Science.gov

Sample records for ct perfusion imaging

  1. Myocardial perfusion imaging with dual energy CT.

    PubMed

    Jin, Kwang Nam; De Cecco, Carlo N; Caruso, Damiano; Tesche, Christian; Spandorfer, Adam; Varga-Szemes, Akos; Schoepf, U Joseph

    2016-10-01

    Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  2. Multislice CT brain image registration for perfusion studies

    NASA Astrophysics Data System (ADS)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  3. Clinical Application and Research Advances of CT Myocardial Perfusion Imaging.

    PubMed

    2016-06-10

    Computed tomography (CT)-based myocardial perfusion imaging (CTP)has been widely recognized as a one-station solution for the imaging of myocardial ischemia-related diseases. This article reviews the clinical scanning protocols,analytical methods,and research advances of CTP in recent years and briefly discusses its limitations and future development. PMID:27469926

  4. Pancreas tumor model in rabbit imaged by perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  5. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  6. Evidence for myocardial CT perfusion imaging in the diagnosis of hemodynamically significant coronary artery disease

    PubMed Central

    2015-01-01

    This editorial discusses a recent paper published in the August issue of Radiology about the diagnostic value of myocardial computer tomography (CT) perfusion imaging in the detection of hemodynamically significant coronary stenosis when compared to single-photon emission CT (SPECT) imaging based on a secondary analysis of CORE320 study. Three aspects including high diagnostic sensitivity of CT perfusion imaging, moderate specificity of SPECT imaging and lack of use of attenuation correction in SPECT imaging have been discussed with reference to the current literature, and some suggestions have been highlighted for future studies to improve the diagnostic performance of CT perfusion and SPECT imaging in the diagnostic evaluation of coronary artery disease. PMID:25774349

  7. Diagnostic Performance of Dual-Energy CT Stress Myocardial Perfusion Imaging: Direct Comparison With Cardiovascular MRI

    PubMed Central

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K.

    2014-01-01

    OBJECTIVE The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. SUBJECTS AND METHODS One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥ 50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemodynamically significant stenosis was assessed before and after stress perfusion DECT on a pervessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. RESULTS The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p = 0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. CONCLUSION Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically

  8. Comparison of stroke infarction between CT perfusion and diffusion weighted imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Abd. Rahni, Ashrani Aizzuddin; Arka, Israna Hossain; Chellappan, Kalaivani; Mukari, Shahizon Azura; Law, Zhe Kang; Sahathevan, Ramesh

    2016-03-01

    In this paper we present preliminary results of comparison of automatic segmentations of the infarct core, between that obtained from CT perfusion (based on time to peak parameter) and diffusion weighted imaging (DWI). For each patient, the two imaging volumes were automatically co-registered to a common frame of reference based on an acquired CT angiography image. The accuracy of image registration is measured by the overlap of the segmented brain from both images (CT perfusion and DWI), measured within their common field of view. Due to the limitations of the study, DWI was acquired as a follow up scan up to a week after initial CT based imaging. However, we found significant overlap of the segmented brain (Jaccard indices of approximately 0.8) and the percentage of infarcted brain tissue from the two modalities were still fairly highly correlated (correlation coefficient of approximately 0.9). The results are promising with more data needed in future for clinical inference.

  9. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    SciTech Connect

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.; Chen Guanghong

    2012-07-15

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution

  10. [Examination of Visual Effect in Low-dose Cerebral CT Perfusion Phantom Image Using Iterative Reconstruction].

    PubMed

    Ohmura, Tomomi; Lee, Yongbum; Takahashi, Noriyuki; Sato, Yuichiro; Ishida, Takato; Toyoshima, Hideto

    2015-11-01

    CT perfusion (CTP) is obtained cerebrovascular circulation image for assessment of stroke patients; however, at the expense of increased radiation dose by dynamic scan. Iterative reconstruction (IR) method is possible to decrease image noise, it has the potential to reduce radiation dose. The purpose of this study is to assess the visual effect of IR method by using a digital perfusion phantom. The digital perfusion phantom was created by reconstructed filtered back projection (FBP) method and IR method CT images that had five exposure doses. Various exposure dose cerebral blood flow (CBF) images were derived from deconvolution algorithm. Contrast-to-noise ratio (CNR) and visual assessment were compared among the various exposure dose and each reconstructions. Result of low exposure dose with IR method showed, compared with FBP method, high CNR in severe ischemic area, and visual assessment was significantly improvement. IR method is useful for improving image quality of low-dose CTP. PMID:26596197

  11. 4D micro-CT-based perfusion imaging in small animals

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  12. LIVER FUNCTION AFTER IRRADIATION BASED UPON CT PORTAL VEIN PERFUSION IMAGING

    PubMed Central

    Cao, Yue; Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.

    2009-01-01

    Purpose The role of radiation in the treatment of intrahepatic cancer is limited by the development of radiation-induced liver disease (RILD), which occurs weeks after the course of radiation is completed. We hypothesized that, as the pathophysiology of RILD is veno-occlusive disease, we could assess individual and regional liver sensitivity to radiation by measuring liver perfusion during a course of treatment using dynamic contrast enhanced CT (DCE-CT) scanning. Materials and Methods Patients with intrahepatic cancer undergoing conformal radiotherapy underwent DCE-CT (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) prior to, during, and one month after treatment. We wished to determine if the residual functioning liver (i.e. those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results Radiation doses from 45 to 84 Gy resulted in undectable regional portal vein perfusion one month after treatment. The volume of each liver with undectable portal vein perfusion ranged from 0% to 39% and depended both on the patient’s sensitivity and dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (P < .001). Conclusion This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function, and has the potential to be a tool for individualizing therapy. PMID:17855011

  13. Dopamine transporter SPECT/CT and perfusion brain SPECT imaging in idiopathic basal ganglia calcinosis.

    PubMed

    Paschali, Anna; Lakiotis, Velissarios; Messinis, Lambros; Markaki, Elli; Constantoyannis, Constantine; Ellul, John; Vassilakos, Pavlos

    2009-07-01

    A case of idiopathic basal ganglia calcification in a 56-year-old woman with parkinsonism and cognitive impairment is described. The nigrostriatal dopaminergic pathway and regional cerebral blood flow were evaluated using dopamine transporter (DAT) brain single photon emission tomography combined with a low-dose x-ray computerized tomography transmission (hybrid SPECT/CT) and Tc-99m HMPAO brain perfusion SPECT study, respectively. DAT SPECT/CT imaging revealed a reduction in DAT binding in both striatum regions coinciding with bilateral calcifications in the basal ganglia. Brain perfusion scan showed hypoperfusion in basal ganglia regions, posterior parietal cortex bilaterally, left frontopolar and dorsolateral prefrontal cortex, and left temporal lobe. These findings correlated well with the clinical condition of the patient. Mineralization may play a critical role in the pathogenesis of neuronal degeneration. Cortical perfusion changes in patients may better explain the patient's altered cognitive and motor functions.

  14. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  15. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  16. Application of time sampling in brain CT perfusion imaging for dose reduction

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, J. H.; Kim, K. G.; Park, S. J.; Im, Jung Gi

    2007-03-01

    The purpose of this study is to determine a stable sampling rate not to be affected by sampling shift for reducing radiation exposure with time sampling and interpolation in cerebral perfusion CT examination. Original images were obtained every 1 second for 40 time series from 3 patients, respectively. Time sampling was performed with sampling intervals (SI) from 2 to 10 seconds. Sampling shift was applied from +1 to SI-1 for each sampling rate. For each patient, 30 tissue concentration time-course data were collected, and arterial input curves were fitted by gamma-variate function. The sinc function was introduced for interpolation. Deconvolution analysis based on SVD was performed for quantifying perfusion parameters. The perfusion values through time-varying sampling and interpolation were statistically compared with the original perfusion values. The mean CBF values with increase of sampling interval and shift magnitude from the collected data had a wider fluctuation pattern centering around the original mean CBF. The mean CBV values had a similar tendency to the mean CBF values, but a relatively narrower deviation. The mean MTT values were fluctuated reversely to the trend of the mean CBF values. The stable sampling interval for quantifying perfusion parameters with lower radiation exposure was statistically acceptable up to 4 seconds. These results indicate that sampling shift limits sampling rate for acquiring acceptable perfusion values. This study will help in selecting more reasonable sampling rate for low-radiation-dose CT examination.

  17. Dynamic CT myocardial perfusion imaging: detection of ischemia in a porcine model with FFR verification

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    Dynamic cardiac CT perfusion (CTP) is a high resolution, non-invasive technique for assessing myocardial blood ow (MBF), which in concert with coronary CT angiography enable CT to provide a unique, comprehensive, fast analysis of both coronary anatomy and functional ow. We assessed perfusion in a porcine model with and without coronary occlusion. To induce occlusion, each animal underwent left anterior descending (LAD) stent implantation and angioplasty balloon insertion. Normal ow condition was obtained with balloon completely de ated. Partial occlusion was induced by balloon in ation against the stent with FFR used to assess the extent of occlusion. Prospective ECG-triggered partial scan images were acquired at end systole (45% R-R) using a multi-detector CT (MDCT) scanner. Images were reconstructed using FBP and a hybrid iterative reconstruction (iDose4, Philips Healthcare). Processing included: beam hardening (BH) correction, registration of image volumes using 3D cubic B-spline normalized mutual-information, and spatio-temporal bilateral ltering to reduce partial scan artifacts and noise variation. Absolute blood ow was calculated with a deconvolutionbased approach using singular value decomposition (SVD). Arterial input function was estimated from the left ventricle (LV) cavity. Regions of interest (ROIs) were identi ed in healthy and ischemic myocardium and compared in normal and occluded conditions. Under-perfusion was detected in the correct LAD territory and ow reduction agreed well with FFR measurements. Flow was reduced, on average, in LAD territories by 54%.

  18. Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging

    NASA Astrophysics Data System (ADS)

    Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.

    2016-03-01

    Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.

  19. Visualization of an Incidental Ectopic Gallbladder Location on 99mTc-MIBI Myocardial Perfusion Imaging With SPECT/CT.

    PubMed

    Hou, Po-Nien; Huang, Cheng-Kai; Wu, Jay

    2016-03-01

    An ectopically located gallbladder is rare and unusual. In this study, we described a case of a 52-year-old woman who underwent SPECT-myocardial perfusion imaging because of exertional dyspnea and chest tightness. The rest sinograms reveal 2 substantially increased tracer uptakes in the right chest. Subsequently, a SPECT/CT scan was performed to clarify the indeterminate findings on the SPECT-myocardial perfusion imaging. The coregistered SPECT/CT images depict intense focal activity in the right chest, which corresponds to the gallbladder on the CT scan, thus explaining the peculiar ectopic gallbladder finding.

  20. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition in a healthy

  1. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.

    PubMed

    Fahmi, Rachid; Eck, Brendan L; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G; Wilson, David L

    2016-03-21

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 ke

  2. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    SciTech Connect

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  3. ECG-gated HYPR reconstruction for undersampled CT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Speidel, Michael A.; Van Lysel, Michael S.; Reeder, Scott B.; Supanich, Mark; Nett, Brian E.; Zambelli, Joseph; Chang, Su Min; Hsieh, Jiang; Chen, Guang-Hong; Mistretta, Charles A.

    2007-03-01

    In this study we develop a novel ECG-gated method of HYPR (HighlY constrained backPRojection) CT reconstruction for low-dose myocardial perfusion imaging and present its first application in a porcine model. HYPR is a method of reconstructing time-resolved images from view-undersampled projection data. Scanning and reconstruction techniques were explored using x-ray projections from a 50 sec contrast-enhanced axial scan of a 47 kg swine on a 64-slice MDCT system. Scans were generated with view undersampling factors from 2 to 10. A HYPR reconstruction algorithm was developed in which a fully-sampled composite image is generated from views collected from multiple cardiac cycles within a diastolic window. A time frame image for a heartbeat was produced by modifying the composite with projections from the cycle of interest. Heart rate variations were handled by automatically selecting cardiac window size and number of cycles per composite within defined limits. Cardiac window size averaged 35% of the R-R interval for 2x undersampling and increased to 64% R-R using 10x undersampling. The selected window size and cycles per composite was sensitive to synchrony between heart rate, gantry rate, and the view undersampling pattern. Temporal dynamics and perfusion metrics measured in conventional short-scan (FBP) images were well-reproduced in the undersampled HYPR time series. Mean transit times determined from HYPR myocardial time-density curves agreed to within 8% with the FBP results. The results indicate potential for an order of magnitude reduction in dose requirement per image in cardiac perfusion CT via undersampled scanning and ECG-gated HYPR reconstruction.

  4. Investigation of the potential causes of partial scan artifacts in dynamic CT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Tao, Yinghua; Speidel, Michael; Szczykutowicz, Timothy; Chen, Guang-Hong

    2014-03-01

    In recent years, there have been several findings regarding CT number variations (partial scan artifact or PSA) across time in dynamic myocardial perfusion studies with short scan gated reconstruction. These variations are correlated with the view angle range corresponding to the short scan acquisition for a given cardiac phase, which can vary from one cardiac cycle to another due to the asynchrony between heart rate and gantry rotation speed. In this study, we investigate several potential causes of PSA, including noise, beam hardening and scatter, using numerical simulations. In addition, we investigate partial scan artifact in a single source 64-slice diagnostic CT scanner in vivo data sets, and report its effect on perfusion analysis. Results indicated that among all three factors investigated, scatter can cause obvious partial scan artifact in dynamic myocardial perfusion imaging. Further, scatter is a low frequency phenomenon and is not heavily dependent on the changing contrasts, as both the frequency method and the virtual scan method are effective in reducing partial scan artifact. However, PSA does not necessarily lead to different blood volume maps compared to the full scan, because these maps are usually generated with a curve fitting procedure.

  5. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  6. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf . PMID:26290421

  7. First-pass perfusion imaging of solitary pulmonary nodules with 64-detector row CT: comparison of perfusion parameters of malignant and benign lesions.

    PubMed

    Li, Y; Yang, Z-G; Chen, T-W; Yu, J-Q; Sun, J-Y; Chen, H-J

    2010-09-01

    The purpose of this study was to determine the usefulness of first-pass whole nodule perfusion imaging in the differentiation of benign and malignant solitary pulmonary nodules (SPNs). 77 patients with non-calcified SPNs (46 malignant, 22 benign and 9 active inflammatory) underwent first-pass perfusion imaging with a 64-detector row CT scanner. Perfusion, peak enhancement intensity (PEI), time to peak (TTP) and blood volume (BV) were measured and statistically compared among different groups. Mean perfusion, PEI and BV for benign SPNs were significantly lower than those for malignant nodules (p<0.05) and active infections (p<0.05), but the differences were not statistically significant between malignant tumours and active infections (p>0.05). Receiver operating characteristic (ROC) curve analysis showed that SPNs with perfusion greater than 30.6 ml min(-1) ml(-1), PEI higher than 23.3 HU or BV larger than 12.2 ml per 100 g were more likely to be malignant. In conclusion, first-pass perfusion imaging with 64-detector row CT is a feasible way of assessing whole nodule perfusion and helpful in differentiating benign from malignant SPNs.

  8. Pulmonary arterial hypertension: an imaging review comparing MR pulmonary angiography and perfusion with multidetector CT angiography

    PubMed Central

    Junqueira, F P; Lima, C M A O; Coutinho, A C; Parente, D B; Bittencourt, L K; Bessa, L G P; Domingues, R C; Marchiori, E

    2012-01-01

    Pulmonary hypertension (PH) is a progressive disease that leads to substantial morbidity and eventual death. Pulmonary multidetector CT angiography (MDCTA), pulmonary MR angiography (MRA) and MR-derived pulmonary perfusion (MRPP) imaging are non-invasive imaging techniques for the differential diagnosis of PH. MDCTA is considered the gold standard for the diagnosis of pulmonary embolism, one of the most common causes of PH. MRA and MRPP are promising techniques that do not require the use of ionising radiation or iodinated contrast material, and can be useful for patients for whom such material cannot be used. This review compares the imaging aspects of pulmonary MRA and 64-row MDCTA in patients with chronic thromboembolic or idiopathic PH. PMID:22932061

  9. [Peripheral lung adenocarcinoma versus squamous cell carcinoma: evaluation with first-pass perfusion imaging using 64-detector row CT].

    PubMed

    Li, Yuan; Yang, Zhigang; Chen, Tianwu; Yu, Jianqun; Deng, Yuping; Li, Zhenlin

    2009-04-01

    The aim of this study was to elucidate the characteristics of time attenuation curve and CT perfusion parameters for pulmonary adenocarcinomas and squamous cell carcinomas. 58 cases of pulmonary adenocarcinomas and 27 cases of squamous cell carcinomas underwent first pass CT perfusion imaging with 64-row MDCT. Data were analyzed using commercial software to generate time attenuation curve (TAC) and CT perfusion parameters, including perfusion, peak enhanced (PE), time to peak (TTP), and blood volume (BV). For TAC, there were 36.2% of type I and 63.8% of type II in adenocarcinomas, while there were 22.2% of type I and 77.8% of type II in squamous cell carcinomas. There was not significant difference (P>0.05). Perfusion, PE, TTP and BV of adenocarcinomas were 63.2 +/- 45.4 ml x min(-1) x ml(-1), 60.2 +/- 46.6 Hu, 34.8 +/- 10.2 s and 34.3 +/- 23.6 ml x 100 g(-1), respectively, while 54.3 +/- 50.2 ml x min(-1) x ml(-1), 48.5 +/- 34.9 Hu, 36.1 +/- 11.2 s and 27.6 +/- 21.7 ml x 100 g(-1), for squamous cell carcinoma, respectively. No significant differences were found between groups (P>0.05). No significant differences in TAC and CT perfusion parameters were found between adenocarcinomas and squamous cell carcinomas.

  10. Evaluating the feasibility of C-arm CT for brain perfusion imaging: an in vitro study

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2010-02-01

    C-arm cone-beam CT (CBCT) is increasingly being used to supplement 2D real-time data with 3D information. Temporal resolution is currently limited by the mechanical rotation speed of the C-arm which presents challenges for applications such as imaging of contrast flow in brain perfusion CT (PCT). We present a novel scheme where multiple scans are obtained at different start times with respect to the contrast injection. The data is interleaved temporally and interpolated during 3D reconstruction. For evaluation we developed a phantom to generate the range of temporal frequencies relevant for PCT. The highest requirements are for imaging the arterial input function (AIF) modeled as a gamma-variate function. Fourier transform analysis of the AIF showed that 90% of the spectral energy is contained at frequencies lower than 0.08Hz. We built an acrylic cylinder phantom of diameter 1.9 cm, with 25 sections of 1cm length each. Iodine concentration in each compartment was varied to produce a half-cycle sinusoid variation in HU in version 1, and 2.5 cycles in version 2 of the phantom. The phantom was moved linearly at speeds from 0.5cm/s to 4cm/s (temporal frequencies of 0.02Hz to 0.09Hz) and imaged using a C-arm system. Phantom CT numbers in a slice reconstructed at isocenter were measured and sinusoidal fits to the data were obtained. The fitted sinusoids had frequencies that were within 3+/-2% of the actual temporal frequencies of the sinusoid. This suggests that the imaging and reconstruction scheme is adequate for PCT imaging.

  11. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  12. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  13. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  14. A single CT for attenuation correction of both rest and stress SPECT myocardial perfusion imaging: a retrospective feasibility study

    PubMed Central

    Ahlman, Mark A; Nietert, Paul J; Wahlquist, Amy E; Serguson, Jill M; Berry, Max W; Suranyi, Pal; Liu, Songtao; Spicer, Kenneth M

    2014-01-01

    Purpose: In the effort to reduce radiation exposure to patients undergoing myocardial perfusion imaging (MPI) with SPECT/CT, we evaluate the feasibility of a single CT for attenuation correction (AC) of single-day rest (R)/stress (S) perfusion. Methods: Processing of 20 single isotope and 20 dual isotope MPI with perfusion defects were retrospectively repeated in three steps: (1) the standard method using a concurrent R-CT for AC of R-SPECT and S-CT for S-SPECT; (2) the standard method repeated; and (3) with the R-CT used for AC of S-SPECT, and the S-CT used for AC of R-SPECT. Intra-Class Correlation Coefficients (ICC) and Choen’s kappa were used to measure intra-operator variability in sum scoring. Results: The highest level of intra-operator reliability was seen with the reproduction of the sum rest score (SRS) and sum stress score (SSS) (ICC > 95%). ICCs were > 85% for SRS and SSS when alternate CTs were used for AC, but when sum difference scores were calculated, ICC values were much lower (~22% to 27%), which may imply that neither CT substitution resulted in a reproducible difference score. Similar results were seen when evaluating dichotomous outcomes (sum scores difference of ≥ 4) when comparing different processing techniques (kappas ~0.32 to 0.43). Conclusions: When a single CT is used for AC of both rest and stress SPECT, there is disproportionately high variability in sum scoring that is independent of user error. This information can be used to direct further investigation in radiation reduction for common imaging exams in nuclear medicine. PMID:24482701

  15. Early prediction of response of sorafenib on hepatocellular carcinoma by CT perfusion imaging: an animal study

    PubMed Central

    Shi, G; Wang, L; Liu, X; Wu, R

    2014-01-01

    Objective: This study evaluated the feasibility of CT perfusion parameters for the early efficacy prediction of sorafenib in the treatment of hepatocellular carcinoma (HCC) in rats. Methods: CT hepatic perfusion measurements were performed in the livers of 40 rats implanted with rat HCC. The rats in the experimental group (n = 28) were treated by oral gavage with sorafenib (20 mg per day), whereas the rats in the control group (n = 12) were treated by normal saline. Rats were classified into the responder group if the maximum diameter of their tumour had decreased 21 days after treatment, whereas the other rats were classified into the non-responder group. Data were analysed using the Pearson correlation analysis or analysis of variance. Results: CT perfusion was used to depict haemodynamic changes before and after treatment. The arterial liver perfusion was significantly decreased in the responder group on Day 11 after treatment with sorafenib (from 71.5 to 53.4 ml min−1 100 ml−1), whereas no significant changes were observed in the non-responder group (p = 0.87). The maximum diameter of the tumour was also significantly decreased in the responder group on Day 21 after treatment (p = 0.042), whereas the maximum tumour diameter was significantly increased in the control group (p = 0.001). Conclusion and advances in knowledge: CT perfusion could be used to quantitatively analyse the haemodynamic changes in the treatment of HCC with sorafenib, which indicates that this approach may be developed for the early prediction of treatment efficacy for sorafenib. PMID:24452058

  16. Feasibility of quantitative lung perfusion by 4D CT imaging by a new dynamic-scanning protocol in an animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Goldin, Jonathan G.; Abtin, Fereidoun G.; Brown, Matt; McNitt-Gray, Mike

    2008-03-01

    The purpose of this study is to test a new dynamic Perfusion-CT imaging protocol in an animal model and investigate the feasibility of quantifying perfusion of lung parenchyma to perform functional analysis from 4D CT image data. A novel perfusion-CT protocol was designed with 25 scanning time points: the first at baseline and 24 scans after a bolus injection of contrast material. Post-contrast CT scanning images were acquired with a high sampling rate before the first blood recirculation and then a relatively low sampling rate until 10 minutes after administrating contrast agent. Lower radiation techniques were used to keep the radiation dose to an acceptable level. 2 Yorkshire swine with pulmonary emboli underwent this perfusion- CT protocol at suspended end inspiration. The software tools were designed to measure the quantitative perfusion parameters (perfusion, permeability, relative blood volume, blood flow, wash-in & wash-out enhancement) of voxel or interesting area of lung. The perfusion values were calculated for further lung functional analysis and presented visually as contrast enhancement maps for the volume being examined. The results show increased CT temporal sampling rate provides the feasibility of quantifying lung function and evaluating the pulmonary emboli. Differences between areas with known perfusion defects and those without perfusion defects were observed. In conclusion, the techniques to calculate the lung perfusion on animal model have potential application in human lung functional analysis such as evaluation of functional effects of pulmonary embolism. With further study, these techniques might be applicable in human lung parenchyma characterization and possibly for lung nodule characterization.

  17. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  18. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia.

    PubMed

    Gillen, Rebecca; Firbank, Michael J; Lloyd, Jim; O'Brien, John T

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer's Disease (n = 38), Dementia with Lewy Bodies (n = 29) or healthy normal controls (n = 30), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject's CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used.We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  19. Peri-infarct ischaemia assessed by cardiovascular MRI: comparison with quantitative perfusion single photon emission CT imaging

    PubMed Central

    Cochet, H; Bullier, E; Ragot, C; Gilbert, S H; Pucheu, Y; Laurent, F; Coste, P; Bordenave, L; Montaudon, M

    2014-01-01

    Objective: To develop a new method for the cardiac MR (CMR) quantification of peri-infarct ischaemia using fused perfusion and delayed–enhanced images and to evaluate this method using quantitative single photon emission CT (SPECT) imaging as a reference. Methods: 40 patients presenting with peri-infarct ischaemia on a routine stress 99mTc-SPECT imaging were recruited. Within 8 days of the SPECT study, myocardial perfusion was evaluated using stress adenosine CMR. Using fused perfusion and delayed–enhanced images, peri-infarct ischaemia was quantified as the percentage of myocardium with stress-induced perfusion defect that was adjacent to and larger than a scar. This parameter was compared with both the percent myocardium ischaemia (SD%) and the ischaemic total perfusion deficit (TPD). The diagnostic performance of CMR in detection of significant coronary artery stenosis (of ≥70%) was also determined. Results: On SPECT imaging, in addition to peri-infarct ischaemia, reversible perfusion abnormalities were detected in a remote zone in seven patients. In the 33 patients presenting with only peri-infarct ischaemia, the agreement between CMR peri-infarct ischaemia and both SD% and ischaemic TPD was excellent [intraclass coefficient of correlation (ICC) = 0.969 and ICC = 0.877, respectively]. CMR-defined peri-infarct ischaemia for the detection of a significant coronary artery stenosis showed an areas under receiver–operating characteristic curve of 0.856 (95% confidence interval, 0.680–0.939). The best cut-off value was 8.1% and allowed a 72% sensitivity, 96% specificity, 60% negative predictive value and 97% positive predictive value. Conclusion: This proof-of-concept study shows that CMR imaging has the potential as a test for quantification of peri-infarct ischaemia. Advances in knowledge: This study demonstrates the proof of concept of a commonly known intuitive idea, that is, evaluating the peri-infarct ischaemic burden by subtracting delayed

  20. Non-uniform noise spatial distribution in CT myocardial perfusion and a potential solution: statistical image reconstruction

    NASA Astrophysics Data System (ADS)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-03-01

    Myocardial perfusion scans are an important tool in the assessment of myocardial viability following an infarction. Cardiac perfusion analysis using CT datasets is limited by the presence of so-called partial scan artifacts. These artifacts are due to variations in beam hardening and scatter between different short-scan angular ranges. In this research, another angular range dependent effect is investigated: non-uniform noise spatial distribution. Images reconstructed using filtered backprojection (FBP) are subject to this effect. Statistical image reconstruction (SIR) is proposed as a potential solution. A numerical phantom with added Poisson noise was simulated and two swines were scanned in vivo to study the effect of FBP and SIR on the spatial uniformity of the noise distribution. It was demonstrated that images reconstructed using FBP often show variations in noise on the order of 50% between different time frames. This variation is mitigated to about 10% using SIR. The noise level is also reduced by a factor of 2 in SIR images. Finally, it is demonstrated that the measurement of quantitative perfusion metrics are generally more accurate when SIR is used instead of FBP.

  1. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    PubMed Central

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  2. Denoising and artefact reduction in dynamic flat detector CT perfusion imaging using high speed acquisition: first experimental and clinical results.

    PubMed

    Manhart, Michael T; Aichert, André; Struffert, Tobias; Deuerling-Zheng, Yu; Kowarschik, Markus; Maier, Andreas K; Hornegger, Joachim; Doerfler, Arnd

    2014-08-21

    Flat detector CT perfusion (FD-CTP) is a novel technique using C-arm angiography systems for interventional dynamic tissue perfusion measurement with high potential benefits for catheter-guided treatment of stroke. However, FD-CTP is challenging since C-arms rotate slower than conventional CT systems. Furthermore, noise and artefacts affect the measurement of contrast agent flow in tissue. Recent robotic C-arms are able to use high speed protocols (HSP), which allow sampling of the contrast agent flow with improved temporal resolution. However, low angular sampling of projection images leads to streak artefacts, which are translated to the perfusion maps. We recently introduced the FDK-JBF denoising technique based on Feldkamp (FDK) reconstruction followed by joint bilateral filtering (JBF). As this edge-preserving noise reduction preserves streak artefacts, an empirical streak reduction (SR) technique is presented in this work. The SR method exploits spatial and temporal information in the form of total variation and time-curve analysis to detect and remove streaks. The novel approach is evaluated in a numerical brain phantom and a patient study. An improved noise and artefact reduction compared to existing post-processing methods and faster computation speed compared to an algebraic reconstruction method are achieved.

  3. Denoising and artefact reduction in dynamic flat detector CT perfusion imaging using high speed acquisition: first experimental and clinical results

    NASA Astrophysics Data System (ADS)

    Manhart, Michael T.; Aichert, André; Struffert, Tobias; Deuerling-Zheng, Yu; Kowarschik, Markus; Maier, Andreas K.; Hornegger, Joachim; Doerfler, Arnd

    2014-08-01

    Flat detector CT perfusion (FD-CTP) is a novel technique using C-arm angiography systems for interventional dynamic tissue perfusion measurement with high potential benefits for catheter-guided treatment of stroke. However, FD-CTP is challenging since C-arms rotate slower than conventional CT systems. Furthermore, noise and artefacts affect the measurement of contrast agent flow in tissue. Recent robotic C-arms are able to use high speed protocols (HSP), which allow sampling of the contrast agent flow with improved temporal resolution. However, low angular sampling of projection images leads to streak artefacts, which are translated to the perfusion maps. We recently introduced the FDK-JBF denoising technique based on Feldkamp (FDK) reconstruction followed by joint bilateral filtering (JBF). As this edge-preserving noise reduction preserves streak artefacts, an empirical streak reduction (SR) technique is presented in this work. The SR method exploits spatial and temporal information in the form of total variation and time-curve analysis to detect and remove streaks. The novel approach is evaluated in a numerical brain phantom and a patient study. An improved noise and artefact reduction compared to existing post-processing methods and faster computation speed compared to an algebraic reconstruction method are achieved.

  4. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    NASA Astrophysics Data System (ADS)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  5. Evaluation of Extrahepatic Perfusion of Anticancer Drugs in the Right Gastric Arterial Region on Fused Images Using Combined CT/SPECT: Is Extrahepatic Perfusion Predictive of Gastric Toxicity?

    SciTech Connect

    Ikeda, Osamu Tamura, Yoshitaka; Nakasone, Yutaka; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Morishita, Shouji; Takamori, Hiroshi; Chikamoto, Akira; Kanemitsu, Keiichirou; Yamashita, Yasuyuki

    2007-06-15

    Background. Hepatic arterial infusion (HAI) chemotherapy is effective for treating primary and metastatic carcinomas of the liver. Since hepatic arteries also supply the stomach and duodenum, HAI may result in unwanted infusion into the upper gastrointestinal tract and consequent gastric toxicity. Using fused images obtained with a combined SPECT/CT system, we assessed extrahepatic perfusion (EHP) and its correlation with gastrointestinal toxicity in patients receiving HAI. Methods. We studied 41 patients with primary or metastatic carcinoma of the liver who received HAI chemotherapy consisting of 5-fluorouracil and cisplatin. All underwent abdominal SPECT using a {sup 99m}Tc-MAA (185 MBq) instrument and an injection rate of 0.1 ml/min, identical to the chemotherapy infusion rate. Delivery was through an implantable port. We analyzed the distribution of the anticancer agent on fused images and the relationship between EHP of the right gastric arterial region and gastric toxicity. All patients underwent esophagogastroduodenoscopy (EGDS). Results. Of the 41 patients, 11 (27%) manifested enhancement of the duodenal and gastric pyloric region on fused images. EGDS at the time of reservoir placement detected gastric ulcers in 10 of these patients. Conclusion. Fusion imaging with combined SPECT/CT reflects the actual distribution of the infused anticancer agents. The detection of EHP on fused images is predictive of the direct gastric toxicity from anticancer agents in patients undergoing HAI.

  6. TU-A-9A-10: Verification of Photoacoustic Computed Tomography Perfusion Imaging Using DCE-CT

    SciTech Connect

    Roth, A; Krutulis, M; Verleker, A; Stantz, K

    2014-06-15

    Purpose: We propose to verify quantifiable perfusion information generated by a Photoacoustic Computed Tomography (PCT) scanner using Dynamic Contrast-Enhanced CT (DCE-CT), and to investigate physicsbased models of acoustic properties of tissue and photon transport to improve quantification. These corrections first necessitate a skin identifying algorithms to reduce speed-of-sound blurring and empirical photon correction methods. Methods: Xenograft mice (n=5) of breast cancer was imaged using DCE-CT which was followed by DCE-PCT. To obtain CT perfusion data, each mouse was i.v. injected (0.2mL Isovue @0.5mL/min) and subsequent radio-opaque time curves fit to a 2-compartmental model on a voxel-wise basis. For DCE-PCT, different concentrations of ICG (250, 125, and 62.5 micro-Molar) were injected at the same rate, but also acquired at different sampling rates (3, 6, and 12 seconds). The time intensity curves from PCT were fit to a 1-compartmental model on a voxel by voxel basis. The images were coregistered (Oncentra) based on the structural similarities of the tumor vasculature after which we compared both the contrastenhanced dynamics and the vascular physiology. Results: Moderate to high doses of ICG impact the washin phase of the PCT contrast due to photon losses as a function of depth. A semi-automatic algorithm has been developed to identify the skin margin, and subsequent MC and empirical models of photon transport and variations in speed-of-sound are being evaluated. Conclusion: From our results we find that there is a need to apply photon and speed-of-sound corrections to our PCT data to improve the quantifiable image data at depth in the tumor for PCT. The dose and injection rate may help in reducing large systematic effects. Our project is partially funded by a NIH SBIR grant.

  7. A fast nonlinear regression method for estimating permeability in CT perfusion imaging

    PubMed Central

    Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W

    2013-01-01

    Blood–brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation–time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting. PMID:23881247

  8. CT perfusion: principles, applications, and problems

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Yim

    2004-10-01

    The fast scanning speed of current slip-ring CT scanners has enabled the development of perfusion imaging techniques with intravenous injection of contrast medium. In a typical CT perfusion study, contrast medium is injected and rapid scanning at a frequency of 1-2 Hz is used to monitor the first circulation of the injected contrast medium through a 1-2 cm thick slab of tissue. From the acquired time-series of CT images, arteries can be identified within the tissue slab to derive the arterial contrast concentration curve, Ca(t) while each individual voxel produces a tissue residue curve, Q(t) for the corresponding tissue region. Deconvolution between the measured Ca(t) and Q(t) leads to the determination of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in brain studies. In this presentation, an important application of CT perfusion in acute stroke studies - the identification of the ischemic penumbra via the CBF/CBV mismatch and factors affecting the quantitative accuracy of deconvolution, including partial volume averaging, arterial delay and dispersion are discussed.

  9. Myocardial CT Perfusion Imaging and SPECT for the Diagnosis of Coronary Artery Disease: A Head-to-Head Comparison from the CORE320 Multicenter Diagnostic Performance Study

    PubMed Central

    Mehra, Vishal C.; Chen, Marcus Y.; Kitagawa, Kakuya; Arbab-Zadeh, Armin; Miller, Julie M.; Matheson, Matthew B.; Vavere, Andrea L.; Kofoed, Klaus F.; Rochitte, Carlos E.; Dewey, Marc; Yaw, Tan S.; Niinuma, Hiroyuki; Brenner, Winfried; Cox, Christopher; Clouse, Melvin E.; Lima, João A. C.; Di Carli, Marcelo

    2014-01-01

    Purpose To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography. Materials and Methods This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise or pharmacologic stress SPECT before and within 60 days of coronary angiography. Images from CT perfusion imaging, SPECT, and coronary angiography were interpreted at blinded, independent core laboratories. The primary diagnostic parameter was the area under the receiver operating characteristic curve (Az). Sensitivity and specificity were calculated with use of prespecified cutoffs. The reference standard was a stenosis of at least 50% at coronary angiography as determined with quantitative methods. Results CAD was diagnosed in 229 of the 381 patients (60%). The per-patient sensitivity and specificity for the diagnosis of CAD (stenosis ≥50%) were 88% (202 of 229 patients) and 55% (83 of 152 patients), respectively, for CT perfusion imaging and 62% (143 of 229 patients) and 67% (102 of 152 patients) for SPECT, with Az values of 0.78 (95% confidence interval: 0.74, 0.82) and 0.69 (95% confidence interval: 0.64, 0.74) (P = .001). The sensitivity of CT perfusion imaging for single- and multivessel CAD was higher than that of SPECT, with sensitivities for left main, three-vessel, two-vessel, and one-vessel disease of 92%, 92%, 89%, and 83%, respectively, for CT perfusion imaging and 75%, 79%, 68%, and 41%, respectively, for SPECT. Conclusion The overall performance of myocardial CT perfusion imaging in the diagnosis of anatomic CAD (stenosis ≥50%), as demonstrated with the

  10. Multislice CT perfusion imaging of the lung in detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin

    2006-03-01

    We propose a new subtraction technique for accurately imaging lung perfusion and efficiently detecting pulmonary embolism in chest MDCT angiography. Our method is composed of five stages. First, optimal segmentation technique is performed for extracting same volume of the lungs, major airway and vascular structures from pre- and post-contrast images with different lung density. Second, initial registration based on apex, hilar point and center of inertia (COI) of each unilateral lung is proposed to correct the gross translational mismatch. Third, initial alignment is refined by iterative surface registration. For fast and robust convergence of the distance measure to the optimal value, a 3D distance map is generated by the narrow-band distance propagation. Fourth, 3D nonlinear filter is applied to the lung parenchyma to compensate for residual spiral artifacts and artifacts caused by heart motion. Fifth, enhanced vessels are visualized by subtracting registered pre-contrast images from post-contrast images. To facilitate visualization of parenchyma enhancement, color-coded mapping and image fusion is used. Our method has been successfully applied to ten patients of pre- and post-contrast images in chest MDCT angiography. Experimental results show that the performance of our method is very promising compared with conventional methods with the aspects of its visual inspection, accuracy and processing time.

