

    2011-10-10

    Liquid, injectable hydrophobic polymers are potentially useful as depot systems for localized drug delivery. Low molecular weight polymers of 5-ethylene ketal ε-caprolactone and copolymers of this monomer with D,L-lactide were prepared and their properties assessed with respect to their suitability for this purpose. The polymers were amorphous and of low viscosity, and the viscosity was adjustable by choice of initiator and/or by copolymerizing with D,L-lactide. Lower viscosity polymers were attained by using 350 Da methoxy poly(ethylene glycol) as an initiator in comparison to octan-1-ol, while copolymerization with D,L-lactide increased viscosity. The initiator used had no significant effect on the rate of mass loss in vitro, and copolymers with D,L-lactide (DLLA) degraded faster than 5-ethylene ketal ε-caprolactone (EKC) homopolymers. For the EKC-based polymers, a nearly constant degradation rate was observed. This finding was attributed to the hydrolytic susceptibility of the EKC-EKC ester linkage, which was comparable to that of DLLA-DLLA, coupled with a higher molecular weight of the water-soluble degradation product and the low initial molecular weight of the EKC-based polymers. Cytotoxicity of the hydrolyzed EKC monomer to 3T3 fibroblast cells was comparable to that of ε-caprolactone, suggesting that polymers prepared from EKC may be well tolerated upon in vivo implantation. PMID:21902176

  1. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  2. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery.

    PubMed

    Gary, Dana J; Puri, Nitin; Won, You-Yeon

    2007-08-16

    Gene therapy holds tremendous promise in the treatment of many genetic and acquired diseases. The future of gene therapy in humans, however, is contingent upon the discovery of safe and effective carriers of genetic material. Polymers represent a class of materials that can be extensively modified to meet the needs of a particular gene delivery system. A variety of polymer formulations have been proposed in the literature as potential carriers, most of which facilitate gene delivery by encapsulating, and in some cases, condensing nucleic acids into nano-sized particles which can then be taken up by cells. Crucial to successful delivery of the gene to a cell is the polymer's ability to protect its contents from degradation in the extracellular environment. A well-designed carrier will also promote cellular uptake and intracellular release of the nucleic acid. In the past, a common approach to gene therapy has been to transfect cells with a polymer-encapsulated DNA plasmid designed to replace a defective gene in the target-cell genome. Within the last few years, however, RNA interference (RNAi) has emerged as a novel therapeutic pathway by which harmful genes can be "silenced" by delivering complementary short interfering RNA (siRNA) to target cells. siRNA delivery facilitated by polymers, although very promising, suffers from many of the same limitations as DNA delivery. This review will (1) highlight the similarities and differences between these two methods of gene therapy and (2) discuss how some of the remaining challenges in siRNA delivery facilitated by polymers can be addressed by applying knowledge from the longer-studied problem of DNA delivery.

  3. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  4. CT-based 3-D visualisation of secure bone corridors and optimal trajectories for sacroiliac screws.

    PubMed

    Mendel, Thomas; Radetzki, Florian; Wohlrab, David; Stock, Karsten; Hofmann, Gunther Olaf; Noser, Hansrudi

    2013-07-01

    Sacroiliac screw (SI) fixation represents the only minimally invasive method to stabilise unstable injuries of the posterior pelvic ring. However, it is technically demanding. The narrow sacral proportions and a high inter-individual shape variability places adjacent neurovascular structures at potential risk. In this study a CT-based virtual analysis of the iliosacral anatomy in the human pelvis was performed to visualise and analyse 3-D bone corridors for the safe placement of SI-screws in the first sacral segment. Computer-aided calculation of 3-D transverse and general SI-corridors as a sum of all inner-bony 7.3-mm screw positions was done with custom-made software algorithms based on CT-scans of intact human pelvises. Radiomorphometric analysis of 11 CT-DICOM datasets using the software Amira 4.2. Optimal screw tracks allowing the greatest safety distance to the cortex were computed. Corridor geometry and optimal tracks were visualised; measurement data were calculated. A transverse corridor existed in 10 pelvises. In one dysmorphic pelvis, the pedicular height at the level of the 1st neural foramina came below the critical distance of 7.3mm defined by the outer screw diameter. The mean corridor volume was 45.2 cm3, with a length of 14.9cm. The oval cross-section measured 2.8 cm2. The diameter of the optimal screw pathway with the greatest safety distance was 14.2mm. A double cone-shaped general corridor for screw penetration up to the centre of the S1-body was calculated bilaterally for every pelvis. The mean volume was 120.6 cm3 for the left side and 115.8 cm3 for the right side. The iliac entry area measured 49.1 versus 46.0 cm2. Optimal screw tracks were calculated in terms of projected inlet and outlet angles. Multiple optimal screw positions existed for each pelvis. The described method allows an automated 3-D analysis with regard to secure SI-screw corridors even with a high number of CT-datasets. Corridor visualisation and calculation of optimal screw

  5. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  6. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u‑1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  7. A weighted polynomial based material decomposition method for spectral x-ray CT imaging.

