Sample records for ct scan conclusions

  1. The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.

    PubMed

    Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan

    2018-06-08

    Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. The Necessity of Follow-Up Brain Computed-Tomography Scans: Is It the Pathology Itself Or Our Fear that We Should Overcome?

    PubMed Central

    Öğrenci, Ahmet; Koban, Orkun; Ekşi, Murat; Yaman, Onur; Dalbayrak, Sedat

    2017-01-01

    AIM: This study aimed to make a retrospective analysis of pediatric patients with head traumas that were admitted to one hospital setting and to make an analysis of the patients for whom follow-up CT scans were obtained. METHODS: Pediatric head trauma cases were retrospectively retrieved from the hospital’s electronic database. Patients’ charts, CT scans and surgical notes were evaluated by one of the authors. Repeat CT scans for operated patients were excluded from the total number of repeat CT scans. RESULTS: One thousand one hundred and thirty-eight pediatric patients were admitted to the clinic due to head traumas. Brain CT scan was requested in 863 patients (76%) in the cohort. Follow-up brain CT scans were obtained in 102 patients. Additional abnormal finding requiring surgical intervention was observed in only one patient (isolated 4th ventricle hematoma) on the control CTs (1% of repeat CT scans), who developed obstructive hydrocephalus. None of the patients with no more than 1 cm epidural hematoma in its widest dimension and repeat CT scans obtained 1.5 hours after the trauma necessitated surgery. CONCLUSION: Follow-up CT scans changed clinical approach in only one patient in the present series. When ordering CT scan in the follow-up of pediatric traumas, benefits and harms should be weighted based upon time interval from trauma onset to initial CT scan and underlying pathology. PMID:29104682

  3. Radiation Dose in the Thyroid and the Thyroid Cancer Risk Attributable to CT Scans for Pediatric Patients in One General Hospital of China

    PubMed Central

    Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu

    2014-01-01

    Objective: To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. Methods: The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. Results: The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61–0.92 mGy for paranasal sinus CT scans, 1.10–2.45 mGy for head CT scans, and 2.63–5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.1 per 100,000 for boys and 14.1 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Conclusions: Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans. PMID:24608902

  4. Multislice CT of the head and body routine scans: Are scanning protocols adjusted for paediatric patients?

    PubMed Central

    Sun, Z; Al Ghamdi, KS; Baroum, IH

    2012-01-01

    Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059

  5. Pre-operative predictive factors for gallbladder cholesterol polyps using conventional diagnostic imaging

    PubMed Central

    Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho

    2008-01-01

    AIM: To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. METHODS: Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. RESULTS: Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. CONCLUSION: The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology. PMID:19058309

  6. Single energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-08-01

    A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.

  7. Interpretation of Brain CT Scans in the Field by Critical Care Physicians in a Mobile Stroke Unit

    PubMed Central

    Zakariassen, Erik; Lindner, Thomas; Nome, Terje; Bache, Kristi G.; Røislien, Jo; Gleditsch, Jostein; Solyga, Volker; Russell, David; Lund, Christian G.

    2017-01-01

    ABSTRACT BACKGROUND AND PURPOSE In acute stroke, thromboembolism or spontaneous hemorrhage abruptly reduces blood flow to a part of the brain. To limit necrosis, rapid radiological identification of the pathological mechanism must be conducted to allow the initiation of targeted treatment. The aim of the Norwegian Acute Stroke Prehospital Project is to determine if anesthesiologists, trained in prehospital critical care, may accurately assess cerebral computed tomography (CT) scans in a mobile stroke unit (MSU). METHODS In this pilot study, 13 anesthesiologists assessed unselected acute stroke patients with a cerebral CT scan in an MSU. The scans were simultaneously available by teleradiology at the receiving hospital and the on‐call radiologist. CT scan interpretation was focused on the radiological diagnosis of acute stroke and contraindications for thrombolysis. The aim of this study was to find inter‐rater agreement between the pre‐ and in‐hospital radiological assessments. A neuroradiologist evaluated all CT scans retrospectively. Statistical analysis of inter‐rater agreement was analyzed with Cohen's kappa. RESULTS Fifty‐one cerebral CT scans from the MSU were included. Inter‐rater agreement between prehospital anesthesiologists and the in‐hospital on‐call radiologists was excellent in finding radiological selection for thrombolysis (kappa .87). Prehospital CT scans were conducted in median 10 minutes (7 and 14 minutes) in the MSU, and median 39 minutes (31 and 48 minutes) before arrival at the receiving hospital. CONCLUSION This pilot study shows that anesthesiologists trained in prehospital critical care may effectively assess cerebral CT scans in an MSU, and determine if there are radiological contraindications for thrombolysis. PMID:28766306

  8. CT scans in young people in Northern England: trends and patterns 1993–2002

    PubMed Central

    Pearce, Mark S.; Salotti, Jane A.; McHugh, Kieran; Metcalf, Wenhua; Kim, Kwang P.; Craft, Alan W.; Parker, Louise; Ron, Elaine

    2014-01-01

    Background Although CT can be greatly beneficial, its relatively high radiation doses have caused public health concerns. Objective To assess patterns in CT usage among patients aged less than 22 years in Northern England during the period 1993–2002. Materials and methods Electronic data were obtained from radiology information systems of all nine National Health Service trusts in the region. Results A total of 38,681 scans had been performed in 20,483 patients aged less than 22 years. The number of CT examinations rose, with the steepest increase between 1997 and 2000. The number of patients scanned per year increased less dramatically, with 2.24/1,000 population aged less than 22 years having one scan or more in 1993 compared to 3.54/1,000 in 2002. This reflects an increase in the median number of scans per patient, which rose from 1 in 1993 to 2 by 1999. More than 70% of CT examinations were of the head, with the number of head examinations varying with time and patient age. Conclusion The frequency of CT scans in this population more than doubled during the study period. This is partly, but not wholly, explained by an increase in the number of scans per patient. PMID:21594548

  9. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liu, Q; Qiu, J

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less

  10. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?

    PubMed Central

    2018-01-01

    Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.

  11. Hybrid detection of lung nodules on CT scan images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less

  12. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients

    PubMed Central

    Maxfield, Mark W.; Schuster, Kevin M.; McGillicuddy, Edward A.; Young, Calvin J.; Ghita, Monica; Bokhari, S.A. Jamal; Oliva, Isabel B.; Brink, James A.; Davis, Kimberly A.

    2013-01-01

    BACKGROUND A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. METHODS We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP)reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. RESULTS For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol(17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol(61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. CONCLUSION Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. PMID:23147183

  13. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  14. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France

    PubMed Central

    Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O

    2015-01-01

    Background: Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. Methods: The cohort included 67 274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. Results: During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. Conclusions: This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans. PMID:25314057

  15. Indications of Brain Computed Tomography Scan in Children Younger Than 3 Years of Age with Minor Head Trauma

    PubMed Central

    Gülşen, İsmail; Ak, Hakan; Karadaş, Sevdegül; Demır, İsmail; Bulut, Mehmet Deniz; Yaycioğlu, Soner

    2014-01-01

    Objective. To investigate the indications to receive brain computed tomography (CT) scan and to define the pathological findings in children younger than three years of age with minor head trauma in emergency departments. Methods. In this study, hospital case notes of 1350 children attending the emergency department of Bitlis State Hospital between January 2011 and June 2013 were retrospectively reviewed. 508 children under 3 years of age with minor head trauma were included in this study. We also asked 37 physicians about the indications for requiring CT in these children. Results. This study included 508 children, 233 (45,9%) of whom were female and 275 were male. In 476 (93,7%) children, the brain CT was completely normal. 89,2% of physicians asked in the emergency department during that time interval reported that they requested CT scan to protect themselves against malpractice litigation. Conclusion. In infants and children with minor head trauma, most CT scans were unnecessary and the fear of malpractice litigation of physicians was the most common reason for requesting a CT. PMID:24724031

  16. SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Q; Shah, P; Li, S

    Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiationmore » treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.« less

  17. SU-E-J-270: Repeated 18F-FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chuong, M; Choi, W

    Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  18. The utility of computed tomography in the management of fever and neutropenia in pediatric oncology.

    PubMed

    Rao, Avani D; Sugar, Elizabeth A; Barrett, Neil; Mahesh, Mahadevappa; Arceci, Robert J

    2015-10-01

    Despite the frequent use and radiation exposure of computed tomography (CT) scans, there is little information on patterns of CT use and their utility in the management of pediatric patients with fever and neutropenia (FN). We examined the contribution of either the commonly employed pan-CT (multiple anatomical locations) or targeted CT (single location) scanning to identify possible infectious etiologies in this challenging clinical scenario. Procedure Pediatric patients with an underlying malignancy admitted for fever (temperature ≥ 38.3 °C) and an absolute neutrophil count <500 cells/μL from 2003-2009 were included. Risk factors associated with utilization, results, and effects on clinical management of CT scans were identified. Results Charts for 635 admissions for FN from 263 patients were reviewed. Overall, 139 (22%) admissions (93 individuals) had at least one scan. Of 188 scans, 103 (55%) were pan-scans. Changes in management were most strongly associated with the identification of evidence consistent with infection (OR = 12.64, 95% CI: 5.05-31.60, P < 0.001). Seventy-eight (41%) of all CT scans led to a change in clinical management, most commonly relating to use of antibiotic (N = 41, 53%) or antifungal/antiviral medications (N = 33, 42%). The odds of a change in clinical management did not differ for those receiving a pan-scan compared to those receiving a targeted scan (OR = 1.23; 95% CI, 0.61-2.46; P = 0.57). Conclusions When CT is clinically indicated, it is important for clinicians to strongly consider utilizing a targeted scan to reduce radiation exposure to patients as well as to decrease costs without compromising care. © 2015 Wiley Periodicals, Inc.

  19. Positive Enteric Contrast Material for Abdominal and Pelvic CT with Automatic Exposure Control: What Is the Effect On Patient Radiation Exposure?

    PubMed Central

    Wang, Zhen J.; Chen, Katherine S.; Gould, Robert; Coakley, Fergus V.; Fu, Yanjun; Yeh, Benjamin M.

    2014-01-01

    Objective To assess the effect of positive enteric contrast administration on automatic exposure control (AEC) CT radiation exposure in 1) a CT phantom, and 2) a retrospective review of patients. Materials and Methods We scanned a CT phantom containing simulated bowel that was sequentially filled with water and positive enteric contrast, and recorded the mean volume CT dose index (CTDIvol). We also identified 17 patients who had undergone 2 technically comparable CT scans of the abdomen and pelvis, one with positive enteric contrast and the other with oral water. Paired student t-tests were used to compare the mean CTDIvol between scans performed with and without positive enteric contrast. Both the phantom and patient CT scans were performed using AEC with a fixed noise index. Results The mean CTDIvol for the phantom with simulated bowel containing water and positive enteric contrast were 8.2 ± 0.2 mGy, and 8.7 ± 0.1 mGy (6.1% higher than water, p=0.02), respectively. The mean CTDIvol for patients scanned with oral water and with positive enteric contrast were 11.8mGy and 13.1mGy, respectively (p=0.003). This corresponded to a mean CTDIvol which was 11.0% higher (range: 0.0–20.7% higher) in scans with positive enteric contrast than those with oral water in patients. Conclusions When automatic exposure control is utilized for abdominopelvic CT, the radiation exposure, as measured by CTDIvol, is higher for scans performed with positive enteric contrast than those with oral water. PMID:21493028

  20. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less

  1. SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, I; Song, J; Kim, K

    Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less

  2. A comparative study of cranial, blunt trauma fractures as seen at medicolegal autopsy and by Computed Tomography

    PubMed Central

    2009-01-01

    Background Computed Tomography (CT) has become a widely used supplement to medico legal autopsies at several forensic institutes. Amongst other things, it has proven to be very valuable in visualising fractures of the cranium. Also CT scan data are being used to create head models for biomechanical trauma analysis by Finite Element Analysis. If CT scan data are to be used for creating individual head models for retrograde trauma analysis in the future we need to ascertain how well cranial fractures are captured by CT scan. The purpose of this study was to compare the diagnostic agreement between CT and autopsy regarding cranial fractures and especially the precision with which cranial fractures are recorded. Methods The autopsy fracture diagnosis was compared to the diagnosis of two CT readings (reconstructed with Multiplanar and Maximum Intensity Projection reconstructions) by registering the fractures on schematic drawings. The extent of the fractures was quantified by merging 3-dimensional datasets from both the autopsy as input by 3D digitizer tracing and CT scan. Results The results showed a good diagnostic agreement regarding fractures localised in the posterior fossa, while the fracture diagnosis in the medial and anterior fossa was difficult at the first CT scan reading. The fracture diagnosis improved during the second CT scan reading. Thus using two different CT reconstructions improved diagnosis in the medial fossa and at the impact points in the cranial vault. However, fracture diagnosis in the anterior and medial fossa and of hairline fractures in general still remained difficult. Conclusion The study showed that the forensically important fracture systems to a large extent were diagnosed on CT images using Multiplanar and Maximum Intensity Projection reconstructions. Difficulties remained in the minute diagnosis of hairline fractures. These inconsistencies need to be resolved in order to use CT scan data of victims for individual head modelling and trauma analysis. PMID:19835570

  3. Lung Hot Spot Without Corresponding Computed Tomography Abnormality on Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Artifactual or Real, Iatrogenic or Pathologic?

    PubMed

    Liu, Yiyan

    Focal lung uptake without corresponding lesions or abnormalities on computed tomography (CT) scan poses a dilemma in the interpretation of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). A limited number of case reports have previously suggested an artifactual or iatrogenic nature of the uptake. In the present study, 8 relevant cases were included within a retrospective search of the database. Medical records were reviewed for follow-up radiological and pathologic information. In 7 of 8 cases with focal increased FDG uptake but no corresponding lesions or abnormalities on CT scan, the lung hot spots were artifactual or iatrogenic upon follow-up diagnostic chest CT or repeated PET/CT or both the scans. Microemboli were most likely a potential cause of the pulmonary uptake, with or without partial paravenous injection. One case in the series had a real pulmonary lesion demonstrated on follow-up PET/CT scans and on surgical pathology, although the initial integrated CT and follow-up diagnostic chest CT scans revealed negative findings to demonstrate pulmonary abnormalities corresponding to the hot spot on the PET scan. In conclusion, the finding of a lung hot spot in the absence of anatomical abnormality on FDG PET/CT was most likely artifactual or iatrogenic, but it might also represent a real pulmonary lesion. Nonvisualization of anatomical abnormality could be because of its small size and position directly overlying a segmental vessel. Further image follow-up is necessary and important to clarify the nature of the uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reduction in radiation doses from paediatric CT scans in Great Britain

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Objective: Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. Methods: We retrieved 1073 CT film sets from 36 hospitals. The patients were 0–19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current–time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0–4, 5–9, 10–14 and 15–19 years) and scan year (<1990, 1990–1994, 1995–1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. Results: For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0–4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0–4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. Conclusion: We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. Advances in knowledge: The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990. PMID:26864156

  5. Accuracy of Canadian CT head rule in predicting positive findings on CT of the head of patients after mild head injury in a large trauma centre in Saudi Arabia

    PubMed Central

    Arab, Ala Faisal; Ahmed, Anwar E; Hussein, Mohamed Ahmed; Khankan, Azzam A; Alokaili, Riyadh Nasser