  11. Reducing CT dose in myocardial perfusion SPECT/CT.

    PubMed

    O'Shaughnessy, Emma; Dixon, Kat L

    2015-11-01

    The aim of this study was to reduce the radiation dose arising from computed tomography (CT) attenuation correction to single photon emission computed tomography myocardial perfusion imaging studies without adversely affecting its accuracy. Using the Perspex CTDI phantom with the Xi detector to measure dose, CT scans were acquired using the Siemens Symbia T over the full range of CT settings available. Using the default setting 'AECmean', the measured dose at the centre of the phantom was 1.68 mGy and the breast dose from the scout view was 0.30 mGy. The lowest dose was achieved using the dose modulation setting in which the doses were reduced to 1.21 mGy and undetectable (<0.01 mGy), respectively. To observe the effect of changing these settings, 30 patients received a stress scan with default CT settings and a rest scan utilizing single photon emission computed tomography-guided CT and the dose modulation CT settings. Results showed a mean effective dose reduction of 23.6%. The dose reduction was greatest for larger patients, with the largest dose reduction for one patient being 72%. There was no apparent difference in attenuation correction between the two sets of resultant images. These new lower-dose settings are now applied to all clinical myocardial perfusion imaging studies. PMID:26302461

  12. CT Perfusion of the Head

    MedlinePlus

    ... scanning combines special x-ray equipment with sophisticated computers to produce multiple images or pictures of the ... being studied can then be examined on a computer monitor, printed or transferred to a CD. CT ...

  13. CT Perfusion of the Liver: Principles and Applications in Oncology

    PubMed Central

    Kim, Se Hyung; Kamaya, Aya

    2014-01-01

    With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132

  14. Comparison of Partial Volume Effects in Arterial and Venous Contrast Curves in CT Brain Perfusion Imaging

    PubMed Central

    Riordan, Alan J.; Bennink, Edwin; Dankbaar, Jan Willem; Viergever, Max A.; Velthuis, Birgitta K.; Smit, Ewoud J.; de Jong, Hugo W. A. M.

    2014-01-01

    Purpose In brain CT perfusion (CTP), the arterial contrast bolus is scaled to have the same area under the curve (AUC) as the venous outflow to correct for partial volume effects (PVE). This scaling is based on the assumption that large veins are unaffected by PVE. Measurement of the internal carotid artery (ICA), usually unaffected by PVE due to its large diameter, may avoid the need for partial volume correction. The aims of this work are to examine i) the assumptions behind PVE correction and ii) the potential of selecting the ICA obviating correction for PVE. Methods The AUC of the ICA and sagittal sinus were measured in CTP datasets from 52 patients. The AUCs were determined by i) using commercial CTP software based on a Gaussian curve-fitting to the time attenuation curve, and ii) by simple integration of the time attenuation curve over a time interval. In addition, frames acquired up to 3 minutes after first bolus passage were used to examine the ratio of arterial and venous enhancement. The impact of selecting the ICA without PVE correction was illustrated by reporting cerebral blood volume (CBV) measurements. Results In 49 of 52 patients, the AUC of the ICA was significantly larger than that of the sagittal sinus (p = 0.017). Measured after the first pass bolus, contrast enhancement remained 50% higher in the ICA just after the first pass bolus, and 30% higher 3 minutes later. CBV measurements were significantly lowered when the ICA was used without PVE correction. Conclusions Contradicting the assumptions underlying PVE correction, contrast in the ICA was significantly higher than in the sagittal sinus, even 3 minutes after the first pass of the contrast bolus. PVE correction might lead to overestimation of CBV if the CBV is calculated using the AUC of the time attenuation curves. PMID:24858308

  15. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  16. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    PubMed Central

    Yıldırım Poyraz, Nilüfer; Özdemir, Elif; Poyraz, Barış Mustafa; Kandemir, Zuhal; Keskin, Mutlay; Türkölmez, Şeyda

    2014-01-01

    Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI). The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD), was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10) who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG) or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6%) experienced adenosine-related side-effects (group 1); flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS) test without any side-effects (group 2). Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI) ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects. PMID:25541932

  17. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  18. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom

    PubMed Central

    Otton, James; Morton, Geraint; Schuster, Andreas; Bigalke, Boris; Marano, Riccardo; Olivotti, Luca; Nagel, Eike; Chiribiri, Amedeo

    2013-01-01

    Background Direct comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection. Objective We precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions. Methods We used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represent the human circulation. CT perfusion studies were performed with a Philips iCT (256 slice) CT, with isotropic resolution of 0.6 mm3. MR perfusion was performed with k-t SENSE acceleration at 3 T and spatial resolution of 1.2 × 1.2 × 10 mm. The image contrast between normal and underperfused myocardial compartments was quantified at various perfusion and photon energy settings. Noise estimates were based on published clinical data. Results Contrast by CTP highly depends on photon energy and also timing of imaging within the myocardial perfusion upslope. For an identical myocardial perfusion deficit, the native image contrast-to-noise ratio (CNR) generated by CT and MR are similar. If slice averaging is used, the CNR of a perfusion deficit is expected to be greater for CTP than MR perfusion (MRP). Perfect timing during single time point CTP imaging is difficult to achieve, and CNR by CT decreases by 24%–31% two seconds from the optimal imaging time point. Although single-phase CT perfusion offers higher spatial resolution, MRP allows multiple time point sampling and quantitative analysis. Conclusion The ability of CTP and current optimal MRP techniques to detect simulated myocardial perfusion deficits is similar. PMID:23622506

  19. [Value of liver perfusion imaging of 256-slice CT 
in evaluation of the cirrhosis].

    PubMed

    Zhan, Yuefu; Wu, Yehua; Chen, Jianqiang; Liu, Fan; Han, Xiangjun

    2016-01-01

    目的:探讨256-CT灌注成像评价代偿期和失代偿期肝硬化的价值。方法:分析2012年12月至2014年6月经肝穿刺活检和影像学、血液学、生物化学检查筛选出的20例肝硬化患者,根据肝穿刺结果和Child-Pugh评分将患者分为肝硬化代偿期组(n=8)和肝硬化失代偿期组(n=12),并选择同期无肝脾疾病者作为对照组(n=11),利用256-CT进行肝灌注(256-CT liver perfusion,256-CTP)。采用256-CTP模式计算灌注参数,包括肝动脉灌注(hepatic arterial perfusion,HAP)、门静脉灌注(portal venous perfusion,PVP)、总肝灌注(total liver perfusion,TLP)、肝动脉灌注指数(hepatic perfusion index,HPI);采用大体灌注模式计算灌注参数,包括肝灌注(liver perfusion,LP)、增强峰值(peak enhanced,PE)、达峰时间(time to peak,TTP)、血容积(blood volume,BV)。采用非参数Spearman检验分析肝硬化分期与各灌注参数值之间的相关性;采用ROC曲线评价各灌注指标预测肝硬化程度的能力,选择约登指数最大作为截断点,计算曲线下面积(area under curve,AUC)、敏感度及特异度。结果:对照组、肝硬化代偿期组、肝硬化失代偿期组PVP分别为(76.63±37.26),(38.78±16.13)和(36.14±15.31) mL/(100 mL·min);TLP分别为(98.48±43.58),(55.63±14.47)和(54.41±
20.81) mL/(100 mL·min);PE分别为(55.62±18.25),(44.11±5.79)和(41.08±7.74) HU,均表现为逐渐下降趋势,各组间差异均有统计学意义(均P<0.05);HPI分别为(19.50±6.08)%,(31.81±16.48)%和(34.47±16.04)%;TTP分别为(37.32±8.59),(47.06±14.61)和(59.86±20.87) s,表现为逐渐上升趋势,各组间差异均有统计学意义(均P<0.05)。HAP,LP和BV各组间比较差异均无统计学意义(均P>0.05)。PVP,TLP,PE和LP与肝硬化分期呈负相关(分别r=−0.592,−0.567,−0.409和−0.569,均P<0.05);HPI,TTP与肝硬化分期呈正相关(分别r=0.434和0

  20. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    SciTech Connect

    Hardcastle, Nicholas; Hofman, Michael S.; Hicks, Rodney J.; Callahan, Jason; Kron, Tomas; MacManus, Michael P.; Ball, David L.; Jackson, Price; Siva, Shankar

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  1. Effects of registration error on parametric response map analysis: a simulation study using liver CT-perfusion images

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N. K. G.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To investigate the effects of registration error (RE) on parametric response map (PRM) analysis of pre and post-radiotherapy (RT) functional images. Methods: Arterial blood flow maps (ABF) were generated from the CT-perfusion scans of 5 patients with hepatocellular carcinoma. ABF values within each patient map were modified to produce seven new ABF maps simulating 7 distinct post-RT functional change scenarios. Ground truth PRMs were generated for each patient by comparing the simulated and original ABF maps. Each simulated ABF map was then deformed by different magnitudes of realistic respiratory motion in order to simulate RE. PRMs were generated for each of the deformed maps and then compared to the ground truth PRMs to produce estimates of RE-induced misclassification. Main findings: The percentage of voxels misclassified as decreasing, no change, and increasing, increased with RE For all patients, increasing RE was observed to increase the number of high post-RT ABF voxels associated with low pre-RT ABF voxels and vice versa. 3 mm of average tumour RE resulted in 18-45% tumour voxel misclassification rates. Conclusions: RE induced misclassification posed challenges for PRM analysis in the liver where registration accuracy tends to be lower. Quantitative understanding of the sensitivity of the PRM method to registration error is required if PRMs are to be used to guide radiation therapy dose painting techniques.

  2. CT Perfusion Characteristics Identify Metastatic Sites in Liver.

    PubMed

    Wang, Yuan; Hobbs, Brian P; Ng, Chaan S

    2015-01-01

    Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  3. Intracranial CT angiography obtained from a cerebral CT perfusion examination

    SciTech Connect

    Gratama van Andel, H. A. F.; Venema, H. W.; Majoie, C. B.; Den Heeten, G. J.; Grimbergen, C. A.; Streekstra, G. J.

    2009-04-15

    CT perfusion (CTP) examinations of the brain are performed increasingly for the evaluation of cerebral blood flow in patients with stroke and vasospasm after subarachnoid hemorrhage. Of the same patient often also a CT angiography (CTA) examination is performed. This study investigates the possibility to obtain CTA images from the CTP examination, thereby possibly obviating the CTA examination. This would save the patient exposure to radiation, contrast, and time. Each CTP frame is a CTA image with a varying amount of contrast enhancement and with high noise. To improve the contrast-to-noise ratio (CNR) we combined all 3D images into one 3D image after registration to correct for patient motion between time frames. Image combination consists of weighted averaging in which the weighting factor of each frame is proportional to the arterial contrast. It can be shown that the arterial CNR is maximized in this procedure. An additional advantage of the use of the time series of CTP images is that automatic differentiation between arteries and veins is possible. This feature was used to mask veins in the resulting 3D images to enhance visibility of arteries in maximum intensity projection (MIP) images. With a Philips Brilliance 64 CT scanner (64x0.625 mm) CTP examinations of eight patients were performed on 80 mm of brain using the toggling table technique. The CTP examination consisted of a time series of 15 3D images (2x64x0.625 mm; 80 kV; 150 mAs each) with an interval of 4 s. The authors measured the CNR in images obtained with weighted averaging, images obtained with plain averaging, and images with maximal arterial enhancement. The authors also compared CNR and quality of the images with that of regular CTA examinations and examined the effectiveness of automatic vein masking in MIP images. The CNR of the weighted averaged images is, on the average, 1.73 times the CNR of an image at maximal arterial enhancement in the CTP series, where the use of plain averaging

  4. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    SciTech Connect

    Strydhorst, Jared H. Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  5. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  6. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  7. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  8. Evaluation of CT Perfusion Biomarkers of Tumor Hypoxia

    PubMed Central

    Qi, Qi; Yeung, Timothy Pok Chi; Lee, Ting-Yim; Bauman, Glenn; Crukley, Cathie; Morrison, Laura; Hoffman, Lisa; Yartsev, Slav

    2016-01-01

    Background Tumor hypoxia is associated with treatment resistance to cancer therapies. Hypoxia can be investigated by immunohistopathologic methods but such procedure is invasive. A non-invasive method to interrogate tumor hypoxia is an attractive option as such method can provide information before, during, and after treatment for personalized therapies. Our study evaluated the correlations between computed tomography (CT) perfusion parameters and immunohistopathologic measurement of tumor hypoxia. Methods Wistar rats, 18 controls and 19 treated with stereotactic radiosurgery (SRS), implanted with the C6 glioma tumor were imaged using CT perfusion on average every five days to monitor tumor growth. A final CT perfusion scan and the brain were obtained on average 14 days (8–22 days) after tumor implantation. Tumor hypoxia was detected immunohistopathologically with pimonidazole. The tumor, necrotic, and pimonidazole-positive areas on histology samples were measured. Percent necrotic area and percent hypoxic areas were calculated. Tumor volume (TV), blood flow (BF), blood volume (BV), and permeability-surface area product (PS) were obtained from the CT perfusion studies. Correlations between CT perfusion parameters and histological parameters were assessed by Spearman’s ρ correlation. A Bonferroni-corrected P value < 0.05 was considered significant. Results BF and BV showed significant correlations with percent hypoxic area ρ = -0.88, P < 0.001 and ρ = -0.81, P < 0.001, respectively, for control animals and ρ = -0.7, P < 0.001 and ρ = -0.6, P = 0.003, respectively, for all animals, while TV and BV were correlated (ρ = -0.64, P = 0.01 and ρ = -0.43, P = 0.043, respectively) with percent necrotic area. PS was not correlated with either percent necrotic or percent hypoxic areas. Conclusions Percent hypoxic area provided significant correlations with BF and BV, suggesting that CT perfusion parameters are potential non-invasive imaging biomarkers of tumor

  9. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  10. Detection of Obstructive Coronary Artery Disease Using Regadenoson Stress and 82Rb PET/CT Myocardial Perfusion Imaging

    PubMed Central

    Hsiao, Edward; Ali, Bilal; Blankstein, Ron; Skali, Hicham; Ali, Towhid; Bruyere, John; Kwong, Raymond Y.; Di Carli, Marcelo F.; Dorbala, Sharmila

    2014-01-01

    Our objective was to study the diagnostic performance of regadenoson 82Rb myocardial perfusion PET imaging to detect obstructive coronary artery disease (CAD). Methods We studied 134 patients (mean age, 63 ± 12 y; mean body mass index, 31 ± 9 kg/m2) without known CAD (96 with coronary angiography and 38 with low pretest likelihood of CAD). Stress left ventricular ejection fraction (LVEF) minus rest LVEF defined LVEF reserve. The Duke score was used to estimate the anatomic extent of jeopardized myocardium. Results Regadenoson PET had a high sensitivity, 92% (95% confidence interval [CI], 83%–97%), in detecting obstructive CAD, with a normalcy rate of 97% (95% CI, 86%–99%), specificity of 77% (54/70 patients; 95% CI, 66%–86%), and area under the receiver-operator-characteristic curve of 0.847 (95% CI, 0.774–0.903; P < 0.001). Regadenoson PET demonstrated high sensitivity to detect CAD in patients with single-vessel CAD (89%; 95% CI, 70%–98%). The mean LVEF reserve was significantly higher in patients with normal myocardial perfusion imaging results (6.5% ± 5.4%) than in those with mild (4.3 ± 5.1, P = 0.03) and moderate to severe reversible defects (−0.2% ± 8.4%, P = 0.001). Also, mean LVEF reserve was significantly higher in patients with a low likelihood of CAD (7.2% ± 4.5%, P < 0.0001) and mild or moderate jeopardized myocardium than in those with significant jeopardized myocardium (score ≥ 6), −2.8% ± 8.3%. Conclusion Regadenoson 82Rb myocardial perfusion imaging is accurate for the detection of obstructive CAD. LVEF reserve is high in patients without significant ischemia or significant angiographic jeopardized myocardium. PMID:23940305

  11. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    SciTech Connect

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  12. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Pelgrim, Gert Jan; Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Klotz, Ernst; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  13. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  14. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior

    NASA Astrophysics Data System (ADS)

    Ma, Jianhua; Zhang, Hua; Gao, Yang; Huang, Jing; Liang, Zhengrong; Feng, Qianjing; Chen, Wufan

    2012-11-01

    Cerebral perfusion x-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere-seconds (mA s). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as ‘MAP-ndiNLM’. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method.

  15. Iterative image reconstruction for cerebral perfusion CT using pre-contrast scan induced edge-preserving prior

    PubMed Central

    Ma, Jianhua; Zhang, Hua; Gao, Yang; Huang, Jing; Liang, Zhengrong; Feng, Qianjing; Chen, Wufan

    2012-01-01

    Cerebral perfusion X-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere seconds (mAs). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as “MAP-ndiNLM”. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method. PMID:23104003

  16. Fast nonlinear regression method for CT brain perfusion analysis.

    PubMed

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods. PMID:27413770

  17. Diagnostic Performance of First-Pass Myocardial Perfusion Imaging without Stress with Computed Tomography (CT) Compared with Coronary CT Angiography Alone, with Fractional Flow Reserve as the Reference Standard

    PubMed Central

    Osawa, Kazuhiro; Miyoshi, Toru; Miki, Takashi; Koyama, Yasushi; Sato, Shuhei; Kanazawa, Susumu; Ito, Hiroshi

    2016-01-01

    Coronary computed tomography angiography (CCTA) in combination with first-pass CT myocardial perfusion imaging (MPI) has a better diagnostic performance than CCTA alone, compared with invasive coronary angiography as the reference standard. The aim of this study was to investigate the additional diagnostic value of first-pass CT-MPI without stress for detecting hemodynamic significance of coronary stenosis, compared with invasive fractional flow reserve (FFR). We recruited 53 patients with suspected coronary artery disease undergoing both CCTA and first-pass CT-MPI without stress and invasive FFR, and 75 vessels were analyzed. We used the same raw data for CCTA and CT-MPI. First-pass CT-MPI was reconstructed by examining the diastolic signal densities as a bull’s eye map. Invasive FFR <0.8 was considered as positive. On per-vessel analysis, the area under the receiver operating characteristic curve for CCTA plus first-pass CT-MPI and CCTA alone was 0.81 (0.73–0.90) and 0.70 (0.61–0.81), respectively (P = 0.036). CCTA plus first-pass CT-MPI without stress showed 0.73 sensitivity, 0.74 specificity, 0.53 positive predictive value, and 0.87 negative predictive value for detecting hemodynamically significant coronary stenosis. First-pass CT-MPI without stress correctly reclassified 38% of CCTA false-positive vessels as true negative. First-pass CT-MPI without stress combined with CCTA demonstrated excellent diagnostic accuracy, compared with invasive FFR as the reference standard. This technique could complement CCTA for diagnosis of coronary artery disease. PMID:26894686

  18. Correlation of CT perfusion and CT volumetry in patients with Alzheimer’s disease

    PubMed Central

    Czarnecka, Anna; Zimny, Anna; Sąsiadek, Marek

    2010-01-01

    Summary Background: Both brain atrophy and decrease of perfusion are observed in dementive diseases. The aim of the study was to correlate the results of brain perfusion CT (pCT) and CT volumetry in patients with Alzheimer’s disease (AD). Material/Methods: Forty-eight patients with AD (mean age of 71.3 years) underwent brain pCT and CT volumetry. The pCT was performed at the level of basal ganglia after the injection of contrast medium (50 ml, 4 ml/sec.) with serial scanning (delay 7 sec, 50 scans, 1 scan/sec). Volumetric measurements were carried out on the basis of source images, with the use of a dedicated CT software combined with manual outlining of the regions of interest in extracerebral and intraventricular CSF spaces. Perfusion parameters of the cerebral blood flow (CBF) and cerebral blood volume (CBV) from the grey matter of frontal and temporal as well as basal ganglia were compared statistically with the volumetric measurements of frontal and temporal cortical atrophy as well as subcortical atrophy. Results: A statistically significant positive correlation was found between the values of CBF and CBV in the basal ganglia and the volumes of the lateral and third ventricles. The comparison of CBF and CBV results with the volumetric measurements in the areas of the frontal and temporal lobes showed mostly negative correlations, but none of them was of statistical significance. Conclusions: In patients with AD, the degree of cortical atrophy is not correlated with the decrease of perfusion in the grey matter and subcortical atrophy is not correlated with the decrease of perfusion in the basal ganglia region. It suggests that functional and structural changes in AD are not related to each other. PMID:22802771

  19. The added value of hybrid ventilation/perfusion SPECT/CT in patients with stable COPD or apparently healthy smokers. Cancer-suspected CT findings in the lungs are common when hybrid imaging is used.

    PubMed

    Jögi, Jonas; Markstad, Hanna; Tufvesson, Ellen; Bjermer, Leif; Bajc, Marika

    2015-01-01

    Ventilation/perfusion (V/P) single-photon emission computed tomography (SPECT) is recognized as a diagnostic method with potential beyond the diagnosis of pulmonary embolism. V/P SPECT identifies functional impairment in diseases such as heart failure (HF), pneumonia, and chronic obstructive pulmonary disease (COPD). The development of hybrid SPECT/computed tomography (CT) systems, combining functional with morphological imaging through the addition of low-dose CT (LDCT), may be useful in COPD, as these patients are prone to lung cancer and other comorbidities. The aim of this study was to investigate the added value of LDCT among healthy smokers and patients with stable COPD, when examined with V/P SPECT/CT hybrid imaging. Sixty-nine subjects, 55 with COPD (GOLD I-IV) and 14 apparently healthy smokers, were examined with V/P SPECT and LDCT hybrid imaging. Spirometry was used to verify COPD grade. Only one apparently healthy smoker and three COPD patients had a normal or nearly normal V/P SPECT. All other patients showed various degrees of airway obstruction, even when spirometry was normal. The same interpretation was reached on both modalities in 39% of the patients. LDCT made V/P SPECT interpretation more certain in 9% of the patients and, in 52%, LDCT provided additional diagnoses. LDCT better characterized the type of emphysema in 12 patients. In 19 cases, tumor-suspected changes were reported. Three of these 19 patients (ie, 4.3% of all subjects) were in the end confirmed to have lung cancer. The majority of LDCT findings were not regarded as clinically significant. V/P SPECT identified perfusion patterns consistent with decompensated left ventricular HF in 14 COPD patients. In 16 patients (23%), perfusion defects were observed. HF and perfusion defects were not recognized with LDCT. In COPD patients and long-time smokers, hybrid imaging had added value compared to V/P SPECT alone, by identifying patients with lung malignancy and more clearly identifying

  20. The added value of hybrid ventilation/perfusion SPECT/CT in patients with stable COPD or apparently healthy smokers. Cancer-suspected CT findings in the lungs are common when hybrid imaging is used.

    PubMed

    Jögi, Jonas; Markstad, Hanna; Tufvesson, Ellen; Bjermer, Leif; Bajc, Marika

    2015-01-01

    Ventilation/perfusion (V/P) single-photon emission computed tomography (SPECT) is recognized as a diagnostic method with potential beyond the diagnosis of pulmonary embolism. V/P SPECT identifies functional impairment in diseases such as heart failure (HF), pneumonia, and chronic obstructive pulmonary disease (COPD). The development of hybrid SPECT/computed tomography (CT) systems, combining functional with morphological imaging through the addition of low-dose CT (LDCT), may be useful in COPD, as these patients are prone to lung cancer and other comorbidities. The aim of this study was to investigate the added value of LDCT among healthy smokers and patients with stable COPD, when examined with V/P SPECT/CT hybrid imaging. Sixty-nine subjects, 55 with COPD (GOLD I-IV) and 14 apparently healthy smokers, were examined with V/P SPECT and LDCT hybrid imaging. Spirometry was used to verify COPD grade. Only one apparently healthy smoker and three COPD patients had a normal or nearly normal V/P SPECT. All other patients showed various degrees of airway obstruction, even when spirometry was normal. The same interpretation was reached on both modalities in 39% of the patients. LDCT made V/P SPECT interpretation more certain in 9% of the patients and, in 52%, LDCT provided additional diagnoses. LDCT better characterized the type of emphysema in 12 patients. In 19 cases, tumor-suspected changes were reported. Three of these 19 patients (ie, 4.3% of all subjects) were in the end confirmed to have lung cancer. The majority of LDCT findings were not regarded as clinically significant. V/P SPECT identified perfusion patterns consistent with decompensated left ventricular HF in 14 COPD patients. In 16 patients (23%), perfusion defects were observed. HF and perfusion defects were not recognized with LDCT. In COPD patients and long-time smokers, hybrid imaging had added value compared to V/P SPECT alone, by identifying patients with lung malignancy and more clearly identifying

  1. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  2. Colour perfusion imaging: a new application of computed tomography.

    PubMed

    Miles, K A; Hayball, M; Dixon, A K

    1991-03-16

    We describe a new application for imaging with computed tomography (CT) in which a quantifiable map of tissue perfusion is created and displayed by means of a colour scale. A rapid sequence of images is acquired without table movement immediately after a bolus intravenous injection of radiographic contrast medium. The rate of enhancement in each pixel within the chosen slice can then be used to determine perfusion. The technique provides a quantifiable display of regional perfusion combined with the high spatial resolution afforded by CT.

  3. Statistical model based iterative reconstruction in myocardial CT perfusion: exploitation of the low dimensionality of the spatial-temporal image matrix

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Chen, Guang-Hong

    2015-03-01

    Time-resolved CT imaging methods play an increasingly important role in clinical practice, particularly, in the diagnosis and treatment of vascular diseases. In a time-resolved CT imaging protocol, it is often necessary to irradiate the patients for an extended period of time. As a result, the cumulative radiation dose in these CT applications is often higher than that of the static CT imaging protocols. Therefore, it is important to develop new means of reducing radiation dose for time-resolved CT imaging. In this paper, we present a novel statistical model based iterative reconstruction method that enables the reconstruction of low noise time-resolved CT images at low radiation exposure levels. Unlike other well known statistical reconstruction methods, this new method primarily exploits the intrinsic low dimensionality of time-resolved CT images to regularize the reconstruction. Numerical simulations were used to validate the proposed method.

  4. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Nanjo, Takafumi; Satoshi, Ii; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-11-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation × 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current.

  5. Machine-learning based comparison of CT-perfusion maps and dual energy CT for pancreatic tumor detection

    NASA Astrophysics Data System (ADS)

    Goetz, Michael; Skornitzke, Stephan; Weber, Christian; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Stiller, Wolfram; Maier-Hein, Klaus H.

    2016-03-01

    Perfusion CT is well-suited for diagnosis of pancreatic tumors but tends to be associated with a high radiation exposure. Dual-energy CT (DECT) might be an alternative to perfusion CT, offering correlating contrasts while being acquired at lower radiation doses. While previous studies compared intensities of Dual Energy iodine maps and CT-perfusion maps, no study has assessed the combined discriminative power of all information that can be generated from an acquisition of both functional imaging methods. We therefore propose the use of a machine learning algorithm for assessing the amount of information that becomes available by the combination of multiple images. For this, we train a classifier on both imaging methods, using a new approach that allows us to train only from small regions of interests (ROIs). This makes our study comparable to other - ROI-based analysis - and still allows comparing the ability of both classifiers to discriminate between healthy and tumorous tissue. We were able to train classifiers that yield DICE scores over 80% with both imaging methods. This indicates that Dual Energy Iodine maps might be used for diagnosis of pancreatic tumors instead of Perfusion CT, although the detection rate is lower. We also present tumor risk maps that visualize possible tumorous areas in an intuitive way and can be used during diagnosis as an additional information source.

  6. Future generation CT imaging.

    PubMed

    Walter, Deborah; De Man, Bruno; Iatrou, Maria; Edic, Peter M

    2004-02-01

    X-ray CT technology has been available for more than 30 years, yet continued technological advances have kept CT imaging at the forefront of medical imaging innovation. Consequently, the number of clinical CT applications has increased steadily. Other imaging modalities might be superior to CT imaging for some specific applications, but no other single modality is more often used in chest imaging today. Future technological developments in the area of high-resolution detectors, high-capacity x-ray tubes, advanced reconstruction algorithms, and improved visualization techniques will continue to expand the imaging capability. Future CT imaging technology will combine improved imaging capability with advanced and specific computer-assisted tools, which will expand the usefulness of CT imaging in many areas.

  7. Comparison of Intrahepatic and Pancreatic Perfusion on Fusion Images Using a Combined SPECT/CT System and Assessment of Efficacy of Combined Continuous Arterial Infusion and Systemic Chemotherapy in Advanced Pancreatic Carcinoma

    SciTech Connect

    Ikeda, Osama Tamura, Yoshitaka; Nakasone, Yutaka; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Yamashita, Yasuyuki; Takamori, Hiroshi; Kanemitsu, Keiichiro; Baba, Hideo

    2007-09-15

    Purpose. The purpose of this study was to compare intrahepatic and pancreatic perfusion on fusion images using a combined single-photon emission computed tomography (SPECT)/CT system and to evaluate the efficacy of combined continuous transcatheter arterial infusion (CTAI) and systemic chemotherapy in the treatment of advanced pancreatic carcinoma. Materials and Methods. CTAI was performed in 33 patients (22 men, 11 women; age range, 35-77 years; mean age, 60 years) with stage IV pancreatic cancer with liver metastasis. The reservoir was transcutaneously implanted with the help of angiography. The systemic administration of gemcitabine was combined with the infusion of 5-fluorouracil via the reservoir. In all patients we obtained fusion images using a combined SPECT/CT system. Pancreatic perfusion on fusion images was classified as perfusion presence or as perfusion absent in the pancreatic cancer. Using WHO criteria we recorded the tumor response after 3 months on multislice helical CT scans. Treatment effects were evaluated based on the pancreatic cancer, liver metastasis, and factors such as intrahepatic and pancreatic perfusion on fusion images. For statistical analysis we used the chi-square test; survival was evaluated by the Kaplan Meier method (log-rank test). Results. On fusion images, pancreatic and intrahepatic perfusion was recorded as hot spot and as homogeneous distribution, respectively, in 18 patients (55%) and as cold spot and heterogeneous distribution, respectively, in 15 (45%). Patients with hot spot in the pancreatic tumor and homogeneous distribution in the liver manifested better treatment results (p < 0.05 and p < 0.01, respectively). Patients with hot spot both in the pancreatic cancer and in the liver survived longer than those with cold spot in the pancreatic cancer and heterogeneous distribution in the liver (median {+-} SD, 16.0 {+-} 3.7 vs. 8.0 {+-} 1.4 months; p < 0.05). Conclusions. We conclude that in patients with advanced

  8. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  9. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    Purpose To validate the use of perfusion computed tomography (CT) with whole-brain coverage to measure the ischemic penumbra and core and to compare its performance to that of limited-coverage perfusion CT. Materials and Methods Institutional ethics committee approval and informed consent were obtained. Patients (n = 296) who underwent 320-detector CT perfusion within 6 hours of the onset of ischemic stroke were studied. First, the ischemic volume at CT perfusion was compared with the penumbra and core reference values at magnetic resonance (MR) imaging to derive CT perfusion penumbra and core thresholds. Second, the thresholds were tested in a different group of patients to predict the final infarction at diffusion-weighted imaging 24 hours after CT perfusion. Third, the change in ischemic volume delineated by the optimal penumbra and core threshold was determined as the brain coverage was gradually reduced from 160 mm to 20 mm. The Wilcoxon signed-rank test, concordance correlation coefficient (CCC), and analysis of variance were used for the first, second, and third steps, respectively. Results CT perfusion at penumbra and core thresholds resulted in the least volumetric difference from MR imaging reference values with delay times greater than 3 seconds and delay-corrected cerebral blood flow of less than 30% (P = .34 and .33, respectively). When the thresholds were applied to the new group of patients, prediction of the final infarction was allowed with delay times greater than 3 seconds in patients with no recanalization of the occluded artery (CCC, 0.96 [95% confidence interval: 0.92, 0.98]) and with delay-corrected cerebral blood flow less than 30% in patients with complete recanalization (CCC, 0.91 [95% confidence interval: 0.83, 0.95]). However, the ischemic volume with a delay time greater than 3 seconds was underestimated when the brain coverage was reduced to 80 mm (P = .04) and the core volume measured as cerebral blood flow less than 30% was

  10. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  11. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  12. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  13. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  14. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  15. A comparative analysis of the dependences of the hemodynamic parameters on changes in ROI's position in perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo

    2013-05-01

    This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.

  16. What is the benefit of CT-based attenuation correction in myocardial perfusion SPET?

    PubMed

    Apostolopoulos, Dimitrios J; Savvopoulos, Christos

    2016-01-01

    In multimodality imaging, CT-derived transmission maps are used for attenuation correction (AC) of SPET or PET data. Regarding SPET myocardial perfusion imaging (MPI), however, the bene����t of CT-based AC (CT-AC) has been questioned. Although most attenuation-related artifacts are removed by this technique, new false defects may appear while some true perfusion abnormalities may be masked. The merits and the drawbacks of CT-AC in MPI SPET are reviewed and discussed in this editorial. In conclusion, CT-AC is most helpful in men, overweight in particular, and in those with low or low to intermediate pre-test probability of coronary artery disease (CAD). It is also useful for the evaluation of myocardial viability. In high-risk patients though, CT-AC may underestimate the presence or the extent of CAD. In any case, corrected and non-corrected images should be viewed side-by-side and both considered in the interpretation of the study. PMID:27331200

  17. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  18. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia

    PubMed Central

    Cockburn, Neil; Kovacs, Michael

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155–180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877

  19. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    PubMed

    Wright, Eric A; d'Esterre, Christopher D; Morrison, Laura B; Cockburn, Neil; Kovacs, Michael; Lee, Ting-Yim

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877

  20. Pulmonary Perfused Blood Volume with Dual-Energy CT as Surrogate for Pulmonary Perfusion Assessed with Dynamic Multidetector CT

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed F.; Haynes, Susan E.; Divekar, Abhay A.; Guo, Junfeng

    2013-01-01

    Purpose: To compare measurements of regional pulmonary perfused blood volume (PBV) and pulmonary blood flow (PBF) obtained with computed tomography (CT) in two pig models. Materials and Methods: The institutional animal care and use committee approved all animal studies. CT-derived PBF and PBV were determined in four anesthetized, mechanically ventilated, supine swine by using two methods for creating pulmonary parenchymal perfusion heterogeneity. Two animals were examined after sequentially moving a pulmonary arterial balloon catheter from a distal to a central location, and two others were examined over a range of static airway pressures, which varied the extents of regional PBF. Lung sections were divided into blocks and Pearson correlation coefficients calculated to compare matching regions between the two methods. Results: CT-derived PBF, CT-derived PBV, and their associated coefficients of variation (CV) were closely correlated on a region-by-region basis in both the balloon occlusion (Pearson R = 0.91 and 0.73 for animals 1 and 2, respectively; Pearson R = 0.98 and 0.87 for comparison of normalized mean and CV for animals 1 and 2, respectively) and lung inflation studies (Pearson R = 0.94 and 0.74 for animals 3 and 4, respectively; Pearson R = 0.94 and 0.69 for normalized mean and CV for animals 3 and 4, respectively). When accounting for region-based effects, correlations remained highly significant at the P < .001 level. Conclusion: CT-derived PBV heterogeneity is a suitable surrogate for CT-derived PBF heterogeneity. ©RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112789/-/DC1 PMID:23192773

  1. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  2. Performance comparison between static and dynamic cardiac CT on perfusion quantitation and patient classification tasks

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2015-03-01

    Cardiac CT acquisitions for perfusion assessment can be performed in a dynamic or static mode. In this simulation study, we evaluate the relative classification and quantification performance of these modes for assessing myocardial blood flow (MBF). In the dynamic method, a series of low dose cardiac CT acquisitions yields data on contrast bolus dynamics over time; these data are fit with a model to give a quantitative MBF estimate. In the static method, a single CT acquisition is obtained, and the relative CT numbers in the myocardium are used to infer perfusion states. The static method does not directly yield a quantitative estimate of MBF, but these estimates can be roughly approximated by introducing assumed linear relationships between CT number and MBF, consistent with the ways such images are typically visually interpreted. Data obtained by either method may be used for a variety of clinical tasks, including 1) stratifying patients into differing categories of ischemia and 2) using the quantitative MBF estimate directly to evaluate ischemic disease severity. Through simulations, we evaluate the performance on each of these tasks. The dynamic method has very low bias in MBF estimates, making it particularly suitable for quantitative estimation. At matched radiation dose levels, ROC analysis demonstrated that the static method, with its high bias but generally lower variance, has superior performance in stratifying patients, especially for larger patients.

  3. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  4. CT Perfusion in Spinal Disease: an Adjunct Tool to Vertebral Body Biopsy.

    PubMed

    Shankar, J J S; Jayakumar, P N; Vasudev, M K; Ravishankar, S

    2007-02-28

    Routine diagnostic techniques are inadequate for diagnosis of spinal diseases. The purpose of this study was to determine whether CT perfusion can differentiate inflammatory diseases like tuberculosis from neoplastic diseases of spine. Thirty-two patients with vertebral body lesions associated with paraspinal mass underwent CT guided bone biopsy and histopathological evaluation. CT perfusion was done in all patients before doing biopsy. Perfusion parameters like blood volume (BV), blood flow (BF) and time to peak (TTP) were calculated and correlated with histopathology. Statistical analysis was done using Mann-Whitney test. p value <0.05 was considered significant. Of 32 cases, 20 had tuberculous osteomyelitis and 12 neoplastic disease (seven metastasis, three plasmacytoma, one each lymphoma and chordoma). Mean rBF was [inflammatory lesions, 1.459 and neoplastic lesions, 18.080 (p<0.000). Mean rBV was (inflammatory disease, 2.8589 and neoplastic lesions, 12.2133 (p<0 .000)). Mean rTTP was [inflammatory pathology, 1.041 and neoplastic pathology, 0.703(p<0.079)]. This shows the deconvolution-based CTP technique's potential for noninvasive diagnosis of at least all inflammatory lesions affecting the spine that are associated with paraspinal mass. Validation of the use of deconvolution CTP parameters for differentiation of inflammatory from neoplastic pathology may permit this technique to be used as an adjunct tool when biopsy when routine imaging findings are inconclusive.