    PubMed

    Wu, Dufan; Zhang, Li; Zhu, Xiaohua; Xu, Xiaofei; Wang, Sen

    2016-05-21

    Currently in photon counting based spectral x-ray computed tomography (CT) imaging, pre-reconstruction basis materials decomposition is an effective way to reconstruct densities of various materials. The iterative maximum-likelihood method requires precise spectrum information and is time-costly. In this paper, a novel non-iterative decomposition method based on polynomials is proposed for spectral CT, whose aim was to optimize the noise performance when there is more energy bins than the number of basis materials. Several subsets were taken from all the energy bins and conventional polynomials were established for each of them. The decomposition results from each polynomial were summed with pre-calculated weighting factors, which were designed to minimize the overall noises. Numerical studies showed that the decomposition noise of the proposed method was close to the Cramer-Rao lower bound under Poisson noises. Furthermore, experiments were carried out with an XCounter Filte X1 photon counting detector for two-material decomposition and three-material decomposition for validation. PMID:27082291

  8. A weighted polynomial based material decomposition method for spectral x-ray CT imaging.

    PubMed

    Wu, Dufan; Zhang, Li; Zhu, Xiaohua; Xu, Xiaofei; Wang, Sen

    2016-05-21

    Currently in photon counting based spectral x-ray computed tomography (CT) imaging, pre-reconstruction basis materials decomposition is an effective way to reconstruct densities of various materials. The iterative maximum-likelihood method requires precise spectrum information and is time-costly. In this paper, a novel non-iterative decomposition method based on polynomials is proposed for spectral CT, whose aim was to optimize the noise performance when there is more energy bins than the number of basis materials. Several subsets were taken from all the energy bins and conventional polynomials were established for each of them. The decomposition results from each polynomial were summed with pre-calculated weighting factors, which were designed to minimize the overall noises. Numerical studies showed that the decomposition noise of the proposed method was close to the Cramer-Rao lower bound under Poisson noises. Furthermore, experiments were carried out with an XCounter Filte X1 photon counting detector for two-material decomposition and three-material decomposition for validation.

  9. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  10. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  11. Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Cong, Weijian; Wang, Yongtian

    2015-01-01

    Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated to find similar patches as training groups for further processing. Tensor-based PCA is used to obtain transformation matrices, and coefficients are sequentially shrunk by the linear minimum mean square error. Reconstructed patches are obtained, and a denoised image is finally achieved by aggregating all of these patches. The experimental results of the standard test image show that the best results are obtained with two denoising rounds according to six quantitative measures. For the experiment on the clinical images, the proposed AT-PCA method can suppress the noise, enhance the edge, and improve the image quality more effectively than NLM and KSVD denoising methods. PMID:25993566

  12. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation.

    PubMed

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-16

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  13. Improved fiber optic sensor for salt concentration based on polymer swelling

    NASA Astrophysics Data System (ADS)

    Bai, Mingqi; Seitz, William R.

    1993-04-01

    An improved design for fiber optic chemical sensors based on polymer swelling is applied to the detection of changes in electrolyte concentration. In this design the polymer sensing element is isolated from the fiber optics by a rubber diaphragm glued to a reflecting piece of aluminum. Changes in polymer size move the diaphragm, changing the intensity of light reflected into an optical fiber. The sensor design allows the user to adjust the distance between the optical fibers and the reflecting surface so that maximum sensitivity can be achieved. The new design is demonstrated using a bead of crosslinked strongly basic anion exchange resin as a sensing element to detect changes in electrolyte concentration.

  14. Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization

    PubMed Central

    Clark, Darin; Badea, Alexandra; Liu, Yilin; Johnson, G. Allan; Badea, Cristian T.

    2013-01-01

    Micro-CT can play an important role in preclinical studies of cardiovascular disease because of its high spatial and temporal resolution. Quantitative analysis of 4D cardiac images requires segmentation of the cardiac chambers at each time point, an extremely time consuming process if done manually. To improve throughput this study proposes a pipeline for registration-based segmentation and functional analysis of 4D cardiac micro-CT data in the mouse. Following optimization and validation using simulations, the pipeline was applied to in vivo cardiac micro-CT data corresponding to 10 cardiac phases acquired in C57BL/6 mice (n = 5). After edge-preserving smoothing with a novel adaptation of 4D bilateral filtration, one phase within each cardiac sequence was manually segmented. Deformable registration was used to propagate these labels to all other cardiac phases for segmentation. The volumes of each cardiac chamber were calculated and used to derive stroke volume, ejection fraction, cardiac output, and cardiac index. Dice coefficients and volume accuracies were used to compare manual segmentations of two additional phases with their corresponding propagated labels. Both measures were, on average, >0.90 for the left ventricle and >0.80 for the myocardium, the right ventricle, and the right atrium, consistent with trends in inter- and intra-segmenter variability. Segmentation of the left atrium was less reliable. On average, the functional metrics of interest were underestimated by 6.76% or more due to systematic label propagation errors around atrioventricular valves; however, execution of the pipeline was 80% faster than performing analogous manual segmentation of each phase. PMID:22971564

  15. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  16. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    DOEpatents

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  17. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; Morozov, Evgeny V; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-04-14

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.

  18. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices.

    PubMed

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-08-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.