    2015-01-01

    Background Investigation of unjustified computed tomography (CT) scan in patients with minor head injury is lacking in Saudi Arabia. The purpose of the study was to evaluate the compliance and effectiveness of the Canadian computed tomography head rule (CCHR) in our emergency department (ED) and trauma centre and also to reduce the number of unjustified CT studies of the head in the centre. Methods A retrospective study of 368 ED patients with minor head injury was conducted. Patients who underwent CT scan between July 2010 and June 2011were selected from the ED head trauma registry by systematic randomisation. The CCHR was retrospectively applied on the patients’ charts to calculate the prevalence of unjustified head CT scans. A separate survey was conducted to evaluate three emergency physicians’ level of awareness about the CCHR and their ability to determine the necessity of CT scans with various clinical scenarios of head injury. Results The prevalence of unjustified CT scans as per the CCHR was 61.8% (95% confidence interval (CI) 56.5–66.9%). Approximately 5% of the sample had positive CT findings with 95% CI 2.9–7.6%. The CCHR correctly identified 12 cases with positive CT findings with 66.67% sensitivity. Only 24 (6.7%) had Glasgow coma scale scores less than 15 (13/14). The Glasgow coma scale correctly identified only two cases with positive CT findings with 11.11% sensitivity. The percentage of skull fracture (0.9% vs 5%, P = 0.030) was significantly lower in patients with unjustified CT scans than in patients with clinically justified CT scans. There was fair to substantial agreement between the ED physicians and the CCHR (κ = 35–61%). Two ED physicians identified all cases of justified CT scan with 100% sensitivity (95% CI 71.51–100%). Conclusion The level of education regarding the CCHR was found to be optimal among emergency physicians using a case-based scenario survey. The CCHR was found to have a poor compliance potential in the busy ED of our trauma centre and the prevalence of unjustified cranial CT scans remained high. PMID:26471399

  6. CT biliary cystoscopy of gallbladder polyps

    PubMed Central

    Lou, Ming-Wu; Hu, Wei-Dong; Fan, Yi; Chen, Jin-Hua; E, Zhan-Sen; Yang, Guang-Fu

    2004-01-01

    AIM: CT virtual endoscopy has been used in the study of various organs of body including the biliary tract, however, CT virtual endoseopy in diagnosis of gallbladder polyps has not yet been reported. This study was to evaluate the diagnostic value of CT virtual endoscopy in polyps of the gallbladder. METHODS: Thirty-two cases of gallbladder polyps were examined by CT virtual endoscopy, ultrasound, CT scan with oral biliary contrast separately and confirmed by operation and pathology. CT biliary cystoscopic findings were analyzed and compared with those of ultrasound and CT scan with oral biliary contrast, and evaluated in comparison with operative and pathologic findings in all cases. RESULTS: The detection rate of gallbladder polyps was 93.8%(90/96), 96.9%(93/96) and 79.2%(76/96) for CT cystoscopy, ultrasound and CT scan with oral contrast, respectively. CT biliary cystoscopy corresponded well with ultrasound as well as pathology in demonstrating the location, size and configuration of polyps. CT endoscopy was superior to ultrasound in viewing the polyps in a more precise way, 3 dimensionally from any angle in space, and showing the surface in details. CT biliary cystoscopy was also superior to CT scan with oral biliary contrast in terms of observation of the base of polyps for the presence of a pedicle, detection rates as well as image quality. The smallest polyp detected by CT biliary cystoscopy was measured 1.5 mm×2.2 mm×2.5 mm. CONCLUSION: CT biliary cystoscopy is a non-invasive and accurate technique for diagnosis and management of gallbladder polyps. PMID:15069726

  7. SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, V; Kohli, K

    2015-06-15

    Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity,more » noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm.« less

  8. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  9. WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, M; Zhu, L

    Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less

  10. High pitch third generation dual-source CT: Coronary and Cardiac Visualization on Routine Chest CT

    PubMed Central

    Sandfort, Veit; Ahlman, Mark; Jones, Elizabeth; Selwaness, Mariana; Chen, Marcus; Folio, Les; Bluemke, David A.

    2016-01-01

    Background Chest CT scans are frequently performed in radiology departments but have not previously contained detailed depiction of cardiac structures. Objectives To evaluate myocardial and coronary visualization on high-pitch non-gated CT of the chest using 3rd generation dual-source computed tomography (CT). Methods Cardiac anatomy of patients who had 3rd generation, non-gated high pitch contrast enhanced chest CT and who also had prior conventional (low pitch) chest CT as part of a chest abdomen pelvis exam was evaluated. Cardiac image features were scored by reviewers blinded to diagnosis and pitch. Paired analysis was performed. Results 3862 coronary segments and 2220 cardiac structures were evaluated by two readers in 222 CT scans. Most patients (97.2%) had chest CT for oncologic evaluation. The median pitch was 2.34 (IQR 2.05, 2.65) in high pitch and 0.8 (IQR 0.8, 0.8) in low pitch scans (p<0.001). High pitch CT showed higher image visualization scores for all cardiovascular structures compared with conventional pitch scans (p<0.0001). Coronary arteries were visualized in 9 coronary segments per exam in high pitch scans versus 2 segments for conventional pitch (p<0.0001). Radiation exposure was lower in the high pitch group compared with the conventional pitch group (median CTDIvol 10.83 vs. 12.36 mGy and DLP 790 vs. 827 mGycm respectively, p <0.01 for both) with comparable image noise (p=0.43). Conclusion Myocardial structure and coronary arteries are frequently visualized on non-gated 3rd generation chest CT. These results raise the question of whether the heart and coronary arteries should be routinely interpreted on routine chest CT that is otherwise obtained for non-cardiac indications. PMID:27133589

  11. No Association between Radiation Dose from Pediatric CT Scans and Risk of Subsequent Hodgkin Lymphoma.

    PubMed

    Berrington de Gonzalez, Amy; Journy, Neige; Lee, Choonsik; Morton, Lindsay M; Harbron, Richard W; Stewart, Douglas R; Parker, Louise; Craft, Alan W; McHugh, Kieran; Little, Mark P; Pearce, Mark S

    2017-05-01

    Background: We examined the relationship between estimated radiation dose from CT scans and subsequent Hodgkin lymphoma in the UK pediatric CT scans cohort. Methods: A retrospective, record linkage cohort included patients ages 0 to 21 years who underwent CT scans between 1980 and 2002 and were followed up for cancer or death until 2008. Poisson regression analysis was used to evaluate the relationship between estimated radiation dose (lagged by 2 years) and incident Hodgkin lymphoma diagnosed at least 2 years after the first CT scan. Results: There were 65 incident cases of Hodgkin lymphoma in the cohort of 178,601 patients. Neither estimated red bone marrow dose nor mean lymphocyte dose from CT scans was clearly associated with an increased risk of Hodgkin lymphoma (RR for 20+ mGy vs. <5 mGy = 0.92 (0.38-2.22) P trend > 0.5 and 1.44 (0.60-3.48) P trend > 0.5), respectively. Conclusions: Radiation exposure from pediatric CT scans 2 or more years before diagnosis was not associated with Hodgkin lymphoma in this large UK cohort. Impact: These findings are consistent with the majority of previous studies, which do not support a link between ionizing radiation and Hodgkin lymphoma. The results contrast our previous positive findings in this cohort for brain tumors and leukemia, both of which are known to be strongly linked to radiation exposure during childhood. Cancer Epidemiol Biomarkers Prev; 26(5); 804-6. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. 18F-FDG uptake and its clinical relevance in primary gastric lymphoma.

    PubMed

    Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog

    2010-06-01

    We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.

  13. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less

  14. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less

  15. The Value of 18F-FDG PET/CT in Diagnosis and During Follow-up in 273 Patients with Chronic Q Fever.

    PubMed

    Kouijzer, Ilse J E; Kampschreur, Linda M; Wever, Peter C; Hoekstra, Corneline; van Kasteren, Marjo E E; de Jager-Leclercq, Monique G L; Nabuurs-Franssen, Marrigje H; Wegdam-Blans, Marjolijn C A; Ammerlaan, Heidi S M; Buijs, Jacqueline; Geus-Oei, Lioe-Fee de; Oyen, Wim J G; Bleeker-Rovers, Chantal P

    2018-01-01

    In 1%-5% of all acute Q fever infections, chronic Q fever develops, mostly manifesting as endocarditis, infected aneurysms, or infected vascular prostheses. In this study, we investigated the diagnostic value of 18 F-FDG PET/CT in chronic Q fever at diagnosis and during follow-up. Methods: All adult Dutch patients suspected of chronic Q fever who were diagnosed since 2007 were retrospectively included until March 2015, when at least one 18 F-FDG PET/CT scan was obtained. Clinical data and results from 18 F-FDG PET/CT at diagnosis and during follow-up were collected. 18 F-FDG PET/CT scans were prospectively reevaluated by 3 nuclear medicine physicians using a structured scoring system. Results: In total, 273 patients with possible, probable, or proven chronic Q fever were included. Of all 18 F-FDG PET/CT scans performed at diagnosis, 13.5% led to a change in diagnosis. Q fever-related mortality rate in patients with and without vascular infection based on 18 F-FDG PET/CT was 23.8% and 2.1%, respectively ( P = 0.001). When 18 F-FDG PET/CT was added as a major criterion to the modified Duke criteria, 17 patients (1.9-fold increase) had definite endocarditis. At diagnosis, 19.6% of 18 F-FDG PET/CT scans led to treatment modification. During follow-up, 57.3% of 18 F-FDG PET/CT scans resulted in treatment modification. Conclusion: 18 F-FDG PET/CT is a valuable technique in diagnosis of chronic Q fever and during follow-up, often leading to a change in diagnosis or treatment modification and providing important prognostic information on patient survival. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Use of Intraoperative Computed Tomography for Revisional Procedures in Patients with Complex Maxillofacial Trauma

    PubMed Central

    Singh, Mansher; Ricci, Joseph A.

    2015-01-01

    Background: In patients with panfacial fractures and distorted anatomic landmarks of zygomatic and orbital complex, there is a risk of zygomaticomaxillary complex (ZMC) malpositioning even with the best efforts for surgical repair. This results in increased number of additional procedures to achieve accurate positioning. Methods: We describe the usage of intraoperative C-arm cone-beam computed tomographic (CT) scan for ZMC malpositioning in a representative patient with panfacial fractures. Results: We have successfully used intraoperative CT scan for ZMC malpositioning in 3 patients. The representative patient had ZMC malposition after the initial attempt of surgical repair without any intraoperative imaging. On using intraoperative CT scan during the next attempt, we were able to reposition the ZMC accurately. Conclusions: Intraoperative CT scan might improve the accuracy of ZMC positioning and decrease the chances of potential additional surgeries. In patients with distorted anatomical landmarks and panfacial fractures, it can be especially helpful toward correcting ZMC malposition. PMID:26301152

  17. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D; Neylon, J; Dou, T

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less

  18. Neuro-Myelomatosis of the Brachial Plexus - An Unusual Site of Disease Visualized by FDG-PET/CT: A Case Report.

    PubMed

    Fukunaga, Hisanori; Mutoh, Tatsushi; Tatewaki, Yasuko; Shimomura, Hideo; Totsune, Tomoko; Terao, Chiaki; Miyazawa, Hidemitsu; Taki, Yasuyuki

    2017-05-01

    BACKGROUND Peripheral or cranial nerve root dysfunction secondary to invasion of the CNS in multiple myeloma is a rare clinical event that is frequently mistaken for other diagnoses. We describe the clinical utility of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scanning for diagnosing neuro-myelomatosis. CASE REPORT A 63-year-old woman whose chief complaints were right shoulder and upper extremity pain underwent MRI and 18F-FDG PET/CT scan. MRI revealed a non-specific brachial plexus tumor. 18F-FDG PET/CT demonstrated intense FDG uptake in multiple intramedullary lesions and in the adjacent right brachial plexus, indicating extramedullary neural involvement associated with multiple myeloma, which was confirmed later by a bone marrow biopsy. CONCLUSIONS This is the first reported case of neuro-myelomatosis of the brachial plexus. It highlights the utility of the 18F-FDG PET/CT scan as a valuable diagnostic modality.

  19. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length wasmore » used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dose estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.« less

  20. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  1. Computed tomography angiography reveals the crime instrument – case report

    PubMed Central

    Banaszek, Anna; Guziński, Maciej; Sąsiadek, Marek

    2010-01-01

    Summary Background: The development of multislice CT technology enabled imaging of post-traumatic brain lesions with isotropic resolution, which led to unexpected results in the presented case Case Report: An unconscious, 49-year-old male with a suspected trauma underwent a routine CT examination of the head, which revealed an unusual intracerebral bleeding and therefore was followed by CT angiography (CTA). The thorough analysis of CTA source scans led to the detection of the bleeding cause. Conclusions: The presented case showed that a careful analysis of a CT scan allows not only to define the extent of pathological lesions in the intracranial space but it also helps to detect the crime instrument, which is of medico-legal significance. PMID:22802784

  2. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Rosica, D; Agarwal, V

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less

  3. TH-C-18A-08: A Management Tool for CT Dose Monitoring, Analysis, and Protocol Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chan, F; Newman, B

    2014-06-15

    Purpose: To develop a customizable tool for enterprise-wide managing of CT protocols and analyzing radiation dose information of CT exams for a variety of quality control applications Methods: All clinical CT protocols implemented on the 11 CT scanners at our institution were extracted in digital format. The original protocols had been preset by our CT management team. A commercial CT dose tracking software (DoseWatch,GE healthcare,WI) was used to collect exam information (exam date, patient age etc.), scanning parameters, and radiation doses for all CT exams. We developed a Matlab-based program (MathWorks,MA) with graphic user interface which allows to analyze themore » scanning protocols with the actual dose estimates, and compare the data to national (ACR,AAPM) and internal reference values for CT quality control. Results: The CT protocol review portion of our tool allows the user to look up the scanning and image reconstruction parameters of any protocol on any of the installed CT systems among about 120 protocols per scanner. In the dose analysis tool, dose information of all CT exams (from 05/2013 to 02/2014) was stratified on a protocol level, and within a protocol down to series level, i.e. each individual exposure event. This allows numerical and graphical review of dose information of any combination of scanner models, protocols and series. The key functions of the tool include: statistics of CTDI, DLP and SSDE, dose monitoring using user-set CTDI/DLP/SSDE thresholds, look-up of any CT exam dose data, and CT protocol review. Conclusion: our inhouse CT management tool provides radiologists, technologists and administration a first-hand near real-time enterprise-wide knowledge on CT dose levels of different exam types. Medical physicists use this tool to manage CT protocols, compare and optimize dose levels across different scanner models. It provides technologists feedback on CT scanning operation, and knowledge on important dose baselines and thresholds.« less

  4. Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990–2020

    PubMed Central

    Journy, Neige M Y; Lee, Choonsik; Harbron, Richard W; McHugh, Kieran; Pearce, Mark S; Berrington de González, Amy

    2017-01-01

    Background: To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Methods: Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. Results: In 2000–2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50–70% in 2000–2008 compared with 1990–1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38–113) future cancers. Current practices would lead to about 300 (90% UI: 230–680) future cancers induced by scans performed in 2016–2020. Conclusions: Absolute excess risks from single exposures would be low compared with background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers. PMID:27824812

  5. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.« less

  6. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Markel, D; Hegyi, G

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less

  7. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  8. Limitations of Airway Dimension Measurement on Images Obtained Using Multi-Detector Row Computed Tomography

    PubMed Central

    Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki

    2013-01-01

    Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105

  9. Coronal CT scan measurements and hearing evolution in enlarged vestibular aqueduct syndrome.

    PubMed

    Saliba, Issam; Gingras-Charland, Marie-Eve; St-Cyr, Karine; Décarie, Jean-Claude

    2012-04-01

    To assess the correlation between the enlarged vestibular aqueduct (EVA) diameter and (1) the hearing loss level (mild, moderate, severe and profound and (2) the hearing evolution. The secondary objective was to obtain measurement limits on the coronal plane of the temporal bone CT scan for the diagnosis of EVA. Retrospective study in a tertiary pediatric center. Mastoid CT scans were reviewed to measure the VA diameter at its midpoint and operculum on axial and coronal planes in a pathologic and normal population. We used their serial audiograms to assess the evolution of hearing. 101 EVA was identified out of 1812 temporal bones CT scan from our radiologic database in 8 years. Bone conduction was stable after a mean follow-up of 40.9 ± 32.9 months. PTA has been the most affected in time by the EVA (p=0.006). No correlation was identified between impedancemetry and the diameter of the EVA. On the diagnostic audiogram, 61% of hearing loss were in the mild and moderate hearing levels; at the end of the follow-up 64% of hearing loss are still in the mild and moderate hearing levels. The cut-off values for the coronal midpoint and operculum planes on the CT scan to diagnose an EVA are 2.4 mm and 4.34 mm respectively. Conductive or mixed hearing loss might be the first manifestation of EVA. Coronal CT scan cuts can provide additional information to evaluate EVA especially when axial cuts are not conclusive. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Brain CT scan indexes in the normal pressure hydrocephalus: predictive value in the outcome of patients and correlation to the clinical symptoms.