  5. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  6. Computed tomography perfusion imaging denoising using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.

  7. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  8. Recent developments and future prospects of SPECT myocardial perfusion imaging.

    PubMed

    Zaman, Maseeh Uz; Hashmi, Ibrahim; Fatima, Nosheen

    2010-10-01

    Myocardial perfusion SPECT imaging is the most commonly performed functional imaging for assessment of coronary artery disease. High diagnostic accuracy and incremental prognostic value are the major benefits while suboptimal spatial resolution and significant radiation exposure are the main limitations. Its ability to detect hemodynamic significance of lesions seen on multidetector CT angiogram (MDCTA) has paved the path for a successful marriage between anatomical and functional imaging modalities in the form of hybrid SPECT/MDCTA system. In recent years, there have been enormous efforts by industry and academia to develop new SPECT imaging systems with better sensitivity, resolution, compact design and new reconstruction algorithms with ability to improve image quality and resolution. Furthermore, expected arrival of Tc-99m-labeled deoxyglucose in next few years would further strengthen the role of SPECT in imaging hibernating myocardium. In view of these developments, it seems that SPECT would enjoy its pivotal role in spite of major threat to be replaced by fluorine-18-labeled positron emission tomography perfusion and glucose metabolism imaging agents. PMID:20652774

  9. The Cadaveric Perfusion and Angiography as a Teaching Tool: Imaging the Intracranial Vasculature in Cadavers

    PubMed Central

    Turkoglu, Erhan; Seckin, Hakan; Gurer, Bora; Ahmed, Azam; Uluc, Kutluay; Pulfer, Kari; Arat, Anıl; Niemann, David; Baskaya, Mustafa K.

    2014-01-01

    Background and Study Aim To enhance the visualization of the intracranial vasculature of cadavers under gross examination with a combination of imaging modalities. Material and Methods A total of 20 cadaver heads were used to test two different perfusion techniques. First, fixed cadaver heads were perfused with water; second, fresh cadavers were perfused with saline and 10% formalin. Subsequently, brains were removed and fixed. The compounds used were silicone rubber, silicone rubber mixed with powdered barium sulfate, and silicone rubber mixed with tantalum dioxide prepared by the first perfusion technique and gelatin mixed with liquid barium prepared with the second technique. Conventional X-ray imaging, computed tomography (CT), dynamic computed tomography (dCT), and postprocessing three-dimensional (3D) images were used to evaluate all the heads. Results Gelatinized barium was better visualized when compared with tantalum dioxide in conventional X-ray images. The blood vessels injected with either tantalum dioxide or gelatinized barium demonstrated a higher enhancement than the surrounding soft tissues with CT or dCT. The quality of the 3D reconstruction of the intracranial vasculature was significantly better in the CT images obtained from the gelatinized barium group. Conclusions Radiologic examinations of the heads injected with gelatinized barium facilitates the 3D understanding of cerebrovascular anatomy as an important tool for neuroanatomy training. PMID:25452903

  10. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  11. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    SciTech Connect

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  12. Diagnostic Value of Dual-Source Computerized Tomography Combined with Perfusion Imaging for Peripheral Pulmonary Embolism

    PubMed Central

    Mao, Xijin; Wang, Shanshan; Jiang, Xingyue; Zhang, Lin; Xu, Wenjian

    2016-01-01

    Background Pulmonary embolism has become the third most common cardiovascular disease, which can seriously harm human health. Objectives To investigate the diagnostic value of dual-source computerized tomography (CT) and perfusion imaging for peripheral pulmonary embolism. Patients and Methods Thirty-two patients with suspected pulmonary embolism underwent dual-source CT exams. To compare the ability of pulmonary embolism detection software (PED) with CT pulmonary angiography (CTPA) in determining the presence, numbers, and locations of pulmonary emboli, the subsequent images were reviewed by two radiologists using both imaging modalities. Also, the diagnostic consistency between PED and CTPA images and dual-energy pulmonary perfusion imaging (DEPI) for segmental pulmonary embolism was compared. Results CTPA images revealed 50 (7.81%) segmental and 56 (4.38%) sub-segmental pulmonary embolisms, while the PED images showed 68 (10.63%) segmental and 94 (7.34%) sub-segmental pulmonary embolisms. Thus, the detection rate on PED images for peripheral pulmonary embolism was significantly higher than that of the CTPA images (P < 0.05). There was good consistency for diagnosing segmental pulmonary embolism between PED and CTPA and DEPI (kappa = 0.85). The sensitivity and specificity of DEPI images for the diagnosis of pulmonary embolism were 91.7% and 97.5%, respectively. Conclusion PED software of dual-source CT combined with perfusion imaging can significantly improve the detection rate of peripheral pulmonary embolism.

  13. AAPM/RSNA physics tutorial for residents: topics in CT. Image processing in CT.

    PubMed

    Cody, Dianna D

    2002-01-01

    Several image-processing methods for computed tomographic (CT) examinations are currently being used in clinical radiology departments. Image processing involves operations such as reformatting of original CT images, volume-rendered displays, surface-rendered displays, and physiologic imaging analysis. The reformatting process does not alter the CT voxels in any way; instead it uses them in off-axis views and displays the images produced from the original reconstruction process in an orientation other than how they were originally generated. Sagittal, coronal, oblique, and curved reformatting are standard reformatting methods. Other reformatting techniques include maximum-intensity projection, minimum-intensity projection, and variable thickness viewing. Volume and surface rendering are two different methods for reformatting axial images into three-dimensional views. CT perfusion allows the measurement of physiologic parameters over time. Additional postprocessing efforts can potentially add value to the patients and their outcomes, as can be seen in the cases that illustrate this article.

  14. NETL CT Imaging Facility

    ScienceCinema

    None

    2016-07-12

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  15. NETL CT Imaging Facility

    SciTech Connect

    2013-09-04

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  16. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between

  17. Comparison of effective dose and lifetime risk of cancer incidence of CT attenuation correction acquisitions and radiopharmaceutical administration for myocardial perfusion imaging

    PubMed Central

    Szczepura, K; Hogg, P

    2014-01-01

    Objective: To measure the organ dose and calculate effective dose from CT attenuation correction (CTAC) acquisitions from four commonly used gamma camera single photon emission CT/CT systems. Methods: CTAC dosimetry data was collected using thermoluminescent dosemeters on GE Healthcare's Infinia™ Hawkeye™ (GE Healthcare, Buckinghamshire, UK) four- and single-slice systems, Siemens Symbia™ T6 (Siemens Healthcare, Erlangen, Germany) and the Philips Precedence (Philips Healthcare, Amsterdam, Netherlands). Organ and effective dose from the administration of 99mTc-tetrofosmin and 99mTc-sestamibi were calculated using International Commission of Radiological Protection reports 80 and 106. Using these data, the lifetime biological risk was calculated. Results: The Siemens Symbia gave the lowest CTAC dose (1.8 mSv) followed by the GE Infinia Hawkeye single-slice (1.9 mSv), GE Infinia Hawkeye four-slice (2.5 mSv) and Philips Precedence v. 3.0. Doses were significantly lower than the calculated doses from radiopharmaceutical administration (11 and 14 mSv for 99mTc-tetrofosmin and 99mTc-sestamibi, respectively). Overall lifetime biological risks were lower, which suggests that using CTAC data posed minimal risk to the patient. Comparison of data for breast tissue demonstrated a higher risk than that from the radiopharmaceutical administration. Conclusion: CTAC doses were confirmed to be much lower than those from radiopharmaceutical administration. The localized nature of the CTAC exposure compared to the radiopharmaceutical biological distribution indicated dose and risk to the breast to be higher. Advances in knowledge: This research proved that CTAC is a comparatively low-dose acquisition. However, it has been shown that there is increased risk for breast tissue especially in the younger patients. As per legislation, justification is required and CTAC should only be used in situations that demonstrate sufficient net benefit. PMID:24998249

  18. The benefit of personalized hybrid SPECT/CT pulmonary imaging.

    PubMed

    Simanek, Milan; Koranda, Pavel

    2016-01-01

    Hybrid pulmonary imaging in the present day has seen a fusion of various uses of CT scans, including angiography (CTAG), diagnostic CT, low dose CT (LDCT), and perfusion or ventilation scintigraphy in tomographic or planar imaging. Determining the most effective individualized test for the complete diagnostics of patients with pulmonary symptoms for various groups of patients is a major issue. The aim of the present study was to assess the effectiveness of the implementation of hybrid imaging in current methods of nuclear medicine in differential diagnostics of pulmonary embolism (PE). 326 patients were examined for symptomatology of PE. Patients were initially examined with SPECT perfusion scintigraphy. SPECT finding without sub-segmental or segmental defects was considered unproven PE but the finding of more segments or sub-segments in various lung parts was considered nearly proven PE. In the case of unclear findings, LDCT was added and in the case of a higher suspicion of PE, a ventilation examination was applied. It was possible to determine 83% of patients with the occurrence or exclusion of PE only on the basis of the perfusion SPECT examination and an X-ray or LDCT. LDCT was determined with 26% of the patients. With 41% of them, the use of LDCT resulted in an alternative diagnosis, explaining perfusion abnormalities. The research proved that use of SPECT/LDCT for differential diagnosis of lung symptoms brings about improvement in the diagnosis of pulmonary embolism or the identification of other lung diseases when lung perfusion abnormalities are recorded. PMID:27648373

  19. The benefit of personalized hybrid SPECT/CT pulmonary imaging

    PubMed Central

    Simanek, Milan; Koranda, Pavel

    2016-01-01

    Hybrid pulmonary imaging in the present day has seen a fusion of various uses of CT scans, including angiography (CTAG), diagnostic CT, low dose CT (LDCT), and perfusion or ventilation scintigraphy in tomographic or planar imaging. Determining the most effective individualized test for the complete diagnostics of patients with pulmonary symptoms for various groups of patients is a major issue. The aim of the present study was to assess the effectiveness of the implementation of hybrid imaging in current methods of nuclear medicine in differential diagnostics of pulmonary embolism (PE). 326 patients were examined for symptomatology of PE. Patients were initially examined with SPECT perfusion scintigraphy. SPECT finding without sub-segmental or segmental defects was considered unproven PE but the finding of more segments or sub-segments in various lung parts was considered nearly proven PE. In the case of unclear findings, LDCT was added and in the case of a higher suspicion of PE, a ventilation examination was applied. It was possible to determine 83% of patients with the occurrence or exclusion of PE only on the basis of the perfusion SPECT examination and an X-ray or LDCT. LDCT was determined with 26% of the patients. With 41% of them, the use of LDCT resulted in an alternative diagnosis, explaining perfusion abnormalities. The research proved that use of SPECT/LDCT for differential diagnosis of lung symptoms brings about improvement in the diagnosis of pulmonary embolism or the identification of other lung diseases when lung perfusion abnormalities are recorded.

  20. The benefit of personalized hybrid SPECT/CT pulmonary imaging

    PubMed Central

    Simanek, Milan; Koranda, Pavel

    2016-01-01

    Hybrid pulmonary imaging in the present day has seen a fusion of various uses of CT scans, including angiography (CTAG), diagnostic CT, low dose CT (LDCT), and perfusion or ventilation scintigraphy in tomographic or planar imaging. Determining the most effective individualized test for the complete diagnostics of patients with pulmonary symptoms for various groups of patients is a major issue. The aim of the present study was to assess the effectiveness of the implementation of hybrid imaging in current methods of nuclear medicine in differential diagnostics of pulmonary embolism (PE). 326 patients were examined for symptomatology of PE. Patients were initially examined with SPECT perfusion scintigraphy. SPECT finding without sub-segmental or segmental defects was considered unproven PE but the finding of more segments or sub-segments in various lung parts was considered nearly proven PE. In the case of unclear findings, LDCT was added and in the case of a higher suspicion of PE, a ventilation examination was applied. It was possible to determine 83% of patients with the occurrence or exclusion of PE only on the basis of the perfusion SPECT examination and an X-ray or LDCT. LDCT was determined with 26% of the patients. With 41% of them, the use of LDCT resulted in an alternative diagnosis, explaining perfusion abnormalities. The research proved that use of SPECT/LDCT for differential diagnosis of lung symptoms brings about improvement in the diagnosis of pulmonary embolism or the identification of other lung diseases when lung perfusion abnormalities are recorded. PMID:27648373

  1. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  2. Perfusion analysis using a wide coverage flat-panel volume CT: feasibility study

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Klotz, E.; Schmidt, B.; Flohr, T.

    2007-03-01

    We developed a Flat-panel detector based Volume CT (VCT) prototype scanner with large z-coverage. In that prototype scanner a Varian 4030CB a-Si flat-panel detector was mounted in a multi slice CT-gantry (Siemens Medical Solutions) which provides a 25 cm field of view with 18 cm z-coverage at isocenter. The large volume covered in one rotation can be used for visualization of complete organs of small animals, e.g. rabbits. By implementing a mode with continuous scanning, we are able to reconstruct the complete volume at any point in time during the propagation of a contrast bolus. Multiple volumetric reconstructions over time elucidate the first pass dynamics of a bolus of contrast resulting in 4-D angiography and potentially allowing whole organ perfusion analysis. We studied to which extent pixel based permeability and blood volume calculation with a modified Patlak approach was possible. Experimental validation was performed by imaging evolution of contrast bolus in New Zealand rabbits. Despite the short circulation time of a rabbit, the temporal resolution was sufficient to visually resolve various phases of the first pass of the contrast bolus. Perfusion imaging required substantial spatial smoothing but allowed a qualitative discrimination of different types of parenchyma in brain and liver. If a true quantitative analysis is possible, requires further studies.

  3. Accuracy of CT cerebral perfusion in predicting infarct in the emergency department: lesion characterization on CT perfusion based on commercially available software.

    PubMed

    Ho, Chang Y; Hussain, Sajjad; Alam, Tariq; Ahmad, Iftikhar; Wu, Isaac C; O'Neill, Darren P

    2013-06-01

    This study aims to assess the diagnostic accuracy of a single vendor commercially available CT perfusion (CTP) software in predicting stroke. A retrospective analysis on patients presenting with stroke-like symptoms within 6 h with CTP and diffusion-weighted imaging (DWI) was performed. Lesion maps, which overlays areas of computer-detected abnormally elevated mean transit time (MTT) and decreased cerebral blood volume (CBV), were assessed from a commercially available software package and compared to qualitative interpretation of color maps. Using DWI as the gold standard, parameters of diagnostic accuracy were calculated. Point biserial correlation was performed to assess for relationship of lesion size to a true positive result. Sixty-five patients (41 females and 24 males, age range 22-92 years, mean 57) were included in the study. Twenty-two (34 %) had infarcts on DWI. Sensitivity (83 vs. 70 %), specificity (21 vs. 69 %), negative predictive value (77 vs. 84 %), and positive predictive value (29 vs. 50 %) for lesion maps were contrasted to qualitative interpretation of perfusion color maps, respectively. By using the lesion maps to exclude lesions detected qualitatively on color maps, specificity improved (80 %). Point biserial correlation for computer-generated lesions (R pb = 0.46, p < 0.0001) and lesions detected qualitatively (R pb = 0.32, p = 0.0016) demonstrated positive correlation between size and infarction. Seventy-three percent (p = 0.018) of lesions which demonstrated an increasing size from CBV, cerebral blood flow, to MTT/time to peak were true positive. Used in isolation, computer-generated lesion maps in CTP provide limited diagnostic utility in predicting infarct, due to their inherently low specificity. However, when used in conjunction with qualitative perfusion color map assessment, the lesion maps can help improve specificity.

  4. Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging.

    PubMed

    Boutelier, Timothé; Kudo, Koshuke; Pautot, Fabrice; Sasaki, Makoto

    2012-07-01

    A delay-insensitive probabilistic method for estimating hemodynamic parameters, delays, theoretical residue functions, and concentration time curves by computed tomography (CT) and magnetic resonance (MR) perfusion weighted imaging is presented. Only a mild stationarity hypothesis is made beyond the standard perfusion model. New microvascular parameters with simple hemodynamic interpretation are naturally introduced. Simulations on standard digital phantoms show that the method outperforms the oscillating singular value decomposition (oSVD) method in terms of goodness-of-fit, linearity, statistical and systematic errors on all parameters, especially at low signal-to-noise ratios (SNRs). Delay is always estimated sharply with user-supplied resolution and is purely arterial, by contrast to oSVD time-to-maximum TMAX that is very noisy and biased by mean transit time (MTT), blood volume, and SNR. Residue functions and signals estimates do not suffer overfitting anymore. One CT acute stroke case confirms simulation results and highlights the ability of the method to reliably estimate MTT when SNR is low. Delays look promising for delineating the arterial occlusion territory and collateral circulation. PMID:22410325

  5. Motion compensation of ultrasonic perfusion images

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Nylund, Kim; Gilja, Odd H.; Tönnies, Klaus D.

    2012-03-01

    Contrast-enhanced ultrasound (CEUS) is a rapid and inexpensive medical imaging technique to assess tissue perfusion with a high temporal resolution. It is composed of a sequence with ultrasound brightness values and a contrast sequence acquired simultaneously. However, the image acquisition is disturbed by various motion influences. Registration is needed to obtain reliable information of spatial correspondence and to analyze perfusion characteristics over time. We present an approach to register an ultrasonography sequence by using a feature label map. This label map is generated from the b-mode data sequence by a Markov-Random-Field (MRF) based analysis, where each location is assigned to one of the user-defined regions according to its statistical parameters. The MRF reduces the chance that outliers are represented in the label map and provides stable feature labels over the time frames. A registration consisting of rigid and non-rigid transformations is determined consecutively using the generated label map of the respective frames for similarity calculation. For evaluation, the standard deviation within specific regions in intestinal CEUS images has been measured before and after registration resulting in an average decrease of 8.6 %. Additionally, this technique has proven to be more robust against noise influence compared to similarity calculation based on image intensities only. The latter leads only to 7.6 % decrease of the standard deviation.

  6. Noise filtering in thin-slice 4D cerebral CT perfusion scans

    NASA Astrophysics Data System (ADS)

    Mendrik, Adri"nne; Vonken, Evert-jan; Dankbaar, Jan-Willem; Prokop, Mathias; van Ginneken, Bram

    2010-03-01

    Patients suffering from cerebral ischemia or subarachnoid hemorrhage, undergo a 4D (3D+time) CT Perfusion (CTP) scan to assess the cerebral perfusion and a CT Angiography (CTA) scan to assess the vasculature. The aim of our research is to extract the vascular information from the CTP scan. This requires thin-slice CTP scans that suffer from a substantial amount of noise. Therefore noise reduction is an important prerequisite for further analysis. So far, the few noise filtering methods for 4D datasets proposed in literature deal with the temporal dimension as a 4th dimension similar to the 3 spatial dimensions, mixing temporal and spatial intensity information. We propose a bilateral noise reduction method based on time-intensity profile similarity (TIPS), which reduces noise while preserving temporal intensity information. TIPS was compared to 4D bilateral filtering on 10 patient CTP scans and, even though TIPS bilateral filtering is much faster, it results in better vessel visibility and higher image quality ranking (observer study) than 4D bilateral filtering.

  7. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  8. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  9. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve.

    PubMed

    Koo, Hyun Jung; Yang, Dong Hyun; Kim, Young-Hak; Kang, Joon-Won; Kang, Soo-Jin; Kweon, Jihoon; Kim, Hyun Jung; Lim, Tae-Hwan

    2016-06-01

    The detection of hemodynamically significant stenosis is important because ischemia-guided revascularization improves overall patient outcomes. Fractional flow reserve (FFR), which is measured during invasive coronary angiography, is regarded as the gold standard for determining hemodynamically significant coronary stenosis. Although coronary computed tomography angiography (CCTA) has been widely used to exclude significant coronary artery disease in patients with low to intermediate pretest probability, anatomic assessment by CCTA using diameter stenosis ≥50 % does not correlate well with the functional assessment of FFR. To overcome the weaknesses of conventional CCTA, such as its low specificity and positive predictive value, especially in patients with a small-diameter artery, poor image quality, or high calcium score, more sophisticated CCTA analysis methods have been developed to detect hemodynamically significant coronary stenosis. Studies that use the quantification of coronary plaque, transluminal attenuation gradient (TAG), CT myocardial perfusion (CTP), and CT-derived FFR have been conducted to validate their diagnostic performances, though each method has its pros and cons. This review provides details on the quantification of coronary plaque, TAG, CTP, and CT-derived FFR, including a definition of each, how to gather and interpret data, and the strengths and limitations of each. Further, we provide an overview of recent clinical studies.

  10. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    SciTech Connect

    Lin, Yuan Samei, Ehsan

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  11. Automatic detection of CT perfusion datasets unsuitable for analysis due to head movement of acute ischemic stroke patients.

    PubMed

    Fahmi, Fahmi; Marquering, Henk A; Streekstra, Geert J; Beenen, Ludo F M; Janssen, Natasja N Y; Majoie, Charles B L; van Bavel, Ed

    2014-01-01

    Head movement during brain Computed Tomography Perfusion (CTP) can deteriorate perfusion analysis quality in acute ischemic stroke patients. We developed a method for automatic detection of CTP datasets with excessive head movement, based on 3D image-registration of CTP, with non-contrast CT providing transformation parameters. For parameter values exceeding predefined thresholds, the dataset was classified as 'severely moved'. Threshold values were determined by digital CTP phantom experiments. The automated selection was compared to manual screening by 2 experienced radiologists for 114 brain CTP datasets. Based on receiver operator characteristics, optimal thresholds were found of respectively 1.0°, 2.8° and 6.9° for pitch, roll and yaw, and 2.8 mm for z-axis translation. The proposed method had a sensitivity of 91.4% and a specificity of 82.3%. This method allows accurate automated detection of brain CTP datasets that are unsuitable for perfusion analysis. PMID:24691387

  12. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke

    PubMed Central

    Geuskens, Ralph R. E. G.; Borst, Jordi; Lucas, Marit; Boers, A. M. Merel; Berkhemer, Olvert A.; Roos, Yvo B. W. E. M.; van Walderveen, Marianne A. A.; Jenniskens, Sjoerd F. M.; van Zwam, Wim H.; Dippel, Diederik W. J.; Majoie, Charles B. L. M.; Marquering, Henk A.

    2015-01-01

    Background CT perfusion (CTP) is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follow-up. Materials and Methods This study included 35 patients with >100 mm brain coverage CTP. CTP processing was performed using Philips software (IntelliSpace 7.0). Final infarct was automatically segmented on follow-up noncontrast CT and used as reference. CTP and follow-up noncontrast CT image data were registered. This allowed classification of ischemic lesion agreement (core on CTP: rMTT≥145%, aCBV<2.0 ml/100g and infarct on follow-up noncontrast CT) and misclassified ischemic core (core on CTP, not identified on follow-up noncontrast CT) regions. False discovery ratio (FDR), defined as misclassified ischemic core volume divided by total CTP ischemic core volume, was calculated. Absolute and relative CTP parameters (CBV, CBF, and MTT) were calculated for both misclassified CTP ischemic core and ischemic lesion agreement regions and compared using paired rank-sum tests. Results Median total CTP ischemic core volume was 49.7ml (IQR:29.9ml-132ml); median misclassified ischemic core volume was 30.4ml (IQR:20.9ml-77.0ml). Median FDR between patients was 62% (IQR:49%-80%). Median relative mean transit time was 243% (IQR:198%-289%) and 342% (IQR:249%-432%) for misclassified and ischemic lesion agreement regions, respectively. Median absolute cerebral blood volume was 1.59 (IQR:1.43–1.79) ml/100g (P<0.01) and 1.38 (IQR:1.15–1.49) ml/100g (P<0.01) for misclassified ischemic core and ischemic lesion agreement, respectively. All CTP parameter values differed significantly. Conclusion For all patients a considerable region of the CTP ischemic core

  13. Magnetic Resonance Perfusion Imaging in the Study of Language

    ERIC Educational Resources Information Center

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  14. Arterial Wall Perfusion Measured with Photon Counting Spectral X-ray CT

    PubMed Central

    Jorgensen, Steven M.; Korinek, Mark J.; Vercnocke, Andrew J.; Anderson, Jill L.; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25–120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 × 0.16 × 1 mm3. Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries. PMID:27807391

  15. Imaging and PET-PET/CT imaging.

    PubMed

    Von Schulthess, Gustav K; Hany, Thomas F

    2008-03-01

    PET-CT has grown because the lack of anatomic landmarks in PET makes "hardware-fusion" to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. For this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several well-designed studies have demonstrated the benefits of PET-CT.

  16. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  17. Cerebral CT angiography and CT perfusion in acute stroke detection: a systematic review of diagnostic value

    PubMed Central

    Subramaniam, Cantiriga; Sun, Zhonghua

    2014-01-01

    The purpose of this study was to analyse the diagnostic value of cerebral CT angiography (CTA) and CT perfusion (CTP) examinations in the detection of acute stroke based on a systematic review of the current literature. The review was conducted based on searching of seven databases for articles published between 1993 and 2013. Diagnostic value in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy was analysed from 21 articles which were found to meet selection criteria. The mean sensitivity, specificity, PPV, NPV and accuracy for CTA were significantly higher than those for CTP with 83.2% (95% CI: 57.9-100.0%), 95.0% (95% CI: 74.4-100%), 84.1% (95% CI: 50.0-100%), 97.1 (95% CI: 94.0-100%) and 94.0% (95% CI: 83.0-99.0) versus 69.9% (95% CI: 20.0-97.0%), 87.4 (95% CI: 61.0-100.0%), 76.4% (95% CI: 48.0-95.4%), 78.2% (95% CI: 55.8-93.9%) and 89.8% (95% CI: 75.7-97.1%), respectively. This analysis shows that CTA has high diagnostic value in detecting high degree of cerebral arterial stenosis (>70%) whereas CTP provides high specificity in the detection of ischemia and infarct tissue of brain. PMID:25202664

  18. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  19. Mesenteric and splenic contributions to portal venous CT perfusion in hepatic diffuse disease

    PubMed Central

    Sun, Hongzan; Lu, Zaiming; Liang, Hongyuan; Xin, Jun; Gao, Yuying; Guo, Qiyong

    2014-01-01

    Aim: To investigate the changes and contributions of superior mesenteric venous perfusion (SMVP) and splenic venous perfusion (SpVP) to portal venous CT perfusion in canine model of hepatic diffuse disease. Materials and methods: By selective catheterization in superior mesenteric and splenic arteries respectively after CT perfusion scanning, SMVP and SpVP became available. Sixteen dogs were adopted and induced by carbon tetrachloride after data under normal conditions were collected. After 3, 6, 9 and 12 months from carbon tetrachloride intervention, liver biopsies by puncture or operation were performed after CT perfusion scanning. SMVP and SpVP under different pathologic conditions were compared and analyzed. Results: Three stages of hepatic diffuse lesions were defined according to pathologic changes, namely hepatitis, hepatic fibrosis, and cirrhosis. The number of dogs which survived from each stage was: 16 from normal, 12 from hepatitis, 10 from hepatic fibrosis and 4 from cirrhosis. During this progressive period, SpVP ml/(min·100 ml) declined slightly, but there were no significant differences between different stages (P > 0.05). SMVP ml/(min·100 ml) in stage of normal (64.1 ± 8.1) and hepatic fibrosis (44.4 ± 4.5), normal and cirrhosis (42.6 ± 5.4), hepatitis (61.3 ± 6.4) and hepatic fibrosis, hepatitis and cirrhosis was significantly different, but there was no significant difference of SMVP between normal and hepatitis (P = 0.326) or hepatic fibrosis and cirrhosis (P = 0.668). Conclusions: With our evidence of interventional CT perfusion, it is mesenteric, not splenic, perfusion that might coincide with hepatic portal venous perfusion during the progressive period of hepatic diffuse disease. PMID:25550855

  20. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  1. Robust Low-dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization

    PubMed Central

    Zhang, Shaoting; Chen, Tsuhan; Sanelli, Pina C.

    2016-01-01

    Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions. PMID:25706579

  2. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification.

    PubMed

    deKemp, Robert A; Renaud, Jennifer M; Klein, Ran; Beanlands, Rob S B

    2016-02-01

    Myocardial perfusion imaging is performed most commonly using Tc-99m-sestamibi or tetrofosmin SPECT as well as Rb-82-rubidium or N-13-ammonia PET. Diseased-to-normal tissue contrast is determined by the tracer retention fraction, which decreases nonlinearly with flow. Reduced tissue perfusion results in reduced tracer retention, but the severity of perfusion defects is typically underestimated by 20% to 40%. Compared to SPECT, retention of the PET tracers is more linearly related to flow, and therefore, the perfusion defects are measured more accurately using N-13-ammonia or Rb-82. PMID:26590778

  3. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT.

    PubMed

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R; La Riviere, Patrick J; Alessio, Adam M

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)(-1), cardiac output = 3, 5, 8 L min(-1)). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This

  4. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that

  5. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  6. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics

    PubMed Central

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-01-01

    Abstract Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis. Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared. For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50). We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  7. Effect of vasodilators on pulmonary perfusion defects in asthma using sequential Kr-81m perfusion imaging

    SciTech Connect

    Ertle, A.R.; Tashkin, D.P.; Webber, M.M.; Soffer, M.J.; Frank, G.W.

    1984-01-01

    The investigation was undertaken to determine if vasodilator agents may enhance the diagnostic utility of perfusion lung imaging (Q) by normalizing regional perfusion abnormalities in bronchospastic patients. The effect of oxygen (02), nitroglycerine (NTG), hydralazine (H), and nifedipine (N) on regional lung perfusion defects was studied in 6 mild to severe asthmatics (ages defects was studied in 6 mild to severe asthmatics (ages 31-72yrs) using sequential Kr-81m imaging which permits repetitive imaging due to very low radiation dose and 13 sec T-1/2. Each patient was studied once weekly for 3 wks. Baseline Q scans were obtained using 10mCi of I.V. Kr-81m. the best view showing perfusion defects was used for subsequent images. At each visits, 30% 02 by ventimask was given for 20 min followed by a repeat Q scan. Subsequently, on separate visits, subjects were given either 1 dose of sublingual (sl)N 20 mg or 2 doses (1 hr between) of s1 NTG 1/150gr or po H 25mg according to a random-order crossover design. Q scans were obtained 2 min after NTG, 60 min after H, and 30 and 60 min after N. 30% 02 was given again for 20 min, and a final scan was obtained. Scan were reviewed by 2 observers and showed relatively fixed defects in 4 pts improvement in defects in 3 pts with NTG, 1 with N, 1 with H, and 2 with 02 alone. Additive effects of 02 and N or NTG were seen in 2 pts. These preliminary results suggest that vasodilators and 02 may improve regional perfusion in patients with bronchospastic disease and that this effect may be additive. These medications may thus improve the specificity of perfusion lung scanning in the diagnostic evaluation of pulmonary embolism.

  8. Parallel imaging for first-pass myocardial perfusion.

    PubMed

    Irwan, Roy; Lubbers, Daniël D; van der Vleuten, Pieter A; Kappert, Peter; Götte, Marco J W; Sijens, Paul E

    2007-06-01

    Two parallel imaging methods used for first-pass myocardial perfusion imaging were compared in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image artifacts. One used adaptive Time-adaptive SENSitivity Encoding (TSENSE) and the other used GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA), which are both applied to a gradient-echo sequence. Both methods were tested on 12 patients with coronary artery disease. The order of perfusion sequences was inverted in every other patient. Image acquisition was started during the administration of a contrast bolus followed by a 20-ml saline flush (3 ml/s), and the next perfusion was started at least 15 min thereafter using an identical bolus. An acceleration rate of 2 was used in both methods, and acquisition was performed during breath-holding. Significantly higher SNR, CNR and image quality were obtained with GRAPPA images than with TSENSE images. GRAPPA, however, did not yield a higher CNR when applied after the second bolus. GRAPPA perfusion imaging produced larger differences between subjects than did TSENSE. Compared to TSENSE, GRAPPA produced significantly better CNR on the first bolus. More consistent SNR and CNR were obtained from TSENSE images than from GRAPPA images, indicating that the diagnostic value of TSENSE may be better.

  9. Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT

    PubMed Central

    Miller, Wayne L.; Behrenbeck, Thomas R.; McCollough, Cynthia H.; Williamson, Eric E.; Leng, Shuai; Kline, Timothy L.

    2015-01-01

    Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female)with left ventricular ejection fraction ≤40 %and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5 mm and those with thickness≥11.5 mm. In themyocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5 mm. PMID:25712168

  10. Myocardial perfusion imaging during chest pain: a useful clinical tool.

    PubMed

    Shehata, A R; LaSala, A F; Heller, G V

    1996-04-01

    A 72-year old man was injected with Tc 99m tetrofosmin during acute chest pain, in the presence of a nondiagnostic electrocardiogram (ECG). Myocardial perfusion imaging revealed a large anteroseptal defect. Subsequent catheterization confirmed left anterior descending artery disease. Acute imaging may be useful in the identification of critical disease in patients with chest pain and nondiagnostic ECG.

  11. Multimodal CT techniques for cerebrovascular and hemodynamic evaluation of ischemic stroke: occlusion, collaterals, and perfusion.

    PubMed

    Jia, Baixue; Scalzo, Fabien; Agbayani, Elijah; Woolf, Graham W; Liu, Liping; Miao, Zhongrong; Liebeskind, David S

    2016-05-01

    Neuroimaging of cerebrovascular status and hemodynamics has vastly improved our understanding of stroke mechanisms and provided information for therapeutic decision-making. CT techniques are the most commonly used techniques due to wide availability, rapid acquisition and acceptable tolerance. Numerous multimodal CT techniques have been developed in the last few years. We summarize and explain the various multimodal CT acquisition techniques within three categories based on the scanning mode, namely static mode (single-phase CTA), multiple static mode (multi-phase CTA) and continuous mode (CT perfusion and dynamic CTA). Post-processing methods based on different acquisition modes are also introduced in an easy manner by focusing on the information extracted and products generated. We also describe the applications for these techniques along with their advantages and disadvantages. PMID:26967556

  12. Imaging of drug effects in perfused liver

    NASA Astrophysics Data System (ADS)

    Dammann, Marc; Mahlke, Christine; Kessler, Manfred D.

    2002-06-01

    Various medications affect the systemic circulation and organ oxygenation causing dilatation or constriction of blood vessels. Imminent liver failure can be generated by reduced perfusion of different origins. In this case hepatic vasodilatation would be a therapeutical approach for improving patient's condition. Our examinations have been performed in perfused rat liver using spectrometric methods. Two defined areas of the liver were measured punctually. We compared the influence of Tetramethylpyrazine and Glyceroltrinitrate on hemoglobin oxygenation (HbO2) and concentration (Hb-conc.) in rat liver after application of Norepinephrine, which caused a mid decrease in hemoglobin oxygenation of 47,9 %. Both increased the HbO2, but differed from each other in manner of time and extent. Tetramethylpyrazine indicated a longer effect than Glyceroltrinitrate. Furthermore, HbO2 and Hb-conc. showed a conversed relation. From the shape of the absorption spectra it is possible to derive the oxygenation of hemoglobin.

  13. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  14. Gated technetium-99m methoxy-isobutylisonitrile perfusion imaging.

    PubMed

    Avery, P G; Hudson, N M; Hubner, P J

    1992-05-01

    Technetium-99m methoxy-isobutylisonitrile, has been shown to be a useful perfusion agent for detecting coronary artery disease. Gated acquisition of perfusion images may remove motion artefact and improve detection. We compared the results of sensitivity and specificity for detecting coronary artery disease using perfusion images from the whole cardiac cycle (ungated) or from end-diastolic (gated) frames in 46 subjects, 31 with significant coronary disease and 15 with normal coronary arteries. There was no significant difference in detection of patients with coronary disease between the ungated and end-diastolic images: 25/31 with the ungated image and 28/31 with the end-diastolic. An improvement was made in detecting defects in the left anterior descending artery territory: 17/20 with the end-diastolic vs 11/20 with the ungated image (P less than 0.05) and in the right coronary artery region: 16/21 vs 10/21 (P less than 0.05), with an overall improvement in detecting regions supplied by stenosed coronary arteries: 45/55 end-diastolic vs 31/55 ungated (P less than 0.01). These results suggest use of the end-diastolic frame can significantly enhance the diagnostic capacity of methoxy-isobutylisonitrile perfusion imaging.