  19. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. P.; Dixon, R. L.; Samei, Ehsan

    2015-03-01

    Among the various metrics that quantify radiation dose in computed tomography (CT), organ dose is one of the most representative quantities reflecting patient-specific radiation burden.1 Accurate estimation of organ dose requires one to effectively model the patient anatomy and the irradiation field. As illustrated in previous studies, the patient anatomy factor can be modeled using a library of computational phantoms with representative body habitus.2 However, the modeling of irradiation field can be practically challenging, especially for CT exams performed with tube current modulation. The central challenge is to effectively quantify the scatter irradiation field created by the dynamic change of tube current. In this study, we present a convolution-based technique to effectively quantify the primary and scatter irradiation field for TCM examinations. The organ dose for a given clinical patient can then be rapidly determined using the convolution-based method, a patient-matching technique, and a library of computational phantoms. 58 adult patients were included in this study (age range: 18-70 y.o., weight range: 60-180 kg). One computational phantom was created based on the clinical images of each patient. Each patient was optimally matched against one of the remaining 57 computational phantoms using a leave-one-out strategy. For each computational phantom, the organ dose coefficients (CTDIvol-normalized organ dose) under fixed tube current were simulated using a validated Monte Carlo simulation program. Such organ dose coefficients were multiplied by a scaling factor, (CTDIvol )organ, convolution that quantifies the regional irradiation field. The convolution-based organ dose was compared with the organ dose simulated from Monte Carlo program with TCM profiles explicitly modeled on the original phantom created based on patient images. The estimation error was within 10% across all organs and modulation profiles for abdominopelvic examination. This strategy

  20. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (ɛ'), dielectric loss (ɛ″) and ac conductivity (σac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  1. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  2. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors.

    PubMed

    Chen, Zhan; Wang, Qian; Wu, Xin; Li, Zhao; Jiang, Yun-Bao

    2015-07-01

    Optical sensors that respond to enantiomeric excess of chiral analytes are highly demanded in chirality related research fields and demonstrate their potential in many applications, for example, screening of asymmetric reaction products. Most sensors developed so far are small molecules. This Tutorial Review covers recent advances in chirality sensing systems that are different from the traditional small molecule-based sensors, by using macrocycles, synthetic oligomers/polymers, supramolecular polymers and nanoparticles as the sensors, in which supramolecular interactions operate. PMID:25714523

  3. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends.

    PubMed

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V A L

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

  4. Focus tunable device actuator based on ionic polymer metal composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Wei; Su, Guo-Dung J.

    2015-09-01

    IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is used as an actuator because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied. In this paper, the complex IPMC fabrication such as Ag-IPMC be further developed in this paper. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented. We also use the optimized IPMC as the lens actuator integrated with curvilinear microlens array, and use the 3D printer to make a simple module and spring stable system. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200μm stroke under 2.5V driving voltage within 1 seconds, and the resonant frequency is approximately 500 Hz.

  5. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    SciTech Connect

    Andreasen, Daniel; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon A. L.; Edmund, Jens M.

    2015-04-15

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of a patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and

  6. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine

    NASA Astrophysics Data System (ADS)

    Ji, Lvlv; Dai, Yuyu; Yan, Shuanma; Lv, Xiaojing; Su, Chang; Xu, Lihuan; Lv, Yaokang; Ouyang, Mi; Chen, Zuofeng; Zhang, Cheng

    2016-07-01

    A novel strategy to obtain rapid electrochromic switching response by introducing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) moiety into polytriphenylamine backbone has been developed. The electrochromic properties of the integrated polymer film are investigated and a possible mechanism is proposed with TEMPO as a counterion-reservoir group to rapidly balance the charges during electrochromic switching, which leads to significantly improved electrochromism performance.

  7. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine.

    PubMed

    Ji, Lvlv; Dai, Yuyu; Yan, Shuanma; Lv, Xiaojing; Su, Chang; Xu, Lihuan; Lv, Yaokang; Ouyang, Mi; Chen, Zuofeng; Zhang, Cheng

    2016-07-22

    A novel strategy to obtain rapid electrochromic switching response by introducing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) moiety into polytriphenylamine backbone has been developed. The electrochromic properties of the integrated polymer film are investigated and a possible mechanism is proposed with TEMPO as a counterion-reservoir group to rapidly balance the charges during electrochromic switching, which leads to significantly improved electrochromism performance.

  8. Towards Polymer-Based Capsules with Drastically Reduced Controlled Permeability

    NASA Astrophysics Data System (ADS)

    Andreeva, Daria V.; Sukhorukov, Gleb B.

    Small molecules (dyes, therapeutics, etc.) could be easily handled, stored, delivered, and released by polyelectrolyte capsules. To make the polyelectrolyte capsule more efficient for small molecule encapsulation, capsule permeability should be significantly decreased. Here, we demonstrate the possibility to entrap water-soluble molecular species into polyelectrolyte capsules modified by a low permeable dense polymer (polypyrrole). Possible future areas in PE capsule application as carriers for gases and volatiles in the pharmaceutical, food, and gases industry, agriculture and cosmetology are discussed.

  9. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine.

    PubMed

    Ji, Lvlv; Dai, Yuyu; Yan, Shuanma; Lv, Xiaojing; Su, Chang; Xu, Lihuan; Lv, Yaokang; Ouyang, Mi; Chen, Zuofeng; Zhang, Cheng

    2016-01-01

    A novel strategy to obtain rapid electrochromic switching response by introducing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) moiety into polytriphenylamine backbone has been developed. The electrochromic properties of the integrated polymer film are investigated and a possible mechanism is proposed with TEMPO as a counterion-reservoir group to rapidly balance the charges during electrochromic switching, which leads to significantly improved electrochromism performance. PMID:27444398

  10. Doubly renewable cellulose polymer for water-based coatings.

    PubMed

    Tristram, Cameron J; Mason, Jennifer M; Williams, D Bradley G; Hinkley, Simon F R

    2015-01-01

    A levulinoyl ester-containing cellulose polymer is introduced as a waterborne coating. Incorporation of the biomass-derived levulinic acid proceeds via an unexpected intermediate and provides the unusual feature of a cellulose derivative that is readily chemically modified. The levulinoyl-cellulose ester could be chemically manipulated, allowing it to be dispersed to generate a waterborne hydrocolloid latex. This was capable of film-formation at room temperature, and was formulated for use as a coating of high-renewable content.