    PubMed

    Chatzidakis, Emmanuel M; Barlas, George; Condilis, Nicolas; Bouramas, Dimos; Anagnostopoulos, Demetrios; Volikas, Zacharias; Simopoulos, Konstantinos

    2008-01-01

    The aim of this study is to find out the correlation of the ventricular size of the brain, as it is estimated using brain computed tomography (CT) scan indexes in patients with normal pressure hydrocephalus (NPH), to: a) the clinical symptoms, and b) the results of cerebrospinal fluid (CSF) shunting procedures. We looked for any predictive value in the estimation of brain CT scan indexes, in patients as above, in whom a shunt is going to be placed. It is well known that it is very difficult to decide who is going to improve after shunting. We studied 40 cases of patients with the diagnosis "NPH" in whom the ventricular shunts were placed. Every symptom (motor disturbance, deficit of memory, incontinence) was separately evaluated preoperatively. The outcome of shunting was also evaluated and the patients were graded. The following CT scan indexes were estimated from the preoperative CT scans of the brain in every case: the ventricle-brain ratio (VBR), the bi-caudate and bi-frontal ratios, the third ventricle-Sylvian fissure (3V-SF) ratio, and the four largest cortical gyri. The method we have used for statistics is "one way analysis of variance", correlating the CT scan indexes to the symptoms of the patients preoperatively, and the outcome of them postoperatively. The main conclusion is that the size of the lateral ventricles of the brain preoperatively is not correlated to the outcome after CSF shunting surgery, but it is correlated to the symptoms of NPH preoperatively.

  11. Impact of Asynchronous Training on Radiology Learning Curve among Emergency Medicine Residents and Clerkship Students

    PubMed Central

    Pourmand, Ali; Woodward, Christina; Shokoohi, Hamid; King, Jordan B; Taheri, M Reza; King, Jackson; Lawrence, Christopher

    2018-01-01

    Context Web-based learning (WBL) modules are effectively used to improve medical education curriculum; however, they have not been evaluated to improve head computed tomography (CT) scan interpretation in an emergency medicine (EM) setting. Objective To evaluate the effectiveness of a WBL module to aid identification of cranial structures on CT and to improve ability to distinguish between normal and abnormal findings. Design Prospective, before-and-after trial in the Emergency Department of an academic center. Baseline head CT knowledge was assessed via a standardized test containing ten head CT scans, including normal scans and those showing hemorrhagic stroke, trauma, and infection (abscess). All trainees then participated in a WBL intervention. Three weeks later, they were given the same ten CT scans to evaluate in a standardized posttest. Main Outcome Measures Improvement in test scores. Results A total of 131 EM clerkship students and 32 EM residents were enrolled. Pretest scores correlated with stage of training, with students and first-year residents demonstrating the lowest scores. Overall, there was a significant improvement in percentage of correctly classified CT images after the training intervention from a mean pretest score of 32% ± 12% to posttest score of 67% ± 13% (mean improvement = 35% ± 13%, p < 0.001). Among subsets by training level, all subgroups except first-year residents demonstrated a statistically significant increase in scores after the training. Conclusion Incorporating asynchronous WBL modules into EM clerkship and residency curriculum provides early radiographic exposure in their clinical training and can enhance diagnostic head CT scan interpretation. PMID:29272248

  12. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, Nathan; Erwin, William; Pan, Tinsu

    2013-12-15

    Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less

  13. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B; He, W; Cvetkovic, D

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less

  14. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Fontaine, M; Bradshaw, T; Kubicek, L

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less

  15. WE-AB-BRA-04: Evaluation of the Tumor Registration Error in Biopsy Procedures Performed Under Real Time PET/CT Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanchon, L; INSERM U1101, Brest; Apte, A

    2015-06-15

    Purpose: PET/CT guidance is used for biopsies of metabolically active lesions, which are not well seen on CT alone or to target the metabolically active tissue in tumor ablations. It has also been shown that PET/CT guided biopsies provide an opportunity to verify the location of the lesion border at the place of needle insertion. However the error in needle placement with respect to the metabolically active region may be affected by motion between the PET/CT scan performed at the start of the procedure and the CT scan performed with the needle in place and this error has not beenmore » previously quantified. Methods: Specimens from 31 PET/CT guided biopsies were investigated and correlated to the intraoperative PET scan under an IRB approved HIPAA compliant protocol. For 4 of the cases in which larger motion was suspected a second PET scan was obtained with the needle in place. The CT and the PET images obtained before and after the needle insertion were used to calculate the displacement of the voxels along the needle path. CTpost was registered to CTpre using a free form deformable registration and then fused with PETpre. The shifts between the PET image contours (42% of SUVmax) for PETpre and PETpost were obtained at the needle position. Results: For these extreme cases the displacement of the CT voxels along the needle path ranged from 2.9 to 8 mm with a mean of 5 mm. The shift of the PET image segmentation contours (42% of SUVmax) at the needle position ranged from 2.3 to 7 mm between the two scans. Conclusion: Evaluation of the mis-registration between the CT with the needle in place and the pre-biopsy PET can be obtained using deformable registration of the respective CT scans and can be used to indicate the need of a second PET in real-time. This work is supported in part by a grant from Biospace Lab, S.A.« less

  16. FDG-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection.

    PubMed

    Pijl, Jordy Pieter; Glaudemans, Andor W J M; Slart, Riemer H J A; Kwee, Thomas Christian

    2018-04-13

    Purpose: To determine the value of 18 F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) for diagnosing renal or hepatic cyst infection in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This retrospective single-center study included all patients with ADPKD who underwent FDG-PET/CT because of suspected cyst infection between 2010 and 2017. Results: Thirty FDG-PET/CT scans of thirty individual patients were included, of which 19 were positive for cyst infection. According to a previously established clinical and biochemical reference standard, FDG-PET/CT achieved sensitivity of 88.9%, specificity of 75.0%, positive predictive value of 84.2%, and negative predictive value of 81.8% for the diagnosis of cyst infection. In 5 cases, FDG-PET/CT suggested a different pathologic process that explained the symptoms, including pneumonia ( n = 1), generalized peritonitis ( n = 1), pancreatitis ( n = 1), colitis ( n = 1), and cholangitis ( n = 1). Total duration of hospital stay and duration between FDG-PET/CT scan and hospital discharge of patients with an FDG-PET/CT scan positive for cyst infection were significantly longer than those with a negative scan ( P = 0.005 and P = 0.009, respectively). Creatinine levels were significantly higher in patients with an FDG-PET/CT scan positive for cyst infection than in patients with a negative scan ( P = 0.015). Other comparisons of clinical parameters (age, gender, presence of fever (>38.5°C) for more than 3 days, abdominal pain, history of solid organ transplantation and nephrectomy, immune status), laboratory values (C-reactive protein level (CRP), leukocyte count, estimated glomerular filtration rate), and microbiologic results (blood and urine cultures) were not significantly different ( P = 0.13-1.00) between FDG-PET/CT-positive and -negative patients. Conclusion: FDG-PET/CT is a useful and recommendable (upfront) imaging modality for the evaluation of patients with ADPKD and suspected cyst infection. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Trends of CT utilisation in an emergency department in Taiwan: a 5-year retrospective study

    PubMed Central

    Hu, Sung-Yuan; Hsieh, Ming-Shun; Lin, Meng-Yu; Hsu, Chiann-Yi; Lin, Tzu-Chieh; How, Chorng-Kuang; Wang, Chen-Yu; Tsai, Jeffrey Che-Hung; Wu, Yu-Hui; Chang, Yan-Zin

    2016-01-01

    Objectives To investigate the association between the trends of CT utilisation in an emergency department (ED) and changes in clinical imaging practice and patients' disposition. Setting A hospital-based retrospective observational study of a public 1520-bed referral medical centre in Taiwan. Participants Adult ED visits (aged ≥18 years) during 2009–2013, with or without receiving CT, were enrolled as the study participants. Main outcome measures For all enrolled ED visits, we retrospectively analysed: (1) demographic characteristics, (2) triage categories, (3) whether CT was performed and the type of CT scan, (4) further ED disposition, (5) ED cost and (6) ED length of stay. Results In all, 269 239 adult ED visits (148 613 male patients and 120 626 female patients) were collected during the 5-year study period, comprising 38 609 CT scans. CT utilisation increased from 11.10% in 2009 to 17.70% in 2013 (trend test, p<0.001). Four in 5 types of CT scan (head, chest, abdomen and miscellaneous) were increasingly utilised during the study period. Also, CT was increasingly ordered annually in all age groups. Although ED CT utilisation rates increased markedly, the annual ED visits did not actually increase. Moreover, the subsequent admission rate, after receiving ED CT, declined (59.9% in 2009 to 48.2% in 2013). Conclusions ED CT utilisation rates increased significantly during 2009–2013. Emergency physicians may be using CT for non-emergent studies in the ED. Further investigation is needed to determine whether increasing CT utilisation is efficient and cost-effective. PMID:27279477

  18. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has themore » same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available. Conclusions: The radial NPS method was shown to be accurate and efficient in estimating the local NPS of FBP-reconstructed 2D CT images. It presents strong advantages over traditional NPS methods when the number of scans is limited and can be extended to estimate the in-plane NPS of cone-beam CT and multislice helical CT scans.« less

  19. Single-Blinded Prospective Implementation of a Preoperative Imaging Checklist for Endoscopic Sinus Surgery.

    PubMed

    Error, Marc; Ashby, Shaelene; Orlandi, Richard R; Alt, Jeremiah A

    2018-01-01

    Objective To determine if the introduction of a systematic preoperative sinus computed tomography (CT) checklist improves identification of critical anatomic variations in sinus anatomy among patients undergoing endoscopic sinus surgery. Study Design Single-blinded prospective cohort study. Setting Tertiary care hospital. Subjects and Methods Otolaryngology residents were asked to identify critical surgical sinus anatomy on preoperative CT scans before and after introduction of a systematic approach to reviewing sinus CT scans. The percentage of correctly identified structures was documented and compared with a 2-sample t test. Results A total of 57 scans were reviewed: 28 preimplementation and 29 postimplementation. Implementation of the sinus CT checklist improved identification of critical sinus anatomy from 24% to 84% correct ( P < .001). All residents, junior and senior, demonstrated significant improvement in identification of sinus anatomic variants, including those not directly included in the systematic review implemented. Conclusion The implementation of a preoperative endoscopic sinus surgery radiographic checklist improves identification of critical anatomic sinus variations in a training population.

  20. Socio-economic variation in CT scanning in Northern England, 1990-2002

    PubMed Central

    2012-01-01

    Background Socio-economic status is known to influence health throughout life. In childhood, studies have shown increased injury rates in more deprived settings. Socio-economic status may therefore be related to rates of certain medical procedures, such as computed tomography (CT) scans. This study aimed to assess socio-economic variation among young people having CT scans in Northern England between 1990 and 2002 inclusive. Methods Electronic data were obtained from Radiology Information Systems of all nine National Health Service hospital Trusts in the region. CT scan data, including sex, date of scan, age at scan, number and type of scans were assessed in relation to quintiles of Townsend deprivation scores, obtained from linkage of postcodes with census data, using χ2 tests and Spearman rank correlations. Results During the study period, 39,676 scans were recorded on 21,089 patients, with 38,007 scans and 19,485 patients (11344 male and 8132 female) linkable to Townsend scores. The overall distributions of both scans and patients by quintile of Townsend deprivation scores were significantly different to the distributions of Townsend scores from the census wards included in the study (p < 0.0001). There was a significant association between type of scan and deprivation quintile (p < 0.0001), primarily due to the higher proportions of head scans in the three most deprived quintiles, and slightly higher proportions of chest scans and abdomen and pelvis scans in the least deprived groups. There was also a significant association (p < 0.0001) between the patient's age at the time of the CT scan and Townsend deprivation quintiles, with slightly increasing proportions of younger children with increasing deprivation. A similar association with age (p < 0.0001) was seen when restricting the data to include only the first scan of each patient. The number of scans per patient was also associated with Townsend deprivation quintiles (p = 0.014). Conclusions Social inequalities exist in the numbers of young people undergoing CT scans with those from deprived areas more likely to do so. This may reflect the rates of injuries in these individuals and implies that certain groups within the population may receive higher radiation doses than others due to medical procedures. PMID:22283843

  1. Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster

    2017-03-01

    Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

  2. SU-F-207-03: Dosimetric Effect of the Position of Arms in Torso CT Scan with Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Rensselaer Polytechnic Institute, Troy, NY; Gao, Y

    Purpose: To evaluate the patient organ dose differences between the arms-raised and arms-lowered postures in Torso multidetector computed tomography (MDCT) scan protocols with tube current modulation (TCM). Methods: Patient CT organ doses were simulated using the Monte Carlo method with human phantoms and a validated CT scanner model. A set of adult human phantoms with arms raised and arms lowered postures were developed using advanced BREP-based mesh surface geometries. Organ doses from routine Torso scan protocols such as chest, abdomen-pelvis, and CAP scans were simulated. The organ doses differences caused by two different posutres were investigated when tube current modulationmore » (TCM) were applied during the CT scan. Results: With TCM applied, organ doses of all the listed organs of arms-lowered posture phantom are larger than those of arms raised phantom. The dose difference for most of the organs or tissues are larger than 50%, and the skin doses difference for abdomen-pelvis scan even reaches 112.03%. This is due to the fact that the tube current for patient with arms-lowered is much higher than for the arms raised posture. Conclusion: Considering CT scan with TCM, which is commonly applied clinically, patients who could not raise their arms will receive higher radiation dose than the arms raised patient, with dose differences for some tissues such as the skin being larger than 100%. This is due to the additional tube current necessary to penetrate the arms while maintaining consistent image quality. National Nature Science Foundation of China(No.11475047)« less

  3. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less

  4. WE-EF-207-07: Dual Energy CT with One Full Scan and a Second Sparse-View Scan Using Structure Preserving Iterative Reconstruction (SPIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: Conventional dual energy CT (DECT) reconstructs CT and basis material images from two full-size projection datasets with different energy spectra. To relax the data requirement, we propose an iterative DECT reconstruction algorithm using one full scan and a second sparse-view scan by utilizing redundant structural information of the same object acquired at two different energies. Methods: We first reconstruct a full-scan CT image using filtered-backprojection (FBP) algorithm. The material similarities of each pixel with other pixels are calculated by an exponential function about pixel value differences. We assume that the material similarities of pixels remains in the second CTmore » scan, although pixel values may vary. An iterative method is designed to reconstruct the second CT image from reduced projections. Under the data fidelity constraint, the algorithm minimizes the L2 norm of the difference between pixel value and its estimation, which is the average of other pixel values weighted by their similarities. The proposed algorithm, referred to as structure preserving iterative reconstruction (SPIR), is evaluated on physical phantoms. Results: On the Catphan600 phantom, SPIR-based DECT method with a second 10-view scan reduces the noise standard deviation of a full-scan FBP CT reconstruction by a factor of 4 with well-maintained spatial resolution, while iterative reconstruction using total-variation regularization (TVR) degrades the spatial resolution at the same noise level. The proposed method achieves less than 1% measurement difference on electron density map compared with the conventional two-full-scan DECT. On an anthropomorphic pediatric phantom, our method successfully reconstructs the complicated vertebra structures and decomposes bone and soft tissue. Conclusion: We develop an effective method to reduce the number of views and therefore data acquisition in DECT. We show that SPIR-based DECT using one full scan and a second 10-view scan can provide high-quality DECT images and accurate electron density maps as conventional two-full-scan DECT.« less

  5. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planningmore » CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer may reduce radiation treatment–related toxicity.« less

  6. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Ofmore » the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.« less

  7. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image.