  15. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    NASA Astrophysics Data System (ADS)

    Mendrik, Adriënne M.; Vonken, Evert-jan; van Ginneken, Bram; de Jong, Hugo W.; Riordan, Alan; van Seeters, Tom; Smit, Ewoud J.; Viergever, Max A.; Prokop, Mathias

    2011-07-01

    Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise. To detect areas of abnormal perfusion, perfusion parameters are derived from the CTP data, such as the cerebral blood flow (CBF). Algorithms to determine perfusion parameters, especially singular value decomposition, are very sensitive to noise. Therefore, noise reduction is an important preprocessing step for CTP analysis. In this paper, we propose a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in 4D CTP scans, while preserving the time-intensity profiles (fourth dimension) that are essential for determining the perfusion parameters. The proposed TIPS bilateral filter is compared to standard Gaussian filtering, and 4D and 3D (applied separately to each sequential scan) bilateral filtering on both phantom and patient data. Results on the phantom data show that the TIPS bilateral filter is best able to approach the ground truth (noise-free phantom), compared to the other filtering methods (lowest root mean square error). An observer study is performed using CBF maps derived from fifteen CTP scans of acute stroke patients filtered with standard Gaussian, 3D, 4D and TIPS bilateral filtering. These CBF maps were blindly presented to two observers that indicated which map they preferred for (1) gray/white matter differentiation, (2) detectability of infarcted area and (3) overall image quality. Based on these results, the TIPS bilateral filter ranked best and its CBF maps were scored to have the best overall image quality in 100% of the cases by both observers. Furthermore, quantitative CBF and cerebral blood volume values in both the phantom and the

  16. Arterial Input Function Placement for Accurate CT Perfusion Map Construction in Acute Stroke

    PubMed Central

    Ferreira, Rafael M.; Lev, Michael H.; Goldmakher, Gregory V.; Kamalian, Shahmir; Schaefer, Pamela W.; Furie, Karen L.; Gonzalez, R. Gilberto; Sanelli, Pina C.

    2013-01-01

    OBJECTIVE The objective of our study was to evaluate the effect of varying arterial input function (AIF) placement on the qualitative and quantitative CT perfusion parameters. MATERIALS AND METHODS Retrospective analysis of CT perfusion data was performed on 14 acute stroke patients with a proximal middle cerebral artery (MCA) clot. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were constructed using a systematic method by varying only the AIF placement in four positions relative to the MCA clot including proximal and distal to the clot in the ipsilateral and contralateral hemispheres. Two postprocessing software programs were used to evaluate the effect of AIF placement on perfusion parameters using a delay-insensitive deconvolution method compared with a standard deconvolution method. RESULTS One hundred sixty-eight CT perfusion maps were constructed for each software package. Both software programs generated a mean CBF at the infarct core of < 12 mL/100 g/min and a mean CBV of < 2 mL/100 g for AIF placement proximal to the clot in the ipsilateral hemisphere and proximal and distal to the clot in the contralateral hemisphere. For AIF placement distal to the clot in the ipsilateral hemisphere, the mean CBF significantly increased to 17.3 mL/100 g/min with delay-insensitive software and to 19.4 mL/100 g/min with standard software (p < 0.05). The mean MTT was significantly decreased for this AIF position. Furthermore, this AIF position yielded qualitatively different parametric maps, being most pronounced with MTT and CBF. Overall, CBV was least affected by AIF location. CONCLUSION For postprocessing of accurate quantitative CT perfusion maps, laterality of the AIF location is less important than avoiding AIF placement distal to the clot as detected on CT angiography. This pitfall is less severe with deconvolution-based software programs using a delay-insensitive technique than with those using a standard deconvolution

  17. Clinical Decision Making With Myocardial Perfusion Imaging in Patients With Known or Suspected Coronary Artery Disease

    PubMed Central

    Cremer, Paul; Hachamovitch, Rory; Tamarappoo, Balaji

    2015-01-01

    Myocardial perfusion imaging (MPI) to diagnose coronary artery disease (CAD) is best performed in patients with intermediate pretest likelihood of disease; unfortunately, pretest likelihood is often overestimated, resulting in the inappropriate use of perfusion imaging. A good functional capacity often predicts low risk, and MPI for diagnosing CAD should be reserved for individuals with poor exercise capacity, abnormal resting electrocardiography, or an intermediate or high probability of CAD. With respect to anatomy-based testing, coronary CT angiography has a good negative predictive value, but stenosis severity correlates poorly with ischemia. Therefore decision making with respect to revascularization may be limited when a purely noninvasive anatomical test is used. Regarding perfusion imaging, the diagnostic accuracies of SPECT, PET, and cardiac magnetic resonance are similar, though fewer studies are available with cardiac magnetic resonance. PET coronary flow reserve may offer a negative predictive value sufficiently high to exclude severe CAD such that patients with mild to moderate reversible perfusion defects can forego invasive angiography. In addition, combined anatomical and perfusion-based imaging may eventually offer a definitive evaluation for diagnosing CAD, even in higher risk patients. Any remarkable findings on single-photon emission computed tomography and PET MPI studies are valuable for prognostication. Furthermore, assessment of myocardial blood flow with PET is particularly powerful for prognostication as it reflects the end result of many processes that lead to atherosclerosis. Decision making with respect to revascularization is limited for cardiac MRI and PET MPI. In contrast, retrospective radionuclide studies have identified an ischemic threshold, but randomized trials are needed. In patients with at least moderately reduced left ventricular systolic function, viable myocardium as assessed by PET or MRI, appears to identify patients

  18. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  19. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study

    PubMed Central

    HONDA, Mitsuru; ICHIBAYASHI, Ryo; YOKOMURO, Hiroki; YOSHIHARA, Katsunori; MASUDA, Hiroyuki; HAGA, Daisuke; SEIKI, Yoshikatsu; KUDOH, Chiaki; KISHI, Taichi

    2016-01-01

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  20. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study.

    PubMed

    Honda, Mitsuru; Ichibayashi, Ryo; Yokomuro, Hiroki; Yoshihara, Katsunori; Masuda, Hiroyuki; Haga, Daisuke; Seiki, Yoshikatsu; Kudoh, Chiaki; Kishi, Taichi

    2016-08-15

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1-3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3-4, GCS5-6, and GCS7-8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  1. Dynamic chest image analysis: model-based pulmonary perfusion analysis with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Haapanen, Arto; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1998-07-01

    The aim of the study 'Dynamic Chest Image Analysis' is to develop computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles in a short period of time. We have proposed a framework for ventilation study with an explicit ventilation model based on pyramid images. In this paper, we extend the framework to pulmonary perfusion study. A perfusion model and the truncated pyramid are introduced. The perfusion model aims at extracting accurate, geographic perfusion parameters, and the truncated pyramid helps in understanding perfusion at multiple resolutions and speeding up the convergence process in optimization. Three cases are included to illustrate the experimental results.

  2. A review on electrical impedance tomography for pulmonary perfusion imaging.

    PubMed

    Nguyen, D T; Jin, C; Thiagalingam, A; McEwan, A L

    2012-05-01

    Although electrical impedance tomography (EIT) for ventilation monitoring is on the verge of clinical trials, pulmonary perfusion imaging with EIT remains a challenge, especially in spontaneously breathing subjects. In anticipation of more research on this subject, we believe a thorough review is called for. In this paper, findings related to the physiological origins and electrical characteristics of this signal are summarized, highlighting properties that are particularly relevant to EIT. The perfusion impedance change signal is significantly smaller in amplitude compared with the changes due to ventilation. Therefore, the hardware used for this purpose must be more sensitive and more resilient to noise. In previous works, some signal- or image-processing methods have been required to separate these two signals. Three different techniques are reviewed in this paper, including the ECG-gating method, frequency-domain-filtering-based methods and a principal-component-analysis-based method. In addition, we review a number of experimental studies on both human and animal subjects that employed EIT for perfusion imaging, with promising results in the diagnosis of pulmonary embolism (PE) and pulmonary arterial hypertension as well as other potential applications. In our opinion, PE is most likely to become the main focus for perfusion EIT in the future, especially for heavily instrumented patients in the intensive care unit (ICU).

  3. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  4. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  5. Effectiveness of CT Computed Tomography Perfusion in Diagnostics of Acute Ischemic Stroke

    PubMed Central

    Menzilcioglu, Mehmet Sait; Mete, Ahmet; Ünverdi, Zeyni

    2015-01-01

    Summary Background Stroke is the third most common death reason after the cardiovascular disorders and cancer. Cerebral ischemia is a pathology that stems from a decrease in cerebral perfusion. Computed Tomography Perfusion (CTP) is an additional method to the conventional Computed Tomography (CT) that could be performed by using developed softwares, in a short period of time and with a low risk of complications. CTP not only allows early detection of cerebral ischemia but also gives valuable information on the ischemic penumbra which are very important in early diagnosis and treatment. Acute Ischemic Stroke (AIS) can be cured by trombolytic treapy within 3–6 hours after symptom onset. Since rapid screening and accurate diagnosis increase the success of the treatment, the role of neuroradiology in acute ischemia diagnostics and treatment has become more important. Our aim was to define CT skills in early diagnosis of AIS, to define its contribution to patient’s diagnosis and treatment and to define its importance regarding patient’s prognosis. Material/Methods We included 42 patients that presented to the emergency service and neurology outpatient clinic with the symptoms of acute cerebral incidence. Results In our study, we found that Cerebral Blood Flow (CBF) is 90.91% sensitive and 100% specific in examining ischemia. Conclusions Tissue hemodynamic data, especially sensitivity and specificity rates, which cannot be acquired by conventional CT and MRI methods, can be acquired by the CTP method. PMID:26740827

  6. Clinical evaluation of the computed tomography attenuation correction map for myocardial perfusion imaging: the potential for incidental pathology detection.

    PubMed

    Tootell, Andrew; Vinjamuri, Sobhan; Elias, Mark; Hogg, Peter

    2012-11-01

    The benefits of hybrid imaging in nuclear medicine have been proven to increase the diagnostic accuracy and sensitivity of many procedures by localizing or characterizing lesions or by correcting emission data to more accurately represent radiopharmaceutical distribution. Single-photon emission computed tomography/computed tomography (SPECT/CT) has a significant role in the diagnosis and follow-up of ischaemic heart disease with attenuation correction data being obtained on an integrated CT scanner. Initially, the CT component of hybrid SPECT/CT systems was what could be described as low specification utilizing fixed output parameters. As technology has progressed, the CT component of newer systems has specifications that are identical to that of stand-alone diagnostic systems. Irrespective of the type of scanner used, the computed tomography attenuation correction (CTAC) for myocardial perfusion imaging produces low-quality, limited-range CT images of the chest that include the mediastinum, lung fields and surrounding soft tissues. The diagnostic potential of this data set is unclear; yet, examples exist whereby significant pathology can be identified and investigated further. Despite guidance from a number of professional bodies suggesting that evaluation of the resulting images for every medical exposure be carried out, there is no indication as to whether this should include the evaluation of CTAC images. This review aims to initiate discussion by examining the ethical, legal, financial and practical issues (e.g. CT specification and image quality) surrounding the clinical evaluation of the CTAC for myocardial perfusion imaging images. Reference to discussions that have taken place, and continue to take place, in other modalities, current European and UK legislations, and guidelines and research in the field will be made.

  7. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  8. Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies.

    PubMed

    Gardener, Alexander G; Francis, Susan T

    2010-06-01

    Flow-sensitive alternating inversion recovery arterial spin labeling with parallel imaging acquisition is used to acquire single-shot, multislice perfusion maps of the kidney. A considerable problem for arterial spin labeling methods, which are based on sequential subtraction, is the movement of the kidneys due to respiratory motion between acquisitions. The effects of breathing strategy (free, respiratory-triggered and breath hold) are studied and the use of background suppression is investigated. The application of movement correction by image registration is assessed and perfusion rates are measured. Postacquisition image realignment is shown to improve visual quality and subsequent perfusion quantification. Using such correction, data can be collected from free breathing alone, without the need for a good respiratory trace and in the shortest overall acquisition time, advantageous for patient comfort. The addition of background suppression to arterial spin labeling data is shown to reduce the perfusion signal-to-noise ratio and underestimate perfusion.

  9. CT & CBCT imaging: assessment of the orbits.

    PubMed

    Hatcher, David C

    2012-11-01

    The orbits can be visualized easily on routine or customized protocols for computed tomography (CT) or cone beam CT (CBCT) scans. Detailed orbital investigations are best performed with 3-dimensional imaging methods. CT scans are preferred for visualizing the osseous orbital anatomy and fissures while magnetic resonance imaging is preferred for evaluating tumors and inflammation. CBCT provides high-resolution anatomic data of the sinonasal spaces, airway, soft tissue surfaces, and bones but does not provide much detail within the soft tissues. This article discusses CBCT imaging of the orbits, osseous anatomy of the orbits, and CBCT investigation of selected orbital pathosis.

  10. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  11. Hepatic perfusion in a tumor model using DCE-CT: an accuracy and precision study

    NASA Astrophysics Data System (ADS)

    Stewart, Errol E.; Chen, Xiaogang; Hadway, Jennifer; Lee, Ting-Yim

    2008-08-01

    In the current study we investigate the accuracy and precision of hepatic perfusion measurements based on the Johnson and Wilson model with the adiabatic approximation. VX2 carcinoma cells were implanted into the livers of New Zealand white rabbits. Simultaneous dynamic contrast-enhanced computed tomography (DCE-CT) and radiolabeled microsphere studies were performed under steady-state normo-, hyper- and hypo-capnia. The hepatic arterial blood flows (HABF) obtained using both techniques were compared with ANOVA. The precision was assessed by the coefficient of variation (CV). Under normo-capnia the microsphere HABF were 51.9 ± 4.2, 40.7 ± 4.9 and 99.7 ± 6.0 ml min-1 (100 g)-1 while DCE-CT HABF were 50.0 ± 5.7, 37.1 ± 4.5 and 99.8 ± 6.8 ml min-1 (100 g)-1 in normal tissue, tumor core and rim, respectively. There were no significant differences between HABF measurements obtained with both techniques (P > 0.05). Furthermore, a strong correlation was observed between HABF values from both techniques: slope of 0.92 ± 0.05, intercept of 4.62 ± 2.69 ml min-1 (100 g)-1 and R2 = 0.81 ± 0.05 (P < 0.05). The Bland-Altman plot comparing DCE-CT and microsphere HABF measurements gives a mean difference of -0.13 ml min-1 (100 g)-1, which is not significantly different from zero. DCE-CT HABF is precise, with CV of 5.7, 24.9 and 1.4% in the normal tissue, tumor core and rim, respectively. Non-invasive measurement of HABF with DCE-CT is accurate and precise. DCE-CT can be an important extension of CT to assess hepatic function besides morphology in liver diseases.

  12. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  13. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  14. Data Compression Techniques For CT Image Archival

    NASA Astrophysics Data System (ADS)

    Quinn, John F.; Rhodes, Michael L.; Rosner, Bruce

    1983-05-01

    Large digital files are inherent to CT image data. CT installations that routinely archive patient data are penalized computer time, technologist time, tape purchase, and file space. This paper introduces compression techniques that reduce the amount of tape needed to store image data and the amount of computer time to do so. The benefits delivered by this technique have also been applied to online disk systems. Typical reductions of 40% to 50% of original file space is reported.

  15. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    PubMed

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  16. Perfusion Imaging with a Freely Diffusible Hyperpolarized Contrast Agent

    PubMed Central

    Grant, Aaron K.; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E.; Alsop, David C.

    2011-01-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized 13C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic 13C images acquired in rat brain with a balanced steady-state free precession (bSSFP) sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2–4s temporal resolution, 2mm slice thickness, and 700 micron in-plane resolution while retaining adequate signal-to-noise ratio. 13C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4T yield T1=46±4s and T2=0.55±0.03s. In the rat brain at 4.7T, analysis of the temporal dynamics of the bSSFP image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T2 of roughly 2–4s and a T1 of 43±24s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body. PMID:21432901

  17. Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging

    SciTech Connect

    Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.

    1989-01-01

    Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, with negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.

  18. Visualization of perfusion changes with laser speckle contrast imaging using the method of motion history image.

    PubMed

    Ansari, Mohammad Zaheer; Humeau-Heurtier, Anne; Offenhauser, Nikolas; Dreier, Jens P; Nirala, Anil Kumar

    2016-09-01

    Laser speckle contrast imaging (LSCI) is a real-time imaging modality reflecting microvascular perfusion. We report on the application of the motion history image (MHI) method on LSCI data obtained from the two hemispheres of a mouse. Through the generation of a single image, MHI stresses the microvascular perfusion changes. Our experimental results performed during a pinprick-triggered spreading depolarization demonstrate the effectiveness of MHI: MHI allows the visualization of perfusion changes without loss of resolution and definition. Moreover, MHI provides close results to the ones given by the generalized differences (GD) algorithm. However, MHI has the advantage of giving information on the temporal evolution of the perfusion variations, which GD does not. PMID:27321386

  19. Limited Reliability of CT perfusion acute infarct volume measurements compared to DWI in anterior circulation stroke

    PubMed Central

    Schaefer, Pamela W.; Souza, Leticia; Kamalian, Shervin; Hirsch, Joshua A.; Yoo, Albert J.; Kamalian, Shahmir; Gonzalez, R. Gilberto; Lev, Michael H.

    2015-01-01

    Background and Purpose DWI can reliably identify critically ischemic tissue (CIT) shortly after stroke onset. We tested if thresholded CT-CBF and CT-CBV maps are sufficiently accurate to substitute for DWI for estimating CIT volume. Methods Ischemic volumes of 55 patients with acute anterior circulation stroke were assessed on DWI by visual segmentation, and CT-CBF and CT-CBV with segmentation using 15% and 30% thresholds, respectively. The contrast-to-noise ratios (CNR) of ischemic regions on the DWI and CTP images were measured. Correlation and Bland-Altman analyses were used to assess reliability of CTP. Results Mean CNRs for DWI, CT-CBF and CT-CBV were 4.3, 0.9 and 0.4, respectively. CTP and DWI lesion volumes were highly correlated (R2=0.87 for CT-CBF; R2=0.83 for CT-CBV; p<0.001). Bland-Altman analyses revealed little systemic bias (−2.6 ml) but high measurement variability (95% CI ±56.7 ml) between mean CT-CBF and DWI lesion volumes, and systemic bias (−26 ml) and high measurement variability (95% CI ±64.0 ml) between mean CT-CBV and DWI lesion volumes. A simulated treatment study demonstrated that using CTP-CBF instead of DWI for detecting a statistically significant effect would require at least twice as many patients. Conclusions The poor CNRs of CT-CBV and CT-CBF compared to DWI result in large measurement error making it problematic to substitute CTP for DWI in selecting individual acute stroke patients for treatment. CTP could be used for treatment studies of patient groups, but the number of patients needed to identify a significant effect is much higher than if DWI is used. PMID:25550366

  20. A Multimodality Imaging Approach for Serial Assessment of Regional Changes in Lower Extremity Arteriogenesis and Tissue Perfusion in a Porcine Model of Peripheral Arterial Disease

    PubMed Central

    Stacy, Mitchel R.; Yu, Da Yu; Maxfield, Mark W.; Jaba, Irina M.; Jozwik, Bartosz P.; Zhuang, Zhen W.; Lin, Ben A.; Hawley, Christi L.; Caracciolo, Christopher M.; Pal, Prasanta; Tirziu, Daniela; Sampath, Smita; Sinusas, Albert J.

    2014-01-01

    Background A standard quantitative imaging approach to evaluate peripheral arterial disease (PAD) does not exist. Quantitative tools for evaluating arteriogenesis in vivo are not readily available and the feasibility of monitoring serial regional changes in lower extremity perfusion has not been examined. Methods and Results Serial changes in lower extremity arteriogenesis and muscle perfusion were evaluated following femoral artery occlusion in a porcine model using SPECT/CT imaging with post-mortem validation of in vivo findings using gamma counting, post-mortem imaging, and histological analysis. Hybrid thallium-201 (201Tl) SPECT/CT imaging was performed in pigs (n=8) at baseline, immediately post-occlusion, and at 1 and 4 weeks post-occlusion. CT imaging was used to identify muscle regions of interest in the ischemic (I) and non-ischemic (NI) hindlimbs for quantification of regional changes in CT defined arteriogenesis and quantification of 201Tl perfusion. Four weeks post-occlusion, post-mortem tissue 201Tl activity was measured by gamma counting and immunohistochemistry was performed to assess capillary density. Relative 201Tl retention (I/NI) was reduced immediately post-occlusion in distal and proximal muscles and remained lower in calf and gluteus muscles 4 weeks later. Analysis of CT angiography revealed collateralization at 4 weeks within proximal muscles (p<0.05). SPECT perfusion correlated with tissue gamma counting at 4 weeks (p=0.01). Increased capillary density was seen within the ischemic calf at 4 weeks (p=0.004). Conclusions 201Tl SPECT/CT imaging permits serial, regional quantification of arteriogenesis and resting tissue perfusion following limb ischemia. This approach may be effective for detection of disease and monitoring therapy in PAD. PMID:24170237

  1. Brain perfusion: computed tomography and magnetic resonance techniques.

    PubMed

    Copen, William A; Lev, Michael H; Rapalino, Otto

    2016-01-01

    Cerebral perfusion imaging provides assessment of regional microvascular hemodynamics in the living brain, enabling in vivo measurement of a variety of different hemodynamic parameters. Perfusion imaging techniques that are used in the clinical setting usually rely upon X-ray computed tomography (CT) or magnetic resonance imaging (MRI). This chapter reviews CT- and MRI-based perfusion imaging techniques, with attention to image acquisition, clinically relevant aspects of image postprocessing, and fundamental differences between CT- and MRI-based techniques. Correlations with cerebrovascular physiology and potential clinical applications of perfusion imaging are reviewed, focusing upon the two major classes of neurologic disease in which perfusion imaging is most often performed: primary perfusion disorders (including ischemic stroke, transient ischemic attack, and reperfusion syndrome), and brain tumors.

  2. Endoscopic ICG perfusion imaging for flap transplants: technical development

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Schachenmayr, Hilmar; Ehrhardt, André; Göbel, Werner; Zhorzel, Sven; Betz, Christian Stephan

    2010-02-01

    Objective: Following tumour surgery in the head and neck region, skin flap transplants are usually required to cover the resection area. The purpose of the development was to provide a simple and reliable means to assess whether the transplanted flap is sufficiently perfused. Methods: Fluorescence of intravenously injected Indocyanine green (ICG) was detected with a slightly modified 3-chip CCD camera. Appropriately coated optical filters allow for excitation of ICG with NIR light and detection of NIR ICGfluorescence with the blue channel of the camera. In addition, low intensities of white light can be transmitted to allow for simultaneous display of a remission image in the green and red channels of the camera. Further processing was performed with a LabVIEW program. Results: A satisfactory white light image (red, green and blue display (RGB)) could be calculated from the remission images recorded with the green and red channels of the camera via a look-up table. The look-up table was programmed to provide an optimized blue intensity value for each combination of red and green values. This was generated using a reference image. Implementation of image tracking and intensity measurements in regions of interest (ROIs) in the images is useful to reliably monitor perfusion kinetics of flap and adjacent normal tissue.

  3. Assessment of Renal Function in Patients with Unilateral Ureteral Obstruction Using Whole-Organ Perfusion Imaging with 320-Detector Row Computed Tomography

    PubMed Central

    Yu, Juan; Feng, You-Zhen; Xian, Zhao-Hui; Yang, Wen-Cai; Mo, Xu-Kai

    2015-01-01

    Background Obstructed nephropathy is a common complication of several disease processes. Accurate evaluation of the functional status of the obstructed kidney is important to achieve a good outcome. The purpose of this study was to investigate renal cortical and medullary perfusion changes associated with unilateral ureteral obstruction (UUO) using whole-organ perfusion imaging with 320-detector row computed tomography (CT). Methodology/Principle Findings Sixty-four patients with UUO underwent whole-organ CT perfusion imaging. Patients were divided into 3 groups, mild, moderate, and severe, based on hydronephrosis severity. Twenty sex- and age-matched patients without renal disease, who referred to abdominal CT, were chosen as control subjects. Mean cortical and medullary perfusion parameters of obstructed and contralateral kidneys were compared, and mean perfusion ratios between obstructed and contralateral kidneys were calculated and compared. Mean cortical or medullary blood flow (BF) and blood volume (BV) of the obstructed kidneys in the moderate UUO and BF, BV, and clearance (CL) in the severe UUO were significantly lower than those of the contralateral kidneys (p < 0.05). The mean cortical or medullary BF of the obstructed kidney in the moderate UUO, and BF, BV, and CL in the severe UUO were significantly lower than those of the kidneys in control subjects (p < 0.05). Mean cortical or medullary BF of the non-obstructed kidneys in the severe UUO were statistically greater than that of normal kidneys in control subjects (p < 0.05). An inverse correlation was observed between cortical and medullary perfusion ratios and grades of hydronephosis (p < 0.01). Conclusions/Significance Perfusion measurements of the whole kidney can be obtained with 320-detector row CT, and estimated perfusion ratios have potential for quantitatively evaluating UUO renal injury grades. PMID:25874690

  4. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  5. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT.

    PubMed

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  6. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-01

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  7. Automated prediction of tissue outcome after acute ischemic stroke in computed tomography perfusion images

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Bennink, Edwin; de Jong, Hugo; Velthuis, Birgitta K.; Viergever, Max A.; Dankbaar, Jan Willem

    2015-03-01

    Assessment of the extent of cerebral damage on admission in patients with acute ischemic stroke could play an important role in treatment decision making. Computed tomography perfusion (CTP) imaging can be used to determine the extent of damage. However, clinical application is hindered by differences among vendors and used methodology. As a result, threshold based methods and visual assessment of CTP images has not yet shown to be useful in treatment decision making and predicting clinical outcome. Preliminary results in MR studies have shown the benefit of using supervised classifiers for predicting tissue outcome, but this has not been demonstrated for CTP. We present a novel method for the automatic prediction of tissue outcome by combining multi-parametric CTP images into a tissue outcome probability map. A supervised classification scheme was developed to extract absolute and relative perfusion values from processed CTP images that are summarized by a trained classifier into a likelihood of infarction. Training was performed using follow-up CT scans of 20 acute stroke patients with complete recanalization of the vessel that was occluded on admission. Infarcted regions were annotated by expert neuroradiologists. Multiple classifiers were evaluated in a leave-one-patient-out strategy for their discriminating performance using receiver operating characteristic (ROC) statistics. Results showed that a RandomForest classifier performed optimally with an area under the ROC of 0.90 for discriminating infarct tissue. The obtained results are an improvement over existing thresholding methods and are in line with results found in literature where MR perfusion was used.

  8. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  9. Fracture Detection in Traumatic Pelvic CT Images

    PubMed Central

    Wu, Jie; Davuluri, Pavani; Ward, Kevin R.; Cockrell, Charles; Hobson, Rosalyn; Najarian, Kayvan

    2012-01-01

    Fracture detection in pelvic bones is vital for patient diagnostic decisions and treatment planning in traumatic pelvic injuries. Manual detection of bone fracture from computed tomography (CT) images is very challenging due to low resolution of the images and the complex pelvic structures. Automated fracture detection from segmented bones can significantly help physicians analyze pelvic CT images and detect the severity of injuries in a very short period. This paper presents an automated hierarchical algorithm for bone fracture detection in pelvic CT scans using adaptive windowing, boundary tracing, and wavelet transform while incorporating anatomical information. Fracture detection is performed on the basis of the results of prior pelvic bone segmentation via our registered active shape model (RASM). The results are promising and show that the method is capable of detecting fractures accurately. PMID:22287952

  10. Multislice helical CT: image temporal resolution.

    PubMed

    Hui, H; Pan, T; Shen, Y

    2000-05-01

    A multislice helical computed tomography (CT) halfscan (HS) reconstruction algorithm is proposed for cardiac applications. The imaging performances (in terms of the temporal resolution, z-axis resolution, image noise, and image artifacts) of the HS algorithm are compared to the existing algorithms using theoretical models and clinical data. A theoretical model of the temporal resolution performance (in terms of the temporal sensitivity profile) is established for helical CT, in general, i.e., for any number of detector rows and any reconstruction algorithm used. It is concluded that the HS reconstruction results in improved image temporal resolution than the corresponding 180 degrees LI (linear interpolation) reconstruction and is more immune to the inconsistent data problem induced by cardiac motions. The temporal resolution of multislice helical CT with the HS algorithm is comparable to that of single-slice helical CT with the HS algorithm. In practice, the 180 degrees LI and HS-LI algorithms can be used in parallel to generate two image sets from the same scan acquisition, one (180 degrees LI) for improved z-resolution and noises, and the other (HS-LI) for improved image temporal resolution.

  11. Noninvasive Cerebral Perfusion Imaging in High-Risk Neonates

    PubMed Central

    Goff, Donna A.; Buckley, Erin M.; Durduran, Turgut; Wang, Jiongjong; Licht, Daniel J.

    2010-01-01

    Advances in medical and surgical care of the high-risk neonate have led to increased survival. A significant number of these neonates suffer from neurodevelopmental delays and failure in school. The focus of clinical research has shifted to understanding events contributing to neurological morbidity in these patients. Assessing changes in cerebral oxygenation and regulation of cerebral blood flow (CBF) is important in evaluating the status of the central nervous system. Traditional CBF imaging methods fail for both ethical and logistical reasons. Optical near infrared spectroscopy (NIRS) is increasingly being used for bedside monitoring of cerebral oxygenation and blood volume in both very low birth weight infants and neonates with congenital heart disease. Although trends in CBF may be inferred from changes in cerebral oxygenation and/or blood volume, NIRS does not allow a direct measure of CBF in these populations. Two relatively new modalities, arterial spin-labeled perfusion magnetic resonance imaging and optical diffuse correlation spectroscopy, provide direct, noninvasive measures of cerebral perfusion suitable for the high-risk neonates. Herein we discuss the instrumentation, applications, and limitations of these noninvasive imaging techniques for measuring and/or monitoring CBF. PMID:20109972

  12. Laser Doppler Perfusion Imaging with a high-speed CMOS-camera

    NASA Astrophysics Data System (ADS)

    Draijer, Matthijs J.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2007-07-01

    The technique of Laser Doppler Perfusion Imaging (LDPI) is widely used for determining cerebral blood flow or skin perfusion in the case of burns. The commonly used Laser Doppler Perfusion Imagers are scanning systems which point by point scan the area under investigation and use a single photo detector to capture the photoelectric current to obtain a perfusion map. In that case the imaging time for a perfusion map of 64 x 64 pixels is around 5 minutes. Disadvantages of a long imaging time for in-vivo imaging are the bigger chance of movement artifacts, reduced comfort for the patient and the inability to follow fast changing perfusion conditions. We present a Laser Doppler Perfusion Imager which makes use of a high speed CMOS-camera. By illuminating the area under investigation and simultaneously taking images at high speed with the camera, it is possible to obtain a perfusion map of the area under investigation in a shorter period of time than with the commonly used Laser Doppler Perfusion Imagers.

  13. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  14. Micro-CT imaging of Randall's plaques.

    PubMed

    Williams, James C; Lingeman, James E; Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P

    2015-01-01

    Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone structure and mineral composition. High-resolution micro-CT even allows visualization of the lumens of tubule and/or vessels within Randall's plaque, on stones or in papillary biopsies, thus giving a non-destructive way to study these sites of stone adhesion. This paper also shows an example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that have grown on Randall's plaque and those that have grown on BD plugs. Thus, Randall's plaque can be distinguished by micro-CT, and this non-destructive method shows great promise in helping to elucidate the different mechanisms by which small stones are retained in the kidney during the development of nephrolithiasis. PMID:25096802

  15. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  16. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis. PMID:25143053

  17. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  18. CT Image Processing Using Public Digital Networks

    PubMed Central

    Rhodes, Michael L.; Azzawi, Yu-Ming; Quinn, John F.; Glenn, William V.; Rothman, Stephen L.G.

    1984-01-01

    Nationwide commercial computer communication is now commonplace for those applications where digital dialogues are generally short and widely distributed, and where bandwidth does not exceed that of dial-up telephone lines. Image processing using such networks is prohibitive because of the large volume of data inherent to digital pictures. With a blend of increasing bandwidth and distributed processing, network image processing becomes possible. This paper examines characteristics of a digital image processing service for a nationwide network of CT scanner installations. Issues of image transmission, data compression, distributed processing, software maintenance, and interfacility communication are also discussed. Included are results that show the volume and type of processing experienced by a network of over 50 CT scanners for the last 32 months.

  19. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    SciTech Connect

    Cohen, M.B.; Lake, R.R.; Graham, L.S.; King, M.A.; Kling, A.S.; Fitten, L.J.; O'Rear, J.; Bronca, G.A.; Gan, M.; Servrin, R. )

    1989-10-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n ({sup 123}I)IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed.

  20. Automatic quantitative analysis of cardiac MR perfusion images

    NASA Astrophysics Data System (ADS)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  1. Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.

  2. Optimal imaging protocols for lung cancer staging: CT, PET, MR imaging, and the role of imaging.

    PubMed

    Paul, Narinder S; Ley, Sebastian; Metser, Ur

    2012-09-01

    Chest radiography, the most commonly performed imaging technique for the detection of lung disease, is limited in accurately detecting early lung cancer. The main imaging modality for the staging of lung cancer is computed tomography (CT), supplemented by positron emission tomography (PET), usually as a hybrid technique in conjunction with CT (PET/CT). Magnetic resonance (MR) imaging is a useful diagnostic tool for specific indications and has the advantage of not using ionizing radiation. This article discusses the optimal imaging protocols for lung cancer staging using CT, PET (PET/CT), and MR imaging, and the role of imaging in patient management.

  3. Automated CT Perfusion for Ischemic Core Volume Prediction in Tandem Anterior Circulation Occlusions

    PubMed Central

    Haussen, Diogo C.; Dehkharghani, Seena; Grigoryan, Mikayel; Bowen, Meredith; Rebello, Leticia C.; Nogueira, Raul G.

    2016-01-01

    Background/Aim CT perfusion (CTP) predicts ischemic core volumes in acute ischemic stroke (AIS); however, assumptions made within the pharmacokinetic model may engender errors by the presence of tracer delay or dispersion. We aimed to evaluate the impact of hemodynamic disturbance due to extracranial anterior circulation occlusions upon the accuracy of ischemic core volume estimation with an automated perfusion analysis tool (RAPID) among AIS patients with large-vessel occlusions. Methods A prospectively collected, interventional database was retrospectively reviewed for all cases of endovascular treatment of AIS between September 2010 and March 2015 for patients with anterior circulation occlusions with baseline CTP and full reperfusion (mTICI3). Results Out of 685 treated patients, 114 fit the inclusion criteria. Comparison between tandem (n = 21) and nontandem groups (n = 93) revealed similar baseline ischemic core (20 ± 19 vs. 19 ± 25 cm3; p = 0.8), Tmax >6 s (175 ± 109 vs. 162 ± 118 cm3; p = 0.6), Tmax >10 s (90 ± 84 vs. 90 ± 91 cm3; p = 0.9), and final infarct volumes (45 ± 47 vs. 37 ± 45 cm3; p = 0.5). Baseline core volumes were found to correlate with final infarct volumes for the tandem (r = 0.49; p = 0.02) and nontandem (r = 0.44; p < 0.01) groups. The mean absolute difference between estimated core and final infarct volume was similar between patients with and those without (24 ± 41 vs. 17 ± 41 cm3; p = 0.5) tandem lesions. Conclusions The prediction of baseline ischemic core volumes through an optimized CTP analysis employing rigorous normalization, thresholding, and voxel-wise analysis is not significantly influenced by the presence of underlying extracranial carotid steno-occlusive disease in large-vessel AIS.

  4. Imaging features of rhinosporidiosis on contrast CT

    PubMed Central

    Prabhu, Shailesh M; Irodi, Aparna; Khiangte, Hannah L; Rupa, V; Naina, P

    2013-01-01

    Context: Rhinosporidiosis is a chronic granulomatous disease endemic in certain regions of India. Computed tomography (CT) imaging appearances of rhinosporidiosis have not been previously described in the literature. Aims: To study imaging features in rhinosporidiosis with contrast-enhanced CT and elucidate its role in the evaluation of this disease. Materials and Methods: Sixteen patients with pathologically proven rhinosporidiosis were included in the study. Contrast-enhanced CT images were analyzed retrospectively and imaging findings were correlated with surgical and histopathologic findings. Results: A total of 29 lesions were found and evaluated. On contrast-enhanced CT, rhinosporidiosis was seen as moderately enhancing lobulated or irregular soft tissue mass lesions in the nasal cavity (n = 13), lesions arising in nasal cavity and extending through choana into nasopharynx (n = 5), pedunculated polypoidal lesions arising from the nasopharyngeal wall (n = 5), oropharyngeal wall (n = 2), larynx (n = 1), bronchus (n = 1), skin and subcutaneous tissue (n = 2). The inferior nasal cavity comprising nasal floor, inferior turbinate, and inferior meatus was the most common site of involvement (n = 13). Surrounding bone involvement was seen in the form of rarefaction (n = 6), partial (n = 3) or complete erosion (n = 3) of inferior turbinate, thinning of medial maxillary wall (n = 2), and septal erosion (n = 2). Nasolacrimal duct involvement was seen in four cases. Conclusions: Contrast-enhanced CT has an important role in delineating the site and extent of the disease, as well as the involvement of surrounding bone, nasolacrimal duct and tracheobronchial tree. This provides a useful roadmap prior to surgery. PMID:24347850

  5. Robust dynamic myocardial perfusion CT deconvolution using adaptive-weighted tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.

  6. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  7. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    NASA Astrophysics Data System (ADS)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that <30% of elements need to be updated in each frame leading to >3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  8. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  9. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  10. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    SciTech Connect

    Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat

    2012-09-15

    total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.

  11. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  12. RONI Based Secured and Authenticated Indexing of Lung CT Images

    PubMed Central

    Jasmine Selvakumari Jeya, I.; Suganthi, J.

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  13. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks.

  14. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  15. Clinical micro-CT for dental imaging

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Cho, Min Kook; Shon, Cheol-Soon; Cho, Bong Hae; Kim, Chang Hyuk; Kim, Ho Kyung

    2009-02-01

    We exploit the development of a clinical computed microtomography (micro-CT) system for dental imaging. While the conventional dental CT simply serves implant treatment, the clinical dental micro-CT may provide clinicians with a histologic evaluation. To investigate the feasibility of the realization of a dental micro-CT, we have constructed an experimental test system which mainly consists of a microfocus x-ray source, a rotational subject holder, and a flat-panel detector. The flat-panel detector is based on a matrix-addressed photodiode array coupled to a CsI:Tl scintillator. The detective quantum efficiency (DQE) of the detector was measured as a function of magnification based on the measured modulation-transfer function (MTF) and noise-power spectrum (NPS). The best MTF and DQE performances were achieved at the magnification factor of 3. Similar tendency of the spatial resolving power in tomography was also observed with a wire phantom having a 25 μm diameter. From the investigation of tomographs reconstructed from a humanoid skull phantom, the application of magnification in the system largely reduced both signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for a fixed dose at the entrance surface of the detector, 1.2 mGy, while this setup increased the dose at the object plane from 4.7 mGy to 19.1 mGy for the magnification factor from 2 to 4, respectively. Although the quantum mottles at the high magnification factor tackled the practical use in the clinic, the information contained in the magnified CT images was quite promising.