  11. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine

    PubMed Central

    Ji, Lvlv; Dai, Yuyu; Yan, Shuanma; Lv, Xiaojing; Su, Chang; Xu, Lihuan; Lv, Yaokang; Ouyang, Mi; Chen, Zuofeng; Zhang, Cheng

    2016-01-01

    A novel strategy to obtain rapid electrochromic switching response by introducing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) moiety into polytriphenylamine backbone has been developed. The electrochromic properties of the integrated polymer film are investigated and a possible mechanism is proposed with TEMPO as a counterion-reservoir group to rapidly balance the charges during electrochromic switching, which leads to significantly improved electrochromism performance. PMID:27444398

  12. Two experiments in physics based on electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Pinto, Nicholas J.

    2008-12-01

    Two experiments related to nanoscience are described. These experiments are currently part of the undergraduate Physics program at the University of Puerto Rico. A simple to build and operate electrospinning apparatus produces conducting polymer nanofibers that are used to fabricate nanoresistors and Schottky nanodiodes. The properties of these devices are straightforward to study. A modification of the sample chamber can convert the nanoresistor experiment into a supersensitive alcohol vapor sensor.

  13. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials

    NASA Astrophysics Data System (ADS)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-01

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results

  14. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  15. Enzyme Biosensor Based on an Electropolymerized Osmium Redox Polymer

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Masaki; Maruyama, Kenichi; Mishima, Yuji; Motonaka, Junko

    Electrochemical polymerizations of metal complex as electron mediator in aqueous solution have been developed. The metal complexes as electron mediator of biosensor for practical application have a rapid electron transfer rate, a chemical stability, and an accessible manipulation. The electro-polymerized redox polymer relatively decreased the enzyme and catalytic activity, although these could be treated in organic solvent. In this work, the water-soluble osmium complex-modified pyrrole derivatives with long, flexible spacer chain were synthesized. The electro-polymerized redox polymer was generally produced by potential sweep copolymerization (-400 mV -/+1200 mV (vs. Ag|AgCl(sat.KCl))) of water-soluble osmium complex-modified pyrrole monomer and glucose oxidase (GOD) on the top of a Pt electrode in aqueous solution. With the electro-polymerized osmium redox polymer modified electrode, calibration graphs for measurements of glucose and the effect of concomitant compounds, dissolved oxygen and the lifetimes of the sensor were electrochemistry examined, respectively. Under optimal conditions, the response of the sensors was in the concentration ranges of 0.6 mM-100 mM for glucose.

  16. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. PMID:26520251

  17. Liver Segmentation Based on Snakes Model and Improved GrowCut Algorithm in Abdominal CT Image

    PubMed Central

    He, Baochun; Ma, Zhiyuan; Zong, Mao; Zhou, Xiangrong; Fujita, Hiroshi

    2013-01-01

    A novel method based on Snakes Model and GrowCut algorithm is proposed to segment liver region in abdominal CT images. First, according to the traditional GrowCut method, a pretreatment process using K-means algorithm is conducted to reduce the running time. Then, the segmentation result of our improved GrowCut approach is used as an initial contour for the future precise segmentation based on Snakes model. At last, several experiments are carried out to demonstrate the performance of our proposed approach and some comparisons are conducted between the traditional GrowCut algorithm. Experimental results show that the improved approach not only has a better robustness and precision but also is more efficient than the traditional GrowCut method. PMID:24066017

  18. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  19. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  20. Task-based detectability in CT image reconstruction by filtered backprojection and penalized likelihood estimation

    SciTech Connect

    Gang, Grace J.; Stayman, J. Webster; Zbijewski, Wojciech; Siewerdsen, Jeffrey H.

    2014-08-15

    Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT (CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectability index. Potential utility of the model was demonstrated in the optimal selection of regularization parameters in PL reconstruction. Methods: Analytical models for local modulation transfer function (MTF) and noise-power spectrum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to account for nonstationarity by separately calculating fluence and system gains for each ray passing through any given voxel. For PL, the point-spread function and covariance were derived using the implicit function theorem and first-order Taylor expansion according toFessler [“Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a variety of simple tasks. The model for PL was used in selecting the regularization strength parameter to optimize task-based performance, with both a constant and a spatially varying regularization map. Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location. The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS experiencing greater smoothing along directions with higher noise. The MTF of FBP

  1. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  2. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  3. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  4. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  5. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    DOE PAGESBeta

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; Zhu, Jiahua; Uhrig, David; Lu, Xinyi; Keum, Jong Kahk; Mays, Jimmy W.; Hong, Kunlun

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (Rq = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide

  6. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    SciTech Connect

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; Zhu, Jiahua; Uhrig, David; Lu, Xinyi; Keum, Jong Kahk; Mays, Jimmy W.; Hong, Kunlun

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) using a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (Rq = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results

  7. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    PubMed

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  8. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.