    PubMed

    Saukko, Annina E A; Honkanen, Juuso T J; Xu, Wujun; Väänänen, Sami P; Jurvelin, Jukka S; Lehto, Vesa-Pekka; Töyräs, Juha

    2017-12-01

    Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

  8. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  9. Refixation of Osteochondral Fractures by an Ultrasound-Activated Pin System – An Ovine In Vivo Examination Using CT and Scanning Electron Microscope

    PubMed Central

    H, Neumann; A.P, Schulz; S, Breer; A, Unger; B, Kienast

    2015-01-01

    Background: Osteochondral injuries, if not treated appropriately, often lead to severe osteoarthritis of the affected joint. Without refixation of the osteochondral fragment, human cartilage only repairs these defects imperfectly. All existing refixation systems for chondral defects have disadvantages, for instance bad MRI quality in the postoperative follow-up or low anchoring forces. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants a higher anchoring is assumed. Aim of the study was to investigate, if ultrasound-activated pins can provide a secure refixation of osteochondral fractures comparing to conventional screw and conventional, resorbable pin osteosynthesis. CT scans and scanning electron microscopy should proovegood refixation results with no further tissue damage by the melting of the ultrasound-activated pins in comparison to conventional osteosynthesis. Methods: Femoral osteochondral fragments in sheep were refixated with ultrasound-activated pins (SonicPin™), Ethipins® and screws (Asnis™). The quality of the refixated fragments was examined after three month of full weight bearing by CT scans and scanning electron microscopy of the cartilage surface. Results: The CT examination found almost no statistically significant difference in the quality of refixation between the three different implants used. Concerning the CT morphology, ultrasound-activated pins demonstrated at least the same quality in refixation of osteochondral fragments as conventional resorbable pins or screws. The scanning electron microscopy showed no major surface damage by the three implants, especially any postulated cartilage damage induced by the heat of the ultrasound-activated pin. The screws protruded above the cartilage surface, which may affect the opposingtibial surface. Conclusion: Using CT scans and scanning electron microscopy, the SonicPin™, the Ethipin® and screws were at least equivalent in refixation quality of osteochondral fragments. PMID:25674184

  10. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  11. Medical conditions associated with the use of CT in children and young adults, Great Britain, 1995–2008

    PubMed Central

    McHugh, Kieran; Harbron, Richard W; Pearce, Mark S; Berrington De Gonzalez, Amy

    2016-01-01

    Objective: To describe the medical conditions associated with the use of CT in children or young adults with no previous cancer diagnosis. Methods: Radiologist reports for scans performed in 1995–2008 in non-cancer patients less than 22 years of age were collected from the radiology information system in 44 hospitals of Great Britain. By semantic search, an automated procedure identified 185 medical conditions within the radiologist reports. Manual validation of a subsample by a paediatric radiologist showed a satisfactory performance of the automatic coding procedure. Results: Medical information was extracted for 37,807 scans; 19.5% scans were performed in children less than 5 years old; 52.0% scans were performed in 2000 or after. Trauma, diseases of the nervous (mainly hydrocephalus) or the circulatory system were each mentioned in 25–30% of scans. Hydrocephalus was mentioned in 19% of all scans, 59% of scans repeated ≥5 times in a year, and was the most frequent condition in children less than 5 years of age. Congenital diseases/malformations, disorders of the musculoskeletal system/connective tissues and infectious or respiratory diseases were each mentioned in 5–10% of scans. Suspicionor diagnosis of benign or malignant tumour was identified in 5% of scans. Conclusion: This study describes the medical conditions that likely underlie the use of CT in children in Great Britain. It shows that patients with hydrocephalus may receive high cumulative radiation exposures from CT in early life, i.e. at ages when they are most sensitive to radiation. Advances in knowledge: The majority of scans were unrelated to cancer suspicion. Repeated scans over time were mainly associated with the management of hydrocephalus. PMID:27767331

  12. Simulation of pseudo-CT images based on deformable image registration of ultrasound images: A proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meer, Skadi van der; Camps, Saskia M.; Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE

    Purpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (US{sub sim}), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CT{sub ps}) image that is more representative of the patients’ geometry during treatment than the CT acquired at simulation stage (CT{sub sim}). Methods: The three prostatemore » patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US–CT datasets each and the third one had five US–CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding US{sub sim} scan to yield a new deformed CT{sub ps} scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CT{sub gt}) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (γ) evaluations on both the Hounsfield units (HUs) and the dose. Results: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (γ{sub Dose}, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (γ{sub CT}, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate. Conclusions: This new technique may generate CT{sub ps} images that are more representative of the actual patient anatomy than the CT{sub sim} scan.« less

  13. Incidence of Brain Metastases on Follow-up 18F-FDG PET/CT Scans of Non-Small Cell Lung Cancer Patients: Should We Include the Brain?

    PubMed

    Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H

    2017-09-01

    The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  14. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, A; Contee, C; White, B

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps)more » using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used, spatial registration errors were larger, and dose gradient was higher (i.e., higher SD-dose). To our knowledge, this is the first study to directly compute dose errors following deformable registration of lung CT scans.« less

  15. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians

    PubMed Central

    Forsythe, Anna V; Brady, Zoe; Butler, Martin W; Goergen, Stacy K; Byrnes, Graham B; Giles, Graham G; Wallace, Anthony B; Anderson, Philip R; Guiver, Tenniel A; McGale, Paul; Cain, Timothy M; Dowty, James G; Bickerstaffe, Adrian C; Darby, Sarah C

    2013-01-01

    Objective To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Design Population based, cohort, data linkage study in Australia. Cohort members 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Main outcome Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. Results 60 674 cancers were recorded, including 3150 in 680 211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100 000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. Conclusions The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose. PMID:23694687

  16. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less

  17. Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging

    PubMed Central

    Zhang, Ying; Tang, Jian; Xu, Jianrong

    2017-01-01

    Background To investigate the value of dual energy computed tomography (DECT) parameters (including iodine concentration and monochromatic CT numbers) for predicting pure ground-glass nodules (pGGNs) of invasive adenocarcinoma (IA). Methods A total of 55 resected pGGNs evaluated with both unenhanced thin-section CT (TSCT) and enhanced DECT scans were included. Correlations between histopathology [adenocarcinoma in situ (AIS), minimally IA (MIA), and IA] and CT scan characteristics were examined. CT scan and clinicodemographic data were investigated by univariate and multivariate analysis to identify features that helped distinguish IA from AIS or MIA. Results Both normalized iodine concentration (NIC) of IA and slope of spectral curve [slope(k)] were not significantly different between IA and AIS or MIA. Size, performance of pleural retraction and enhanced monochromatic CT attenuation values of 120–140 keV were significantly higher for IA. In multivariate regression analysis, size and enhanced monochromatic CT number of 140 keV were independent predictors for IA. Using the two parameters together, the diagnostic capacity of IA could be improved from 0.697 or 0.635 to 0.713. Conclusions DECT could help demonstrate blood supply and indicate invasion extent of pGGNs, and monochromatic CT number of higher energy (especially 140 keV) would be better for diagnosing IA than lower energies. Together with size of pGGNs, the diagnostic capacity of IA could be better. PMID:29312701

  18. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Hashim, S.; Karim, M. K. A.; Bahruddin, N. A.; Salehhon, N.; Musa, Y.

    2017-05-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients (n=20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients (n=20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDIvol) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDIvol significantly decreased by 38% in LD CT compared to STD CT (p<0.05). Objective and subjective image quality were statistically improved with AIDR 3D (p<0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis.

  19. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...

  20. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...

  1. FDG-Avid Portal Vein Tumor Thrombosis from Hepatocellular Carcinoma in Contrast-Enhanced FDG PET/CT

    PubMed Central

    Nguyen, Xuan Canh; Nguyen, Dinh Song Huy; Ngo, Van Tan; Maurea, Simone

    2015-01-01

    Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a combination of dynamic liver CT scan, multiphase imaging, and whole-body PET scan. PET and CT DICOM images of patients were imported into the PET/CT imaging system for the re-analysis of contrast enhancement and FDG uptake in thrombus, the diameter of the involved portal vein, and characteristics of liver tumors and metastasis. Results: Two patients with previously untreated HCC and 7 cases with previously treated HCC had FDG-avid PVTT in contrast-enhanced FDG PET/CT scan. During the arterial phase of CT scan, portal vein thrombus showed contrast enhancement in 8 out of 9 patients (88.9%). PET scan showed an increased linear FDG uptake along the thrombosed portal vein in all patients. The mean greatest diameter of thrombosed portal veins was 1.8 ± 0.2 cm, which was significantly greater than that observed in normal portal veins (P<0.001). FDG uptake level in portal vein thrombus was significantly higher than that of blood pool in the reference normal portal vein (P=0.001). PVTT was caused by the direct extension of liver tumors. All patients had visible FDG-avid liver tumors in contrast-enhanced images. Five out of 9 patients (55.6%) had no extrahepatic metastasis, 3 cases (33.3%) had metastasis of regional lymph nodes, and 1 case (11.1%) presented with distant metastasis. The median estimated survival time of patients was 5 months. Conclusion: The intraluminal filling defect consistent with thrombous within the portal vein, expansion of the involved portal vein, contrast enhancement, and linear increased FDG uptake of the thrombus extended from liver tumor are findings of FDG-avid PVTT from HCC in contrast-enhanced FDG PET/CT. PMID:27408876

  2. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...

  3. SU-E-I-57: Evaluation and Optimization of Effective-Dose Using Different Beam-Hardening Filters in Clinical Pediatric Shunt CT Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, K; Aldoohan, S; Collier, J

    Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measuremore » CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.« less

  4. Single phase computed tomography is equivalent to dual phase method for localizing hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism: a retrospective review

    PubMed Central

    Morón, Fanny; Delumpa, Alfred; Guffey, Danielle; Dunaway, David

    2017-01-01

    Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial) versus single phase (arterial) CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695). These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient. PMID:28828238

  5. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less

  6. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, H; Li, B; Behrman, R

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each densitymore » insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.« less

  7. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  8. Radiation dose in the thyroid and the thyroid cancer risk attributable to CT scans for pediatric patients in one general hospital of China.

    PubMed

    Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu

    2014-03-07

    To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61-0.92 mGy for paranasal sinus CT scans, 1.10-2.45 mGy for head CT scans, and 2.63-5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.2 per 100,000 for boys and 14.2 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans.

  9. CT Scanning in Identification of Sheep Cystic Echinococcosis

    PubMed Central

    Mao, Rui; Qi, Hongzhi; Pei, Lei; Hao, Jie; Dong, Jian; Jiang, Tao; Ainiwaer, Abudula; Shang, Ge; Xu, Lin; Shou, Xi; Zhang, Songan; Wu, Ge; Lu, Pengfei

    2017-01-01

    Objective We aim to determine the efficiency of CT in identification of cystic echinococcosis in sheep. Methods Fifty-three sheep with liver cysts confirmed by ultrasonography were subject to CT scan to evaluate the number, size, and type of the cysts in liver and lung, confirmed using necropsy. The correlation of numbers between liver cysts and lung cysts was calculated using Pearson analysis. Results Necropsy indicated a 98% consensus on size, location, number, and activity compared with CT scan. The viable cysts were 53.1% and 50.6% in the liver and lung, respectively. Among the cysts in liver, 35.5%, 9.5%, 5.7%, 10.2%, and 39.1% were Types CE1, CE2, CE3, CE4, and CE5, respectively. The cysts in the lungs, 17.4%, 26.9%, 12.1%, 11.6%, and 32.1%, were Types CE1, CE2, CE3, CE4, and CE5, respectively. A significant correlation was noticed between the number of cysts in liver and those in lung (R = 0.770, P < 0.001). Conclusions CT scan is a suitable tool in determining the size and type of cystic hydatid cysts in both liver and lung of sheep. A significant correlation was noticed between the numbers in liver and lung, indicating that lung infection was likely due to the expansion of liver cyst burden pressure. PMID:29082246

  10. Interactive lung segmentation in abnormal human and animal chest CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less

  11. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nattenmüller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % inmore » drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.« less

  12. Alcohol-related hospitalisations of trauma patients in Southern Taiwan: a cross-sectional study based on a trauma registry system

    PubMed Central

    Rau, Cheng-Shyuan; Liu, Hang-Tsung; Hsu, Shiun-Yuan; Cho, Tzu-Yu; Hsieh, Ching-Hua

    2014-01-01

    Objectives To provide an overview of the demographic characteristics of patients with positive blood alcohol concentration (BAC) and to investigate the performance of brain CT scans in these patients. Design Cross-sectional study. Setting Taiwan. Participants 2192 patients who had undergone a test for blood alcohol of 13 233 patients registered in the Trauma Registry System between 1 January 2009 and 31 December 2012. A BAC level of 50 mg/dL was defined as the cut-off value. Detailed information was retrieved from the patients with positive BAC (n=793) and was compared with information from those with a negative BAC (n=1399). Main outcome measures Glasgow Coma Scale (GCS) and Injury Severity Score (ISS) as well as the performance and findings of obtained brain CT scans. Results Patients with positive BAC had a higher rate of face injury, but a lower GCS score, a lower rate of head and neck injury, a lower ISS and New Injury Severity Score. Alcohol use was associated with a shorter length of hospital stay (8.6 vs 11.4 days, p=0.000) in patients with an ISS of <16. Of 496 patients with positive BAC who underwent brain CT, 164 (33.1%) showed positive findings on CT scan. In contrast, of 891 patients with negative BAC who underwent brain CT, 389 (43.7%) had positive findings on CT scan. The lower percentage of positive CT scan findings in patients with positive BAC was particularly evident in patients with an ISS <16 (18.0% vs 28.8%, p=0.001). Conclusions Patients who consumed alcohol tended to have a low GCS score and injuries that were less severe. However, given the significantly low percentage of positive findings, brain CT might be overused in these patients with less severe injuries. PMID:25361838

  13. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  14. Repeated irradiation from micro-computed tomography scanning at 2, 4 and 6 months of age does not induce damage to tibial bone microstructure in male and female CD-1 mice.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E

    2017-01-01

    Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.

  15. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  16. Extravasation Risk Using Ultrasound Guided Peripheral Intravenous Catheters for Computed Tomography Contrast Administration

    PubMed Central

    Rupp, Jordan D.; Ferre, Robinson M.; Boyd, Jeremy S.; Dearing, Elizabeth; McNaughton, Candace D.; Liu, Dandan; Jarrell, Kelli L.; McWade, Conor M.; Self, Wesley H.