  16. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  17. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain.

    PubMed

    Welker, K; Boxerman, J; Kalnin, A; Kaufmann, T; Shiroishi, M; Wintermark, M

    2015-06-01

    MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice.

  18. Perfusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping

    2003-05-01

    To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.

  19. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke.

    PubMed

    Bivard, Andrew; Spratt, Neil; Levi, Christopher; Parsons, Mark

    2011-11-01

    Computed tomography perfusion imaging in acute stroke requires further validation. We aimed to establish the optimal computed tomography perfusion parameters defining the infarct core and critically hypoperfused tissue. Sub-6-h computed tomography perfusion and 24-h magnetic resonance imaging were analysed from 314 consecutive patients with ischaemic stroke. Diffusion-weighted imaging lesion volume at 24 h was used to define the extent of critically hypoperfused tissue (in patients without reperfusion between acute and 24-h time points), and infarct core (in patients with major reperfusion at 24 h). Pixel-based analysis of co-registered computed tomography perfusion and diffusion-weighted imaging was then used to define the optimum computed tomography perfusion thresholds for critically hypoperfused at-risk tissue and infarct core. These optimized acute computed tomography perfusion threshold-based lesion volumes were then compared with 24-h diffusion-weighted imaging infarct volume, as well as 24-h and 90-day clinical outcomes for validation. Relative delay time >2 s was the most accurate computed tomography perfusion threshold in predicting the extent of critically hypoperfused tissue with both receiver operating curve analysis (area under curve 0.86), and the volumetric validation (mean difference between computed tomography perfusion and 24-h diffusion-weighted imaging lesions = 2 cm(2), 95% confidence interval 0.5-3.2 cm(2)). Cerebral blood flow <40% (of contralateral) within the relative delay time >2 s perfusion lesion was the most accurate computed tomography perfusion threshold at defining infarct core with both receiver operating characteristic analysis (area under curve = 0.85) and the volumetric validation. Using these thresholds, the extent of computed tomography perfusion mismatch tissue (the volume of 'at-risk' tissue between the critically hypoperfused and core thresholds) salvaged from infarction correlated with clinical improvement at 24 h (R(2

  20. Improvement of the cine-CT based 4D-CT imaging

    SciTech Connect

    Pan Tinsu; Sun Xiaojun; Luo Dershan

    2007-11-15

    An improved 4D-CT utility has been developed on the GE LightSpeed multislice CT (MSCT) and Discovery PET/CT scanners, which have the cine CT scan capability. Two new features have been added in this 4D-CT over the commercial Advantage 4D-CT from GE. One feature was a new tool for disabling parts of the respiratory signal with irregular respiration and improving the accuracy of phase determination for the respiratory signal from the Varian real-time positioning and monitoring (RPM) system before sorting of the cine CT images into the 4D-CT images. The second feature was to allow generation of the maximum-intensity-projection (MIP), average (AVG) and minimum-intensity-projection (mip) CT images from the cine CT images without a respiratory signal. The implementation enables the assessment of tumor motion in treatment planning with the MIP, AVG, and mip CT images on the GE MSCT and PET/CT scanners without the RPM and the Advantage 4D-CT with a GE Advantage windows workstation. Several clinical examples are included to illustrate this new application.

  1. Imaging findings and cerebral perfusion in arterial ischemic stroke due to transient cerebral arteriopathy in children.

    PubMed

    Barbosa Junior, Alcino Alves; Ellovitch, Saada Resende de Souza; Pincerato, Rita de Cassia Maciel

    2012-01-01

    We report the case of a 4-year-old female child who developed an arterial ischemic stroke in the left middle cerebral artery territory, due to a proximal stenosis of the supraclinoid internal carotid artery, most probably related to transient cerebral arteriopathy of childhood. Computed tomography scan, magnetic resonance imaging, perfusion magnetic resonance and magnetic resonance angiography are presented, as well as follow-up by magnetic resonance and magnetic resonance angiography exams. Changes in cerebral perfusion and diffusion-perfusion mismatch call attention. As far as we know, this is the first report of magnetic resonance perfusion findings in transient cerebral arteriopathy.

  2. Detectability of perfusion defect in five-dimensional gated-dynamic cardiac SPECT images

    PubMed Central

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.; Wernick, Miles N.

    2010-01-01

    Purpose: In previous work, the authors developed and demonstrated the concept of an image reconstruction procedure aimed to unify gated and dynamic nuclear cardiac imaging, which the authors have termed five-dimensional (5D) SPECT. Gated imaging permits the clinician to evaluate wall motion and, through the use of stress and rest scans, allows perfusion defects to be observed. Dynamic imaging depicts kinetics in the myocardium, which can be used to evaluate perfusion, but traditional dynamic images are motionless and do not depict wall motion. In this article, the authors investigate the degree to which perfusion defects can be detected from the dynamic information conveyed by 5D images, a problem that is particularly challenging in the absence of multiple fast camera rotations. Methods: The authors first demonstrate the usefulness of dynamic reconstructed images for perfusion detection by using linear discriminant analyses (Fisher linear discriminant analysis and principal component analysis) and a numerical channelized Hotelling observer. The authors then derive three types of discriminant metrics for characterizing the temporal kinetic information in reconstructed dynamic images for differentiating perfusion defects from normal cardiac perfusion, which are the Fisher linear discriminant map, temporal derivative map, and kinetic parametric images. Results: Results are based on the NURBS-based cardiac-torso phantom with simulation of Tc99m-teboroxime as the imaging agent. The derived metric maps and quantitative contrast-to-noise ratio results demonstrate that the reconstructed dynamic images could yield higher detectability of the perfusion defect than conventional gated reconstruction while providing wall motion information simultaneously. Conclusions: The proposed metrics can be used to produce new types of visualizations, showing wall motion and perfusion information, that may potentially be useful for clinical evaluation. Since 5D imaging permits wall motion

  3. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  4. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  5. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage.

    PubMed

    Malinova, Vesna; Dolatowski, Karoline; Schramm, Peter; Moerer, Onnen; Rohde, Veit; Mielke, Dorothee

    2016-07-01

    OBJECT This prospective study investigated the role of whole-brain CT perfusion (CTP) studies in the identification of patients at risk for delayed ischemic neurological deficits (DIND) and of tissue at risk for delayed cerebral infarction (DCI). METHODS Forty-three patients with aneurysmal subarachnoid hemorrhage (aSAH) were included in this study. A CTP study was routinely performed in the early phase (Day 3). The CTP study was repeated in cases of transcranial Doppler sonography (TCD)-measured blood flow velocity (BFV) increase of > 50 cm/sec within 24 hours and/or on Day 7 in patients who were intubated/sedated. RESULTS Early CTP studies revealed perfusion deficits in 14 patients, of whom 10 patients (72%) developed DIND, and 6 of these 10 patients (60%) had DCI. Three of the 14 patients (21%) with early perfusion deficits developed DCI without having had DIND, and the remaining patient (7%) had neither DIND nor DCI. There was a statistically significant correlation between early perfusion deficits and occurrence of DIND and DCI (p < 0.0001). A repeated CTP was performed in 8 patients with a TCD-measured BFV increase > 50 cm/sec within 24 hours, revealing a perfusion deficit in 3 of them (38%). Two of the 3 patients (67%) developed DCI without preceding DIND and 1 patient (33%) had DIND without DCI. In 4 of the 7 patients (57%) who were sedated and/or comatose, additional CTP studies on Day 7 showed perfusion deficits. All 4 patients developed DCI. CONCLUSIONS Whole-brain CTP on Day 3 after aSAH allows early and reliable identification of patients at risk for DIND and tissue at risk for DCI. Additional CTP investigations, guided by TCD-measured BFV increase or persisting coma, do not contribute to information gain.

  6. Role of CT Perfusion in Monitoring and Prediction of Response to Therapy of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Preda, Lorenzo; Moscatelli, Marco Elvio Manlio; Cossu Rocca, Maria

    2014-01-01

    This review aims to summarize the technique and clinical applications of CT perfusion (CTp) of head and neck cancer. The most common pathologic type (90%) of head and neck cancer is squamous cell carcinoma (HNSCC): its diagnostic workup relies on CT and MRI, as they provide an accurate staging for the disease by determining tumour volume, assessing its extension, and detecting of lymph node metastases. Compared with conventional CT and MRI, CTp allows for obtaining measures of tumour vascular physiology and functional behaviour, and it has been demonstrated to be a feasible and useful tool in predicting local outcomes in patients undergoing radiation therapy and chemotherapy and may help monitor both treatments. PMID:25140324

  7. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

    PubMed Central

    Niu, Shanzhou; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2016-01-01

    Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. PMID:27440948

  8. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  9. Rodent brain imaging with SPECT/CT.

    PubMed

    Seo, Youngho; Gao, Dong-Wei; Hasegawa, Bruce H; Dae, Michael W; Franc, Benjamin L

    2007-04-01

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of 99mTc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with 99mTc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of 99mTc-exametazime. Time activity curve of 99mTc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  10. Heterogeneous Microinfarcts Caused by Coronary Microemboli: Evaluation with Multidetector CT and MR Imaging in a Swine Model1

    PubMed Central

    Saloner, David; Martin, Alastair J.; Ursell, Philip C.; Saeed, Maythem

    2010-01-01

    Purpose: To directly compare the sensitivity of 64-section multidetector computed tomography (CT) with that of 1.5-T magnetic resonance (MR) imaging in the depiction and measurement of heterogeneous 7–8-week-old microinfarcts and the quantification of regional left ventricular (LV) function and perfusion in the territory of coronary intervention in a swine model. Materials and Methods: Approval was obtained from the institutional animal committee. An x-ray/MR system was used to catheterize the left anterior descending (LAD) coronary artery with x-ray guidance and to delineate the perfusion territory. The vessel was selectively microembolized in six pigs with small-diameter embolic material (40–120 µm, 250000 count). At 7–8 weeks after microembolization, multidetector CT and MR imaging were used to assess LV function, first-pass perfusion, and delayed contrast enhancement in remote myocardium and microinfarct scars. Histochemical staining with triphenyltetrazolium chloride (TTC) was used to confirm and quantify heterogeneous microinfarct scars. The two-tailed Wilcoxon signed rank test was used to detect differences between modalities and myocardial regions. Results: The LAD territory was 32.4% ± 3.8(stadard error of the mean) of the LV mass. Multidetector CT and MR imaging have similar sensitivity in the detection of regional and global LV dysfunction and extent of microinfarct. The mean LV end-diastolic volume, end-systolic volume, and ejection fraction were 93 mL ± 8, 46 mL ± 4, and 50% ± 3, respectively, on multidetector CT images and 92 mL ± 8, 48 mL ± 5, and 48% ± 3, respectively, on MR images (P ≥ .05). The extent of heterogeneous microinfarct was not significantly different between multidetector CT (6.3% ± 0.8 of the LV mass), MR imaging (6.6% ± 0.5 of the LV mass), and TTC staining (7.0% ± 0.6 of the LV mass). First-pass multidetector CT and MR imaging demonstrated significant regional differences (P < .05) in time to peak between the

  11. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    SciTech Connect

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G. Allan; Badea, Cristian T.; Kirsch, David G.

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  12. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  13. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  14. Perfusion-CT - Can We Predict Acute Pancreatitis Outcome within the First 24 Hours from the Onset of Symptoms?

    PubMed Central

    Pieńkowska, Joanna; Gwoździewicz, Katarzyna; Skrobisz-Balandowska, Katarzyna; Marek, Iwona; Kostro, Justyna; Szurowska, Edyta; Studniarek, Michał

    2016-01-01

    Purpose Severe acute pancreatitis (AP) is still a significant clinical problem which is associated with a highly mortality. The aim of this study was the evaluation of prognostic value of CT regional perfusion measurement performed on the first day of onset of symptoms of AP, in assessing the risk of developing severe form of acute pancreatitis. Material and Methods 79 patients with clinical symptoms and biochemical criteria indicative of acute pancreatitis (acute upper abdominal pain, elevated levels of serum amylase and lipase) underwent perfusion CT within 24 hours after onset of symptoms. The follow-up examinations were performed after 4–6 days to detect progression of the disease. Perfusion parameters were compared in 41 people who developed severe form of AP (pancreatic and/or peripancreatic tissue necrosis) with parameters in 38 consecutive patients in whom course of AP was mild. Blood flow, blood volume, mean transit time and permeability surface area product were calculated in the three anatomic pancreatic subdivisions (head, body and tail). At the same time the patient's clinical status was assessed by APACHE II score and laboratory parameters such as CRP, serum lipase and amylase, AST, ALT, GGT, ALP and bilirubin were compared. Results Statistical differences in the perfusion parameters between the group of patients with mild and severe AP were shown. Blood flow, blood volume and mean transit time were significantly lower and permeability surface area product was significantly higher in patients who develop severe acute pancreatitis and presence of pancreatic and/or peripancreatic necrosis due to pancreatic ischemia. There were no statistically significant differences between the two groups in terms of evaluated on admission severity of pancreatitis assessed using APACHE II score and laboratory tests. Conclusions CT perfusion is a very useful indicator for prediction and selection patients in early stages of acute pancreatitis who are at risk of

  15. Neural network and its application to CT imaging

    SciTech Connect

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  16. Safety and effectiveness of CT-guided percutaneous pulmonary paracentesis and tuberculoma perfusing chemotherapy for the treatment of pleural tuberculosis

    PubMed Central

    Geng, Shujun; Li, Lijuan; Liu, Jianling; Song, Tao

    2016-01-01

    The aim of the study was to compare the mid- and long-term effects of different treatments such as CT-guided percutaneous pulmonary paracentesis, tuberculoma perfusing chemotherapy and whole-body standard chemotherapy or extended chemotherapy on safety and effectiveness for pleural chemotherapy. A total of 60 subjects diagnosed to have pleural tuberculosis between February 2010 and February 2014 were prospectively selected for this study and were considered as the experimental group. Seventy pleural tuberculosis patients who underwent treatment between February 2006 and February 2010 were considered as the control group. The patients in the experimental group were treated with CT-guided percutaneous pulmonary paracentesis and tuberculoma perfusing chemotherapy of not more than three courses with each course consisting of administration of 0.1 g isoniazid, n 0.5 gkanamyci, 0.2 g levofloxacin, and 1 ml lidocaine once a week for four times. The patients in the control group were treated with whole-body standard or extended chemotherapy regimen 3~6HRZE(S)/6~12HR. The patients were followed up for 18 months and the treatment effects were compared. The diameter of tuberculoma in patients of the experimental group during 6, 12 and 18 months was shorter than that of the control group (P<0.05). The total effective rate of treatment and the duration of treatment in experimental group during 18 months were higher than that of control group (P<0.05). The frequency of drug-related complications were lower in comparison with the control group (P<0.05). No surgically acquired complications were observed in the experimental group. Thus, treatments such as CT-guided percutaneous pulmonary paracentesis and tuberculoma perfusing chemotherapy for pleural tuberculosis are safe and effective, which has greater value and can be promoted for use in the clinical setting. PMID:27446302

  17. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  18. Upright cone beam CT imaging using the onboard imager

    SciTech Connect

    Fave, Xenia Martin, Rachael; Yang, Jinzhong; Balter, Peter; Court, Laurence; Carvalho, Luis; Pan, Tinsu

    2014-06-15

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0°, and the couch was rotated to 270°. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270° to 90°. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  19. Non-negative constraint for image-based breathing gating in ultrasound hepatic perfusion data

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Ding, Mingyue; Chen, Xi; Deng, Wenjie; Zhang, Zhijun

    2015-12-01

    Images acquired during free breathing using contrast enhanced ultrasound hepatic perfusion imaging exhibits a periodic motion pattern. It needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. To reduce the impact of respiratory motion, image-based breathing gating algorithm was used to compensate the respiratory motion in contrast enhanced ultrasound. The algorithm contains three steps of which respiratory kinetics extracted, image subsequences determined and image subsequences registered. The basic performance of the algorithm was to extract the respiratory kinetics of the ultrasound hepatic perfusion image sequences accurately. In this paper, we treated the kinetics extracted model as a non-negative matrix factorization (NMF) problem. We extracted the respiratory kinetics of the ultrasound hepatic perfusion image sequences by non-negative matrix factorization (NMF). The technique involves using the NMF objective function to accurately extract respiratory kinetics. It was tested on simulative phantom and used to analyze 6 liver CEUS hepatic perfusion image sequences. The experimental results show the effectiveness of our proposed method in quantitative and qualitative.

  20. Automated vertebra identification in CT images

    NASA Astrophysics Data System (ADS)

    Ehm, Matthias; Klinder, Tobias; Kneser, Reinhard; Lorenz, Cristian

    2009-02-01

    In this paper, we describe and compare methods for automatically identifying individual vertebrae in arbitrary CT images. The identification is an essential precondition for a subsequent model-based segmentation, which is used in a wide field of orthopedic, neurological, and oncological applications, e.g., spinal biopsies or the insertion of pedicle screws. Since adjacent vertebrae show similar characteristics, an automated labeling of the spine column is a very challenging task, especially if no surrounding reference structures can be taken into account. Furthermore, vertebra identification is complicated due to the fact that many images are bounded to a very limited field of view and may contain only few vertebrae. We propose and evaluate two methods for automatically labeling the spine column by evaluating similarities between given models and vertebral objects. In one method, object boundary information is taken into account by applying a Generalized Hough Transform (GHT) for each vertebral object. In the other method, appearance models containing mean gray value information are registered to each vertebral object using cross and local correlation as similarity measures for the optimization function. The GHT is advantageous in terms of computational performance but cuts back concerning the identification rate. A correct labeling of the vertebral column has been successfully performed on 93% of the test set consisting of 63 disparate input images using rigid image registration with local correlation as similarity measure.

  1. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  2. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion

    PubMed Central

    Ma, Ensen; Ren, An; Gao, Baoxiang; Yang, Minxing; Zhao, Qichao; Wang, Wu; Li, Kefeng

    2016-01-01

    Objective To investigate the effect of position and size of tumor region of interest (ROI) on the estimation of lung cancer vascular parameters using 256-slice computed tomography (CT) perfusion. Methods After institutional review board approval and written informed consent, 16 men and 11 women with lung cancer were enrolled in this CT perfusion study. Perfusion, blood volume, and peak enhancement were determined for 60 or 120 mm2 circular ROIs placed at the edge, center, and around (outlining) the visible tumor. Average values were obtained by performing ROI analysis twice by the same observers without any procedural changes. Results Perfusion, blood volume, and peak enhancement measurements were substantially higher at the edge than at the center for both 60 and 120 mm2 ROIs (all P<0.05). Measurements varied substantially depending on the ROI size. Perfusion, blood volume, and peak enhancement for the ROIs outlining tumor were intermediate between those at the tumor edge and center. There were significant correlations between median values and interquartile ranges as follows; perfusion (12.51 [7.91–28.10] mL⋅min−1⋅100 mL−1), blood volume (29.31 [21.82–37.65] mL⋅100 g−1), peak enhancement (12.93 [2.42–22.50]) for the ROIs outlining the tumor, and microvascular density ([19.43±8.78] vessels/0.74 mm2), respectively (r values were 0.732, 0.590, and 0.544 respectively, all P<0.05). Conclusion Spatial and size selection of ROI significantly affects CT perfusion analysis. ROI outlining of entire tumor provides efficient and reliable measurements for clinical assessment of lung cancer using CT perfusion. PMID:27175083

  3. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.

    PubMed

    Wong, E C; Buxton, R B; Frank, L R

    1997-01-01

    We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error in the perfusion measurement are identified: the transit delay from the tagging region to the imaging slice; and the inclusion of intravascular tagged signal. A modified technique called QUIPSS II is described that decreases sensitivity to these effects by explicitly controlling the time width of the tag bolus and imaging after the bolus is entirely deposited into the slice. With appropriate saturation pulses the pulse sequence can be arranged so as to allow for simultaneous collection of perfusion and BOLD data that can be cleanly separated. Such perfusion and BOLD signals reveal differences in spatial location and dynamics that may be useful both for functional brain mapping and for study of the BOLD contrast mechanism. The implementation of multislice perfusion imaging introduces additional complications, primarily in the elimination of signal from static tissue. In pulsed ASL, this appears to be related to the slice profile of the inversion tag pulse in the presence of relaxation, rather than magnetization transfer effects as in continuous arterial spin labeling, and can be alleviated with careful adjustment of inversion pulse parameters. PMID:9430354

  4. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    PubMed

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach.

  5. Optimization of Spiral-Based Pulse Sequences for First Pass Myocardial Perfusion Imaging

    PubMed Central

    Salerno, Michael; Sica, Christopher T.; Kramer, Christopher M.; Meyer, Craig H.

    2010-01-01

    While spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first pass perfusion imaging because of potential off-resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark-rim artifacts (DRA) that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high quality first pass myocardial perfusion images with high SNR. The goal of this paper was to design interleaved spiral pulse sequences for first-pass myocardial perfusion imaging, and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and dropout artifacts. PMID:21590802

  6. Complementary tumor vascularity imaging in a single PET-CT routine using FDG early dynamic blood flow and contrast-enhanced CT texture analysis

    NASA Astrophysics Data System (ADS)

    Carmi, Raz; Yefremov, Nikolay; Bernstine, Hanna; Groshar, David

    2014-03-01

    A feasibility study of improved PET-CT tumor imaging approach is presented. A single PET-CT routine includes three different techniques: 18F-FDG early dynamic blood flow intended for perfusion assessment; standard late 18F-FDG uptake; and high-resolution contrast-enhanced CT enabling tissue texture analysis. Both PET protocols utilize the same single standard radiotracer dose administration. Quantitative volumetric arterial perfusion maps are derived from the reconstructed dynamic PET images corresponding to successive acquisition time intervals of 3 seconds only. For achieving high accuracy, the analysis algorithm differentiates the first-pass arterial flow from other interfering dynamic effects, and a noise reduction scheme based on adaptive total-variation minimization aims to provide appreciable quantitative map in physical conditions of high noise and low spatial resolution. The CT texture analysis comprises a practical and robust method for generating volumetric tissue irregularity maps. A local map value is represented by the entropy function which is derived from a weighted co-occurrence matrix histogram of the corresponding image voxel three-dimensional vicinity. Unique entropy scaling scheme and parameter optimization process, as well as appropriate scaling for varying image noise levels and contrast agent concentrations, improve the results toward quantitative absolute measure with respect to diverse scanning conditions and key analysis parameters. Representative imaging results are demonstrated on several clinical cases involving different organs and cancer types. In these cases, significant tumor characterization relative to the normal surrounding tissues is seen on the quantitative maps of all three imaging techniques. This proof of concept can lead the way to a new practical diagnostic imaging application.

  7. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    PubMed

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  8. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  9. Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro

    SciTech Connect

    Miller, R.K.; Mattison, D.R.; Panigel, M.; Ceckler, T.; Bryant, R.; Thomford, P.

    1987-10-01

    The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 ..mu..M Mn with and without /sup 54/Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated /sup 54/Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the /sup 54/Mn was free in the 100,000g supernatant, with 45% in the 1000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T/sub 1/) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.

  10. Quantitative colorectal cancer perfusion measurement by multidetector-row CT: does greater tumour coverage improve measurement reproducibility?

    PubMed

    Goh, V; Halligan, S; Gartner, L; Bassett, P; Bartram, C I

    2006-07-01

    The purpose of this study was to determine if greater z-axis tumour coverage improves the reproducibility of quantitative colorectal cancer perfusion measurements using CT. A 65 s perfusion study was acquired following intravenous contrast administration in 10 patients with proven colorectal cancer using a four-detector row scanner. This was repeated within 48 h using identical technical parameters to allow reproducibility assessment. Quantitative tumour blood volume, blood flow, mean transit time and permeability measurements were determined using commercially available software (Perfusion 3.0; GE Healthcare, Waukesha, WI) for data obtained from a 5 mm z-axis tumour coverage, and from a 20 mm z-axis tumour coverage. Measurement reproducibility was assessed using Bland-Altman statistics, for a 5 mm z-axis tumour coverage, and 20 mm z-axis tumour coverage, respectively. The mean difference (95% limits of agreement) for blood volume, blood flow, mean transit time and permeability were 0.04 (-2.50 to +2.43) ml/100 g tissue; +8.80 (-50.5 to +68.0) ml/100 g tissue/min; -0.99 (-8.19 to +6.20) seconds; and +1.20 (-5.42 to +7.83) ml/100 g tissue/min, respectively, for a 5 mm coverage, and -0.04 (-2.61 to +2.53) ml/100 g tissue; +7.40 (-50.3 to +65.0) ml/100 g tissue/min; -2.46 (-12.61 to +7.69) seconds; and -0.23 (-8.31 to +7.85) ml/100 g tissue/min, respectively, for a 20 mm coverage, indicating similar levels of agreement. In conclusion, increasing z-axis coverage does not improve reproducibility of quantitative colorectal cancer perfusion measurements.

  11. Fast CT-CT fluoroscopy registration with respiratory motion compensation for image-guided lung intervention

    NASA Astrophysics Data System (ADS)

    Su, Po; Xue, Zhong; Lu, Kongkuo; Yang, Jianhua; Wong, Stephen T.

    2012-02-01

    CT-fluoroscopy (CTF) is an efficient imaging method for guiding percutaneous lung interventions such as biopsy. During CTF-guided biopsy procedure, four to ten axial sectional images are captured in a very short time period to provide nearly real-time feedback to physicians, so that they can adjust the needle as it is advanced toward the target lesion. Although popularly used in clinics, this traditional CTF-guided intervention procedure may require frequent scans and cause unnecessary radiation exposure to clinicians and patients. In addition, CTF only generates limited slices of images and provides limited anatomical information. It also has limited response to respiratory movements and has narrow local anatomical dynamics. To better utilize CTF guidance, we propose a fast CT-CTF registration algorithm with respiratory motion estimation for image-guided lung intervention using electromagnetic (EM) guidance. With the pre-procedural exhale and inhale CT scans, it would be possible to estimate a series of CT images of the same patient at different respiratory phases. Then, once a CTF image is captured during the intervention, our algorithm can pick the best respiratory phase-matched 3D CT image and performs a fast deformable registration to warp the 3D CT toward the CTF. The new 3D CT image can be used to guide the intervention by superimposing the EM-guided needle location on it. Compared to the traditional repetitive CTF guidance, the registered CT integrates both 3D volumetric patient data and nearly real-time local anatomy for more effective and efficient guidance. In this new system, CTF is used as a nearly real-time sensor to overcome the discrepancies between static pre-procedural CT and the patient's anatomy, so as to provide global guidance that may be supplemented with electromagnetic (EM) tracking and to reduce the number of CTF scans needed. In the experiments, the comparative results showed that our fast CT-CTF algorithm can achieve better registration

  12. Hybrid µCT-FMT imaging and image analysis

    PubMed Central

    Zafarnia, Sara; Babler, Anne; Jahnen-Dechent, Willi; Lammers, Twan; Lederle, Wiltrud; Kiessling, Fabian

    2015-01-01

    Fluorescence-mediated tomography (FMT) enables longitudinal and quantitative determination of the fluorescence distribution in vivo and can be used to assess the biodistribution of novel probes and to assess disease progression using established molecular probes or reporter genes. The combination with an anatomical modality, e.g., micro computed tomography (µCT), is beneficial for image analysis and for fluorescence reconstruction. We describe a protocol for multimodal µCT-FMT imaging including the image processing steps necessary to extract quantitative measurements. After preparing the mice and performing the imaging, the multimodal data sets are registered. Subsequently, an improved fluorescence reconstruction is performed, which takes into account the shape of the mouse. For quantitative analysis, organ segmentations are generated based on the anatomical data using our interactive segmentation tool. Finally, the biodistribution curves are generated using a batch-processing feature. We show the applicability of the method by assessing the biodistribution of a well-known probe that binds to bones and joints. PMID:26066033

  13. Liver Function After Irradiation Based on Computed Tomographic Portal Vein Perfusion Imaging

    SciTech Connect

    Cao Yue Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Haken, Randall K. ten; Lawrence, Theodore S.

    2008-01-01

    Purpose: To determine whether individual and regional liver sensitivity to radiation could be assessed by measuring liver perfusion during a course of treatment using dynamic contrast-enhanced computed tomography scanning. Methods and Materials: Patients with intrahepatic cancer undergoing conformal radiotherapy underwent dynamic contrast-enhanced computed tomography (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) before, during, and 1 month after treatment. We hoped to determine whether the residual functioning liver (i.e., those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results: Radiation doses from 45 to 84 Gy resulted in undetectable regional portal vein perfusion 1 month after treatment. The volume of each liver with undetectable portal vein perfusion ranged from 0 to 39% and depended both on the patient's sensitivity and on dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (p < 0.001). Conclusion: This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function and has the potential to be a tool for individualizing therapy.

  14. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  15. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  16. Simultaneous technetium-99m MIBI angiography and myocardial perfusion imaging

    SciTech Connect

    Baillet, G.Y.; Mena, I.G.; Kuperus, J.H.; Robertson, J.M.; French, W.J.

    1989-01-01

    Resting first-pass radionuclide angiography (FPRNA) was performed with the myocardial perfusion agent technetium-99m MIBI. In 27 patients, it was compared with technetium-99m diethylenetriamine pentaacetic acid FPRNA. A significant correlation was present in left (r = 0.93, p less than 0.001) as well as right (r = 0.92, p less than 0.001) ventricular ejection fraction measured with both radiopharmaceuticals. In 13 patients, MIBI derived segmental wall motion was compared with contrast ventriculography. A high correlation was present (p less than 0.001), and qualitative agreement was found in 38/52 segments. In 19 patients with myocardial infarction a significant correlation was present between MIBI segmental wall motion and perfusion scores (p less than 0.001). In ten patients with a history of myocardial infarction, 18 myocardial segments demonstrated diseased coronary vessels and impaired wall motion at contrast angiography. These segments were all identified by the MIBI wall motion and perfusion study. We conclude that MIBI is a promising agent for simultaneous evaluation of cardiac function and myocardial perfusion at rest.

  17. Coronary Computed Tomography Versus Radionuclide Myocardial Perfusion Imaging in Chest Pain Patients Admitted to Telemetry: A Randomized, Controlled Trial

    PubMed Central

    Levsky, Jeffrey M.; Spevack, Daniel M.; Travin, Mark I.; Menegus, Mark A.; Huang, Paul W.; Clark, Elana T.; Kim, Choo-won; Hirschhorn, Esther; Freeman, Katherine D.; Tobin, Jonathan N.; Haramati, Linda B.

    2016-01-01

    BACKGROUND Coronary computed tomography angiography plays an expanding role managing symptomatic patients with suspected coronary artery disease. Prospective intermediate-term outcomes are lacking. OBJECTIVE To compare coronary CT angiography with conventional non-invasive testing. DESIGN Randomized, controlled comparative effectiveness trial. SETTING Telemetry-monitored wards of one inner-city medical center. PATIENTS 400 acute chest pain patients (mean age 57); 63% women; 54% Hispanic, 37% African-American; low socioeconomic status. INTERVENTION Coronary CT angiography (CT) or radionuclide stress myocardial perfusion imaging (MPI). MEASUREMENTS The primary outcome was cardiac catheterization not leading to revascularization within one year. Secondary outcomes included length of stay, resource utilization and patient experience. Safety outcomes included death, major cardiovascular events and radiation exposure. RESULTS 30(15%) CT patients and 32(16%) MPI patients underwent cardiac catheterization within one year, of which 15(7.5%) and 20(10%), respectively, were not revascularized (-2.5% difference, 95%CI −8.6%–+3.5%; hazard ratio 0.77, 95%CI 0.40–1.49, p=0.44). Median length of stay was 28.9 hours for CT and 30.4 hours for MPI (p=0.057). Median follow-up was 40.4 months. For CT and MPI, the incidences of death (0.5% vs 3%, p=0.12), non-fatal cardiovascular events (4.5% vs 4.5%), re-hospitalization (43% vs 49%), emergency visit (63% vs 58%) and outpatient cardiology visit (23% vs 21%) were not different. Long-term, all-cause radiation was lower for CT (24 vs 29 milliSieverts, p<0.001). More CT patients graded their experience favorably (p=0.001) and would undergo the exam again (p=0.003). LIMITATIONS Single site study; primary outcome dependent on clinical management decisions. CONCLUSIONS There were no significant differences between CT and MPI in outcomes or resource utilization over 40 months. CT had lower associated radiation and was more positively

  18. Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice.

    PubMed

    Wu, Max C; Hasegawa, Bruce H; Dae, Michael W

    2002-12-01

    The increasing use of transgenic mice as models of human physiology and disease has motivated the development of dedicated in vivo imaging systems for anatomic and functional characterization of mice as an adjunct to or a replacement for established ex vivo techniques. We have developed a pinhole single photon emission computed tomography (SPECT) system for high resolution imaging of mice with cardiovascular imaging as the primary application. In this work, we characterize the system performance through phantom studies. The spatial resolution and sensitivity were measured from images of a line source and point source, respectively, and were reported for a range of object-to-pinhole distances and pinhole diameters. Tomographic images of a uniform cylindrical phantom, Defrise phantom, and grid phantom were used to characterize the image uniformity and spatial linearity. The uniform phantom image did not contain any ring or reconstruction artifacts, but blurring in the axial direction was evident in the Defrise phantom images. The grid phantom images demonstrated excellent spatial linearity. A novel phantom modeling perfusion of the left ventricle of a mouse was designed and built with perfusion defects of varying sizes to evaluate the system performance for myocardial perfusion imaging of mice. The defect volumes were measured from the pinhole SPECT images and correlated to the actual defect volumes calculated according to geometric formulas. Linear regression analysis produced a correlation coefficient of r = 0.995 (p < 0.001), demonstrating the feasibility for measurement of perfusion defect size in mice using pinhole SPECT. We have performed phantom studies to characterize the spatial resolution, sensitivity, image uniformity, and spatial linearity of the pinhole SPECT system. Measurement of the perfusion defect size is a valuable phenotypic assessment and will be useful for hypothesis testing in murine models of cardiovascular disease.

  19. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  20. Use of CT perfusion to discriminate between brain metastases from different primaries.

    PubMed

    Dolgushin, Mikhail B; Pronin, Igor N; Holodny, Elena A; Fadeeva, Liudmila M; Holodny, Andrei I; Kornienko, Valeri N

    2015-01-01

    Thirty-six metastases in 22 patients were studied prospectively using computed tomography perfusion. Regions of interests were drawn around: the enhancing part of the tumor, necrotic central part, periphery, peritumoral edema, and normal white matter. Cerebral blood volume, cerebral blood flow, and mean transit time were calculated for each zone. The enhancing part of the tumor significantly differed from the other zones in 11 of 12. Metastases of different primaries can be differentiated from one another with statistically significance (P<.05) by at least one perfusion parameter in 57% of cases.

  1. Accelerated Compressed Sensing Based CT Image Reconstruction.

    PubMed

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  2. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  3. Cardiovascular magnetic resonance imaging of isolated perfused pig hearts in a 3T clinical MR scanner

    PubMed Central

    Chiribiri, Amedeo; Ishida, Masaki; Morton, Geraint; Paul, Matthias; Hussain, Shazia T.; Bigalke, Boris; Perera, Divaka; Schaeffter, Tobias; Nagel, Eike

    2012-01-01

    Purpose An isolated perfused pig heart model has recently been proposed for the development of novel methods in standard clinical magnetic resonance (MR) scanners. The original set-up required the electrical system to be within the safe part of the MR-room, which introduced significant background noise. The purpose of the current work was to refine the system to overcome this limitation so that all electrical parts are completely outside the scanner room. Methods Four pig hearts were explanted under terminal anaesthesia from large white cross landrace pigs. All hearts underwent cardiovascular magnetic resonance (CMR) scanning in the MR part of a novel combined 3T MR and x-ray fluoroscopy (XMR) suite. CMR scanning included real-time k-t SENSE functional imaging, k-t SENSE accelerated perfusion imaging and late gadolinium enhancement imaging. Interference with image quality was assessed by spurious echo imaging and compared to noise levels acquired while operating the electrical parts within the scanner room. Results Imaging was performed successfully in all hearts. The system proved suitable for isolated heart perfusion in a novel 3T XMR suite. No significant additional noise was introduced into the scanner room by our set-up. Conclusions We have substantially improved a previous version of an isolated perfused pig heart model and made it applicable for MR imaging in a state of the art clinical 3T XMR imaging suite. The use of this system should aid novel CMR sequence development and translation into clinical practice. PMID:24265875

  4. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. PMID:24788075

  5. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.