    PubMed

    Dou, Letian; Gao, Jing; Richard, Eric; You, Jingbi; Chen, Chun-Chao; Cha, Kitty C; He, Youjun; Li, Gang; Yang, Yang

    2012-06-20

    The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells. PMID:22640170

  9. Synchrotron-based Micro-CT Imaging of the Human Lung Acinus

    PubMed Central

    Litzlbauer, Horst Detlef; Korbel, Kathrin; Kline, Timothy L.; Jorgensen, Steven M.; Eaker, Diane R.; Bohle, Rainer M.; Ritman, Erik L.; Langheinrich, Alexander C.

    2012-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact 3-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, n = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4μm)3 voxel size. The lung functional unit (acinus, n = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intraacinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 ± 29.2 mm3 (range 92.5 – 171.3 mm3) and the mean acinar surface was calculated with 1012 ± 26 cm2. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 ± 0.04 mm to 0.34 ± 0.06 mm (p < 0.001) and remains constant after the 7th generation (p < 0.5). The length of each generation ranges between 0.52 – 0.93 mm and did not show significant differences between the second and 11th generation. The branching angle between daughter branches varies between 113–134° without significant differences between the generations (p < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT. PMID:20687188

  10. Synchrotron-Based Micro-CT Imaging of the Human Lung Acinus

    SciTech Connect

    Litzlbauer, H.; Korbel, K; Kline, T; Jorgensen, S; Eaker, D; Bohle, R; Ritman, E; Langheinrich, A

    2010-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, N = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4 {micro}m){sup 3} voxel size. The lung functional unit (acinus, N = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intra-acinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 {+-} 29.2 mm{sup 3} (range, 92.5-171.3 mm{sup 3}) and the mean acinar surface was calculated with 1012 {+-} 26 cm{sup 2}. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 {+-} 0.04 mm to 0.34 {+-} 0.06 mm (P < 0.001) and remains constant after the seventh generation (P < 0.5). The length of each generation ranges between 0.52 and 0.93 mm and did not show significant differences between the second and eleventh generation. The branching angle between daughter branches varies between 113-degree and 134-degree without significant differences between the generations (P < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT.

  11. A fluorescent thermometer based on a pyrene-labeled thermoresponsive polymer.

    PubMed

    Pietsch, Christian; Vollrath, Antje; Hoogenboom, Richard; Schubert, Ulrich S

    2010-01-01

    Thermoresponsive polymers that undergo a solubility transition by variation of the temperature are important materials for the development of 'smart' materials. In this contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol methacrylate), which is accompanied by a transition from hydrophilic to hydrophobic, for the development of a fluorescent thermometer. To translate the polymer phase transition into a fluorescent response, the polymer was functionalized with pyrene resulting in a change of the emission based on the microenvironment. This approach led to a soluble polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The polymer phase transition that occurs during sensing is studied in detail by dynamic light scattering.

  12. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  13. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE PAGESBeta

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  14. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  15. Millimeter thick ionic polymer membrane-based IPMCs with bimetallic Pd-Pt electrodes

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Kim, Sung Jun; Kim, Kwang

    2011-04-01

    Ionic polymer metal composites (IPMC) are a low-voltage driven Electroactive Polymers (EAP) that can be used as actuators or sensors. This paper presents a comparative study of millimeter thick ionic polymer membrane-based IPMCs with high-performance Pd-Pt electrodes and conventional Pt electrodes. IPMCs assembled with different electrodes are characterized in terms of electromechanical, -chemical and mechanolelectrical properties. The SEM and energy dispersive X-ray (EDS) analysis are used to investigate the distribution of deposited electrode metals in the cross-section of Pd-Pt IPMCs. The study shows that IPMCs assembled with millimeter thick ionic polymer membranes and bimetallic Pd-Pt electrodes are superior in mechanoelectrical sensing and, also, show considerably higher blocking forces compared to the conventional type of IPMCs. Blocking forces more than 30 grams are measured under 4V DC. However, the actuation response is slower than conventional IPMCs having approximately 0.2-0.3 mm thickness.

  16. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  17. Heart region segmentation from low-dose CT scans: an anatomy based approach

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Cham, Matthew D.; Henschke, Claudia I.

    2012-02-01

    Cardiovascular disease is a leading cause of death in developed countries. The concurrent detection of heart diseases during low-dose whole-lung CT scans (LDCT), typically performed as part of a screening protocol, hinges on the accurate quantification of coronary calcification. The creation of fully automated methods is ideal as complete manual evaluation is imprecise, operator dependent, time consuming and thus costly. The technical challenges posed by LDCT scans in this context are mainly twofold. First, there is a high level image noise arising from the low radiation dose technique. Additionally, there is a variable amount of cardiac motion blurring due to the lack of electrocardiographic gating and the fact that heart rates differ between human subjects. As a consequence, the reliable segmentation of the heart, the first stage toward the implementation of morphologic heart abnormality detection, is also quite challenging. An automated computer method based on a sequential labeling of major organs and determination of anatomical landmarks has been evaluated on a public database of LDCT images. The novel algorithm builds from a robust segmentation of the bones and airways and embodies a stepwise refinement starting at the top of the lungs where image noise is at its lowest and where the carina provides a good calibration landmark. The segmentation is completed at the inferior wall of the heart where extensive image noise is accommodated. This method is based on the geometry of human anatomy and does not involve training through manual markings. Using visual inspection by an expert reader as a gold standard, the algorithm achieved successful heart and major vessel segmentation in 42 of 45 low-dose CT images. In the 3 remaining cases, the cardiac base was over segmented due to incorrect hemidiaphragm localization.