    2016-01-01

    Objective Ultrasound guided intravenous catheter (USGIV) insertion is increasingly being used for administration of intravenous contrast for computed tomography (CT) scans. The goal of this investigation was to evaluate the risk of contrast extravasation among patients receiving contrast through USGIV catheters. Methods A retrospective observational study of adult patients who underwent a contrast-enhanced CT scan at a tertiary-care emergency department during a recent 64-month period was conducted. The unadjusted prevalence of contrast extravasation was compared between patients with an USGIV and those with a standard peripheral IV inserted without ultrasound. Then, a two-stage sampling design was used to select a subset of the population for a multivariable logistic regression model evaluating USGIVs as a risk factor for extravasation while adjusting for potential confounders. Results In total, 40,143 patients underwent a contrasted CT scan, including 364 (0.9%) who had contrast administered through an USGIV. Unadjusted prevalence of extravasation was 3.6% for contrast administration through USGIVs and 0.3% for standard IVs (relative risk: 13.9, 95% CI: 7.7 to 24.6). After adjustment for potential confounders, CT contrast administered through USGIVs was associated with extravasation (adjusted odds ratio: 8.6; 95% CI: 4.6, 16.2). No patients required surgical management for contrast extravasation; one patient in the standard IV group was admitted for observation due to extravasation. Conclusions Patients who received contrast for a CT scan through an USGIV had a higher risk of extravasation than those who received contrast through a standard peripheral IV. Clinicians should consider this extravasation risk when weighing the risks and benefits of a contrast-enhanced CT scan in a patient with USGIV vascular access. PMID:27151898

  17. Quantitative Computerized Two-Point Correlation Analysis of Lung CT Scans Correlates With Pulmonary Function in Pulmonary Sarcoidosis

    PubMed Central

    Erdal, Barbaros Selnur; Yildiz, Vedat; King, Mark A.; Patterson, Andrew T.; Knopp, Michael V.; Clymer, Bradley D.

    2012-01-01

    Background: Chest CT scans are commonly used to clinically assess disease severity in patients presenting with pulmonary sarcoidosis. Despite their ability to reliably detect subtle changes in lung disease, the utility of chest CT scans for guiding therapy is limited by the fact that image interpretation by radiologists is qualitative and highly variable. We sought to create a computerized CT image analysis tool that would provide quantitative and clinically relevant information. Methods: We established that a two-point correlation analysis approach reduced the background signal attendant to normal lung structures, such as blood vessels, airways, and lymphatics while highlighting diseased tissue. This approach was applied to multiple lung fields to generate an overall lung texture score (LTS) representing the quantity of diseased lung parenchyma. Using deidentified lung CT scan and pulmonary function test (PFT) data from The Ohio State University Medical Center’s Information Warehouse, we analyzed 71 consecutive CT scans from patients with sarcoidosis for whom simultaneous matching PFTs were available to determine whether the LTS correlated with standard PFT results. Results: We found a high correlation between LTS and FVC, total lung capacity, and diffusing capacity of the lung for carbon monoxide (P < .0001 for all comparisons). Moreover, LTS was equivalent to PFTs for the detection of active lung disease. The image analysis protocol was conducted quickly (< 1 min per study) on a standard laptop computer connected to a publicly available National Institutes of Health ImageJ toolkit. Conclusions: The two-point image analysis tool is highly practical and appears to reliably assess lung disease severity. We predict that this tool will be useful for clinical and research applications. PMID:22628487

  18. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Jijo; Yang, Cungeng; Wu, Hui

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from themore » daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.« less

  19. WE-AB-204-03: A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; Moiseenko, V

    Purpose: To construct and test a 3D printed phantom designed to mimic variable PET tracer uptake seen in lung tumor volumes. To assess segmentation accuracy of sub-volumes of the phantom following 4D PET/CT scanning with ideal and patient-specific respiratory motion. To plan, deliver and verify delivery of PET-driven, gated, simultaneous integrated boost (SIB) radiotherapy plans. Methods: A set of phantoms and inserts were designed and manufactured for a realistic representation of lung cancer gated radiotherapy steps from 4D PET/CT scanning to dose delivery. A cylindrical phantom (40x 120 mm) holds inserts for PET/CT scanning. The novel 3D printed insert dedicatedmore » to 4D PET/CT mimics high PET tracer uptake in the core and lower uptake in the periphery. This insert is a variable density porous cylinder (22.12×70 mm), ABS-P430 thermoplastic, 3D printed by uPrint SE Plus with inner void volume (5.5×42 mm). The square pores (1.8×1.8 mm2 each) fill 50% of outer volume, resulting in a 2:1 SUV ratio of PET-tracer in the void volume with respect to porous volume. A matching in size cylindrical phantom is dedicated to validate gated radiotherapy. It contains eight peripheral holes matching the location of the porous part of the 3D printed insert, and one central hole. These holes accommodate adaptors for Farmer-type ion chamber and cells vials. Results: End-to-end test were performed from 4D PET/CT scanning to transferring data to the planning system and target volume delineation. 4D PET/CT scans were acquired of the phantom with different respiratory motion patterns and gating windows. A measured 2:1 18F-FDG SUV ratio between inner void and outer volume matched the 3D printed design. Conclusion: The novel 3D printed phantom mimics variable PET tracer uptake typical of tumors. Obtained 4D PET/CT scans are suitable for segmentation, treatment planning and delivery in SIB gated treatments of NSCLC.« less

  20. SU-F-BRF-14: Increasing the Accuracy of Dose Calculation On Cone-Beam Imaging Using Deformable Image Registration in the Case of Prostate Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillion, O; Gingras, L; Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, Quebec

    2014-06-15

    Purpose: Artifacts can reduce the quality of dose re-calculations on CBCT scans during a treatment. The aim of this project is to correct the CBCT images in order to allow for more accurate and exact dose calculations in the case of a translation of the tumor in prostate cancer. Methods: Our approach is to develop strategies based on deformable image registration algorithms using the elastix software (Klein et al., 2010) to register the treatment planning CT on a daily CBCT scan taken during treatment. Sets of images are provided by a 3D deformable phantom and comprise two CT and twomore » CBCT scans: one of both with the reference anatomy and the others with known deformations (i.e. translations of the prostate). The reference CT is registered onto the deformed CBCT and the deformed CT serves as the control for dose calculation accuracy. The planned treatment used for the evaluation of dose calculation is a 2-Gy fraction prescribed at the location of the reference prostate and assigned to 7 rectangular fields. Results: For a realistic 0.5-cm translation of the prostate, the relative dose discrepancy between the CBCT and the CT control scan at the prostate's centroid is 8.9 ± 0.8 % while dose discrepancy between the registered CT and the control scan lessens to −2.4 ± 0.8 %. For a 2-cm translation, clinical indices like the V90 and the D100 are more accurate by 0.7 ± 0.3 % and 8.0 ± 0.5 cGy respectively when using registered CT than when using CBCT for dose calculation. Conclusion: The results show that this strategy gives doses in agreement within a few percents with those from calculations on actual CT scans. In the future, various deformations of the phantom anatomy will allow a thorough characterization of the registration strategies needed for more complex anatomies.« less

  1. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Le; Xing, Yuxiang, E-mail: xingyx@mail.tsinghua.edu.cn

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT canmore » be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed SegMECT can provide both attenuation images and material decomposition images of reasonable image quality. Compared to existing methods, the new system configuration demonstrates advantages in simplicity of implementation, system cost, and dose control. Conclusions: This proposed SegMECT imaging approach has great potential for practical applications. It can be readily realized on a conventional CT system.« less

  2. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition.

    PubMed

    Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian

    2018-01-01

    Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.

  3. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phasemore » based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.« less

  4. Association between Abdominal Fat (DXA) and Its Subcomponents (CT Scan) before and after Weight Loss in Obese Postmenopausal Women: A MONET Study.

    PubMed

    Doyon, Caroline Y; Brochu, Martin; Messier, Virginie; Lavoie, Marie-Ève; Faraj, May; Doucet, Eric; Rabasa-Lhoret, Rémi; Dionne, Isabelle J

    2011-01-01

    Introduction. Subcutaneous fat (ScF) and visceral fat (VF) measurements using CT scan are expensive and may imply significant radiation doses. Cross-sectional studies using CT scan showed that ScF and VF are significantly correlated with abdominal fat measured by DXA (AF-DXA). The association has not been studied after a weight loss. Objective. To determine (1) the associations between AF-DXA and ScF and VF before and after weight loss and (2) the associations between their changes. Methods. 137 overweight/obese postmenopausal women were divided in two groups (1-caloric restriction or 2-caloric restriction + resistance training). AF was assessed using DXA and CT scan. Results. Correlations between AF-DXA and ScF (before: r = 0.87, after; r = 0.87; P < .01) and, AF-DXA and VF (before: r = 0.61, after; r = 0.69; P < .01) are not different before and after the weight loss. Correlations between delta AF-DXA and delta ScF (r = 0.72; P < .01) or delta VF (r = 0.51; P < .01) were found. Conclusion. The use of AF-DXA as a surrogate for VF after weight loss is questionable, but may be interesting for ScF.

  5. Association between Abdominal Fat (DXA) and Its Subcomponents (CT Scan) before and after Weight Loss in Obese Postmenopausal Women: A MONET Study

    PubMed Central

    Doyon, Caroline Y.; Brochu, Martin; Messier, Virginie; Lavoie, Marie-Ève; Faraj, May; Doucet, Éric; Rabasa-Lhoret, Rémi; Dionne, Isabelle J.

    2011-01-01

    Introduction. Subcutaneous fat (ScF) and visceral fat (VF) measurements using CT scan are expensive and may imply significant radiation doses. Cross-sectional studies using CT scan showed that ScF and VF are significantly correlated with abdominal fat measured by DXA (AF-DXA). The association has not been studied after a weight loss. Objective. To determine (1) the associations between AF-DXA and ScF and VF before and after weight loss and (2) the associations between their changes. Methods. 137 overweight/obese postmenopausal women were divided in two groups (1-caloric restriction or 2-caloric restriction + resistance training). AF was assessed using DXA and CT scan. Results. Correlations between AF-DXA and ScF (before: r = 0.87, after; r = 0.87; P < .01) and, AF-DXA and VF (before: r = 0.61, after; r = 0.69; P < .01) are not different before and after the weight loss. Correlations between delta AF-DXA and delta ScF (r = 0.72; P < .01) or delta VF (r = 0.51; P < .01) were found. Conclusion. The use of AF-DXA as a surrogate for VF after weight loss is questionable, but may be interesting for ScF. PMID:21603261

  6. TU-F-CAMPUS-I-01: Investigation of the Effective Dose From Bolus Tracking Acquisitions at Different Anatomical Locations in the Chest for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowik, P; Bujila, R; Merzan, D

    2015-06-15

    Purpose: Stationary table acquisitions (Bolus tracking) in X-ray Computed Tomography (CT) can Result in dose length products (DLP) comparable to spiral scans. It is today unclear whether or not the effective dose (E) for Bolus Tracking can be approximated using target region specific conversion factors (E/DLP). The purpose of this study was to investigate how E depends on the anatomical location of the Bolus Tracking in relation to Chest CT scans with the same DLP. Methods: Effective doses were approximated for the ICRP 110 adult Reference Male (AM) and adult Reference Female (FM) computational voxel phantoms using software for CTmore » dose approximations (pre-simulated MC data). The effective dose was first approximated for a Chest CT scan using spiral technique and a CTDIvol (32 cm) of 6 mGy. The effective dose from the spiral scan was then compared to E approximated for contiguous Bolus Tracking acquisitions (1 cm separation), with a total collimation of 1 cm, over different locations of the chest of the voxel phantoms. The number of rotations used for the Bolus Tracking acquisitions was adjusted to yield the same DLP (32 cm) as the spiral scan. Results: Depending on the anatomical location of the Bolus Tracking, E ranged by factors of 1.3 to 6.8 for the AM phantom and 1.4 to 3.3 for the AF phantom, compared to the effective dose of the spiral scans. The greatest E for the Bolus Tracking acquisitions was observed for anatomical locations coinciding with breast tissue. This can be expected as breast tissue has a high tissue weighting factor in the calculation of E. Conclusion: For Chest CT scans, the effective dose from Bolus Tracking is highly dependent on the anatomical location where the scan is administered and will not always accurately be represented using target region specific conversion factors.« less

  7. Automated Agatston score computation in non-ECG gated CT scans using deep learning

    NASA Astrophysics Data System (ADS)

    Cano-Espinosa, Carlos; González, Germán.; Washko, George R.; Cazorla, Miguel; San José Estépar, Raúl

    2018-03-01

    Introduction: The Agatston score is a well-established metric of cardiovascular disease related to clinical outcomes. It is computed from CT scans by a) measuring the volume and intensity of the atherosclerotic plaques and b) aggregating such information in an index. Objective: To generate a convolutional neural network that inputs a non-contrast chest CT scan and outputs the Agatston score associated with it directly, without a prior segmentation of Coronary Artery Calcifications (CAC). Materials and methods: We use a database of 5973 non-contrast non-ECG gated chest CT scans where the Agatston score has been manually computed. The heart of each scan is cropped automatically using an object detector. The database is split in 4973 cases for training and 1000 for testing. We train a 3D deep convolutional neural network to regress the Agatston score directly from the extracted hearts. Results: The proposed method yields a Pearson correlation coefficient of r = 0.93; p <= 0.0001 against manual reference standard in the 1000 test cases. It further stratifies correctly 72.6% of the cases with respect to standard risk groups. This compares to more complex state-of-the-art methods based on prior segmentations of the CACs, which achieve r = 0.94 in ECG-gated pulmonary CT. Conclusions: A convolutional neural network can regress the Agatston score from the image of the heart directly, without a prior segmentation of the CACs. This is a new and simpler paradigm in the Agatston score computation that yields similar results to the state-of-the-art literature.

  8. Variance analysis of x-ray CT sinograms in the presence of electronic noise background

    PubMed Central

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-01-01

    Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. Methods: The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean–variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. Results: The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. Conclusions: The influence of the electronic noise background should be considered in low-dose CT imaging. PMID:22830738

  9. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  10. SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueck, J; Department of Oncology, Rigshospitalet, Copenhagen; Niels Bohr Institute, University of Copenhagen, Copenhagen

    Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed onmore » the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.« less

  11. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...

  12. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing

    PubMed Central

    Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179

  13. Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulin, Kenneth; Urie, Marcia M., E-mail: murie@qarc.or; Cherlow, Joel M.

    2010-08-01

    Purpose: Variability in computed tomography/magnetic resonance imaging (CT/MR) cranial image registration was assessed using a benchmark case developed by the Quality Assurance Review Center to credential institutions for participation in Children's Oncology Group Protocol ACNS0221 for treatment of pediatric low-grade glioma. Methods and Materials: Two DICOM image sets, an MR and a CT of the same patient, were provided to each institution. A small target in the posterior occipital lobe was readily visible on two slices of the MR scan and not visible on the CT scan. Each institution registered the two scans using whatever software system and method itmore » ordinarily uses for such a case. The target volume was then contoured on the two MR slices, and the coordinates of the center of the corresponding target in the CT coordinate system were reported. The average of all submissions was used to determine the true center of the target. Results: Results are reported from 51 submissions representing 45 institutions and 11 software systems. The average error in the position of the center of the target was 1.8 mm (1 standard deviation = 2.2 mm). The least variation in position was in the lateral direction. Manual registration gave significantly better results than did automatic registration (p = 0.02). Conclusion: When MR and CT scans of the head are registered with currently available software, there is inherent uncertainty of approximately 2 mm (1 standard deviation), which should be considered when defining planning target volumes and PRVs for organs at risk on registered image sets.« less

  14. Managing vulvovaginal hematoma by arterial embolization as first-line hemostatic therapy.

    PubMed

    Takagi, Kenjiro; Akashi, Keiko; Horiuchi, Isao; Nakamura, Eishin; Samejima, Koki; Ushijima, Junko; Okochi, Tomohisa; Hamamoto, Kohei; Tanno, Keisuke

    2017-04-01

    A puerperal vulvovaginal hematoma may continue to grow after a surgical procedure and may require blood transfusion. Thus, we selected arterial embolization for hemostasis as the first-line management in two cases of large vulvovaginal hematoma. Case 1 was a 32-year-old pregnant woman. After delivery, a 10-cm vulvar hematoma developed. An enhanced computed tomography (CT) scan revealed active bleeding. Arterial embolization was performed and complete hemostasis was obtained. Case 2 was a 34-year-old woman with a recurring hematoma after delivery. An enhanced CT scan revealed extravasation in the hematoma. Gelatin sponges were applied and complete hemostasis was obtained. In both cases, arterial embolization was successful without requiring blood transfusions. We successfully managed two cases of puerperal vulvovaginal hematoma by arterial embolization based on the evaluation of an enhanced CT scan. In conclusion, we suggest arterial embolization to be a viable option for first-line treatment in the management of vulvovaginal hematomas. Copyright © 2017. Published by Elsevier B.V.