  6. Organ perfusion during voluntary pulmonary hyperinflation; a magnetic resonance imaging study.

    PubMed

    Kyhl, Kasper; Drvis, Ivan; Barak, Otto; Mijacika, Tanja; Engstrøm, Thomas; Secher, Niels H; Dujic, Zeljko; Buca, Ante; Madsen, Per Lav

    2016-02-01

    Pulmonary hyperinflation is used by competitive breath-hold divers and is accomplished by glossopharyngeal insufflation (GPI), which is known to compress the heart and pulmonary vessels, increasing sympathetic activity and lowering cardiac output (CO) without known consequence for organ perfusion. Myocardial, pulmonary, skeletal muscle, kidney, and liver perfusion were evaluated by magnetic resonance imaging in 10 elite breath-hold divers at rest and during moderate GPI. Cardiac chamber volumes, stroke volume, and thus CO were determined from cardiac short-axis cine images. Organ volumes were assessed from gradient echo sequences, and organ perfusion was evaluated from first-pass images after gadolinium injection. During GPI, lung volume increased by 5.2 ± 1.5 liters (mean ± SD; P < 0.001), while spleen and liver volume decreased by 46 ± 39 and 210 ± 160 ml, respectively (P < 0.05), and inferior caval vein diameter by 4 ± 3 mm (P < 0.05). Heart rate tended to increase (67 ± 10 to 86 ± 20 beats/min; P = 0.052) as right and left ventricular volumes were reduced (P < 0.05). Stroke volume (107 ± 21 to 53 ± 15 ml) and CO (7.2 ± 1.6 to 4.2 ± 0.8 l/min) decreased as assessed after 1 min of GPI (P < 0.01). Left ventricular myocardial perfusion maximum upslope and its perfusion index decreased by 1.52 ± 0.15 s(-1) (P < 0.001) and 0.02 ± 0.01 s(-1) (P < 0.05), respectively, without transmural differences. Pulmonary tissue, spleen, kidney, and pectoral-muscle perfusion also decreased (P < 0.05), and yet liver perfusion was maintained. Thus, during pulmonary hyperinflation by GPI, CO and organ perfusion, including the myocardium, as well as perfusion of skeletal muscles, are reduced, and yet perfusion of the liver is maintained. Liver perfusion seems to be prioritized when CO decreases during GPI. PMID:26589331

  7. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    PubMed Central

    Mahmoudian, Saeid; Farhadi, Mohammad; Gholami, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaei, Mohammad; Ghoreyshi, Esmaeel; Ahmadizadeh, Majid; Lenarz, Thomas

    2012-01-01

    Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT) was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI) of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%). Most patients had bilateral abnormal perfusion (N = 65, 53.3%), and most subjects had abnormality in middle-temporal gyrus (N = 83, 68%) and temporoparietal cortex (N = 46, 37.7%). Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality) (P value = 0.045). Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal) and associative cortex (temporoparietal cortex). Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients. PMID:23267375

  8. Perfusion Imaging of Focal Cortical Dysplasia Using Arterial Spin Labeling: Correlation With Histopathological Vascular Density

    PubMed Central

    Wintermark, Pia; Lechpammer, Mirna; Warfield, Simon K.; Kosaras, Bela; Takeoka, Masanori; Poduri, Annapurna; Madsen, Joseph R.; Bergin, Ann M.; Whalen, Stephen; Jensen, Frances E.

    2016-01-01

    Focal cortical dysplasia is the most common malformation of cortical development, causing intractable epilepsy. This study investigated the relationship between brain perfusion and microvessel density in 7 children with focal cortical dysplasia. The authors analyzed brain perfusion measurements obtained by magnetic resonance imaging of 2 of the children and the microvessel density of brain tissue specimens obtained by epilepsy surgery on all of the children. Brain perfusion was approximately 2 times higher in the area of focal cortical dysplasia compared to the contralateral side. The microvessel density was nearly double in the area of focal cortical dysplasia compared to the surrounding cortex that did not have morphological abnormalities. These findings suggest that hyperperfusion can be related to increased microvessel density in focal cortical dysplasia rather than only to seizures. Further investigations are needed to determine the relationship between brain perfusion, microvessel density, and seizure activity. PMID:23696629

  9. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  10. Dual-mode quantitative imaging of wound tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Qin, Ruogu; Huang, Jiwei; Xu, Jeff S.; Ding, Liya; Gnyawali, Surya; Sen, Chandan K.; Huang, Kun; Xu, Ronald X.

    2010-02-01

    Accurate assessment of wound oxygenation and perfusion is important for evaluating wound healing/regression and guiding following therapeutic processes. However, many existing techniques and clinical practices are subjective and qualitative due to background bias, tissue heterogeneity, and inter-patient variation. To overcome these limitations, we developed a dual-modal imaging system for in vivo, non-invasive, real-time quantitative assessment of wound tissue oxygenation and perfusion. The imaging system integrated a broadband light source, a high-resolution CCD camera, a highly sensitive thermal camera, and a liquid crystal tunable filter. A user-friendly interface was developed to control all the components systematically. Advanced algorithms were explored for reliable reconstruction of tissue oxygenation and appropriate co-registration between thermal images and multispectral images. Dual-mode oxygenation and perfusion imaging was demonstrated on both benchtop models and human subjects, and compared with measurements using other methods, such as Laser Doppler and tissue oximeter. The test results suggested that the dual-modal imaging system has the potential for non-contact real-time imaging of wound tissue oxygenation and perfusion.

  11. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  12. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    PubMed

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  13. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  14. Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based analysis of admission CT perfusion scans

    PubMed Central

    Payabvash, Seyedmehdi; Kamalian, Shahmir; Fung, Steve; Wang, Yifei; Passanese, John; Kamalian, Shervin; Souza, Leticia CS; Kemmling, Andre; Harris, Gordon J.; Halpern, Elkan F.; Gonzalez, R. Gilberto; Furie, Karen L.; Lev, Michael H.

    2013-01-01

    Purpose To construct a multivariate model for prediction of early aphasia improvement in stroke patients using admission CT perfusion (CTP) and CT angiography (CTA). Methods Fifty-eight consecutive patients with aphasia due to first-time ischemic stroke of the left hemisphere were included. Language function was assessed based on patients’ admission and discharge NIHSS and clinical records. All patients had brain CTP and CTA within 9 hours of symptom onset. For image analysis, all CTPs were automatically coregistered to MNI-152 brain space and parcellated into mirrored cortical and subcortical regions. Multiple logistic regression analysis was used to find independent imaging and clinical predictors of language recovery. Results By the time of discharge, 21 (36%) patients demonstrated improvement of language. Independent factors predicting improvement in language included relative cerebral blood flow of angular gyrus gray matter (Brodmann’s area 39) and lower third of insular ribbon, proximal cerebral artery occlusion on admission CTA, and aphasia score on admission NIHSS exam. Using these 4 variables, we developed a multivariate logistic regression model that could estimate the probability of early improvement in stroke patients presenting with aphasia and predict functional outcome with 91% accuracy. Conclusion An imaging-based location weighted multivariate model is developed to predict early language improvement of aphasic patients using admission data collected within 9-hours of stroke onset. This pilot model should be validated in a larger, prospective study; however, the semi-automated atlas-based analysis of brain CTP, along with the statistical approach, could be generalized for prediction of other outcome measures in stroke patients. PMID:20488905

  15. Intraoperative imaging of cortical cerebral perfusion by time-resolved thermography and multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Sobottka, Stephan B.; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias

    2011-01-01

    A new approach to cortical perfusion imaging is demonstrated using high-sensitivity thermography in conjunction with multivariate statistical data analysis. Local temperature changes caused by a cold bolus are imaged and transferred to a false color image. A cold bolus of 10 ml saline at ice temperature is injected systemically via a central venous access. During the injection, a sequence of 735 thermographic images are recorded within 2 min. The recorded data cube is subjected to a principal component analysis (PCA) to select slight changes of the cortical temperature caused by the cold bolus. PCA reveals that 11 s after injection the temperature of blood vessels is shortly decreased followed by an increase to the temperature before the cold bolus is injected. We demonstrate the potential of intraoperative thermography in combination with multivariate data analysis to image cortical cerebral perfusion without any markers. We provide the first in vivo application of multivariate thermographic imaging.

  16. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    PubMed Central

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Summary Background Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. Case Report A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. Conclusions In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management. PMID:25593635

  17. Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke clinical trials

    PubMed Central

    Warach, Steven

    2001-01-01

    In light of the slow progress in developing effective therapies for ischemic stroke, magnetic resonance imaging techniques have emerged as new tools in stroke clinical trials. Rapid imaging with magnetic resonance imaging, diffusion weighted imaging, perfusion imaging and angiography are being incorporated into phase II and phase III stroke trials to optimize patient selection based on positive imaging diagnosis of the ischemic pathophysiology specifically related to a drug's mechanism of action and as a direct biomarker of the effect of a treatment's effect on the brain. PMID:11806771

  18. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    PubMed

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  19. Frequency-selective quantification of skin perfusion behavior during allergic testing using photoplethysmography imaging

    NASA Astrophysics Data System (ADS)

    Blanik, Nikolai; Blazek, Claudia; Pereira, Carina; Blazek, Vladimir; Leonhardt, Steffen

    2014-03-01

    Diagnosis of allergic immediate-type reactions is dependent on the visual assessment of the attending physician. With our novel non-obtrusive, camera-based photoplethysmography imaging (PPGI) setup, perfusion in the allergic testing area can be quantified and results displayed with spatial resolution in functional mappings. Thereby, each PPGI camera pixel can be assumed to be a classical (skin-based) reflective mode PPG sensor. An algorithm for post-processing of collected PPGI video sequences was developed to transfer black-and-white PPGI images into virtual 3D perfusion maps. For the first time, frequency selected perfusion quantification was assessed. For the presented evaluation, PPGI data from our clinical study were used [1]. For this purpose, different concentrations of histamine dilutions were administered to 27 healthy volunteers. Our results show clear trends in an increase in heartbeat synchronous perfusion rhythms and, simultaneously, a decrease of lower frequency vasomotor rhythms in these areas. These results, published for the first time, allow new insight into the distribution of skin perfusion dynamics and demonstrate the intuitive clinical usability of the proposed system.

  20. PET/CT scanners: a hardware approach to image fusion.

    PubMed

    Townsend, David W; Beyer, Thomas; Blodgett, Todd M

    2003-07-01

    New technology that combines positron tomography with x-ray computed tomography (PET/CT) is available from all major vendors of PET imaging equipment: CTI, Siemens, GE, Philips. Although not all vendors have made the same design choices as those described in this review all have in common that their high performance design places a commercial CT scanner in tandem with a commercial PET scanner. The level of physical integration is actually less than that of the original prototype design where the CT and PET components were mounted on the same rotating support. There will undoubtedly be a demand for PET/CT technology with a greater level of integration, and at a reduced cost. This may be achieved through the design of a scanner specifically for combined anatomical and functional imaging, rather than a design combining separate CT and PET scanners, as in the current approaches. By avoiding the duplication of data acquisition and image reconstruction functions, for example, a more integrated design should also allow cost savings over current commercial PET/CT scanners. The goal is then to design and build a device specifically for imaging the function and anatomy of cancer in the most optimal and effective way, without conceptualizing it as combined PET and CT. The development of devices specifically for imaging a particular disease (eg, cancer) differs from the conventional approach of, for example, an all-purpose anatomical imaging device such as a CT scanner. This new concept targets more of a disease management approach rather than the usual division into the medical specialties of radiology (anatomical imaging) and nuclear medicine (functional imaging). PMID:12931321

  1. Deformable planning CT to cone-beam CT image registration in head-and-neck cancer

    SciTech Connect

    Hou Jidong; Guerrero, Mariana; Chen, Wenjuan; D'Souza, Warren D.

    2011-04-15

    Purpose: The purpose of this work was to implement and validate a deformable CT to cone-beam computed tomography (CBCT) image registration method in head-and-neck cancer to eventually facilitate automatic target delineation on CBCT. Methods: Twelve head-and-neck cancer patients underwent a planning CT and weekly CBCT during the 5-7 week treatment period. The 12 planning CT images (moving images) of these patients were registered to their weekly CBCT images (fixed images) via the symmetric force Demons algorithm and using a multiresolution scheme. Histogram matching was used to compensate for the intensity difference between the two types of images. Using nine known anatomic points as registration targets, the accuracy of the registration was evaluated using the target registration error (TRE). In addition, region-of-interest (ROI) contours drawn on the planning CT were morphed to the CBCT images and the volume overlap index (VOI) between registered contours and manually delineated contours was evaluated. Results: The mean TRE value of the nine target points was less than 3.0 mm, the slice thickness of the planning CT. Of the 369 target points evaluated for registration accuracy, the average TRE value was 2.6{+-}0.6 mm. The mean TRE for bony tissue targets was 2.4{+-}0.2 mm, while the mean TRE for soft tissue targets was 2.8{+-}0.2 mm. The average VOI between the registered and manually delineated ROI contours was 76.2{+-}4.6%, which is consistent with that reported in previous studies. Conclusions: The authors have implemented and validated a deformable image registration method to register planning CT images to weekly CBCT images in head-and-neck cancer cases. The accuracy of the TRE values suggests that they can be used as a promising tool for automatic target delineation on CBCT.

  2. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  3. Image reconstruction for hybrid true-color micro-CT.

    PubMed

    Xu, Qiong; Yu, Hengyong; Bennett, James; He, Peng; Zainon, Rafidah; Doesburg, Robert; Opie, Alex; Walsh, Mike; Shen, Haiou; Butler, Anthony; Butler, Phillip; Mou, Xuanqin; Wang, Ge

    2012-06-01

    X-ray micro-CT is an important imaging tool for biomedical researchers. Our group has recently proposed a hybrid "true-color" micro-CT system to improve contrast resolution with lower system cost and radiation dose. The system incorporates an energy-resolved photon-counting true-color detector into a conventional micro-CT configuration, and can be used for material decomposition. In this paper, we demonstrate an interior color-CT image reconstruction algorithm developed for this hybrid true-color micro-CT system. A compressive sensing-based statistical interior tomography method is employed to reconstruct each channel in the local spectral imaging chain, where the reconstructed global gray-scale image from the conventional imaging chain served as the initial guess. Principal component analysis was used to map the spectral reconstructions into the color space. The proposed algorithm was evaluated by numerical simulations, physical phantom experiments, and animal studies. The results confirm the merits of the proposed algorithm, and demonstrate the feasibility of the hybrid true-color micro-CT system. Additionally, a "color diffusion" phenomenon was observed whereby high-quality true-color images are produced not only inside the region of interest, but also in neighboring regions. It appears harnessing that this phenomenon could potentially reduce the color detector size for a given ROI, further reducing system cost and radiation dose.

  4. Osmotic drug delivery to ischemic hindlimbs and perfusion of vasculature with microfil for micro-computed tomography imaging.

    PubMed

    Liu, Xiaobing; Terry, Toya; Pan, Su; Yang, Zhongwei; Willerson, James T; Dixon, Richard A F; Liu, Qi

    2013-06-29

    Preclinical research in animal models of peripheral arterial disease plays a vital role in testing the efficacy of therapeutic agents designed to stimulate microcirculation. The choice of delivery method for these agents is important because the route of administration profoundly affects the bioactivity and efficacy of these agents(1,2). In this article, we demonstrate how to locally administer a substance in ischemic hindlimbs by using a catheterized osmotic pump. This pump can deliver a fixed volume of aqueous solution continuously for an allotted period of time. We also present our mouse model of unilateral hindlimb ischemia induced by ligation of the common femoral artery proximal to the origin of profunda femoris and epigastrica arteries in the left hindlimb. Lastly, we describe the in vivo cannulation and ligation of the infrarenal abdominal aorta and perfusion of the hindlimb vasculature with Microfil, a silicone radiopaque casting agent. Microfil can perfuse and fill the entire vascular bed (arterial and venous), and because we have ligated the major vascular conduit for exit, the agent can be retained in the vasculature for future ex vivo imaging with the use of small specimen micro-CT(3).

  5. An incidentally detected solitary fibrous tumor on (99m)Tc-sestamibi myocardial perfusion imaging.

    PubMed

    Hua, Qian; Ni, Jianming

    2015-06-01

    A 55-year-old woman with a mild transient chest pain but normal laboratory examination results underwent Tc-sestamibi myocardial perfusion imaging. An abnormal nodular radioactive uptake, which appeared protruding from the anterior segments, was detected. This activity was later proved to be benign solitary fibrous tumor of pleura after histopathological examination after the surgical exploration.

  6. Spontaneous changes in /sup 201/Tl myocardial perfusion imaging after myocardial infarction

    SciTech Connect

    Buda, A.J.; Dubbin, J.D.; MacDonald, I.L.; Strauss, H.D.; Orr, S.A.; Meindok, H.

    1982-12-01

    To examine regional myocardial perfusion after myocardial infarction, 26 patients underwent exercise electrocardiographic testing with /sup 201/Tl myocardial perfusion imaging 3 weeks and 3 months after infarction. At 3 weeks, 9 of 26 patients (35%) had myocardial ischemia by exercise electrocardiographic testing, whereas 18 of 26 (69%) had ischemia by /sup 201/Tl imaging. The /sup 201/Tl scintigrams were scored by dividing each image, in 3 views, into 5 segments, using a 5-point scoring scheme. The exercise /sup 201/Tl score was 44.3 +/- 1.2 and increased to 47.3 +/- 1.2 in the redistribution study (p less than 0.001). Three months after infarction, although there was a significantly greater rate-pressure product which would predict a larger ischemic defect and a decrease in the stress /sup 201/Tl score, the stress score was improved (48.3 +/- 1.1, p less than 0.001). The redistribution score was similar, that is, 48.9 +/- 1.0. The improvement in /sup 201/Tl myocardial perfusion was associated with a loss of stress-induced ischemia in 8 patients (30%). These results indicate that spontaneous improvements in /sup 201/Tl myocardial perfusion imaging may occur after myocardial infarction.

  7. Computed Tomography Perfusion Imaging Detection of Microcirculatory Dysfunction in Small Intestinal Ischemia-Reperfusion Injury in a Porcine Model

    PubMed Central

    Shi, Haifeng; Li, Ruokun; Qiang, Jinwei; Li, Ying; Wang, Li; Sun, Rongxun

    2016-01-01

    Objective To evaluate multi-slice computed tomography (CT) perfusion imaging (CTPI) for identifying microcirculatory dysfunction in small intestinal ischemia−reperfusion (IR) injury in a porcine model. Materials and Methods Fifty-two pigs were randomly divided into 4 groups: (1) the IR group (n = 24), where intestinal ischemia was induced by separating and clamping the superior mesenteric artery (SMA) for 2 h, followed by reperfusion for 1, 2, 3, and 4 h (IR-1h, IR-2h, IR-3h, and IR-4h; n = 6, respectively); (2) the sham-operated (SO) group (n = 20), where the SMA was separated without clamping and controlled at postoperative 3, 4, 5, and 6 h (SO-3h, SO-4h, SO-5h, and SO-6h; n = 5, respectively); (3) the ischemia group (n = 4), where the SMA was separated and clamped for 2 h, without reperfusion, and (4) baseline group (n = 4), an additional group that was not manipulated. Small intestinal CTPI was performed at corresponding time points and perfusion parameters were obtained. The distal ileum was resected to measure the concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) and for histopathological examination. Results The perfusion parameters of the IR groups showed significant differences compared with the corresponding SO groups and the baseline group (before ischemia). The blood flow (BF), blood volume (BV), and permeability surface (PS) among the 4 IR groups were significantly different. BF and BV were significantly negatively correlated with MDA, and significantly positively correlated with SOD in the IR groups. Histopathologically, the effects of the 2-h ischemic loops were not significantly exacerbated by reperfusion. Conclusion CTPI can be a valuable tool for detecting microcirculatory dysfunction and for dynamic monitoring of small intestinal IR injury. PMID:27458696

  8. Computed Tomography (CT) Perfusion as an Early Predictive Marker for Treatment Response to Neoadjuvant Chemotherapy in Gastroesophageal Junction Cancer and Gastric Cancer - A Prospective Study

    PubMed Central

    Hansen, Martin Lundsgaard; Fallentin, Eva; Lauridsen, Carsten; Law, Ian; Federspiel, Birgitte; Bæksgaard, Lene; Svendsen, Lars Bo; Nielsen, Michael Bachmann

    2014-01-01

    Objectives To evaluate whether early reductions in CT perfusion parameters predict response to pre-operative chemotherapy prior to surgery for gastroesophageal junction (GEJ) and gastric cancer. Materials and Methods Twenty-eight patients with adenocarcinoma of the gastro-esophageal junction (GEJ) and stomach were included. Patients received three series of chemotherapy before surgery, each consisting of a 3-week cycle of intravenous epirubicin, cisplatin or oxaliplatin, concomitant with capecitabine peroral. The patients were evaluated with a CT perfusion scan prior to, after the first series of, and after three series of chemotherapy. The CT perfusion scans were performed using a 320-detector row scanner. Tumour volume and perfusion parameters (arterial flow, blood volume and permeability) were computed on a dedicated workstation with a consensus between two radiologists. Response to chemotherapy was evaluated by two measures. Clinical response was defined as a tumour size reduction of more than 50%. Histological response was evaluated based on residual tumour cells in the surgical specimen using the standardized Mandard Score 1 to 5, in which values of 1 and 2 were classified as responders, and 3 to 5 were classified as nonresponders. Results A decrease in tumour permeability after one series of chemotherapy was positively correlated with clinical response after three series of chemotherapy. Significant changes in permeability and tumour volume were apparent after three series of chemotherapy in both clinical and histological responders. A cut-off value of more than 25% reduction in tumour permeability yielded a sensitivity of 69% and a specificity of 58% for predicting clinical response. Conclusion Early decrease in permeability is correlated with the likelihood of clinical response to pre-operative chemotherapy in GEJ and gastric cancer. As a single diagnostic test, CT Perfusion only has moderate sensitivity and specificity in response assessment of pre

  9. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  10. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  11. Thoracic cancer imaging with PET/CT in radiation oncology

    NASA Astrophysics Data System (ADS)

    Chi, Pai-Chun Melinda

    Significance. Respiratory motion has been shown to cause artifacts in PET/CT imaging. This breathing artifact can have a significant impact on PET quantification and it can lead to large uncertainties when using PET for radiation therapy planning. We have demonstrated a promising solution to resolve the breathing artifact by acquiring respiration-averaged CT (ACT) for PET/CT. The purpose of this work was to optimize the ACT acquisition for clinical implementation and to evaluate the impact of ACT on PET/CT quantification. The hypothesis was that ACT is an effective method in removing the breathing artifact when compared to our current clinical protocol. Methods. Phase and cine approaches for acquiring ACT were investigated and the results of these two approaches were compared to the ACT generated from clinical 4DCT data sets (abbreviated as ACT10phs ). In the phase approach, ACT was generated based on combinations of selected respiratory phases; in the cine approach, ACT was generated based on cine images acquired over a fixed cine duration. The phase combination and cine duration that best approximated the ACT10phs were determined to be the optimized scanning parameters. 216 thoracic PET/CT patients were scanned with both current clinical and the ACT protocols. The effects of ACT on PET/CT quantification were assessed by comparing clinical PET/CT and ACT PET/CT using 3 metrics: PET/CT image alignment, maximum standardized uptake value (SUVmax), and threshold segmented gross tumor volume (GTV). Results. ACT10phs can be best approximated to within 2% of SUV variation by phase averaging based on 4 representative phases, and to within 3% by cine image averaging based on >3s of cine duration. We implemented the cine approach on the PET/CT scanners and acquired 216 patient data sets. 68% of patients had breathing artifacts in their clinical PET/CT and the artifacts were removed/reduced in all corresponding ACT PET/CT. PET/CT quantification for lesions <50 cm3 and

  12. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  13. A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging

    PubMed Central

    Cookson, A.N.; Lee, J.; Michler, C.; Chabiniok, R.; Hyde, E.; Nordsletten, D.; Smith, N.P.

    2014-01-01

    Contrast agent enhanced magnetic resonance (MR) perfusion imaging provides an early, non-invasive indication of defects in the coronary circulation. However, the large variation of contrast agent properties, physiological state and imaging protocols means that optimisation of image acquisition is difficult to achieve. This situation motivates the development of a computational framework that, in turn, enables the efficient mapping of this parameter space to provide valuable information for optimisation of perfusion imaging in the clinical context. For this purpose a single-compartment porous medium model of capillary blood flow is developed which is coupled with a scalar transport model, to characterise the behaviour of both blood-pool and freely-diffusive contrast agents characterised by their ability to diffuse through the capillary wall into the extra-cellular space. A parameter space study is performed on the nondimensionalised equations using a 2D model for both healthy and diseased myocardium, examining the sensitivity of system behaviour to Peclet number, Damköhler number (Da), diffusivity ratio and fluid porosity. Assuming a linear MR signal response model, sample concentration time series data are calculated, and the sensitivity of clinically-relevant properties of these signals to the model parameters is quantified. Both upslope and peak values display significant non-monotonic behaviour with regard to the Damköhler number, with these properties showing a high degree of sensitivity in the parameter range relevant to contrast agents currently in use. However, the results suggest that signal upslope is the more robust and discerning metric for perfusion quantification, in particular for correlating with perfusion defect size. Finally, the results were examined in the context of nonlinear signal response, flow quantification via Fermi deconvolution and perfusion reserve index, which demonstrated that there is no single best set of contrast agent parameters

  14. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors

    PubMed Central

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  15. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  16. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  17. TLD assessment of mouse dosimetry during microCT imaging.

    PubMed

    Figueroa, Said Daibes; Winkelmann, Christopher T; Miller, H William; Volkert, Wynn A; Hoffman, Timothy J

    2008-09-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm A1 filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0 +/- 5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0 +/- 6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0 +/- 4.0 mGy and 97.0 +/- 5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0 +/- 5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  18. The asymmetric facial skin perfusion distribution of Bell's palsy discovered by laser speckle imaging technology.

    PubMed

    Cui, Han; Chen, Yi; Zhong, Weizheng; Yu, Haibo; Li, Zhifeng; He, Yuhai; Yu, Wenlong; Jin, Lei

    2016-01-01

    Bell's palsy is a kind of peripheral neural disease that cause abrupt onset of unilateral facial weakness. In the pathologic study, it was evidenced that ischemia of facial nerve at the affected side of face existed in Bell's palsy patients. Since the direction of facial nerve blood flow is primarily proximal to distal, facial skin microcirculation would also be affected after the onset of Bell's palsy. Therefore, monitoring the full area of facial skin microcirculation would help to identify the condition of Bell's palsy patients. In this study, a non-invasive, real time and full field imaging technology - laser speckle imaging (LSI) technology was applied for measuring facial skin blood perfusion distribution of Bell's palsy patients. 85 participants with different stage of Bell's palsy were included. Results showed that Bell's palsy patients' facial skin perfusion of affected side was lower than that of the normal side at the region of eyelid, and that the asymmetric distribution of the facial skin perfusion between two sides of eyelid is positively related to the stage of the disease (P <  0.001). During the recovery, the perfusion of affected side of eyelid was increasing to nearly the same with the normal side. This study was a novel application of LSI in evaluating the facial skin perfusion of Bell's palsy patients, and we discovered that the facial skin blood perfusion could reflect the stage of Bell's palsy, which suggested that microcirculation should be investigated in patients with this neurological deficit. It was also suggested LSI as potential diagnostic tool for Bell's palsy. PMID:26444618

  19. The Effect of Acute Coronary Perfusion Change on Cardiac Function measured by Shear Wave Elasticity Imaging

    PubMed Central

    Vejdani-Jahromi, Maryam; Kiplagat, Annette; Trahey, Gregg E.; Wolf, Patrick D.

    2016-01-01

    The possibility of measuring cardiac function noninvasively has generated wide interest in elastography imaging techniques. Shear Wave Elasticity Imaging (SWEI) is an ultrasound-based elastography technique used to measure stiffness of tissues. While this technique has been studied extensively in static homogenous tissues such as liver, breast or prostate, there is still a significant need to study its capabilities to measure cardiac stiffness and function. In this research, we have studied the potential of SWEI to evaluate the coronary perfusion pressure effect on systolic and diastolic stiffness referred to as elastance and compliance of the heart. Five isolated rabbit hearts were used in this study in a Langendorff preparation. SWEI measurements of stiffness were recorded in two steps. In the first step, coronary perfusion was set to normal and then was reduced to half-normal. After 40 minutes of half-normal perfusion, it was returned to normal perfusion for the second step. SWEI velocity decreased from 6.003 m/s to 4.713 m/s in systole and from 1.948 m/s to 1.507 m/s in diastole in the first step. During the second step raising the perfusion to normal, SWEI stiffness showed an increase from 3.760 m/s to 5.468 m/s in systole and from 1.678 m/s to 2.156 m/s during diastole. Our results show that SWEI measurements of stiffness can characterize the cross talk between coronary perfusion and cardiac stiffness and also has the potential to measure compliance and elastance of the heart in systole and diastole. PMID:25571133

  20. The asymmetric facial skin perfusion distribution of Bell's palsy discovered by laser speckle imaging technology.

    PubMed

    Cui, Han; Chen, Yi; Zhong, Weizheng; Yu, Haibo; Li, Zhifeng; He, Yuhai; Yu, Wenlong; Jin, Lei

    2016-01-01

    Bell's palsy is a kind of peripheral neural disease that cause abrupt onset of unilateral facial weakness. In the pathologic study, it was evidenced that ischemia of facial nerve at the affected side of face existed in Bell's palsy patients. Since the direction of facial nerve blood flow is primarily proximal to distal, facial skin microcirculation would also be affected after the onset of Bell's palsy. Therefore, monitoring the full area of facial skin microcirculation would help to identify the condition of Bell's palsy patients. In this study, a non-invasive, real time and full field imaging technology - laser speckle imaging (LSI) technology was applied for measuring facial skin blood perfusion distribution of Bell's palsy patients. 85 participants with different stage of Bell's palsy were included. Results showed that Bell's palsy patients' facial skin perfusion of affected side was lower than that of the normal side at the region of eyelid, and that the asymmetric distribution of the facial skin perfusion between two sides of eyelid is positively related to the stage of the disease (P <  0.001). During the recovery, the perfusion of affected side of eyelid was increasing to nearly the same with the normal side. This study was a novel application of LSI in evaluating the facial skin perfusion of Bell's palsy patients, and we discovered that the facial skin blood perfusion could reflect the stage of Bell's palsy, which suggested that microcirculation should be investigated in patients with this neurological deficit. It was also suggested LSI as potential diagnostic tool for Bell's palsy.

  1. MR and CT image fusion of the cervical spine: a noninvasive alternative to CT-myelography

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Mirza, Sohail K.; Jarvik, Jeffrey G.; Heagerty, Patrick J.; Haynor, David R.

    2005-04-01

    CT-Myelography (CTM) is routinely used for planning surgery for degenerative disease of the spine, but its invasive nature, significant potential morbidity, and high costs make a noninvasive substitute desirable. We report our work on evaluating CT and MR image fusion as an alternative to CTM. Because the spine is only piecewise rigid, a multi-rigid approach to the registration of spinal CT and MR images was developed (SPIE 2004), in which the spine on CT images is first segmented into separate vertebrae, each of which is then rigidly registered with the corresponding vertebra on MR images. The results are then blended to obtain fusion images. Since they contain information from both modalities, we hypothesized that fusion images would be equivalent to CTM. To test this we selected 34 patients who had undergone MRI and CTM for degenerative disease of the cervical spine, and used the multi-rigid approach to produce fused images. A clinical vignette for each patient was created and presented along with either CT/MR fusion images or CTM images. A group of spine surgeons are asked to formulate detailed surgical plans based on each set of images, and the surgical plans are compared. A similar study assessing diagnostic agreement is being performed with neuroradiologists, who also assess the accuracy of registration. Our work to date has demonstrated the feasibility of segmentation and multi-rigid fusion in clinical cases and the acceptability of the questionnaire to physicians. Preliminary analysis of one surgeon's and one neuroradiologist"s evaluation has been performed.

  2. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  3. Algorithm-enabled low-dose micro-CT imaging.

    PubMed

    Han, Xiao; Bian, Junguo; Eaker, Diane R; Kline, Timothy L; Sidky, Emil Y; Ritman, Erik L; Pan, Xiaochuan

    2011-03-01

    Micro-computed tomography (micro-CT) is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300-1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm, we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield images with quality comparable to that obtained with existing algorithms, while using one-sixth to one quarter of the 361-view data currently used in typical micro-CT specimen imaging.

  4. Qualitative and Quantitative Assessment of Adenosine Triphosphate Stress Whole-Heart Dynamic Myocardial Perfusion Imaging Using 256-Slice Computed Tomography

    PubMed Central

    Kurata, Akira; Kawaguchi, Naoto; Kido, Teruhito; Inoue, Katsuji; Suzuki, Jun; Ogimoto, Akiyoshi; Funada, Jun-ichi; Higaki, Jitsuo; Miyagawa, Masao; Vembar, Mani; Mochizuki, Teruhito

    2013-01-01

    Background The aim of this study was to investigate the correlation of the qualitative transmural extent of hypoperfusion areas (HPA) using stress dynamic whole-heart computed tomography perfusion (CTP) imaging by 256-slice CT with CTP-derived myocardial blood flow (MBF) for the estimation of the severity of coronary artery stenosis. Methods and Results Eleven patients underwent adenosine triphosphate (0.16 mg/kg/min, 5 min) stress dynamic CTP by 256-slice CT (coverage: 8 cm, 0.27 s/rotation), and 9 of the 11 patients underwent coronary angiography (CAG). Stress dynamic CTP (whole–heart datasets over 30 consecutive heart beats in systole without spatial and temporal gaps) was acquired with prospective ECG gating (effective radiation dose: 10.4 mSv). The extent of HPAs was visually graded using a 3-point score (normal, subendocardial, transmural). MBF (ml/100g/min) was measured by deconvolution. Differences in MBF (mean ± standard error) according to HPA and CAG results were evaluated. In 27 regions (3 major coronary territories in 9 patients), 11 coronary stenoses (> 50% reduction in diameter) were observed. In 353 myocardial segments, HPA was significantly related to MBF (P < 0.05; normal 295 ± 94; subendocardial 186 ± 67; and transmural 80 ± 53). Coronary territory analysis revealed a significant relationship between coronary stenosis severity and MBF (P < 0.05; non-significant stenosis [< 50%], 284 ± 97; moderate stenosis [50–70%], 184 ± 74; and severe stenosis [> 70%], 119 ± 69). Conclusion The qualitative transmural extent of HPA using stress whole-heart dynamic CTP imaging by 256-slice CT exhibits a good correlation with quantitative CTP-derived MBF and may aid in assessing the hemodynamic significance of coronary artery disease. PMID:24376774

  5. Three-dimensional CT image segmentation by volume growing

    NASA Astrophysics Data System (ADS)

    Zhu, Dongping; Conners, Richard W.; Araman, Philip A.

    1991-11-01

    The research reported in this paper is aimed at locating, identifying, and quantifying internal (anatomical or physiological) structures, by 3-D image segmentation. Computerized tomography (CT) images of an object are first processed on a slice-by-slice basis, generating a stack of image slices that have been smoothed and pre-segmented. The image smoothing operation is executed by a spatially adaptive filter, and the 2-D pre-segmentation is achieved by a thresholding process whereby each individual pixel in the input image space is consistently assigned a label, according to its CT number, i.e., the gray-level value. Given a sequence of pre-segmented images as 3-D input scene (a stack of image slices), the spatial connectivity that exists among neighboring image pixels is utilized in a volume growing process which generates a number of well-defined volumetric regions or image solides, each representing an individual anatomical or physiological structure in the input scene. The 3-D segmentation is implemented using a volume growing process so that the aspect of pixel spatial connectivity is incorporated into the image segmentation procedure. To initialize the volume growing process for each volumetric region in the input 3-D scene, a seed location for a region is defined and loaded into a queue data structure called seed queue. The volume growing process consists of a set of procedures that perform different operations on the volumetric data of a CT image sequence. Examples of experiment of the described system with CT image data of several hardwood logs are given to demonstrate usefulness and flexibility of this approach. This allows solutions to industrial web inspection, as well as to several problems in medical image analysis where low-level image segmentation plays an important role toward successful image interpretation tasks.

  6. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

    PubMed Central

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  7. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach.

    PubMed

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali; Zhang, Yan

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  8. CT imaging with a mobile C-arm prototype

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  9. CT guided diffuse optical tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  10. SU-E-I-58: Detecting Tumors with Extremely Low Contrast in CT Images

    SciTech Connect

    Sheng, K; Gou, S; Kupelian, P; Steiberg, M; Low, D

    2014-06-01

    Purpose: Tumors such as the prostate focal lesions and the brain metastases have extremely low CT contrast and MRI is usually used for target delineation. The target contours are propagated to the CT for treatment planning and patient positioning. We have employed an advanced denoising method eliminating the noise and allow magnification of subtle contrast of these focal lesions on CT. Methods: Five prostate and two brain metastasis patients with MRI T2, diffusion or dynamic contrast enhanced (DCE) images confirmed focal lesions were included. One brain patients had 5 metastases. A block matching 3D (BM3D) algorithm was adapted to reduce the noise of kVCT images used for treatment planning. The gray-level range of the resultant images was narrowed to magnify the tumor-normal tissue contrast. Results: For the prostate patients, denoised kVCT images showed focal regions at 5, 8,11-1, 2, and 8–10 oclock for the 5 patients, this is highly consistent to the radiologist confirmed focal lesions based on MRI at 5, 7, 11-1, 2 and 8–10 oclock in the axial plane. These CT focal regions matched well with the MRI focal lesions in the cranio-caudal position. The average increase in density compared to background prostate glands was 0.86%, which corresponds to ∼50% increase in cellularity and is lower than the average CT noise level of 2.4%. For the brain patients, denoised kVCT showed 5/6 metastases. The high CT-density region of a metastasis is 2-mm off from its corresponding elevated MRI perfusion center. Overall the detecting sensitivity was 91%. Conclusion: It has been preliminarily demonstrated that the higher tumor cellularity can be detected using kVCT. The low contrast-to-noise information requires advanced denoising to reveal. The finding is significant to radiotherapy by providing an additional tool to locate focal lesions for confirming MRI-CT registration and providing a highly accessible outcome assessment tool.