  18. Evaluation of a μCT-based electro-anatomical cochlear implant model

    NASA Astrophysics Data System (ADS)

    Cakir, Ahmet; Dawant, Benoit M.; Noble, Jack H.

    2016-03-01

    Cochlear implants (CIs) are considered standard treatment for patients who experience sensory-based hearing loss. Although these devices have been remarkably successful at restoring hearing, it is rare to achieve natural fidelity, and many patients experience poor outcomes. Previous studies have shown that outcomes can be improved when optimizing CI processor settings using an estimation of the CI's neural activation patterns found by detecting the distance between the CI electrodes and the nerves they stimulate in pre- and post-implantation CT images. We call this method Image-Guided CI Programming (IGCIP). More comprehensive electro-anatomical models (EAMs) might better estimate neural activation patterns than using a distance-based estimate, potentially leading to selecting further optimized CI settings. Our goal in this study is to investigate whether μCT-based EAMs can accurately estimate neural stimulation patterns. For this purpose, we have constructed EAMs of N=9 specimens. We analyzed the sensitivity of our model to design parameters such as field-of-view, resolution, and tissue resistivity. Our results show that our model is stable to parameter changes. To evaluate the utility of patient-specific modeling, we quantify the difference in estimated neural activation patterns across specimens for identically located electrodes. The average computed coefficient of variation (COV) across specimens is 0.186, suggesting patient-specific models are necessary and that the accuracy of a generic model would be insufficient. Our results suggest that development of in vivo patient-specific EAMs could lead to better methods for selecting CI settings, which would ultimately lead to better hearing outcomes with CIs.

  19. A Four-Dimensional CT-Based Evaluation of Techniques for Gastric Irradiation

    SciTech Connect

    Geld, Ylanga G. van; Senan, Suresh; Soernsen de Koste, John R. van; Verbakel, Wilko F.A.R.; Slotman, Ben J.; Lagerwaard, Frank J.

    2007-11-01

    Purpose: To evaluate three-dimensional conformal (3D-CRT), intensity-modulated (IMRT) and respiration-gated radiotherapy (RGRT) techniques for gastric irradiation for target coverage and minimization of renal doses. All techniques were four-dimensional (4D)-CT based, incorporating the intrafractional mobility of the target volume and organs at risk (OAR). Methods and Materials: The stomach, duodenal C-loop, and OAR (kidneys, liver, and heart) were contoured in all 10 phases of planning 4D-CT scans for five patients who underwent abdominal radiotherapy. Planning target volumes (PTVs) encompassing all positions of the stomach (PTV{sub allphases}) were generated. Three respiratory phases for RGRT in inspiration and expiration were identified, and corresponding PTV{sub inspiration} and PTV{sub expiration} and OAR volumes were created. Landmark-based fields recommended for the Radiation Therapy Oncology Group (RTOG) 99-04 study protocol were simulated to assess PTV coverage. IMRT and 3D-CRT planning with and without additional RGRT planning were performed for all PTVs, and corresponding dose volume histograms were analyzed. Results: Use of landmark-based fields did not result in full geometric coverage of the PTV{sub allphases} in any patient. IMRT significantly reduced mean renal doses compared with 3D-CRT (15.0 Gy {+-} 0.9 Gy vs. 20.1 Gy {+-} 9.3 Gy and 16.6 Gy {+-} 1.5 Gy vs. 32.6 Gy {+-} 7.1 Gy for the left and right kidneys, respectively; p = 0.04). No significant increase in renal sparing was seen when adding RGRT to either 3D-CRT or IMRT. Tolerance doses to the other OAR were not exceeded. Conclusions: Individualized field margins are essential for gastric irradiation. IMRT plans significantly reduce renal doses, but the benefits of RGRT in gastric irradiation appear to be limited.

  20. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    SciTech Connect

    Kida, S; Bal, M; Kabus, S; Loo, B; Keall, P; Yamamoto, T

    2014-06-15

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (a surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based

  1. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Rasoga, O.; Catargiu, A. M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A.

    2015-05-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of heterostructures with single layer of arylene based polymer, poly[N-(2-ethylhexyl)2.7-carbazolyl vinylene]/AMC16 and poly[N-(2-ethylhexyl)2.7-carbazolyl 1.4-phenylene ethynylene]/AMC22, and with layers of these polymers mixed with Buckminsterfullerene/C60 in the weight ratio of 1:2 (AMC16:C60) and 1:3 (AMC22:C60). The deposited layers have been characterized by spectroscopic (UV-Vis-NIR, PL, FTIR) and microscopic (SEM, AFM) methods. The effect of the polymer particularities on the optical and electrical properties of the structures based on polymer and polymer:C60 mixed layer has been analyzed. The study of the electrical properties has revealed typical solar cell behavior for the heterostructure prepared by MAPLE on glass/ITO/PEDOT-PSS with AMC16, AMC22 and AMC22:C60 layer, confirming that this method is adequate for the preparation of polymeric and mixed active layers for solar cells applications. The highest photovoltaic effect was shown by the solar cell structure realized with single layer of AMC16 polymer: glass/ITO/PEDOT-PSS/AMC16/Al.