  15. Occult Intertrochanteric Fracture Mimicking the Fracture of Greater Trochanter

    PubMed Central

    Chung, Phil Hyun; Kang, Suk; Kim, Jong Pil; Kim, Young Sung; Back, In Hwa; Eom, Kyeong Soo

    2016-01-01

    Purpose Occult intertrochanteric fractures are misdiagnosed as isolated greater trochanteric fractures in some cases. We investigated the utility of three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI) in the diagnosis and outcome management of occult intertrochanteric fractures. Materials and Methods This study involved 23 cases of greater trochanteric fractures as diagnosed using plain radiographs from January 2004 to July 2013. Until January 2008, 9 cases were examined with 3D-CT only, while 14 cases were screened with both 3D-CT and MRI scans. We analyzed diagnostic accuracy and treatment results following 3D-CT and MRI scanning. Results Nine cases that underwent 3D-CT only were diagnosed with isolated greater trochanteric fractures without occult intertrochanteric fractures. Of these, a patient with displacement received surgical treatment. Of the 14 patients screened using both CT and MRI, 13 were diagnosed with occult intertrochanteric fractures. Of these, 11 were treated with surgical intervention and 2 with conservative management. Conclusion Three-dimensional CT has very low diagnostic accuracy in diagnosing occult intertrochanteric fractures. For this reason, MRI is recommended to confirm a suspected occult intertrochanteric fracture and to determine the most appropriate mode of treatment. PMID:27536653

  16. SU-F-SPS-03: Direct Measurement of Organ Doses Resulting From Head and Cervical Spine Trauma CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, C; Lipnharski, I; Quails, N

    Purpose: This retrospective study analyzes the exposure history of emergency department (ED) patients undergoing head and cervical spine trauma computed tomography (CT) studies. This study investigated dose levels received by trauma patients and addressed any potential concerns regarding radiation dose issues. Methods: Under proper IRB approval, a cohort of 300 trauma cases of head and cervical spine trauma CT scans received in the ED was studied. The radiological image viewing software of the hospital was used to view patient images and image data. The following parameters were extracted: the imaging history of patients, the reported dose metrics from the scannermore » including the volumetric CT Dose Index (CTDIvol) and Dose Length Product (DLP). A postmortem subject was scanned using the same scan techniques utilized in a standard clinical head and cervical spine trauma CT protocol with 120 kVp and 280 mAs. The CTDIvol was recorded for the subject and the organ doses were measured using optically stimulated luminescent (OSL) dosimeters. Typical organ doses to the brain, thyroid, lens, salivary glands, and skin, based on the cadaver studies, were then calculated and reported for the cohort. Results: The CTDIvol reported by the CT scanner was 25.5 mGy for the postmortem subject. The average CTDIvol from the patient cohort was 34.1 mGy. From these metrics, typical average organ doses in mGy were found to be: Brain (44.57), Thyroid (33.40), Lens (82.45), Salivary Glands (61.29), Skin (47.50). The imaging history of the cohort showed that on average trauma patients received 26.1 scans over a lifetime. Conclusion: The average number of scans received on average by trauma ED patients shows that radiation doses in trauma patients may be a concern. Available dose tracking software would be helpful to track doses in trauma ED patients, highlighting the importance of minimizing unnecessary scans and keeping doses ALARA.« less

  17. Relative plan robustness of step-and-shoot vs rotational intensity–modulated radiotherapy on repeat computed tomographic simulation for weight loss in head and neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, David J.; The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester; Beasley, William J.

    Introduction: Interfractional anatomical alterations may have a differential effect on the dose delivered by step-and-shoot intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The increased degrees of freedom afforded by rotational delivery may increase plan robustness (measured by change in target volume coverage and doses to organs at risk [OARs]). However, this has not been evaluated for head and neck cancer. Materials and methods: A total of 10 patients who required repeat computed tomography (CT) simulation and replanning during head and neck IMRT were included. Step-and-shoot IMRT and VMAT plans were generated from the original planning scan. The initial andmore » second CT simulation scans were fused and targets/OAR contours transferred, reviewed, and modified. The plans were applied to the second CT scan and doses recalculated without repeat optimization. Differences between step-and-shoot IMRT and VMAT for change in target volume coverage and doses to OARs between first and second CT scans were compared by Wilcoxon signed rank test. Results: There were clinically relevant dosimetric changes between the first and the second CT scans for both the techniques (reduction in mean D{sub 95%} for PTV2 and PTV3, D{sub min} for CTV2 and CTV3, and increased mean doses to the parotid glands). However, there were no significant differences between step-and-shoot IMRT and VMAT for change in any target coverage parameter (including D{sub 95%} for PTV2 and PTV3 and D{sub min} for CTV2 and CTV3) or dose to any OARs (including parotid glands) between the first and the second CT scans. Conclusions: For patients with head and neck cancer who required replanning mainly due to weight loss, there were no significant differences in plan robustness between step-and-shoot IMRT and VMAT. This information is useful with increased clinical adoption of VMAT.« less

  18. Cervical spine CT scan

    MedlinePlus

    ... cervical spine; Computed tomography scan of cervical spine; CT scan of cervical spine; Neck CT scan ... table that slides into the center of the CT scanner. Once you are inside the scanner, the ...

  19. Selecting children for head CT following head injury

    PubMed Central

    Kemp, A; Nickerson, E; Trefan, L; Houston, R; Hyde, P; Pearson, G; Edwards, R; Parslow, RC; Maconochie, I

    2016-01-01

    Objective Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. Design Cross-sectional study. Setting Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. Patients Children (<15 years) admitted to hospital for more than 4 h following a head injury (September 2009 to February 2010). Interventions CT scan. Main outcome measures Number of children who had CT, extent to which NICE guidelines were followed and diagnostic yield. Results Data on 5700 children were returned by 90% of eligible hospitals, 84% of whom were admitted to a general hospital. CT scans were performed on 30.4% of children (1734), with a higher diagnostic yield in infants (56.5% (144/255)) than children aged 1 to 14 years (26.5% (391/1476)). Overall, only 40.4% (984 of 2437 children) fulfilling at least one of the four NICE criteria for CT actually underwent one. These children were much less likely to receive CT if admitted to a general hospital than to a specialist centre (OR 0.52 (95% CI 0.45 to 0.59)); there was considerable variation between healthcare regions. When indicated, children >3 years were much more likely to have CT than those <3 years (OR 2.35 (95% CI 2.08 to 2.65)). Conclusion Compliance with guidelines and diagnostic yield was variable across age groups, the type of hospital and region where children were admitted. With this pattern of clinical practice the risks of both missing intracranial injury and overuse of CT are considerable. PMID:27449674

  20. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    PubMed

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.

  1. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Szczykutowicz, T; Bayouth, J

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less

  2. 11C-Methionine Positron Emission Tomography/Computed Tomography Versus 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Evaluation of Residual or Recurrent World Health Organization Grades II and III Meningioma After Treatment.

    PubMed

    Tomura, Noriaki; Saginoya, Toshiyuki; Goto, Hiromi

    2018-04-02

    The aim of this study was to determine the assessment of positron emission tomography-computed tomography using C-methionine (MET PET/CT) for World Health Organization (WHO) grades II and III meningiomas; MET PET/CT was compared with PET/CT using F-fluorodeoxy glucose (FDG PET/CT). This study was performed in 17 cases with residual and/or recurrent WHO grades II and III meningiomas. Two neuroradiologists reviewed both PET/CT scans. For agreement, the κ coefficient was measured. Difference in tumor-to-normal brain uptake ratios (T/N ratios) between 2 PET/CT scans was analyzed. Correlation between the maximum tumor size and T/N ratio in PET/CT was studied. For agreement by both reviewers, the κ coefficient was 0.51 (P < 0.05). The T/N ratio was significantly higher for MET PET/CT (3.24 ± 1.36) than for FDG PET/CT (0.93 ± 0.44) (P < 0.01). C-methionine ratio significantly correlated with tumor size (y = 8.1x + 16.3, n = 22, P < 0.05), but FDG ratio did not CONCLUSIONS: C-methionine PET/CT has superior potential for imaging of WHO grades II and III meningiomas with residual or recurrent tumors compared with FDG PET/CT.

  3. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  4. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  5. SU-F-I-47: Optimizing Protocols for Image Quality and Dose in Abdominal CT of Large Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L; Yester, M

    Purpose: Newer CT scanners are able to use scout views to adjust mA throughout the scan in order to achieve a given noise level. However, given constraints of radiologist preferences for kVp and rotation time, it may not be possible to achieve an acceptable noise level for large patients. A study was initiated to determine for which patients kVp and/or rotation time should be changed in order to achieve acceptable image quality. Methods: Patient scans were reviewed on two new Emergency Department scanners (Philips iCT) to identify patients over a large range of sizes. These iCTs were set with amore » limit of 500 mA to safeguard against a failure that might cause a CT scan to be (incorrectly) obtained at too-high mA. Scout views of these scans were assessed for both AP and LAT patient width and AP and LAT standard deviation in an ROI over the liver. Effective diameter and product of the scout standard deviations over the liver were both studied as possible metrics for identifying patients who would need kVp and/or rotation time changed. The mA used for the liver in the CT was compared to these metrics for those patients whose CT scans showed acceptable image quality. Results: Both effective diameter and product of the scout standard deviations over the liver result in similar predictions for which patients will require the kVp and/or rotation time to be changed to achieve an optimal combination of image quality and dose. Conclusion: Two mechanisms for CT technologists to determine based on scout characteristics what kVp, mA limit, and rotation time to use when DoseRight with our physicians’ preferred kVp and rotation time will not yield adequate image quality are described.« less

  6. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-01

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by −4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (−8.1%, 8.1%) and (−17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients. PMID:21361208

  7. Pulmonary Venous Anatomy Imaging with Low-Dose, Prospectively ECG-Triggered, High-Pitch 128-Slice Dual Source Computed Tomography

    PubMed Central

    Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.

    2012-01-01

    Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259

  8. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  9. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...

  10. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw; Liu, Shu-Hsin; Mok, Greta S. P.

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate riskmore » estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.« less

  12. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    PubMed Central

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  13. Are facilities following best practices of pediatric abdominal CT scans?

    PubMed

    Nosek, Amy E; Hartin, Charles W; Bass, Kathryn D; Glick, Philip L; Caty, Michael G; Dayton, Merril T; Ozgediz, Doruk E

    2013-05-01

    Established guidelines for pediatric abdominal CT scans include reduced radiation dosage to minimize cancer risk and the use of intravenous (IV) contrast to obtain the highest-quality diagnostic images. We wish to determine if these practices are being used at nonpediatric facilities that transfer children to a pediatric facility. Children transferred to a tertiary pediatric facility over a 16-mo period with abdominal CT scans performed for evaluation of possible appendicitis were retrospectively reviewed for demographics, diagnosis, radiation dosage, CT contrast use, and scan quality. If CT scans were repeated, the radiation dosage between facilities was compared using Student t-test. Ninety-one consecutive children transferred from 29 different facilities had retrievable CT scan images and clinical information. Half of CT scans from transferring institutions used IV contrast. Due to poor quality or inconclusive CT scans, 19 patients required a change in management. Children received significantly less radiation at our institution compared to the referring adult facility for the same body area scanned on the same child (9.7 mSv versus 19.9 mSv, P = 0.0079). Pediatric facilities may be using less radiation per CT scan due to a heightened awareness of radiation risks and specific pediatric CT scanning protocols. The benefits of IV contrast for the diagnostic yield of pediatric CT scans should be considered to obtain the best possible image and to prevent additional imaging. Every facility performing pediatric CT scans should minimize radiation exposure, and pediatric facilities should provide feedback and education to other facilities scanning children. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Use of gadoxetic acid for computed tomographic cholangiography in healthy dogs.

    PubMed

    Chau, Jennifer; Podadera, Juan M; Young, Alex C; Makara, Mariano A

    2017-07-01

    OBJECTIVE To evaluate the effect of gadoxetic acid (contrast) dose on biliary tract enhancement, determine the optimal time after contrast injection for CT image acquisition, and assess the feasibility of CT cholangiography in sedated dogs. ANIMALS 8 healthy dogs. PROCEDURES The study had 2 parts. In part 1, 4 dogs were anesthetized and underwent CT cholangiography twice. Gadoxetic acid was administered IV at a low dose (0.025 mmol/kg) for the first procedure and high dose (0.3 mmol/kg) for the second procedure. Serial CT scans were obtained at predetermined times after contrast injection. In part 2, 4 dogs were sedated and underwent CT angiography 85 minutes after IV administration of the high contrast dose. Contrast enhancement of the biliary tract on all scans was objectively assessed by measurement of CT attenuation and qualitatively assessed by use of a subjective 4-point scoring system by 3 independent reviewers. All measurements were compared over time and between contrast doses for the dogs of part 1. Subjective measurements were compared between the sedated dogs of part 2 and anesthetized dogs of part 1. RESULTS Enhancement of the biliary tract was positively associated with contrast dose and time after contrast injection. Optimal enhancement was achieved 65 minutes after contrast injection. Subjective visualization of most biliary structures did not differ significantly between sedated and anesthetized dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated CT cholangiography with gadoxetic acid was feasible in sedated dogs. The high contrast dose provided better visualization of biliary structures than the low dose; CT scans should be obtained 65 minutes after contrast injection.

  15. 7. Survey of Results of Whole Body Imaging Using the PET/CT at the University of Pittsburgh Medical Center PET Facility.

    PubMed

    Martinelli; Townsend; Meltzer; Villemagne

    2000-07-01

    Purpose: At the University Of Pittsburgh Medical Center, over 100 oncology studies have been performed using a combined PET/CT scanner. The scanner is a prototype, which combines clinical PET and clinical CT imaging in a single unit. The sensitivity achieved using three-dimensional PET imaging as well as the use of the CT for attenuation correction and image fusion make the device ideal for clinical oncology. Clinical indications imaged on the PET/CT scanner include, but are not limited to, tumor staging, solitary pulmonary nodule evaluation, and evaluation of tumor reoccurrence in melanoma, lymphoma, colorectal cancer, lung cancer, pancreatic cancer, head and neck cancer, and renal cancer.Methods: For all studies, seven millicuries of F(18)-fluorodeoxyglucose is injected and a forty-five minute uptake period is allowed prior to positioning the patient in the scanner. A helical CT scan is acquired over the region, or regions of interest followed by a multi-bed whole body PET scan for the same axial extent. The CT scan is used to correct the PET data for attenuation. The entire imaging session lasts 1-1.5 hours depending on the number of beds acquired, and is generally well tolerated by the patient.Results and Conclusion: Based on our experience in over 100 studies, combined PET/CT imaging offers significant advantages, including more accurate localization of focal uptake, distinction of pathology from normal physiological uptake, and improvements in evaluating therapy. These benefits will be illustrated with a number of representative, fully documented studies.