  11. Myocardial perfusion imaging study of CO(2)-induced panic attack.

    PubMed

    Soares-Filho, Gastão L F; Machado, Sergio; Arias-Carrión, Oscar; Santulli, Gaetano; Mesquita, Claudio T; Cosci, Fiammetta; Silva, Adriana C; Nardi, Antonio E

    2014-01-15

    Chest pain is often seen alongside with panic attacks. Moreover, panic disorder has been suggested as a risk factor for cardiovascular disease and even a trigger for acute coronary syndrome. Patients with coronary artery disease may have myocardial ischemia in response to mental stress, in which panic attack is a strong component, by an increase in coronary vasomotor tone or sympathetic hyperactivity setting off an increase in myocardial oxygen consumption. Indeed, coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. These findings correlating panic disorder with coronary artery disease lead us to raise questions about the favorable prognosis of chest pain in panic attack. To investigate whether myocardial ischemia is the genesis of chest pain in panic attacks, we developed a myocardial perfusion study through research by myocardial scintigraphy in patients with panic attacks induced in the laboratory by inhalation of 35% carbon dioxide. In conclusion, from the data obtained, some hypotheses are discussed from the viewpoint of endothelial dysfunction and microvascular disease present in mental stress response. PMID:24188891

  12. Prone positioning improves distribution of pulmonary perfusion: noninvasive magnetic resonance imaging study in healthy humans.

    PubMed

    Suzuki, Hisashi; Sato, Yukio; Shindo, Masashi; Yoshioka, Hiroshi; Mizutani, Taro; Onizuka, Masataka; Sakakibara, Yuzuru

    2008-03-01

    The purpose of this study was to evaluate the effects of prone positioning on pulmonary perfusion using flow-sensitive alternating inversion recovery (FAIR), a noninvasive magnetic resonance imaging technique that requires no contrast medium. Seven healthy volunteers were studied in the supine and prone positions under three respiratory conditions: normal breathing of room air, unassisted breathing of 45% O2, and controlled mechanical ventilation (CMV) with positive end-expiratory pressure. Signal intensities (SIs) were obtained from ventral, middle, and dorsal regions on sagittal lung images and dependent/nondependent SI ratios were calculated to evaluate pulmonary perfusion distribution. In the supine position, SIs increased significantly from the ventral to dorsal region under all three respiratory conditions and prone positioning inverted the perfusion distribution under all conditions. Right lung SI ratios were 2.34 +/- 0.29, 2.74 +/- 0.66, and 2.42 +/- 0.73 in the supine position and 1.68 +/- 0.48, 1.78 +/- 0.36, and 1.92 +/- 0.21 in prone for room air, 45% O2, and CMV, respectively. The difference between supine and prone positions was statistically significant. The left lung showed a similar pattern and the difference was significant only under CMV. No difference was observed between the different respiratory conditions in both lungs. This study demonstrated that the distribution of pulmonary perfusion was more uniform in prone than in the supine position.

  13. A simple method for labeling CT images with respiratory states

    SciTech Connect

    Berlinger, Kajetan; Sauer, Otto; Vences, Lucia; Roth, Michael

    2006-09-15

    A method is described for labeling CT images with their respiratory state by a needle, connected to the patient's chest/abdomen. By means of a leverage the needle follows the abdominal respiratory motion. The needle is visible as a blurred spot in every CT slice. The method was tested with nine patients. A series of volume scans during free breathing was performed. The detected positions of the moving needle in every single slice were compared to each other thus enabling respiratory state assignment. The tool is an inexpensive alternative to complex respiratory measuring tools for four dimensional (4D) CT and was greatly accepted in the clinic due to its simplicity.

  14. Combined SPECT and x-ray CT medical imaging system

    NASA Astrophysics Data System (ADS)

    Kalki, Kathrin; Brown, J. Keenan; Blankespoor, Stephen C.; Heanue, Joseph A.; Wu, Xiang; Cann, Christopher E.; Hasegawa, Bruce H.; Chin, Michael; Stillson, Carol A.; Dae, Michael W.; Carver, James M.

    1995-05-01

    We have designed and built a system for correlated x ray CT transmission and SPECT emission imaging with an array of photon counting detectors. The scanner operates in a third generation fan beam geometry by translating a 23 element high purity germanium detector across the fan to image phantoms and small animals. The x ray CT image is used to obtain an object specific, i.e., anatomically accurate, attenuation map for the reconstruction of the SPECT image. SPECT images are reconstructed with an MLEM code and the pixel values are scaled in physical units by determining a scaling factor from a uniform water phantom with homogeneous and known attenuation. Single myocardial slices of several pigs were imaged with a 99mTc sestamibi imaging agent which is taken up in proportion to regional myocardial blood flow. The results show that 99mTc uptake and regional myocardial blood flow, determined in vivo from reconstructed SPECT images, correlate with the measured in vitro data. Furthermore, the correlation is markedly improved by reconstructing the images with an object specific attenuation map obtained from the coregistered x ray CT image. We were also able to restore the 99mTc sestamibi uptake from the reconstructed images to an accuracy between 40% and 90% of the true in vitro value, depending on the selection of maximum or mean pixel values in the regions of interest.

  15. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease

    SciTech Connect

    Maddahi, J.; Kiat, H.; Van Train, K.F.; Prigent, F.; Friedman, J.; Garcia, E.V.; Alazraki, N.; DePuey, E.G.; Nichols, K.; Berman, D.S. )

    1990-10-16

    Technetium-99m (Tc-99m) sestamibi is a new myocardial perfusion imaging agent that offers significant advantages over thallium-201 (Tl-201) for myocardial perfusion imaging. The results of the current clinical trials using acquisition and processing parameters similar to those for Tl-201 and a separate (2-day) injection protocol suggest that Tc-99m sestamibi and Tl-201 single photon emission computed tomography (SPECT) provide similar information with respect to detection of myocardial perfusion defects, assessment of the pattern of defect reversibility, overall detection of coronary artery disease (CAD) and detection of disease in individual coronary arteries. Tc-99m sestamibi SPECT appears to be superior to Tc-99m sestamibi planar imaging because the former provides a higher defect contrast and is more accurate for detection of disease in individual coronary arteries. Research is currently under way addressing optimization of acquisition and processing of Tc-99m sestamibi studies and development of quantitative algorithms for detection and localization of CAD and sizing of transmural and nontransmural myocardial perfusion defects. It is expected that with the implementation of the final results of these new developments, further significant improvement in image quality will be attained, which in turn will further increase the confidence in image interpretation. Development of algorithms for analysis of end-diastolic myocardial images may allow better evaluation of small and nontransmural myocardial defects. Furthermore, gated studies may provide valuable information with respect to regional myocardial wall motion and wall thickening. With the implementation of algorithms for attenuation and scatter correction, the overall specificity of Tc-99m sestamibi SPECT should improve significantly. 32 references.

  16. C-arm perfusion imaging with a fast penalized maximum-likelihood approach

    NASA Astrophysics Data System (ADS)

    Frysch, Robert; Pfeiffer, Tim; Bannasch, Sebastian; Serowy, Steffen; Gugel, Sebastian; Skalej, Martin; Rose, Georg

    2014-03-01

    Perfusion imaging is an essential method for stroke diagnostics. One of the most important factors for a successful therapy is to get the diagnosis as fast as possible. Therefore our approach aims at perfusion imaging (PI) with a cone beam C-arm system providing perfusion information directly in the interventional suite. For PI the imaging system has to provide excellent soft tissue contrast resolution in order to allow the detection of small attenuation enhancement due to contrast agent in the capillary vessels. The limited dynamic range of flat panel detectors as well as the sparse sampling of the slow rotating C-arm in combination with standard reconstruction methods results in limited soft tissue contrast. We choose a penalized maximum-likelihood reconstruction method to get suitable results. To minimize the computational load, the 4D reconstruction task is reduced to several static 3D reconstructions. We also include an ordered subset technique with transitioning to a small number of subsets, which adds sharpness to the image with less iterations while also suppressing the noise. Instead of the standard multiplicative EM correction, we apply a Newton-based optimization to further accelerate the reconstruction algorithm. The latter optimization reduces the computation time by up to 70%. Further acceleration is provided by a multi-GPU implementation of the forward and backward projection, which fulfills the demands of cone beam geometry. In this preliminary study we evaluate this procedure on clinical data. Perfusion maps are computed and compared with reference images from magnetic resonance scans. We found a high correlation between both images.

  17. Adaptively Tuned Iterative Low Dose CT Image Denoising.

    PubMed

    Hashemi, SayedMasoud; Paul, Narinder S; Beheshti, Soosan; Cobbold, Richard S C

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  18. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  19. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  20. PET/CT for radiotherapy: image acquisition and data processing.

    PubMed

    Bettinardi, V; Picchio, M; Di Muzio, N; Gianolli, L; Messa, C; Gilardi, M C

    2010-10-01

    This paper focuses on acquisition and processing methods in positron emission tomography/computed tomography (PET/CT) for radiotherapy (RT) applications. The recent technological evolutions of PET/CT systems are described. Particular emphasis is dedicated to the tools needed for the patient positioning and immobilization, to be used in PET/CT studies as well as during RT treatment sessions. The effect of organ and lesion motion due to patient's respiration on PET/CT imaging is discussed. Breathing protocols proposed to minimize PET/CT spatial mismatches in relation to respiratory movements are illustrated. The respiratory gated (RG) 4D-PET/CT techniques, developed to measure and compensate for organ and lesion motion, are then introduced. Finally a description is provided of different acquisition and data processing techniques, implemented with the aim at improving: i) image quality and quantitative accuracy of PET images, and ii) target volume definition and treatment planning in RT, by using specific and personalised motion information.

  1. Perfusion computed tomography in renal cell carcinoma

    PubMed Central

    Das, Chandan J; Thingujam, Usha; Panda, Ananya; Sharma, Sanjay; Gupta, Arun Kumar

    2015-01-01

    Various imaging modalities are available for the diagnosis, staging and response evaluation of patients with renal cell carcinoma (RCC). While contrast enhanced computed tomography (CT) is used as the standard of imaging for size, morphological evaluation and response assessment in RCC, a new functional imaging technique like perfusion CT (pCT), goes down to the molecular level and provides new perspectives in imaging of RCC. pCT depicts regional tumor perfusion and vascular permeability which are indirect parameters of tumor angiogenesis and thereby provides vital information regarding tumor microenvironment. Also response evaluation using pCT may predate the size criteria used in Response Evaluation Criteria in Solid Tumors, as changes in the perfusion occurs earlier following tissue kinase inhibitors before any actual change in size. This may potentially help in predicting prognosis, better selection of therapy and more accurate and better response evaluation in patients with RCC. This article describes the techniques and role of pCT in staging and response assessment in patients with RCCs. PMID:26217456

  2. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  3. Performance benchmarking of liver CT image segmentation and volume estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Zhou, Jiayin; Tian, Qi; Liu, Jimmy J.; Qi, Yingyi; Leow, Wee Kheng; Han, Thazin; Wang, Shih-chang

    2008-03-01

    In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in hospitals. Image-based knowledge discovery plays important roles in many CAD applications, which have great potential to be integrated into the next-generation picture archiving and communication systems (PACS). Robust medical image segmentation tools are essentials for such discovery in many CAD applications. In this paper we present a platform with necessary tools for performance benchmarking for algorithms of liver segmentation and volume estimation used for liver transplantation planning. It includes an abdominal computer tomography (CT) image database (DB), annotation tools, a ground truth DB, and performance measure protocols. The proposed architecture is generic and can be used for other organs and imaging modalities. In the current study, approximately 70 sets of abdominal CT images with normal livers have been collected and a user-friendly annotation tool is developed to generate ground truth data for a variety of organs, including 2D contours of liver, two kidneys, spleen, aorta and spinal canal. Abdominal organ segmentation algorithms using 2D atlases and 3D probabilistic atlases can be evaluated on the platform. Preliminary benchmark results from the liver segmentation algorithms which make use of statistical knowledge extracted from the abdominal CT image DB are also reported. We target to increase the CT scans to about 300 sets in the near future and plan to make the DBs built available to medical imaging research community for performance benchmarking of liver segmentation algorithms.

  4. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  5. Correction for partial volume effects in brain perfusion ECT imaging

    NASA Astrophysics Data System (ADS)

    Koole, Michel; Staelens, Steven; Van de Walle, Rik; Lemahieu, Ignace L.

    2003-05-01

    The accurate quantification of brain perfusion for emission computed tomography data (PET-SPECT) is limited by partial volume effects (PVE). This study presents a new approach to estimate accurately the true tissue tracer activity within the grey matter tissue compartment. The methodology is based on the availability of additional anatomical side information and on the assumption that activity concentration within the white matter tissue compartment is constant. Starting from an initial estimate for the white matter grey matter activity, the true tracer activity within the grey matter tissue compartment is estimated by an alternating ML-EM-algorithm. During the updating step the constant activity concentration within the white matter compartment is modelled in the forward projection in order to reconstruct the true activity distribution within the grey matter tissue compartment, hence reducing partial volume averaging. Consequently the estimate for the constant activity in the white matter tissue compartment is updated based on the new estimated activity distribution in the grey matter tissue compartment. We have tested this methodology by means of computer simulations. A T1-weighted MR brainscan of a patient was segmented into white matter, grey matter and cerebrospinal fluid, using the segmentation package of the SPM-software (Statistical Parametric Mapping). The segmented grey and white matter were used to simulate a SPECT acquisition, modelling the noise and the distance dependant detector response. Scatter and attenuation were ignored. Following the above described strategy, simulations have shown it is possible to reconstruct the true activity distribution for the grey matter tissue compartment (activity/tissue volume), assuming constant activity in the white matter tissue compartment.

  6. Defining Core and Penumbra in Ischemic Stroke: A Voxel- and Volume-Based Analysis of Whole Brain CT Perfusion.

    PubMed

    Yu, Yannan; Han, Quan; Ding, Xinfa; Chen, Qingmeng; Ye, Keqi; Zhang, Sheng; Yan, Shenqiang; Campbell, Bruce C V; Parsons, Mark W; Wang, Shaoshi; Lou, Min

    2016-01-01

    Whole brain computed tomography perfusion (CTP) has the potential to select eligible patients for reperfusion therapy. We aimed to find the optimal thresholds on baseline CTP for ischemic core and penumbra in acute ischemic stroke. We reviewed patients with acute ischemic stroke in the anterior circulation, who underwent baseline whole brain CTP, followed by intravenous thrombolysis and perfusion imaging at 24 hours. Patients were divided into those with major reperfusion (to define the ischemic core) and minimal reperfusion (to define the extent of penumbra). Receiver operating characteristic (ROC) analysis and volumetric consistency analysis were performed separately to determine the optimal threshold by Youden's Index and mean magnitude of volume difference, respectively. From a series of 103 patients, 22 patients with minimal-reperfusion and 47 with major reperfusion were included. Analysis revealed delay time ≥ 3 s most accurately defined penumbra (AUC = 0.813; 95% CI, 0.812-0.814, mean magnitude of volume difference = 29.1 ml). The optimal threshold for ischemic core was rCBF ≤ 30% within delay time ≥ 3 s (AUC = 0.758; 95% CI, 0.757-0.760, mean magnitude of volume difference = 10.8 ml). In conclusion, delay time ≥ 3 s and rCBF ≤ 30% within delay time ≥ 3 s are the optimal thresholds for penumbra and core, respectively. These results may allow the application of the mismatch on CTP to reperfusion therapy.

  7. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  8. Four dimensional optoacoustic imaging of perfusion in preclinical breast tumor model in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deán-Ben, Xosé Luís.; Ermolayev, Vladimir; Mandal, Subhamoy; Ntziachristos, Vasilis; Razansky, Daniel

    2016-03-01

    Imaging plays an increasingly important role in clinical management and preclinical studies of cancer. Application of optical molecular imaging technologies, in combination with highly specific contrast agent approaches, eminently contributed to understanding of functional and histological properties of tumors and anticancer therapies. Yet, optical imaging exhibits deterioration in spatial resolution and other performance metrics due to light scattering in deep living tissues. High resolution molecular imaging at the whole-organ or whole-body scale may therefore bring additional understanding of vascular networks, blood perfusion and microenvironment gradients of malignancies. In this work, we constructed a volumetric multispectral optoacoustic tomography (vMSOT) scanner for cancer imaging in preclinical models and explored its capacity for real-time 3D intravital imaging of whole breast cancer allografts in mice. Intrinsic tissue properties, such as blood oxygenation gradients, along with the distribution of externally administered liposomes carrying clinically-approved indocyanine green dye (lipo-ICG) were visualized in order to study vascularization, probe penetration and extravasation kinetics in different regions of interest within solid tumors. The use of v-MSOT along with the application of volumetric image analysis and perfusion tracking tools for studies of pathophysiological processes within microenvironment gradients of solid tumors demonstrated superior volumetric imaging system performance with sustained competitive resolution and imaging depth suitable for investigations in preclinical cancer models.

  9. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  10. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    PubMed

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26676386

  11. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    PubMed

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Recent and Future Directions in CT Imaging

    PubMed Central

    Pelc, Norbert J.

    2014-01-01

    Computed Tomography (CT) has made enormous technical advances since its introduction into clinical use. The engineering improvements have in turn led to important clinical applications and large impact in patient care. This paper reviews the technology development trends in Computed Tomography since its introduction and uses these trends to help illuminate likely future progress. The prediction is that significant further improvements in speed, spatial resolution and dose efficiency can be expected in the next decade. PMID:24435658

  13. 3D imaging of myocardial perfusion and coronary tree morphology from a single rotational angiogram

    NASA Astrophysics Data System (ADS)

    Lauritsch, Günter; Rohkohl, Christopher; Hornegger, Joachim; Sinha, Anil-Martin; Brachmann, Johannes; Rieber, Johannes; Rittger, Harald

    2011-03-01

    Diagnosis and treatment of coronary heart disease are performed in the catheter laboratory using an angiographic X-ray C-arm system. The morphology of the coronary tree and potentially ischemic lesions are determined in 2D projection views. The hemodynamic impact of the lesion would be valuable information for treatment decision. Using other modalities for functional imaging is disrupting the clinical workflow since the patient has to be transferred from the catheter laboratory to another scanner, and back to the catheter laboratory for performing the treatment. In this work a novel technology is used for simultaneous 3D imaging of first pass perfusion and the morphology of the coronary tree from a single rotational angiogram. A selective, single shot of contrast agent of less than 20ml directly into the coronaries is sufficient for a proper contrast resolution. Due to the long acquisition time cardiac motion has to be considered. A novel reconstruction technique for estimation and compensation of cardiac motion from the acquired projection data is used. The overlay of the 3D structure of the coronary tree and the perfusion image shows the correlation of myocardial areas and the associated coronary sections supporting that region. In a case example scar lesions caused by a former myocardial infarct are investigated. A first pass perfusion defect is found which is validated by a late enhancement magnetic resonance image. No ischemic defects are found. The non vital regions are still supported by the coronary vasculature.

  14. Prior CT imaging history for patients who undergo PAN CT for acute traumatic injury

    PubMed Central

    Kenter, Jeremy; Blow, Osbert; Krall, Scott P.; Gest, Albert; Smith, Cynthia

    2015-01-01

    Objective. A single PAN scan may provide more radiation to a patient than is felt to be safe within a one-year period. Our objective was to determine how many patients admitted to the trauma service following a PAN scan had prior CT imaging within our six-hospital system. Methods. We performed a secondary analysis of a prospectively collected trauma registry. The study was based at a level-two trauma center and five affiliated hospitals, which comprise 70.6% of all Emergency Department visits within a twelve county region of southern Texas. Electronic medical records were reviewed dating from the point of trauma evaluation back to December 5, 2005 to determine evidence of prior CT imaging. Results. There were 867 patients were admitted to the trauma service between January 1, 2012 and December 31, 2012. 460 (53%) received a PAN scan and were included in the study group. The mean age of the study group was 37.7 ± 1.54 years old, 24.8% were female, and the mean ISS score was 13.4 ± 1.07. The most common mechanism of injury was motor vehicle collision (47%). 65 (14%; 95% CI [11–18]%) of the patients had at least one prior CT. The most common prior studies performed were: CT head (29%; 19–42%), CT Face (29%; 19–42%) and CT Abdomen and Pelvis (18%; 11–30%). Conclusion. Within our trauma registry, 14% of patients had prior CT imaging within our hospital system before their traumatic event and PAN scan. PMID:26056616

  15. A variational approach to bone segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Calder, Jeff; Tahmasebi, Amir M.; Mansouri, Abdol-Reza

    2011-03-01

    We present a variational approach for segmenting bone structures in Computed Tomography (CT) images. We introduce a novel functional on the space of image segmentations, and subsequently minimize this functional through a gradient descent partial differential equation. The functional we propose provides a measure of similarity of the intensity characteristics of the bone and tissue regions through a comparison of their cumulative distribution functions; minimizing this similarity measure therefore yields the maximal separation between the two regions. We perform the minimization of our proposed functional using level set partial differential equations; in addition to numerical stability, this yields topology independence, which is especially useful in the context of CT bone segmentation where a bone region may consist of several disjoint pieces. Finally, we present an extensive validation of our method against expert manual segmentation on CT images of the wrist, ankle, foot, and pelvis.

  16. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  17. PET/CT imaging and radioimmunotherapy of prostate cancer

    PubMed Central

    Bouchelouche, Kirsten; Tagawa, Scott T.; Goldsmith, Stanley J.; Turkbey, Baris; Capala, Jacek; Choyke, Peter

    2012-01-01

    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, 18F- fluorodeoxyglucose (FDG), is not very useful in prostate cancer. However, in recent years other PET tracers have improved the accuracy of PET/CT imaging of prostate cancer. Among these, choline, labelled with 18F or 11C, 11C-acetate and 18F- fluoride have demonstrated promising results, and other new radiopharmaceuticals are currently under development and evaluation in pre-clinical and clinical studies. Large prospective clinical PET/CT trials are needed to establish the role of PET/CT in prostate cancer patients. Because there are only limited available therapeutic options for advanced metastatic prostate cancer, there is an urgent need for the development of more effective treatment modalities that could improve outcome. Prostate cancer represents an attractive target for radioimmunotherapy (RIT) for several reasons, including pattern of metastatic spread (lymph nodes and bone marrow, sites with good access to circulating antibodies), and small volume disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen (PSMA) is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Anti PSMA RIT demonstrates antitumor activity and is well tolerated. Clinical trials are underway to further improve upon treatment efficacy and patient selection. This review focuses on the recent advances of clinical PET/CT imaging and RIT of prostate

  18. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  19. Real-time ultrasound perfusion imaging in acute stroke: assessment of cerebral perfusion deficits related to arterial recanalization.

    PubMed

    Bolognese, Manuel; Artemis, Dimitrios; Alonso, Angelika; Hennerici, Michael G; Meairs, Stephan; Kern, Rolf

    2013-05-01

    We investigated whether real-time ultrasound perfusion imaging (rt-UPI) is able to detect perfusion changes related to arterial recanalization in the acute phase of middle cerebral artery (MCA) stroke. Twenty-four patients with acute territorial MCA stroke were examined with rt-UPI and transcranial color-coded duplex ultrasound (TCCD). Ultrasound studies were consecutively performed within 24 h and 72-96 h after stroke onset. Real-time UPI parameters of bolus kinetics (time to peak, rt-TTP) and of refill kinetics (plateau A and slope β of the exponential replenishment curve) were calculated from regions of interest of ischemic versus normal brain tissue; these parameters were compared between early and follow-up examinations in patients who recanalized. At the early examination, there was a delay of rt-TTP in patients with MCA occlusion (rt-TTP [s]: 13.09 ± 3.21 vs. 10.16 ± 2.6; p = 0.01) and a lower value of the refill parameter β (β [1/s]: 0.62 ± 0.34 vs. 1.09 ± 0.58; p = 0.01) in ischemic compared with normal brain tissue, whereas there were no differences of the parameters A and Axβ. At follow-up, the delay of rt-TTP was reversible once recanalization of an underlying MCA obstruction was demonstrated: rt-TTP [s], 13.09 ± 3.21 at 24 h versus 10.95 ± 1.5 at 72-96 h (p = 0.03). Correspondingly, β showed a higher slope than at the first examination: β [1/s]: 0.55 ± 0.29 at 24 h versus 0.71 ± 0.27 at 72-96 h (p = 0.04). We conclude that real-time UPI can detect hemodynamic impairment in acute MCA occlusion and subsequent improvement following arterial recanalization. This offers the chance for bedside monitoring of the hemodynamic compromise (e.g. during therapeutic interventions such as systemic thrombolysis).

  20. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.

    PubMed

    Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo

    2016-02-01

    Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed.

  1. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.

    PubMed

    Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo

    2016-02-01

    Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. PMID:26774540

  2. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  3. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.

    PubMed

    Ball, Daniel R; Cruickshank, Rachel; Carr, Carolyn A; Stuckey, Daniel J; Lee, Philip; Clarke, Kieran; Tyler, Damian J

    2013-11-01

    Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess

  4. Portable laser speckle perfusion imaging system based on digital signal processor.

    PubMed

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  5. Portable laser speckle perfusion imaging system based on digital signal processor

    NASA Astrophysics Data System (ADS)

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  6. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  7. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  8. A segmentation algorithm of intracranial hemorrhage CT image

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Chen, Zhiguo; Wang, Jianzhi

    2011-10-01

    To develop a computer aided detection (CAD) system that improves diagnostic accuracy of intracranial hemorrhage on cerebral CT. A method for CT image segmentation of brain is proposed, with which, several regions that are suspicious of hemorrhage can be segmented rapidly and effectively. Extracting intracranial area algorithm is introduced firstly to extract intracranial area. Secondly, FCM is employed twice, we named it with TFCM. FCM is first employed to identify areas of intracranial hemorrhage. Finally, FCM is employed to segment the lesions. Experimental results on real medical images demonstrate the efficiency and effectiveness.

  9. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  10. Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images

    PubMed Central

    Vasilache, Simina; Ward, Kevin; Cockrell, Charles; Ha, Jonathan; Najarian, Kayvan

    2009-01-01

    Background The analysis of pelvic CT scans is a crucial step for detecting and assessing the severity of Traumatic Pelvic Injuries. Automating the processing of pelvic CT scans could impact decision accuracy, decrease the time for decision making, and reduce health care cost. This paper discusses a method to automate the segmentation of bone from pelvic CT images. Accurate segmentation of bone is very important for developing an automated assisted-decision support system for Traumatic Pelvic Injury diagnosis and treatment. Methods The automated method for pelvic CT bone segmentation is a hierarchical approach that combines filtering and histogram equalization, for image enhancement, wavelet analysis and automated seeded region growing. Initial results of segmentation are used to identify the region where bone is present and to target histogram equalization towards the specific area. Speckle Reducing Anisotropic Didffusion (SRAD) filter is applied to accentuate the desired features in the region. Automated seeded region growing is performed to refine the initial bone segmentation results. Results The proposed method automatically processes pelvic CT images and produces accurate segmentation. Bone connectivity is achieved and the contours and sizes of bones are true to the actual contour and size displayed in the original image. Results are promising and show great potential for fracture detection and assessing hemorrhage presence and severity. Conclusion Preliminary experimental results of the automated method show accurate bone segmentation. The novelty of the method lies in the unique hierarchical combination of image enhancement and segmentation methods that aims at maximizing the advantages of the combined algorithms. The proposed method has the following advantages: it produces accurate bone segmentation with maintaining bone contour and size true to the original image and is suitable for automated bone segmentation from pelvic CT images. PMID:19891802

  11. Utilization of CT images for the quantification of FDG uptake

    NASA Astrophysics Data System (ADS)

    Karidioula, I.; De Freitas, D.; Cachin, F.; Geissler, B.; Jullien, Ph.; Maublant, J.

    2006-12-01

    The aim of this study was to evaluate an automatic method based on a computed tomography (CT) derived region of interest (ROI) to quantify the mean standardized uptake value (SUVm) of 18F-fluoro-deoxy-glucose (FDG) in pulmonary lesions detected by positron emission tomography (PET). A total of 164 pairs of slices were selected in a series of PET/CT studies performed in 26 patients presenting lung tumours of various forms and complexities. On each matched CT slice, a ROI was obtained by growth-region segmentation starting from a pixel contained in the tumour. The obtained ROI was then applied to the PET image to calculate SUVm. Results were compared with the conventional manual method using a geometric ROI positioned directly on the PET lesion. The automatic delineation of the tumour from the CT image was successful in 136 sections (83%). The SUVm calculated by the manual and automatic method were respectively (mean±standard deviation) 5.05±2.39 and 6.70±3.18 ( p<0.05). The ROI size (in number of pixels) was respectively 28±23 and 21±17 ( p<0.05). The variability of the automatic method was 0% versus 20% for the manual method. SUV of FDG in PET/CT can be calculated with an excellent reproducibility by using the CT-derived limits of the lesion.

  12. PET/CT imaging in lung cancer: indications and findings*

    PubMed Central

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  13. PET/CT imaging in lung cancer: indications and findings.

    PubMed

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  14. Multimodal imaging of central retinal artery occlusion with retained cilioretinal perfusion.

    PubMed

    Walkden, Andrew; Kelly, Simon P

    2016-01-01

    A man aged 59 years old presented with sudden, painless, monocular visual loss due to central retinal artery occlusion. Central vision was retained and peripheral vision lost due to retained cilioretinal perfusion. Increased inner retinal thickening and reflectivity followed by subsequent reduction was documented by sequential imaging. This is the first report of such events monitored with spectral-domain optical coherence tomography where central visual acuity was maintained. PMID:27530879

  15. Exercise supplementation of dipyridamole for myocardial perfusion imaging

    SciTech Connect

    DePuey, E.G.

    1991-08-01

    The substitution of intravenous dipyridamole for symptom-limited treadmill exercise has provided a non-invasive means to diagnose coronary artery disease with 201Tl scintigraphy in patients unable to adequately exercise. Limitations of dipyridamole/thallium imaging are primarily due to suboptimal image quality secondary to hepatic tracer concentration and decreased test sensitivity in patients who are dipyridamole non-responders. Low-level treadmill exercise supplementation improves image quality, whereas handgrip has little, if any, benefit. The effect of low-level exercise in augmenting coronary blood flow is unknown and reports regarding the effect of handgrip are conflicting. The diagnostic benefit of these maneuvers in improving test sensitivity and decreasing the number of non-responders has not been documented. The combination of maximal, symptom-limited treadmill exercise and intravenous dipyridamole is a theoretically attractive option to improve overall test sensitivity, but the physiologic consequences and potential side effects should be more thoroughly investigated.

  16. Laboratory 3D Micro-XRF/Micro-CT Imaging System

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Liu, X.

    2011-09-01

    A prototype micro-XRF laboratory system based on pinhole imaging was developed to produce 3D elemental maps. The fluorescence x-rays are detected by a deep-depleted CCD camera operating in photon-counting mode. A charge-clustering algorithm, together with dynamically adjusted exposure times, ensures a correct energy measurement. The XRF component has a spatial resolution of 70 μm and an energy resolution of 180 eV at 6.4 keV. The system is augmented by a micro-CT imaging modality. This is used for attenuation correction of the XRF images and to co-register features in the 3D XRF images with morphological structures visible in the volumetric CT images of the object.

  17. ESR imaging of the rat brain with a nitroxide radical perfused by in vivo microdialysis.

    PubMed

    Ueda, Y; Yokoyama, H; Ohya-Nishiguchi, H; Kamada, H

    1997-01-01

    We report here our investigation of the spatial distribution of free radicals using an electron spin resonance (ESR)-imaging system combined with an in vivo brain microdialysis method, which was performed in the resonator of the ESR-imaging system. A nonmagnetic cannula, newly developed in this study, was used for the perfusion of the exogenous free radicals agent. A nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl PROYXL), was used as the imaging agent in saline solution at a concentration of 0.3 M, which was perfused into the right caudate putamen of the rat at 2 microliters/min by a microinfusion pump. Two-dimensional ESR projection of the Z-X plane, which was clearly distinguished (about phi 10 mm) from the nonperfused brain area, was obtained 6 h after the beginning of perfusion of carbamoyl PROXYL. The present method is considered to be a useful tool to introduce stable free radicals into a specific area of the brain.

  18. Automatic anatomy recognition on CT images with pathology

    NASA Astrophysics Data System (ADS)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  19. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  20. Retroperitoneal bronchogenic cyst: CT and MR imaging.

    PubMed

    Murakami, R; Machida, M; Kobayashi, Y; Ogura, J; Ichikawa, T; Kumazaki, T

    2000-01-01

    Retroperitoneal bronchogenic cysts are extremely rare congenital anomalies that represent malformations of the embryonic foregut and are morphologically expressed as maldevelopments of the respiratory system. Because of the low prevalence of these tumors, their imaging features have seldom been described. We present the computed tomographic and magnetic resonance imaging findings of a case of retroperitoneal bronchogenic cyst.

  1. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of

  2. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of

  3. Dental imaging using laminar optical tomography and micro CT

    NASA Astrophysics Data System (ADS)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  4. PET/CT and cross sectional imaging of gynecologic malignancy.

    PubMed

    Iyer, Revathy B; Balachandran, Aparna; Devine, Catherine E

    2007-10-01

    Gynecologic cancers are a common cause of morbidity and mortality in women of all ages. While many gynecologic cancers are staged clinically using the International Federation of Gynecology and Obstetrics (FIGO) staging system, imaging can be a useful adjunct to clinical staging. Cross sectional imaging techniques such as ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) have been used to detect and follow patients with gynecologic cancer. These imaging modalities can show anatomic detail and morphologic changes in the female genitourinary tract to good advantage. Positron emission tomography (PET) differs in that it shows functional information that is not easily obtained by the other cross sectional imaging techniques. The fusion of PET with CT allows anatomic localization of functional abnormalities in the female genital tract and thereby allows the detection of gross disease in many malignant conditions both within and outside the confines of the female pelvis. The utility and limitations of imaging common gynecologic tumors such as cervical, ovarian and endometrial cancer are discussed with particular emphasis on PET/CT imaging.

  5. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Lodge, Martin A.; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  6. Multiparametric Characterization of Grade 2 Glioma Subtypes Using Magnetic Resonance Spectroscopic, Perfusion, and Diffusion Imaging1

    PubMed Central

    Bian, Wei; Khayal, Inas S; Lupo, Janine M; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R; Chang, Susan M; Cha, Soonmee; Nelson, Sarah J

    2009-01-01

    BACKGROUND AND PURPOSE: The purpose of this study was to derive quantitative parameters from magnetic resonance (MR) spectroscopic, perfusion, and diffusion imaging of grade 2 gliomas according to the World Health Organization and to investigate how these multiple imaging modalities can contribute to evaluating their histologic subtypes and spatial characteristics. MATERIALS AND METHODS: MR spectroscopic, perfusion, and diffusion images from 56 patients with newly diagnosed grade 2 glioma (24 oligodendrogliomas, 18 astrocytomas, and 14 oligoastrocytomas) were retrospectively studied. Metabolite intensities, relative cerebral blood volume (rCBV), and apparent diffusion coefficient (ADC) were statistically evaluated. RESULTS: The 75th percentile rCBV and median ADC were significantly different between oligodendrogliomas and astrocytomas (P < .0001) and between oligodendrogliomas and oligoastrocytomas (P < .001). Logistic regression analysis identified both 75th percentile rCBV and median ADC as significant variables in the differentiation of oligodendrogliomas from astrocytomas and oligoastrocytomas. Group differences in metabolite intensities were not significant, but there was a much larger variation in the volumes and maximum values of metabolic abnormalities for patients with oligodendroglioma compared with the other tumor subtypes. CONCLUSIONS: Perfusion and diffusion imaging provide quantitative MR parameters that can help to differentiate grade 2 oligodendrogliomas from grade 2 astrocytomas and oligoastrocytomas. The large variations in the magnitude and spatial extent of the metabolic lesions between patients and the fact that their values are not correlated with the other imaging parameters indicate that MR spectroscopic imaging may provide complementary information that is helpful in targeting therapy, evaluating residual disease, and assessing response to therapy. PMID:19956389

  7. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.

    PubMed

    Mohy-Ud-Din, Hassan; Lodge, Martin A; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the (82)Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  8. Clinical PET Myocardial Perfusion Imaging and Flow Quantification.

    PubMed

    Juneau, Daniel; Erthal, Fernanda; Ohira, Hiroshi; Mc Ardle, Brian; Hessian, Renée; deKemp, Robert A; Beanlands, Rob S B

    2016-02-01

    Cardiac PET imaging is a powerful tool for the assessment of coronary artery disease. Many tracers with different advantages and disadvantages are available. It has several advantages over single photon emission computed tomography, including superior accuracy and lower radiation exposure. It provides powerful prognostic information, which can help to stratify patients and guide clinicians. The addition of flow quantification enables better detection of multivessel disease while providing incremental prognostic information. Flow quantification provides important physiologic information, which may be useful to individualize patient therapy. This approach is being applied in some centers, but requires standardization before it is more widely applied. PMID:26590781

  9. Computer aided detection of oral lesions on CT images

    NASA Astrophysics Data System (ADS)

    Galib, S.; Islam, F.; Abir, M.; Lee, H. K.

    2015-12-01

    Oral lesions are important findings on computed tomography (CT) images. In this study, a fully automatic method to detect oral lesions in mandibular region from dental CT images is proposed. Two methods were developed to recognize two types of lesions namely (1) Close border (CB) lesions and (2) Open border (OB) lesions, which cover most of the lesion types that can be found on CT images. For the detection of CB lesions, fifteen features were extracted from each initial lesion candidates and multi layer perceptron (MLP) neural network was used to classify suspicious regions. Moreover, OB lesions were detected using a rule based image processing method, where no feature extraction or classification algorithm were used. The results were validated using a CT dataset of 52 patients, where 22 patients had abnormalities and 30 patients were normal. Using non-training dataset, CB detection algorithm yielded 71% sensitivity with 0.31 false positives per patient. Furthermore, OB detection algorithm achieved 100% sensitivity with 0.13 false positives per patient. Results suggest that, the proposed framework, which consists of two methods, has the potential to be used in clinical context, and assist radiologists for better diagnosis.

  10. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  11. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics: A Pilot Feasibility Study in Patients With Carotid Stenosis.