  2. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol.

    PubMed

    Wei, Guo; Zhang, Shuwei; Dai, Chunhui; Quan, Yiwu; Cheng, Yixiang; Zhu, Chengjian

    2013-11-18

    A new (S)-binaphthalene-based polymer (P-1) was synthesized by the polymerization of 5,5'-((2,5-dibutoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-hydroxy-3-(piperidin-1-ylmethyl) benzaldehyde (M-1) with (S)-2,2'-dimethoxy-(1,1'-binaphthalene)-3,3'-diamine (M-2) through the formation of a Schiff base; the corresponding chiral polymer (P-2) could be obtained by the reduction of polymer P-1 with NaBH4 . Chiral polymer P-1 exhibited a remarkable "turn-on" fluorescence-enhancement response towards (D)-phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P-1 displays a bright blue fluorescence color change upon the addition of (D)-phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P-2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol. PMID:24123510

  3. Mapping the nasal airways: using histology to enhance CT-based three-dimensional reconstruction in Nycticebus.

    PubMed

    Deleon, Valerie Burke; Smith, Timothy D

    2014-11-01

    Three-dimensional reconstructions of imaging data are an increasingly common approach for studying anatomical structure. However, certain aspects of anatomy, including microscopic structure and differentiating tissue types, continue to benefit from traditional histological analyses. We present here a detailed methodology for combining data from microCT and histological imaging to create 3D virtual reconstructions for visualization and further analyses. We used this approach to study the distribution of olfactory mucosa on ethmoturbinal I of an adult pygmy slow loris, Nycticebus pygmaeus. MicroCT imaging of the specimen was followed by processing, embedding, and sectioning for histological analysis. We identified corresponding features in the CT and histological data, and used these to reconstruct the plane of section in the CT volume. The CT volume was then digitally re-sliced, such that orthogonal sections of the CT image corresponded to histological sections. Histological images were annotated for the features of interest (in this case, the contour of soft tissue on ethmoturbinal I and the extent of olfactory mucosa), and annotations were transferred to binary masks in the CT volume. These masks were combined with density-based surface reconstructions of the skull to create an enhanced 3D virtual reconstruction, in which the bony surfaces are coded for mucosal function. We identified a series of issues that may be raised in this approach, for example, deformation related to histological processing, and we make recommendations for addressing these issues. This method provides an evidence-based approach to 3D visualization and analysis of microscopic features in an anatomic context.

  4. [Super-resolution reconstruction of lung 4D-CT images based on fast sub-pixel motion estimation].

    PubMed

    Xiao, Shan; Wang, Tingting; Lü, Qingwen; Zhang, Yu

    2015-07-01

    Super-resolution image reconstruction techniques play an important role for improving image resolution of lung 4D-CT. We presents a super-resolution approach based on fast sub-pixel motion estimation to reconstruct lung 4D-CT images. A fast sub-pixel motion estimation method was used to estimate the deformation fields between "frames", and then iterative back projection (IBP) algorithm was employed to reconstruct high-resolution images. Experimental results showed that compared with traditional interpolation method and super-resolution reconstruction algorithm based on full search motion estimation, the proposed method produced clearer images with significantly enhanced image structure details and reduced time for computation.

  5. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    PubMed

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism.

  6. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    PubMed

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. PMID:22939355

  7. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition.

    PubMed

    Lithner, Delilah; Larsson, Ake; Dave, Göran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out.

  8. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.

    PubMed

    Teomim, D; Mäder, K; Bentolila, A; Magora, A; Domb, A J

    2001-01-01

    The effect of terminal sterilization by gamma-irradiation on several ricinoleic acid based polyanhydrides was investigated. The following polymers were used: poly(ricinoleic acid maleate) [P(RAM)], poly(ricinoleic acid succinate) [P(RAS)], poly(hydroxy stearic acid succinate) [P(HSAS)], poly(hydroxy stearic acid maleate) [P(HSAM)], and their copolymers with sebacic acid. The polymers were irradiated with an absorbed dose of 2.5 or 10 Mrad by means of a 60Co source under dry ice or at room temperature. No differences were found between samples irradiated under dry ice and at room temperature. Polymers prepared from monomers containing maleate residues, which contain double bonds adjusted to the anhydride linkage along the polymer chain, decreased in molecular weight, became insoluble, and showed fast hydrolytic degradation. For example, p(RAM), p(HSAM), and their copolymers with sebacic acid decreased in Mw from about 10,000 to about 2000, and from about 30,000 to about 5000, respectively, while polymers based on RAS and HSAS remained stable. This phenomenon was explained by an anhydride interchange-self-depolymerization process of the unsaturated anhydride bonds induced by gamma-irradiation. This explanation was supported by the depolymerization of another class of polymers having an anhydride bond between two double bonds, fumaric acid anhydride polymers. The anhydride bond that lies between two double bonds was found to be more sensitive to gamma-irradiation. This anhydride bond may be cleaved to form two radicals that further react with aliphatic anhydride bonds along the polymer chain to form inter- and/or intracyclization products. PMID:11710004

  9. Doubly renewable cellulose polymer for water-based coatings.

    PubMed

    Tristram, Cameron J; Mason, Jennifer M; Williams, D Bradley G; Hinkley, Simon F R

    2015-01-01

    A levulinoyl ester-containing cellulose polymer is introduced as a waterborne coating. Incorporation of the biomass-derived levulinic acid proceeds via an unexpected intermediate and provides the unusual feature of a cellulose derivative that is readily chemically modified. The levulinoyl-cellulose ester could be chemically manipulated, allowing it to be dispersed to generate a waterborne hydrocolloid latex. This was capable of film-formation at room temperature, and was formulated for use as a coating of high-renewable content. PMID:25169869

  10. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  11. Radiation resistance of electro-optic polymer-based modulators

    SciTech Connect

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-05-16

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.