  16. Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.

    PubMed

    Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M

    2015-12-01

    Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Body CT (CAT Scan)

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...

  18. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  19. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article.

    PubMed

    Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R

    2013-10-01

    In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.

  20. MO-E-17A-03: Monte Carlo CT Dose Calculation: A Comparison Between Experiment and Simulation Using ARCHER-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Du, X; Su, L

    2014-06-15

    Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less

  1. Routine postoperative CT-scans after burr hole trepanation for chronic subdural hematoma - better before or after drainage removal?

    PubMed

    Brokinkel, Benjamin; Ewelt, Christian; Holling, Markus; Hesselmann, Volker; Heindel, Walter Leonard; Stummer, Walter; Fischer, Bernhard Robert

    2013-01-01

    To evaluate timing of scheduled CT-scans after burr hole trepanation for chronic subdural hematoma (cSDH). 131 patients with primary cSDH were included. Scheduled CT-scans were performed after burr hole trepanation and placement of a subdural drain. The influence of CT-scanning with or without indwelling drain was analysed regarding subsequent surgery and CT-scans, duration of hospitalization, short- and middle-term follow up by single factor analyses. Subgroup analyses were performed for patients receiving anticoagulant drugs. Median age was 74 years. Routine CT-scans with indwelling drainage were not shown to be beneficial regarding subsequent burr hole trepanations (p=0.243), craniotomies (p=1.000) and outcome at discharge (p=0.297). Mean duration of hospitalization (11 vs. 8 days, p=0.013) was significantly longer and number of subsequent CT-scans was higher when CT scan was performed with indwelling drain (2.3 vs. 1.4, p=0.001). In middle-term follow-up, beneficial effects of CT-scanning with inlaying drainage could neither be shown. Moreover, advantageous effects of CT-scans with indwelling drains could neither be shown for patients receiving anticoagulant drugs. Scheduled postoperative cranial imaging with indwelling drains was not shown to be beneficial and misses information of intracranial damage inflicted by removal of drains. We thus recommend CT-scanning after drainage removal.

  2. An open library of CT patient projection data

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-03-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  3. SU-E-I-48: The Behavior of AEC in Scan Regions Outside the Localizer Radiograph FOV: An In Phantom Study of CT Systems From Four Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Bevins, N

    Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less

  4. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Gazi, P; Boone, J

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize the scanning geometry for dedicated breast CT. This work was supported by a grant from the National Institute for Biomedical Imaging and Bioengineering (R01 EB002138)« less

  5. Pre-operative prediction of cervical nodal metastasis in papillary thyroid cancer by 99mTc-MIBI SPECT/CT; a pilot study.

    PubMed

    Tangjaturonrasme, Napadon; Vasavid, Pataramon; Sombuntham, Premsuda; Keelawat, Somboon

    2013-06-01

    Papillary thyroid cancer has a high prevalence of cervical nodal metastasis. There is no "gold standard" imaging for pre-operative diagnosis. The aim of the present study was to assess the accuracy of pre-operative 99mTc-MBI SPECT/CT in diagnosis of cervical nodal metastasis in patients with papillary thyroid cancer Fifteen patients were performed 99Tc-MlBI SPECT/CT pre-operatively. Either positive pathological report of neck dissection or positive post-treatment I-131 whole body scan with SPECT/CT of neck was concluded for definite neck metastasis. The PPV, NPV, and accuracy of 99mTc-MIBI SPECT/CT were analyzed. The PPV NPV and accuracy were 80%, 88.89%, and 85.71%, respectively. 99mTc-MIBI SPECT/CT could localize the abnormal lymph nodes groups correctly in most cases when compared with pathological results. However the authors found one false positive case with caseating granulomatous lymphadenitis and one false negative case with positive post-treatment 1-131 whole body scan with SPECT/CT of neck on cervical nodes zone II and IV CONCLUSION: 99mTc-MIBI SPECT/CTseem promising for pre-operative staging of cervical nodal involvement in patients with papillary thyroid cancer without the need of using iodinated contrast that may complicate subsequence 1-131 treatment. However, false positive result in granulomatous inflammatory nodes should be aware of especially in endemic areas. 99mTc-MIBI SPECT/CT scan shows a good result when compared with previous study of CT or MRI imaging. The comparative study between different imaging modality and the extension of neck dissection according to MIBI result seems interesting.

  6. Use of C-Arm Cone Beam CT During Hepatic Radioembolization: Protocol Optimization for Extrahepatic Shunting and Parenchymal Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Prince, Jip F.; Keizer, Bart de

    PurposeTo optimize a C-arm computed tomography (CT) protocol for radioembolization (RE), specifically for extrahepatic shunting and parenchymal enhancement.Materials and MethodsA prospective development study was performed per IDEAL recommendations. A literature-based protocol was applied in patients with unresectable and chemorefractory liver malignancies undergoing an angiography before radioembolization. Contrast and scan settings were adjusted stepwise and repeatedly reviewed in a consensus meeting. Afterwards, two independent raters analyzed all scans. A third rater evaluated the SPECT/CT scans as a reference standard for extrahepatic shunting and lack of target segment perfusion.ResultsFifty scans were obtained in 29 procedures. The first protocol, using a 6 s delaymore » and 10 s scan, showed insufficient parenchymal enhancement. In the second protocol, the delay was determined by timing parenchymal enhancement on DSA power injection (median 8 s, range 4–10 s): enhancement improved, but breathing artifacts increased (from 0 to 27 %). Since the third protocol with a 5 s scan decremented subjective image quality, the second protocol was deemed optimal. Median CNR (range) was 1.7 (0.6–3.2), 2.2 (−1.4–4.0), and 2.1 (−0.3–3.0) for protocol 1, 2, and 3 (p = 0.80). Delineation of perfused segments was possible in 57, 73, and 44 % of scans (p = 0.13). In all C-arm CTs combined, the negative predictive value was 95 % for extrahepatic shunting and 83 % for lack of target segment perfusion.ConclusionAn optimized C-arm CT protocol was developed that can be used to detect extrahepatic shunts and non-perfusion of target segments during RE.« less

  7. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-09-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage following RT. Presented, in part at the IASLC 15th World Conference on Lung Conference, Sydney, AUS (2013).

  8. Analysis of Carina Position as Surrogate Marker for Delivering Phase-Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weide, Lineke van der; Soernsen de Koste, John R. van; Lagerwaard, Frank J.

    2008-07-15

    Purpose: Respiratory gating can mitigate the effect of tumor mobility in radiotherapy (RT) for lung cancer. Because the tumor is generally not visualized, external surrogates of tumor position are used to trigger respiration-gated RT. We evaluated the suitability of the carina position as a surrogate in respiration-gated RT. Methods and Materials: A total of 30 four-dimensional (4D) computed tomography (CT) scans from 14 patients with lung cancer were retrospectively analyzed. Both uncoached (free breathing) and audio-coached 4D-CT scans were acquired from 9 patients, and 12 uncoached 4D-CT scans were acquired from 5 other patients during a 2-4-week period of stereotacticmore » RT. The repeat scans were co-registered. The carina position was identified on the coronal cut planes in all 4D-CT phases. The correlation between the carina position and the total lung volume for each phase was determined, and the reproducibility of the carina position was studied in the 5 patients with repeat uncoached 4D-CT scans. Results: The mean extent of carina motion in 21 uncoached scans was 5.3 {+-} 1.6 mm in the craniocaudal (CC), 2.3 {+-} 1.4 mm in the anteroposterior, and 1.5 {+-} 0.7 mm in the mediolateral direction. Audio coaching resulted in a twofold increase in carina mobility in all directions. The CC carina position correlated with changes in the total lung volume (R = 0.89 {+-} 0.14), but the correlation was better for the audio-coached than for the uncoached 4D-CT scans (R = 0.93 {+-} 0.08 vs. R = 0.85 {+-} 0.17; paired t test, p = 0.034). Preliminary data from the 5 patients indicated that the CC carina motion correlated better with tumor motion than did the motion of the diaphragm. Conclusions: The CC position of the carina correlated well with the total lung volume, indicating that the carina is a good surrogate for verifying the total lung volume during respiration-gated RT.« less

  9. SU-G-206-08: How Should Focal Spot Be Chosen for Optimized CT Imaging with Dose Modulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, S; Liu, X; Rong, J

    Purpose: To choose the preferred focal spot for achieving optimized CT image quality with balanced tube heating considerations. Methods: An anthropomorphic pelvic phantom was scanned using a GE Discovery CT750 HD at 120 and 140kVp, 0.8s rotation time, and pitch of 0.984. “Smart mA” was enabled to simulate a routine abdomen–pelvis CT scan. Permissible mA values at 120 and 140 kVp were obtained from the Serial Load Rating table (for mimicking a busy CT clinical operation) in the scanner Technical Reference Manual. At each kVp station and two Noise Index levels, the mA Upper Limit was set above/below the permissiblemore » mA values. Scanned mA values and focal spot (FS) used were obtained from the DICOM header of each image, and the FS-mA relationship was analyzed. For visual confirmation beyond recorded FS information, a CatPhan with a fat-ring attached for mimicking patient size/shape was scanned at 120kVp. A group of radiologists/physicists compared a pair of CatPhan images qualitatively. Lastly, a number of patient cases were evaluated to confirm the FS-mA relationship. Results: When preset Upper Limit values were above the permissible mA values, the Large FS (labeled 1.2) was used in scans, even if the maximum scanned mA values were much lower than the permissible values at both 120 and 140 kVp. Otherwise the Small FS (labeled 0.7) was used. Visual evaluation of the high contrast module of CatPhan and additional analysis of patient cases further confirmed that the preset Upper Limit determines which focal spot is to be used, not the actual maximum mA value to be scanned. Conclusion: Specific FS can be selected by setting up appropriate mA Upper Limit in a protocol. CT protocols could be optimized by selecting appropriate FS for improving patient image quality, especially benefiting the small size and pediatric patients.« less

  10. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.

    PubMed

    Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F

    2008-09-01

    lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  12. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    PubMed Central

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2015-01-01

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization. PMID:26520720

  13. SU-F-J-123: CT-Based Determination of DIBH Variability and Its Dosimetric Impact On Post-Mastectomy Plus Regional Nodal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M; Kang, H; Tatebe, K

    Purpose: Breast cancer radiotherapy delivered using voluntary deep inspiration breath-hold (DIBH) requires reproducible breath holds, particularly when matching supraclavicular fields to tangential fields. We studied the impact of variation in DIBHs on CTV and OAR dose metrics by comparing the dose distribution computed on two DIBH CT scans taken at the time of simulation. Methods: Ten patients receiving 50Gy in 25 fractions to the left chestwall and regional lymph nodes were studied. Two simulation CT scans were taken during separate DIBHs along with a free-breathing (FB) scan. The treatment was planned using one DIBH CT. The dose was recomputed onmore » the other two scans using adaptive planning (Pinnacle 9.10) in which the scans are registered using a cross-correlation algorithm. The chestwall, lymph nodes and OARs were contoured on the scans following the RTOG consensus guidelines. The overall translational and rotational variation between the DIBH scans was used to estimate positional variation between breath-holds. Dose metrics between plans were compared using paired t-tests (p < 0.05) and means and standard deviations were reported. Results: The registration parameters were sub-millimeter and sub-degree. Although DIBH significantly reduced mean heart dose by 2.4Gy compared to FB (p < 0.01), no significant changes in dose were observed for targets or OARs between the two DIBH scans. Nodal coverage as assessed by V90% was 90%±8% and 89%±8% for supraclavicular and 99%±2% and 97%±22% for IM nodes. Though a significant decrease (10.5%±12.4%) in lung volume in the second DIBH CT was observed, the lung V20Gy was unchanged (14±2% and 14±3%) between the two DIBH scans. Conclusion: While the lung volume often varied between DIBHs, the CTV and OAR dose metrics were largely unchanged. This indicates that manual DIBH has the potential to provide consistent dose delivery to the chestwall and regional nodes targets when using matched fields.« less

  14. Utility of CT-compatible EEG electrodes in critically ill children.

    PubMed

    Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S

    2015-04-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.

  15. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less

  16. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  17. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk

    Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less

  18. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392

  19. The Addition of SPECT/CT Lymphoscintigraphy to Breast Cancer Radiation Planning Spares Lymph Nodes Critical for Arm Drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheville, Andrea L., E-mail: Cheville.andrea@mayo.edu; Brinkmann, Debra H.; Ward, Shelly B.

    2013-03-15

    Background: This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. Methods: SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the secondmore » (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Results: Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. Conclusions: The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema.« less

  20. CT attenuation measurements are valuable to discriminate pledgets used in prosthetic heart valve implantation from paravalvular leakage

    PubMed Central

    Habets, J; Meijer, T S; Meijer, R C A; Mali, W P Th M; Vonken, E-J P A; Budde, R P J

    2012-01-01

    Objectives Sutures with polytetrafluorethylene (PTFE) felt pledgets are commonly used in prosthetic heart valve (PHV) implantation. Paravalvular leakage can be difficult to distinguish from PTFE felt pledgets on multislice CT because both present as hyperdense structures. We assessed whether pledgets can be discriminated from contrast-enhanced solutions (blood/saline) on CT images based on attenuation difference in an ex vivo experiment and under in vivo conditions. Methods PTFE felt pledgets were sutured to the suture ring of a mechanical PHV and porcine aortic annulus, and immersed and scanned in four different contrast-enhanced (Ultravist®; 300 mg jopromide ml−1) saline concentrations (10.0, 12.0, 13.6 and 15.0 mg ml−1). Scanning was performed on a 256-slice scanner with eight different scan protocols with various tube voltage (100 kV, 120 kV) and tube current (400 mAs, 600 mAs, 800 mAs, 1000 mAs) settings. Attenuation of the pledgets and surrounding contrast-enhanced saline were measured. Additionally, the attenuation of pledgets and contrast-enhanced blood was measured on electrocardiography (ECG)-gated CTA scans of 19 patients with 22 PHVs. Results Ex vivo CT attenuation differences between the pledgets and contrast-enhanced solutions were larger by using higher tube voltages. CT attenuation values of the pledgets were higher than contrast-enhanced blood in patients: 420±26 Hounsfield units (mean±SD, range 383–494) and 288±41 Hounsfield units (range 202–367), respectively. Conclusions PTFE felt pledgets have consistently higher attenuation than surrounding contrast-enhanced blood. CT attenuation measurements therefore may help to differentiate pledgets from paravalvular leakage, and detect paravalvular leakage in patients with suspected PHV dysfunction. PMID:22919014

  1. Characterization of the nanoDot OSLD dosimeter in CT

    PubMed Central

    Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD. PMID:25832070

  2. Characterization of the nanoDot OSLD dosimeter in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.« less

  3. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Lyu, Qingwen; Ma, Jianhua

    2016-04-15

    Purpose: In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. Methods: The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT inmore » the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. Results: Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. Conclusions: The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.« less

  4. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    DTIC Science & Technology

    2013-08-31

    noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation

  5. SU-F-207-02: Use of Postmortem Subjects for Subjective Image Quality Assessment in Abdominal CT Protocols with Iterative Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mench, A; Lipnharski, I; Carranza, C