    PubMed

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-05-01

    Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis.Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared.For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50).We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  12. Accuracy of CT-Based Attenuation Correction in PET/CT Bone Imaging

    PubMed Central

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-01-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well-tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9±0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers range from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important. PMID:22481547

  13. Accuracy of CT-based attenuation correction in PET/CT bone imaging.

    PubMed

    Abella, Monica; Alessio, Adam M; Mankoff, David A; MacDonald, Lawrence R; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a (68)Ga/(68)Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  14. A Generator-Produced Gallium-68 Radiopharmaceutical for PET Imaging of Myocardial Perfusion

    PubMed Central

    Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E.; Prior, Julie L.; Gu, Hannah; Rath, Nigam P.; Piwnica-Worms, David

    2014-01-01

    Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI. PMID:25353349

  15. Phase and amplitude binning for 4D-CT imaging

    NASA Astrophysics Data System (ADS)

    Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.

    2007-07-01

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  16. SU-C-201-04: Quantification of Perfusion Heterogeneity Based On Texture Analysis for Fully Automatic Detection of Ischemic Deficits From Myocardial Perfusion Imaging

    SciTech Connect

    Fang, Y; Huang, H; Su, T

    2015-06-15

    Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCI Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination

  17. Brain Imaging Using Mobile CT: Current Status and Future Prospects.

    PubMed

    John, Seby; Stock, Sarah; Cerejo, Russell; Uchino, Ken; Winners, Stacey; Russman, Andrew; Masaryk, Thomas; Rasmussen, Peter; Hussain, Muhammad S

    2016-01-01

    Computed tomography (CT) is an invaluable tool in the diagnosis of many clinical conditions. Several advancements in biomedical engineering have achieved increase in speed, improvements in low-contrast detectability and image quality, and lower radiation. Portable or mobile CT constituted one such important advancement. It is especially useful in evaluating critically ill, intensive care unit patients by scanning them at bedside. A paradigm shift in utilization of mobile CT was its installation in ambulances for the management of acute stroke. Given the time sensitive nature of acute ischemic stroke, Mobile stroke units (MSU) were developed in Germany consisting of an ambulance equipped with a CT scanner, point of care laboratory system, along with teleradiological support. In a radical reconfiguration of stroke care, the MSU would bring the CT scanner to the stroke patient, without waiting for the patient at the emergency room. Two separate MSU projects in Saarland and Berlin demonstrated the safety and feasibility of this concept for prehospital stroke care, showing increased rate of intravenous thrombolysis and significant reduction in time to treatment compared to conventional care. MSU also improved the triage of patients to appropriate and specialized hospitals. Although multiple issues remain yet unanswered with the MSU concept including clinical outcome and cost-effectiveness, the MSU venture is visionary and enables delivery of life-saving and enhancing treatment for ischemic and hemorrhagic stroke. In this review, we discuss the development of mobile CT and its applications, with specific focus on its use in MSUs along with our institution's MSU experience.

  18. Defining Core and Penumbra in Ischemic Stroke: A Voxel- and Volume-Based Analysis of Whole Brain CT Perfusion

    PubMed Central

    Yu, Yannan; Han, Quan; Ding, Xinfa; Chen, Qingmeng; Ye, Keqi; Zhang, Sheng; Yan, Shenqiang; Campbell, Bruce C. V.; Parsons, Mark W.; Wang, Shaoshi; Lou, Min

    2016-01-01

    Whole brain computed tomography perfusion (CTP) has the potential to select eligible patients for reperfusion therapy. We aimed to find the optimal thresholds on baseline CTP for ischemic core and penumbra in acute ischemic stroke. We reviewed patients with acute ischemic stroke in the anterior circulation, who underwent baseline whole brain CTP, followed by intravenous thrombolysis and perfusion imaging at 24 hours. Patients were divided into those with major reperfusion (to define the ischemic core) and minimal reperfusion (to define the extent of penumbra). Receiver operating characteristic (ROC) analysis and volumetric consistency analysis were performed separately to determine the optimal threshold by Youden’s Index and mean magnitude of volume difference, respectively. From a series of 103 patients, 22 patients with minimal-reperfusion and 47 with major reperfusion were included. Analysis revealed delay time ≥ 3 s most accurately defined penumbra (AUC = 0.813; 95% CI, 0.812-0.814, mean magnitude of volume difference = 29.1 ml). The optimal threshold for ischemic core was rCBF ≤ 30% within delay time ≥ 3 s (AUC = 0.758; 95% CI, 0.757-0.760, mean magnitude of volume difference = 10.8 ml). In conclusion, delay time ≥ 3 s and rCBF ≤ 30% within delay time ≥ 3 s are the optimal thresholds for penumbra and core, respectively. These results may allow the application of the mismatch on CTP to reperfusion therapy. PMID:26860196

  19. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  20. Cerebral perfusion imaging with iodine 123-labeled amines

    SciTech Connect

    Holman, B.L.; Hill, T.C.; Polak, J.F.; Lee, R.G.; Royal, H.D.; O'Leary, D.H.

    1984-10-01

    Two amines, N-isopropyl p-iodoamphetamine and N,N,N'-trimethyl-N'-(2-hydroxyl-3-methyl-5-iodobenzyl)-1,3-prop anediamine, have been labeled with iodine 123. The brain uptake of these radioactive tracers is proportional to cerebral blood flow. These tracers are retained in the brain for a sufficiently long time so that imaging can be performed with standard, readily available instrumentation. Transaxial tomography with amines is useful in acute cerebral infarction, in which the x-ray computed tomographic scan may be normal for several days after onset of symptoms while the uptake of radioisotope-labeled amines will be altered immediately after the onset of the stroke. It is also useful in examining patients with cerebral vascular disease and in the preoperative examination of patients with partial epilepsy.

  1. An improved level set method for vertebra CT image segmentation

    PubMed Central

    2013-01-01

    Background Clinical diagnosis and therapy for the lumbar disc herniation requires accurate vertebra segmentation. The complex anatomical structure and the degenerative deformations of the vertebrae makes its segmentation challenging. Methods An improved level set method, namely edge- and region-based level set method (ERBLS), is proposed for vertebra CT images segmentation. By considering the gradient information and local region characteristics of images, the proposed model can efficiently segment images with intensity inhomogeneity and blurry or discontinuous boundaries. To reduce the dependency on manual initialization in many active contour models and for an automatic segmentation, a simple initialization method for the level set function is built, which utilizes the Otsu threshold. In addition, the need of the costly re-initialization procedure is completely eliminated. Results Experimental results on both synthetic and real images demonstrated that the proposed ERBLS model is very robust and efficient. Compared with the well-known local binary fitting (LBF) model, our method is much more computationally efficient and much less sensitive to the initial contour. The proposed method has also applied to 56 patient data sets and produced very promising results. Conclusions An improved level set method suitable for vertebra CT images segmentation is proposed. It has the flexibility of segmenting the vertebra CT images with blurry or discontinuous edges, internal inhomogeneity and no need of re-initialization. PMID:23714300

  2. Simultaneous Noninvasive Determination of Regional Myocardial Perfusion and Oxygen Content in Rabbits: Toward Direct Measurement of Myocardial Oxygen Consumption at MR Imaging1

    PubMed Central

    Reeder, Scott B.; Holmes, A. Alexander; McVeigh, Elliot R.; Forder, John R.

    2007-01-01

    PURPOSE To determine whether myocardial arterial perfusion and oxygen concentration can be quantified simultaneously from the same images by using spin labeling and the blood oxygenation level-dependent (BOLD) effect with fast spin-echo (SE) imaging. MATERIALS AND METHODS A T2-weighted fast SE pulse sequence was written to image isolated, arrested, blood-perfused rabbit hearts (n = 6) at 4.7 T. Perfusion images with intensity in units of milliliters per minute per gram that covered the entire left ventricle with 0.39 × 0.39 × 3.00-mm resolution were obtained in less than 15 minutes with a 32-fold reduction in imaging time from that of a previous study. Estimates of oxygen concentration were made from the same images acquired for calculation of perfusion images. RESULTS Estimates of regional myocardial oxygen content could be made from the perfusion images; this demonstrated the feasibility of three-dimensional calculation of regional oxygen consumption, which requires concomitant measurement of both oxygen content and flow. Fast SE imaging was shown to bas sensitive to hemoglobin desaturation as standard SE imaging. Perfusion abnormalities and oxygen deficits were easily identified and verified qualitatively with gadopentetate dimeglumine on both perfusion and BOLD images obtained after coronary arterial ligation. CONCLUSION T2-weighted fast SE imaging combined with perfusion-sensitive spin labeling can be used to measure myocardial arterial perfusion and oxygen concentration. This provides the groundwork for calculation of regional myocardial oxygen consumption. PMID:10478241

  3. A new iterative method for liver segmentation from perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Draoua, Ahmed; Albouy-Kissi, Adélaïde; Vacavant, Antoine; Sauvage, Vincent

    2014-03-01

    Liver cancer is the third most common cancer in the world, and the majority of patients with liver cancer will die within one year as a result of the cancer. Liver segmentation in the abdominal area is critical for diagnosis of tumor and for surgical procedures. Moreover, it is a challenging task as liver tissue has to be separated from adjacent organs and substantially the heart. In this paper we present a novel liver segmentation iterative method based on Fuzzy C-means (FCM) coupled with a fast marching segmentation and mutual information. A prerequisite for this method is the determination of slice correspondences between ground truth that is, a few images segmented by an expert, and images that contain liver and heart at the same time.

  4. Towards adapting a normal patient database for SPECT brain perfusion imaging

    NASA Astrophysics Data System (ADS)

    Smith, N. D.; Holmes, R. B.; Soleimani, M.; Evans, M. J.; Cade, S. C.; Mitchell, C. N.

    2012-06-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements.

  5. Serial myocardial perfusion imaging: defining a significant change and targeting management decisions.

    PubMed

    Iskandrian, Ami E; Hage, Fadi G; Shaw, Leslee J; Mahmarian, John J; Berman, Daniel S

    2014-01-01

    Myocardial perfusion imaging (MPI) with gated single-photon emission tomography provides important information on the extent and severity of myocardial perfusion abnormalities, including myocardial ischemia. The availability of software for automated quantitative assessment of myocardial perfusion in an objective and more reproducible manner than visual assessment has allowed MPI to be particularly effective in serial evaluation. Serial testing using MPI is widely used in guiding patient care despite the lack of well-defined appropriateness use criteria. This should not be surprising because ischemic heart disease is a life-long malady subject to dynamic changes throughout its natural course and particularly following man-made interventions that may improve or worsen the disease process, such as medical therapy and coronary revascularization. Serial MPI has filled an important clinical gap by providing crucial information for managing patients with changes in clinical presentations or in anticipation of such changes in patients with stable symptoms. In the research arena, serial MPI has been widely applied in randomized controlled trials to study the impact of various medical and interventional therapies on myocardial perfusion, as well as the relative merits of new imaging procedures (hardware and/or software), radiotracers, and stressor agents. Serial testing, however, unlike initial or 1-time testing, has more stringent requirements and is subject to variability because of technical, procedural, interpretational, and biological factors. The intrinsic variability of MPI becomes important in interpreting serial tests in order to define a true change in a given patient and to guide clinical decision making. The purpose of this first comprehensive review on this subject is to illustrate where serial MPI may be useful clinically and in research studies, and to highlight strategies for addressing the various issues that are unique to serial testing in order to derive

  6. Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom.

    PubMed

    Heikkinen, J; Ahonen, A; Kuikka, J T; Rautio, P

    1999-10-01

    The aim of the study was to evaluate quality of myocardial perfusion single-photon emission tomography (SPET) imaging in Finnish hospitals. Nineteen nuclear medicine departments participated in the study. A myocardial phantom simulating clinical stress and rest conditions was filled with routinely used isotope solution (technetium-99m or thallium-201). The cardiac insert included three reversible defects (simulating ischaemia): 30x30x14 mm(3) septal (90% recovery at rest), 30x20x14 mm(3) posterobasal (full recovery) and 20x20x14 mm(3) lateral (full recovery). There were two fixed defects (simulating infarct): 30x20x14 mm(3) postero-apical and 10x10x6 mm(3) apical. The phantom was imaged and interpreted as a myocardial perfusion patient. Reconstruction, printout and reporting were performed according to the clinical routine of each centre. Three nuclear medicine specialists anonymously evaluated the quality of the image sets. The visual scores of the experts were ranked from 1 to 5. Additionally, points from 0 to 8 were given to research reports according to how well perfusion defects were detected. Quantitative points were calculated by comparing background-subtracted and -normalized counts from 12 regions of interest between stress and rest images. Results for technetium studies (12 departments) were better than those for thallium (7 departments). The average visual scores of the experts were 3.7+/-0. 9 for all image sets, 3.2+/-0.5 for thallium users and 3.9+/-0.6 for technetium users (P=0.003). Five laboratories received a low score which, according to the specialists, is barely sufficient for limited clinical use. Average points for the reports were 5.6+/-2.1, 4.9+/-1.5 and 6.5+/-1.7 (P=0.051), and for the quantitation 8.2+/-1. 0, 7.9+/-0.4 and 8.4+/-1.1 (P=0.185), respectively. Seven out of 22 interpreters did not detect the lateral 20x20x14 mm(3) defect; five of them used thallium. This study demonstrated the heterogeneity of myocardial perfusion SPET in

  7. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    SciTech Connect

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  8. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    NASA Astrophysics Data System (ADS)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  9. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  10. Simultaneous myocardial strain and dark-blood perfusion imaging using a displacement-encoded MRI pulse sequence.

    PubMed

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd'Hotel, Christophe; Lorenz, Christine H; Croisille, Pierre; Wen, Han

    2010-09-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in two to three myocardial slices were repeatedly acquired using a single-shot pulse sequence for 3 to 4 min, which covers a bolus infusion of Gadolinium contrast. The magnitudes of the images were T(1) weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n = 9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R(2) = 0.765, Bland-Altman standard deviation = 0.15 mL/min/g). In a group of ST-elevation myocardial infarction patients (n = 11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R(2) = 0.72), and the pixelwise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  11. Uterine cervical carcinoma after therapy: CT and MR imaging findings.

    PubMed

    Jeong, Yong Yeon; Kang, Heoung Keun; Chung, Tae Woong; Seo, Jeong Jin; Park, Jin Gyoon

    2003-01-01

    Cervical carcinoma is one of the most frequent causes of death in women. Computed tomography (CT) and magnetic resonance (MR) imaging are the primary modalities for follow-up of treated cervical carcinoma. A normal vaginal cuff after hysterectomy appears as a smooth, low-signal-intensity muscular wall on T2-weighted MR images. Early (2-3 months after treatment) and significant decreases in the signal intensity and volume of the tumor at MR imaging indicate a good response to radiation therapy. Sites of recurrence are the pelvis, lymph nodes, and distant sites. Pelvic recurrence appears as a heterogeneously enhancing mass at contrast material-enhanced CT and often appears as a heterogeneous, high-signal-intensity mass at T2-weighted MR imaging. Lymph node recurrence ranges from scattered, minimally enlarged nodes to large, conglomerate nodal masses. Determination of neoplastic infiltration of lymph nodes is based on size; most researchers consider nodes greater than 1 cm in short-axis diameter to be metastatic. Distant metastases are usually due to recurrent disease and occur in the abdomen, thorax, and bone. Knowledge of the normal therapeutic changes and the spectrum of recurrent tumor in patients with cervical carcinoma is important for accurate interpretation of follow-up CT and MR images.

  12. Automatic labeling and segmentation of vertebrae in CT images

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  13. The routine use of sublingual GTN with resting 99Tcm-tetrofosmin myocardial perfusion imaging.

    PubMed

    Thorley, P J; Sheard, K L; Wright, D J; Sivananthan, U M

    1998-10-01

    Nitrates can be used to improve resting myocardial blood flow in patients with severe coronary artery disease. This may enhance tracer uptake during rest myocardial perfusion imaging. Recent studies using nitrates at rest have shown increased detection of reversible ischaemia in this patient group with the 201Tl and 99Tcm perfusion tracers MIBI and tetrofosmin. However, it is not always possible to assess the severity of coronary artery disease before the rest injection and therefore whether a patient would benefit from nitrate administration. To improve the sensitivity for the detection of reversible ischaemia and to avoid a repeat study with nitrates (especially in patients with 'fixed' defects), a protocol in which all patients routinely receive nitrates prior to the rest injection is required. This prospective study evaluated the effect of nitrate administration prior to rest imaging in a randomly selected group of patients. Thirty patients selected at random from routine referrals had stress, rest and rest + GTN tetrofosmin imaging on three separate days. Changes in reversibility between the rest and rest + GTN images were assessed both visually and using semi-quantitative analysis. Defects at stress were seen in 43 coronary artery territories, 33 of which were reversible at rest and 37 reversible at rest + GTN. Of these 43 defects, 82% demonstrated either increased or the same degree of reversibility at rest + GTN imaging compared to standard rest imaging. All defects with reduced reversibility at rest + GTN imaging (i.e. the remaining 18%) were, however, still reversible compared to the stress images. Some of this reduced reversibility may be due to attenuation artefacts. We conclude that the routine use of GTN with rest tetrofosmin imaging will result in increased detection of ischaemic areas with no loss of sensitivity or specificity.

  14. A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua

    2012-02-01

    Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. A novel framework was proposed for CCT whole heart ECV estimation, which consists of three main steps. First, a shape constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation for post-contrast image. Second, the symmetric Demons deformable registrations method was applied to register pre-contrast to post-contrast images. Finally, the whole heart ECV value was computed. The proposed method was tested on 7 clinical low dose CCT datasets with pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  15. Seamless Insertion of Pulmonary Nodules in Chest CT Images.

    PubMed

    Pezeshk, Aria; Sahiner, Berkman; Zeng, Rongping; Wunderlich, Adam; Chen, Weijie; Petrick, Nicholas

    2015-12-01

    The availability of large medical image datasets is critical in many applications, such as training and testing of computer-aided diagnosis systems, evaluation of segmentation algorithms, and conducting perceptual studies. However, collection of data and establishment of ground truth for medical images are both costly and difficult. To address this problem, we are developing an image blending tool that allows users to modify or supplement existing datasets by seamlessly inserting a lesion extracted from a source image into a target image. In this study, we focus on the application of this tool to pulmonary nodules in chest CT exams. We minimize the impact of user skill on the perceived quality of the composite image by limiting user involvement to two simple steps: the user first draws a casual boundary around a nodule in the source, and, then, selects the center of desired insertion area in the target. We demonstrate the performance of our system on clinical samples, and report the results of a reader study evaluating the realism of inserted nodules compared to clinical nodules. We further evaluate our image blending techniques using phantoms simulated under different noise levels and reconstruction filters. Specifically, we compute the area under the ROC curve of the Hotelling observer (HO) and noise power spectrum of regions of interest enclosing native and inserted nodules, and compare the detectability, noise texture, and noise magnitude of inserted and native nodules. Our results indicate the viability of our approach for insertion of pulmonary nodules in clinical CT images. PMID:26080378

  16. CT Scanning Imaging Method Based on a Spherical Trajectory.

    PubMed

    Chen, Ping; Han, Yan; Gui, Zhiguo

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.

  17. CT Scanning Imaging Method Based on a Spherical Trajectory

    PubMed Central

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object’s complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning. PMID:26934744

  18. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    PubMed

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  19. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    PubMed

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology. PMID:27237438

  20. An unsupervised approach for measuring myocardial perfusion in MR image sequences

    NASA Astrophysics Data System (ADS)

    Discher, Antoine; Rougon, Nicolas; Preteux, Francoise

    2005-08-01

    Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.

  1. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.

    PubMed

    Killian, Nathaniel J; Vernekar, Varadraj N; Potter, Steve M; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  2. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  3. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging

    SciTech Connect

    Demer, L.L.; Gould, K.L.; Goldstein, R.A.; Kirkeeide, R.L. )

    1990-03-01

    At present, coronary collateralization cannot be identified or assessed noninvasively in patients. In animal studies, coronary collaterals are associated with coronary steal, defined as a regional fall in perfusion during coronary arteriolar vasodilation. To determine the effect of coronary arteriolar vasodilation on collateral bed perfusion in man, myocardial perfusion imaging was performed before and after pharmacologic coronary vasodilation in patients with coronary artery disease (CAD). Regional myocardial activity of {sup 82}Rb or {sup 13}N ammonia was measured by positron emission tomography (PET) at rest and with intravenous dipyridamole/handgrip stress in 28 patients with angiographic collaterals and in 25 control patients with similar CAD severity by quantitative arteriography. Regional myocardial activity decreased after dipyridamole, indicating coronary steal, in 25 of 28 patients with angiographic collaterals and in only 4 of 25 control patients without angiographic collaterals. These findings suggest that developed collaterals are associated with myocardial steal in patients with CAD, allowing potential use of PET for non-invasive identification of coronary collateralization.

  4. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  5. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  6. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  7. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  8. Automated determination of spinal centerline in CT and MR images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2009-02-01

    The spinal curvature is one of the most important parameters for the evaluation of spinal deformities. The spinal centerline, represented by the curve that passes through the centers of the vertebral bodies in three-dimensions (3D), allows valid quantitative measurements of the spinal curvature at any location along the spine. We propose a novel automated method for the determination of the spinal centerline in 3D spine images. Our method exploits the anatomical property that the vertebral body walls are cylindrically-shaped and therefore the lines normal to the edges of the vertebral body walls most often intersect in the middle of the vertebral bodies, i.e. at the location of spinal centerline. These points of intersection are first obtained by a novel algorithm that performs a selective search in the directions normal to the edges of the structures and then connected with a parametric curve that represents the spinal centerline in 3D. As the method is based on anatomical properties of the 3D spine anatomy, it is modality-independent, i.e. applicable to images obtained by computed tomography (CT) and magnetic resonance (MR). The proposed method was evaluated on six CT and four MR images (T1- and T2-weighted) of normal spines and on one scoliotic CT spine image. The qualitative and quantitative results for the normal spines show that the spinal centerline can be successfully determined in both CT and MR spine images, while the results for the scoliotic spine indicate that the method may also be used to evaluate pathological curvatures.

  9. Incorporating detection tasks into the assessment of CT image quality

    NASA Astrophysics Data System (ADS)

    Scalzetti, E. M.; Huda, W.; Ogden, K. M.; Khan, M.; Roskopf, M. L.; Ogden, D.

    2006-03-01

    The purpose of this study was to compare traditional and task dependent assessments of CT image quality. Chest CT examinations were obtained with a standard protocol for subjects participating in a lung cancer-screening project. Images were selected for patients whose weight ranged from 45 kg to 159 kg. Six ABR certified radiologists subjectively ranked these images using a traditional six-point ranking scheme that ranged from 1 (inadequate) to 6 (excellent). Three subtle diagnostic tasks were identified: (1) a lung section containing a sub-centimeter nodule of ground-glass opacity in an upper lung (2) a mediastinal section with a lymph node of soft tissue density in the mediastinum; (3) a liver section with a rounded low attenuation lesion in the liver periphery. Each observer was asked to estimate the probability of detecting each type of lesion in the appropriate CT section using a six-point scale ranging from 1 (< 10%) to 6 (> 90%). Traditional and task dependent measures of image quality were plotted as a function of patient weight. For the lung section, task dependent evaluations were very similar to those obtained using the traditional scoring scheme, but with larger inter-observer differences. Task dependent evaluations for the mediastinal section showed no obvious trend with subject weight, whereas there the traditional score decreased from ~4.9 for smaller subjects to ~3.3 for the larger subjects. Task dependent evaluations for the liver section showed a decreasing trend from ~4.1 for the smaller subjects to ~1.9 for the larger subjects, whereas the traditional evaluation had a markedly narrower range of scores. A task-dependent method of assessing CT image quality can be implemented with relative ease, and is likely to be more meaningful in the clinical setting.

  10. The influence of respiratory motion on CT image volume definition

    SciTech Connect

    Rodríguez-Romero, Ruth Castro-Tejero, Pablo

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  11. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    SciTech Connect

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  12. Justification of administered dose level in brain perfusion imaging with 99mTc-HMPAO

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, I.; Geronikola-Trapali, X.; Armeniakos, I.; Prentakis, A.; Soultanis, S.; Chatziioannou, S. N.

    2011-09-01

    Brain perfusion imaging by means of 99mTc-HMPAO is widely used in the diagnosis of Alzheimer's disease. The administered dose range recommended by the manufacturer and reported in bibliography is rather wide (~ 9.5 - 27 mCi), necessitating further quantitative analysis. In the framework of this study, a quantitative evaluation of the radiopharmaceutical performance for different values of administered dose was carried out, based on image quality indicators. Evaluation of image quality was based on wavelet-generated contrast, noise, and contrast-to-noise ratio indicators, denoted as CI, NI and CNR respectively. Subsequently, a generic image quality index was correlated with the administered dose, to produce an overall performance indicator (denoted as PI). Application of appropriate statistical tests (analysis of variance for normal and Kruskal-Wallis test for non-normal distributions) showed that there is a statistically significant difference in CI (p < 0.01), NI (p < 0.001) and CNR (p < 0.05), but not in PI (p > 0.05) values. Application of Tukey test for CI and NI normal distributions demonstrated that CI (10 mCi) = CI (20 mCi) < CI (15 mCi) and NI (10 mCi) > NI (20 mCi), while NI (15 mCi) could not be characterised. Finally, application of non-parametric multiple comparisons showed that CNR (20 mCi) < CNR (10 mCi), while CNR (15 mCi) could not be characterised. Consequently, brain perfusion imaging, by means of 99mTc-HMPAO utilising an administered dose of 20 mCi, results in improved image quality on the basis of the estimated indicators. Additionally, this image quality improvement is sufficient to justify the increased patient radiation burden.

  13. Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four Quantitative Analysis Methods

    PubMed Central

    Pack, Nathan A.; DiBella, Edward V. R.

    2012-01-01

    Dynamic contrast-enhanced MRI has been used to quantify myocardial perfusion in recent years. Published results have varied widely, possibly depending on the method used to analyze the dynamic perfusion data. Here, four quantitative analysis methods (two-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion. Dynamic contrast-enhanced MRI data were acquired in 20 human subjects at rest with low-dose (0.019 ± 0.005 mmol/kg) bolus injections of gadolinium. Fourteen of these subjects were also imaged at adenosine stress (0.021 ± 0.005 mmol/kg). Aggregate rest perfusion estimates were not significantly different between all four analysis methods. At stress, perfusion estimates were not significantly different between two-compartment modeling, model-independent analysis, and Patlak plot analysis. Stress estimates from the Fermi model were significantly higher (~20%) than the other three methods. Myocardial perfusion reserve values were not significantly different between all four methods. Model-independent analysis resulted in the lowest model curve-fit errors. When more than just the first pass of data was analyzed, perfusion estimates from two-compartment modeling and model-independent analysis did not change significantly, unlike results from Fermi function modeling. PMID:20577976

  14. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    NASA Astrophysics Data System (ADS)

    Lüdemann, L.; Sreenivasa, G.; Michel, R.; Rosner, C.; Plotkin, M.; Felix, R.; Wust, P.; Amthauer, H.

    2006-06-01

    Assessment of perfusion with 15O-labelled water (H215O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF.

  15. 99mTc-DTPA aerosol for same-day post-perfusion ventilation imaging: results of a multicentre study.

    PubMed

    Köhn, H; Mostbeck, A; Bachmayr, S; Eber, O; Galvan, G; Holm, C; König, B; Lind, P; Markt, B; Ogris, E

    1993-01-01

    A multicentre study was performed in an attempt to evaluate a submicronic technetium-99m diethylene triamine penta-acetic acid aerosol generated by a newly developed delivery system, the aerosol production equipment (APE nebulizer), for same-day post-perfusion ventilation imaging in patients with clinically suspected pulmonary embolism. Quantitative comparison between the DTPA aerosol and krypton gas demonstrated a close correlation with respect to regional pulmonary distribution of activity and peripheral lung penetration (n = 14, r = 0.94, P < 0.001 and r = 0.75, P < 0.0025, respectively). In 169 consecutive patients, DTPA aerosol images performed immediately following perfusion (inhalation scan I) were compared to those carried out on the next day (inhalation scan II) with respect to image quality and assessment of perfusion-ventilation matches or mismatches. Agreement between inhalation scans I and II with respect to perfusion defects matched or mismatched to ventilation was found in 166/169 (98%) studies. The image quality of inhalation scan I was equal to that of scan II in 72%; inhalation scan I was superior in 11% of cases, while scan II was superior in 17%. This submicronic 99mTc-labelled DTPA aerosol is well suited for fast same-day post-perfusion ventilation imaging in patients with clinical suspicion of pulmonary embolism.

  16. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report.

    PubMed

    Ayeni, Olusegun Akinwale; Malan, Nico; Hammond, Emmanuel Niiboye; Vangu, Mboyo-Di-Tamba Heben

    2016-01-01

    Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis) is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-year-old man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD). The incidence and presentation of CAD in patients with dextrocardia are similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights the distinctive applications and potential pitfalls of myocardial perfusion single-photon emission computed tomography (SPECT) imaging in patients with dextrocardia.

  17. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report

    PubMed Central

    Ayeni, Olusegun Akinwale; Malan, Nico; Hammond, Emmanuel Niiboye; Vangu, Mboyo-Di-Tamba Heben

    2016-01-01

    Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis) is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-year-old man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD). The incidence and presentation of CAD in patients with dextrocardia are similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights the distinctive applications and potential pitfalls of myocardial perfusion single-photon emission computed tomography (SPECT) imaging in patients with dextrocardia. PMID:27408900

  18. Pitfalls and Limitations of PET/CT in Brain Imaging.

    PubMed

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  19. Simulation of mammograms and tomosynthesis imaging with cone beam breast CT images

    NASA Astrophysics Data System (ADS)

    Han, Tao; Shaw, Chris C.; Chen, Lingyun; Lai, Chao-jen; Liu, Xinming; Wang, Tianpeng

    2008-03-01

    The use of mammography techniques for the screening and diagnosis of breast cancers has been limited by the overlapping of cancer symptoms with normal tissue structures. To overcome this problem, two methods have been developed and actively investigated recently: digital tomosynthesis mammography and cone beam breast CT. Comparison study with these three techniques will be helpful to understand their difference and further might be supervise the direction of breast imaging. This paper describes and discusses about a technique using a general-purpose PC cluster to develop a parallel computer simulation model to simulate mammograms and tomosynthesis imaging with cone beam CT images of a mastectomy breast specimen. The breast model used in simulating mammography and tomosynthesis was developed by re-scaling the CT numbers of cone beam CT images from 80kVp to 20 kev. The compression of breast was simulated by deformation of the breast model. Re-projection software with parallel computation was developed and used to compute projection images of this simulated compressed breast for a stationary detector and a linearly shifted x-ray source. The resulting images were then used to reconstruct tomosynthesis mammograms using shift-and-add algorithms. It was found that MCs in cone beam CT images were not visible in regular mammograms but faintly visible in tomosynthesis images. The scatter signal and noise property needs to be simulated and incorporated in the future.

  20. Computer Aided Prosthetic Implant Manufacturing Using CT Image Data

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael L.; Glenn, William V.; Quinn, John F.; Rothman, Stephen L. G...; Pratt, Clyde; Brewster, Robert B.

    1982-11-01

    A system is described that delivers three-dimensional shape to plan corrective surgery and directly manufacture prosthetic implants. Geometry of implants are manufactured to precise dimensions using CT image data and an algorithm to generate instructions for numerically controlled milling machines. This work extends previous work in CT image segmentation algorithms to wed structure contour data to machinery used for making special implants. The types of implants currently available come in only a few sizes. A combination of changes to both the standard implant and, unfortunately to the femur itself are required to have a firm, stable reconstruction. The system out-lined here minimizes the removal of patient skeletal mass by manufacturing implants customized for each patient. The system is interconnected via digital transmission lines and will become entirely automated. Example implants are shown and new application areas are presented.

  1. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  2. PET and PET/CT imaging of skeletal metastases

    PubMed Central

    2010-01-01

    Abstract Bone scintigraphy augmented with radiographs or cross-sectional imaging, such as computed tomography (CT) or magnetic resonance imaging (MRI), has remained the commonest method to diagnose and follow up skeletal metastases. However, bone scintigraphy is associated with relatively poor spatial resolution, limited diagnostic specificity and reduced sensitivity for bone marrow disease. It also shows limited diagnostic accuracy in assessing response to therapy in a clinically useful time period. With the advent of hybrid positron emission tomography (PET)/CT scanners there has been an increasing interest in using various PET tracers to evaluate skeletal disease including [18F]fluoride (NaF) as a bone-specific tracer and [18F]fluorodeoxyglucose and [18F]choline as tumour-specific tracers. There is also early work exploring the receptor status of skeletal metastases with somatostatin receptor analogues. This review describes the potential utility of these tracers in the assessment of skeletal metastases. PMID:20663736

  3. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    SciTech Connect

    Ireland, Rob H. . E-mail: r.ireland@sheffield.ac.uk; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-07-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 {+-} 0.80 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 {+-} 1.22 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy.

  4. Incidentally detected diaphragmatic hernia mimicking angina pectoris with Tc-99m MIBI myocardial perfusion imaging

    PubMed Central

    Cınar, Alev; Sadıc, Murat; Demırel, Koray; Korkmaz, Meliha

    2013-01-01

    In recent years 99mTechnetium methoxy-isobutyl-isonitrile (99mTc MIBI) is widely used in the evaluation of myocardial perfusion imaging (MPI). In this imaging protocol besides the cardiac evaluation, numerous other organs are included in the field of view. 99mTechnetium MIBI is taken up in all metabolically active tissue in the body except for the brain. Extracardiac uptake patterns as benign or serious conditions can be revealed during the MPI. In the imaging protocol, we should be aware of distribution of this radiotracer in order to recognize the abnormal uptake. Here in, we present a large diaphragmatic hernia, seemed as a mirror vision of myocardium that was determined incidentally during the MPI with 99mTc MIBI. PMID:24379540

  5. Radionuclide imaging of myocardial perfusion and viability in assessment of acute myocardial infarction

    SciTech Connect

    Berman, D.S.; Kiat, H.; Maddahi, J.; Shah, P.K.

    1989-07-18

    Technical advances in radionuclide imaging have important implications for the management of patients with acute myocardial infarction. Single-photon emission computerized tomography with thallium 201 (TI-201) offers greater accuracy than planar imaging in detecting, localizing and sizing myocardial perfusion defects. Use of single-photon emission computerized tomography with TI-201 should allow for a more accurate assessment of prognosis after myocardial infarction. A new radiopharmaceutical, technetium 99-m methoxyisobutyl isonitrile, provides a number of advantages over TI-201, including higher quality images, lack of redistribution, and the ability to assess first-pass ventricular function. Applications of TI-201 and technetium 99-m methoxyisobutyl isonitrile include assessment of arterial patency and myocardial salvage immediately after thrombolytic therapy, detection of resting ischemia after thrombolytic therapy, targeting of subsets of patients for further intervention, and predischarge assessment to predict the future course of patients after an acute myocardial infarction.

  6. A stationary wavelet transform based approach to registration of planning CT and setup cone beam-CT images in radiotherapy.

    PubMed

    Deng, Jun-Min; Yue, Hai-Zhen; Zhuo, Zhi-Zheng; Yan, Hua-Gang; Liu, Di; Li, Hai-Yun

    2014-05-01

    Image registration between planning CT images and cone beam-CT (CBCT) images is one of the key technologies of image guided radiotherapy (IGRT). Current image registration methods fall roughly into two categories: geometric features-based and image grayscale-based. Mutual information (MI) based registration, which belongs to the latter category, has been widely applied to multi-modal and mono-modal image registration. However, the standard mutual information method only focuses on the image intensity information and overlooks spatial information, leading to the instability of intensity interpolation. Due to its use of positional information, wavelet transform has been applied to image registration recently. In this study, we proposed an approach to setup CT and cone beam-CT (CBCT) image registration in radiotherapy based on the combination of mutual information (MI) and stationary wavelet transform (SWT). Firstly, SWT was applied to generate gradient images and low frequency components produced in various levels of image decomposition were eliminated. Then inverse SWT was performed on the remaining frequency components. Lastly, the rigid registration of gradient images and original images was implemented using a weighting function with the normalized mutual information (NMI) being the similarity measure, which compensates for the lack of spatial information in mutual information based image registration. Our experiment results showed that the proposed method was highly accurate and robust, and indicated a significant clinical potential in improving the accuracy of target localization in image guided radiotherapy (IGRT).

  7. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  8. Computerized scheme for vertebra detection in CT scout image

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Chen, Qiang; Zhou, Hanxun; Zhang, Guodong; Cong, Lin; Li, Qiang

    2016-03-01

    Our purposes are to develop a vertebra detection scheme for automated scan planning, which would assist radiological technologists in their routine work for the imaging of vertebrae. Because the orientations of vertebrae were various, and the Haar-like features were only employed to represent the subject on the vertical, horizontal, or diagonal directions, we rotated the CT scout image seven times to make the vertebrae roughly horizontal in least one of the rotated images. Then, we employed Adaboost learning algorithm to construct a strong classifier for the vertebra detection by use of Haar-like features, and combined the detection results with the overlapping region according to the number of times they were detected. Finally, most of the false positives were removed by use of the contextual relationship between them. The detection scheme was evaluated on a database with 76 CT scout image. Our detection scheme reported 1.65 false positives per image at a sensitivity of 94.3% for initial detection of vertebral candidates, and then the performance of detection was improved to 0.95 false positives per image at a sensitivity of 98.6% for the further steps of false positive reduction. The proposed scheme achieved a high performance for the detection of vertebrae with different orientations.

  9. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  10. Optical-CT imaging of complex 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  11. Brain Imaging Using Mobile CT: Current Status and Future Prospects.

    PubMed

    John, Seby; Stock, Sarah; Cerejo, Russell; Uchino, Ken; Winners, Stacey; Russman, Andrew; Masaryk, Thomas; Rasmussen, Peter; Hussain, Muhammad S

    2016-01-01

    Computed tomography (CT) is an invaluable tool in the diagnosis of many clinical conditions. Several advancements in biomedical engineering have achieved increase in speed, improvements in low-contrast detectability and image quality, and lower radiatio