  12. A measurement-based X-ray source model characterization for CT dosimetry computations.

    PubMed

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-11-08

    less than 3.50%. Thirty-five out of a total of 36 simulation conditions were within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose.

  13. A measurement-based X-ray source model characterization for CT dosimetry computations.

    PubMed

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-01-01

    less than 3.50%. Thirty-five out of a total of 36 simulation conditions were within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose. PMID:26699546

  14. Texture-based segmentation and analysis of emphysema depicted on CT images

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Wang, Xingwei; Lederman, Dror; Pu, Jiantao; Sciurba, Frank C.; Gur, David; Leader, J. Ken

    2011-03-01

    In this study we present a texture-based method of emphysema segmentation depicted on CT examination consisting of two steps. Step 1, a fractal dimension based texture feature extraction is used to initially detect base regions of emphysema. A threshold is applied to the texture result image to obtain initial base regions. Step 2, the base regions are evaluated pixel-by-pixel using a method that considers the variance change incurred by adding a pixel to the base in an effort to refine the boundary of the base regions. Visual inspection revealed a reasonable segmentation of the emphysema regions. There was a strong correlation between lung function (FEV1%, FEV1/FVC, and DLCO%) and fraction of emphysema computed using the texture based method, which were -0.433, -.629, and -0.527, respectively. The texture-based method produced more homogeneous emphysematous regions compared to simple thresholding, especially for large bulla, which can appear as speckled regions in the threshold approach. In the texture-based method, single isolated pixels may be considered as emphysema only if neighboring pixels meet certain criteria, which support the idea that single isolated pixels may not be sufficient evidence that emphysema is present. One of the strength of our complex texture-based approach to emphysema segmentation is that it goes beyond existing approaches that typically extract a single or groups texture features and individually analyze the features. We focus on first identifying potential regions of emphysema and then refining the boundary of the detected regions based on texture patterns.

  15. Statistical model based iterative reconstruction in myocardial CT perfusion: exploitation of the low dimensionality of the spatial-temporal image matrix

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Chen, Guang-Hong

    2015-03-01

    Time-resolved CT imaging methods play an increasingly important role in clinical practice, particularly, in the diagnosis and treatment of vascular diseases. In a time-resolved CT imaging protocol, it is often necessary to irradiate the patients for an extended period of time. As a result, the cumulative radiation dose in these CT applications is often higher than that of the static CT imaging protocols. Therefore, it is important to develop new means of reducing radiation dose for time-resolved CT imaging. In this paper, we present a novel statistical model based iterative reconstruction method that enables the reconstruction of low noise time-resolved CT images at low radiation exposure levels. Unlike other well known statistical reconstruction methods, this new method primarily exploits the intrinsic low dimensionality of time-resolved CT images to regularize the reconstruction. Numerical simulations were used to validate the proposed method.

  16. Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery

    PubMed Central

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support

  17. Navigation systems based on registration of endoscopic and CT-derived virtual images for bronchofiberoscopic procedures.

    PubMed

    Turcza, Paweł; Duplaga, Mariusz

    2004-01-01

    Bronchofiberoscopy is an essential diagnostic procedure in patients with lung cancer. Sampling methods employed during endoscopy of the respiratory tract are performed with the aim of diagnosis confirmation and staging. Transbronchial needle aspiration may be used for evaluation of lymph nodes neighbouring with trachea and bronchi. Many efforts have been undertaken to increase the sensitivity of this procedure including the application of endobronchial ultrasonography. In recent years several research groups have proposed models of navigating systems to provide computer assistance during bronchoscopic interventions. Although they have used different techniques, their objective was the same - enabling tracking location and movement of bronchofiberoscope tip with reference to previously-acquired computed tomography (CT) images. Since a fiber-optic bronchoscope is a rather long and flexible device, determination of its tip location is not an easy task. The adoption of optical tracking methods used in neurosurgery or laparoscopic surgery to endoscopy of the tracheobronchial tree is usually not possible. Another obstacle is related to the fact that bronchofiberoscopes usually have only one operational channel. This feature considerably limits the feasibility of navigation systems based on the use of small electromagnetic sensing devices or USG probes. The sources of positioning errors in such systems are respiratory movements and the lack of external referential coordinate system associated with the tracheobronchial tree.A promising option for development of a bronchoscopic guidance system is the application of image registration algorithms. Such an approach encompasses registration of endoscopic images to views derived from advanced imaging methods, e.g. CT. In the first step, reconstruction of a three-dimensional, endoluminal views is performed. Next, the position of the virtual camera in a CT-derived virtual model is determined using a complex multi-level image

  18. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data.

    PubMed

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-08-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.

  19. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-08-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.

  20. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.