    Purpose: New radiation dose reduction technologies are emerging constantly in the medical imaging field. The latest of these technologies, iterative reconstruction (IR) in CT, presents the ability to reduce dose significantly and hence provides great opportunity for CT protocol optimization. However, without effective analysis of image quality, the reduction in radiation exposure becomes irrelevant. This work explores the use of postmortem subjects as an image quality assessment medium for protocol optimizations in abdominal CT. Methods: Three female postmortem subjects were scanned using the Abdomen-Pelvis (AP) protocol at reduced minimum tube current and target noise index (SD) settings of 12.5, 17.5,more » 20.0, and 25.0. Images were reconstructed using two strengths of iterative reconstruction. Radiologists and radiology residents from several subspecialties were asked to evaluate 8 AP image sets including the current facility default scan protocol and 7 scans with the parameters varied as listed above. Images were viewed in the soft tissue window and scored on a 3-point scale as acceptable, borderline acceptable, and unacceptable for diagnosis. The facility default AP scan was identified to the reviewer while the 7 remaining AP scans were randomized and de-identified of acquisition and reconstruction details. The observers were also asked to comment on the subjective image quality criteria they used for scoring images. This included visibility of specific anatomical structures and tissue textures. Results: Radiologists scored images as acceptable or borderline acceptable for target noise index settings of up to 20. Due to the postmortem subjects’ close representation of living human anatomy, readers were able to evaluate images as they would those of actual patients. Conclusion: Postmortem subjects have already been proven useful for direct CT organ dose measurements. This work illustrates the validity of their use for the crucial evaluation of image quality during CT protocol optimization, especially when investigating the effects of new technologies.« less

  6. International Atomic Energy Agency study with referring physicians on patient radiation exposure and its tracking: a prospective survey using a web-based questionnaire

    PubMed Central

    Rehani, Madan M; Berris, Theocharis

    2012-01-01

    Objectives To assess the following themes among referring physicians: (A) importance of acquiring information about previous diagnostic exposures; (B) knowledge about radiation doses involved, familiarity with radiation units and, age-related radiosensitivity; (C) opinion on whether patients should be provided information about radiation dose and (D) self-assessment of appropriateness of referrals. Design A prospective survey using a web-based questionnaire. Setting International survey among referring physicians. Participants Referring physicians from 28 countries. Main outcome measures Knowledge, opinion and practice of the four themes of the survey. Results All 728 responses from 28 countries (52.3% from developed and 47.7% from developing countries) indicated that while the vast majority (71.7%) of physicians feel that being aware of history of CT scans would always or mostly lead them to a better decision on referring patients for CT scans, only 43.4% often enquire about it. The majority of referring physicians (60.5%) stated that having a system that provides quick information about patient exposure history would be useful. The knowledge about radiation doses involved is poor, as only one-third (34.7%) of respondents chose the correct option of the number of chest x-rays with equivalence of a CT scan. In total, 70.9% of physicians stated that they do not feel uncomfortable when patients ask about radiation risk from CT scans they prescribe. Most physicians (85.6%) assessed that they have rarely prescribed CT scans of no clinical use in patient management. Conclusions This first ever multinational survey among referring physicians from 28 countries indicates support for a system that provides radiation exposure history of the patient, demonstrates poor knowledge about radiation doses, supports radiation risk communication with patients and mandatory provisions for justification of a CT examination. PMID:22997065

  7. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    PubMed Central

    Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P

    2015-01-01

    Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657

  8. First-order convex feasibility algorithms for x-ray CT

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob S.; Pan, Xiaochuan

    2013-01-01

    Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this paper, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for rapidly convergent algorithms for their solution—thereby facilitating the IIR algorithm design process. Methods: An accelerated version of the Chambolle−Pock (CP) algorithm is adapted to various convex feasibility problems of potential interest to IIR in CT. One of the proposed problems is seen to be equivalent to least-squares minimization, and two other problems provide alternatives to penalized, least-squares minimization. Results: The accelerated CP algorithms are demonstrated on a simulation of circular fan-beam CT with a limited scanning arc of 144°. The CP algorithms are seen in the empirical results to converge to the solution of their respective convex feasibility problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited angular-range scanning. The present paper demonstrates the methodology, and future work will illustrate its utility in actual CT application. PMID:23464295

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella

    Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilionmore » 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.« less

  10. Low Yield of Paired Head and Cervical Spine Computed Tomography in Blunt Trauma Evaluation.

    PubMed

    Graterol, Joseph; Beylin, Maria; Whetstone, William D; Matzoll, Ashleigh; Burke, Rennie; Talbott, Jason; Rodriguez, Robert M

    2018-06-01

    With increased computed tomography (CT) utilization, clinicians may simultaneously order head and neck CT scans, even when injury is suspected only in one region. We sought to determine: 1) the frequency of simultaneous ordering of a head CT scan when a neck CT scan is ordered; 2) the yields of simultaneously ordered head and neck CT scans for clinically significant injury (CSI); and 3) whether injury in one region is associated with a higher rate of injury in the other. This was a retrospective study of all adult patients who received neck CT scans (and simultaneously ordered head CT scans) as part of their blunt trauma evaluation at an urban level 1 trauma center in 2013. An expert panel determined CSI of head and neck injuries. We defined yield as number of patients with injury/number of patients who had a CT scan. Of 3223 patients who met inclusion criteria, 2888 (89.6%) had simultaneously ordered head and neck CT scans. CT yield for CSI in both the head and neck was 0.5% (95% confidence interval [CI] 0.3-0.8%), and the yield for any injury in both the head and neck was 1.4% (95% CI 1.0-1.8%). The yield for CSI in one region was higher when CSI was seen in the other region. The yield of CT for CSI in both the head and neck concomitantly is very low. When injury is seen in one region, there is higher likelihood of injury in the other. These findings argue against paired ordering of head and neck CT scans and suggest that CT scans should be ordered individually or when injury is detected in one region. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Frequencies of micronucleated reticulocytes, a dosimeter of DNA double-strand breaks, in infants receiving computed tomography or cardiac catheterization.

    PubMed

    Khattab, Mona; Walker, Dale M; Albertini, Richard J; Nicklas, Janice A; Lundblad, Lennart K A; Vacek, Pamela M; Walker, Vernon E

    2017-08-01

    The use of computed tomography (CT scans) has increased dramatically in recent decades, raising questions about the long-term safety of CT-emitted x-rays especially in infants who are more sensitive to radiation-induced effects. Cancer risk estimates for CT scans typically are extrapolated from models; therefore, new approaches measuring actual DNA damage are needed for improved estimations. Hence, changes in a dosimeter of DNA double-strand breaks, micronucleated reticulocytes (MN-RETs) measured by flow cytometry, were investigated in mice and infants exposed to CT scans. In male C57BL/6N mice (6-8 weeks-of-age), there was a dose-related increase in MN-RETs in blood samples collected 48h after CT scans delivering targeted exposures of 1-130 cGy x-rays (n=5-10/group, r=0.994, p=0.01), with significant increases occurring at exposure levels as low as 0.83 cGy x-rays compared to control mice (p=0.002). In paired blood specimens from infants with no history of a prior CT scan, there was no difference in MN-RET frequencies found 2h before (mean, 0.10±0.07%) versus 48h after (mean, 0.11±0.05%) a scheduled CT scan/cardiac catheterization. However, in infants having prior CT scan(s), MN-RET frequencies measured at 48h after a scheduled CT scan (mean=0.22±0.12%) were significantly higher than paired baseline values (mean, 0.17±0.07%; p=0.032). Increases in baseline (r=0.722, p<0.001) and 48-h post exposure (r=0.682, p<0.001) levels of MN-RETs in infants with a history of prior CT scans were significantly correlated with the number of previous CT scans. These preliminary findings suggest that prior CT scans increase the cellular responses to subsequent CT exposures. Thus, further investigation is needed to characterize the potential cancer risk from single versus repeated CT scans or cardiac catheterizations in infants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample sizemore » required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.« less

  13. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation

    PubMed Central

    Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.

    2011-01-01

    Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159

  14. The Stranded Stone: Relationship Between Acute Appendicitis and Appendicolith

    PubMed Central

    Aljefri, Ahmad; Al-Nakshabandi, Nizar

    2009-01-01

    Background/Aim: To examine the relationship between acute appendicitis and the presence of an appendicolith in abdominal CT scans of patients attending emergency services. Materials and Methods: Abdominal CT scan reports were retrospectively reviewed for 267 patients through the PACS database. A 16-slices MDCT GE Light Speed scanner (Milwaukee WI) was used with a scanning protocol of 5 mm axial collimation and a pitch of 1.0, along with oral contrast material (Gastrografin 3.7% diatrizoate meglumine) and 140 mL of intravenous (IV) nonionic contrast material (Omnipaque). Particular attention was given to the study protocol, patients' age, and gender. Statistical Analysis: We used MS-EXCEL and SPSS version 12.0 to perform chi-square and Fisher's exact tests. Bookends and Papers, components in Mac OS X software, were used for literature reviews and the organization of results. Results: Two hundred and sixty-seven abdominal CT scan reports were examined along side their respective images on a GE Centricity workstation. Thirty-four (12.7%) were labeled as acute appendicitis cases based on the CT findings and the rest were assigned other diagnoses. Twenty-six of the 267 CT scan reports were plain studies and 241 were contrast-enhanced scans. Less than half of the patients (123, 46.1%) were males and 144 (53.9%) were females. Thirteen males (48.1%) and 14 (51.9%) females were found to have an appendicolith. Only 3% in the ≤ 11 years' age group, in contrast to 40% in the 11-20 years' age group, was diagnosed with appendicitis. The incidence in other age groups was as follows: 19% in the 21-30, 14% in the 31-40, 2.5% in the 41-50, 8% each in the 51-60 and 61-70, and none in the ≥71 years' age groups. Conclusions: We conclude that the presence of an appendicolith i) has no particular predilection for gender or age, and ii) is not associated with a diagnosis of appendicitis. PMID:19794272

  15. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    PubMed Central

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-01-01

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence. PMID:24694150

  16. An audit of imaging test utilization for the management of lymphoma in an oncology hospital: implications for resource planning?

    PubMed

    Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W

    2006-02-01

    The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.

  17. Six-Minute Walk Distance Predictors, Including CT Scan Measures, in the COPDGene Cohort

    PubMed Central

    Rambod, Mehdi; Porszasz, Janos; Make, Barry J.; Crapo, James D.

    2012-01-01

    Background: Exercise tolerance in COPD is only moderately well predicted by airflow obstruction assessed by FEV1. We determined whether other phenotypic characteristics, including CT scan measures, are independent predictors of 6-min walk distance (6MWD) in the COPDGene cohort. Methods: COPDGene recruits non-Hispanic Caucasian and African American current and ex-smokers. Phenotyping measures include postbronchodilator FEV1 % predicted and inspiratory and expiratory CT lung scans. We defined % emphysema as the percentage of lung voxels < −950 Hounsfield units on the inspiratory scan and % gas trapping as the percentage of lung voxels < −856 Hounsfield units on the expiratory scan. Results: Data of the first 2,500 participants of the COPDGene cohort were analyzed. Participant age was 61 ± 9 years; 51% were men; 76% were non-Hispanic Caucasians, and 24% were African Americans. Fifty-six percent had spirometrically defined COPD, with 9.3%, 23.4%, 15.0%, and 8.3% in GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages I to IV, respectively. Higher % emphysema and % gas trapping predicted lower 6MWD (P < .001). However, in a given spirometric group, after adjustment for age, sex, race, and BMI, neither % emphysema nor % gas trapping, or their interactions with FEV1 % predicted, remained a significant 6MWD predictor. In a given spirometric group, only 16% to 27% of the variance in 6MWD could be explained by age, male sex, Caucasian race, and lower BMI as significant predictors of higher 6MWD. Conclusions: In this large cohort of smokers in a given spirometric stage, phenotypic characteristics were only modestly predictive of 6MWD. CT scan measures of emphysema and gas trapping were not predictive of 6MWD after adjustment for other phenotypic characteristics. PMID:21960696

  18. Implementation of a CT Scan Practice Guideline for Pediatric Trauma Patients Reduces Unnecessary Scans Without Impacting Outcomes.

    PubMed

    McGrew, Patrick R; Chestovich, Paul J; Fisher, Jay D; Kuhls, Deborah A; Fraser, Douglas R; Patel, Purvi P; Katona, Chad W; Saquib, Syed; Fildes, John J

    2018-05-04

    Computed Tomography (CT) scans are useful in the evaluation of trauma patients, but are costly and pose risks from ionizing radiation in children. Recent literature has demonstrated the utility of CT scan guidelines in the management of pediatric trauma. This study objective is to review our treatment of pediatric blunt trauma patients and evaluate CT utilization before and after CT-guideline implementation. Our Pediatric Level 2 Trauma Center (TC) implemented a CT scan practice guideline for pediatric trauma patients in March 2014. The guideline recommended for or against CT of the head and abdomen/pelvis utilizing published criteria from the Pediatric Emergency Care and Research Network (PECARN). There was no chest CT guideline. We reviewed all pediatric trauma patients for CT scans obtained during initial evaluation before and after guideline implementation, excluding inpatient scans. The Trauma Registry Database was queried to include all pediatric (age<15) trauma patients seen in our TC from 2010-2016, excluding penetrating mechanism and deaths in the TC. Scans were considered positive if organ injury was detected. Primary outcome was the proportion of patients undergoing CT and percent positive CTs. Secondary outcomes were hospital length of stay (LOS), readmissions, and mortality. Categorical and continuous variables were analyzed with Chi-square and Wilcoxon rank-sum tests, respectively. P<0.05 was considered significant. We identified 1934 patients: 1106 pre- and 828 post-guideline. Absolute reductions in head, chest, and abdomen/pelvis CT scans were 17.7%, 11.5%, and 18.8% respectively (p<0.001). Percent positive head CTs were equivalent, but percent positive chest and abdomen CT increased after implementation. Secondary outcomes were unchanged. Implementation of a pediatric CT guideline significantly decreases CT utilization, reducing the radiation exposure without a difference in outcome. Trauma centers treating pediatric patients should adopt similar guidelines to decrease unnecessary CT scans in children. Level IV, Therapeutic Study.

  19. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  20. Is the routine CT head scan justified for psychiatric patients? A prospective study.

    PubMed Central

    Ananth, J; Gamal, R; Miller, M; Wohl, M; Vandewater, S

    1993-01-01

    Thirty-four psychiatric patients, assessed for a physical illness that was missed during diagnosis, underwent a CT scan. After investigation, the diagnosis of 14 patients changed from a functional to an organic illness. In nine patients, the CT scan was reported to be abnormal, and yet only two were diagnosed as having an organic syndrome. In seven patients, the CT scan was normal but the patients had an undisputed organic brain syndrome. These findings indicate that the use of CT scans should be restricted to cases in which the diagnosis is seriously in question. The clinical findings should dictate the use of CT scans either to clarify or to complement them. PMID:8461285

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voroney, Jon-Paul; Brock, Kristy K.; Eccles, Cynthia

    Purpose: The aim of this study was to compare magnetic resonance imaging (MRI) with computed tomography (CT) for liver cancer tumor definition for high-precision radiotherapy planning. Methods and Materials: Diagnostic quality MRI scans and triphasic CT scans, with the liver immobilized in exhale, were obtained at the time of radiation planning for 26 patients with unresectable liver metastases (n = 8), hepatocellular carcinoma (n = 10), and cholangiocarcinoma (n = 8). On the CT and MRI series best demonstrating the tumor, the liver and gross tumor volumes (GTVs) were contoured, and intrahepatic anatomic reference points were identified. Deformable registration wasmore » used to register the liver from the CT with that from the MRI. Results: A difference in the number of tumor foci was seen on CT vs. MRI in 5 patients with hepatocellular carcinoma: MRI showed more foci in 3 patients, CT in 2. After deformable registration of the livers, the population median of the average distance between the CT tumor surface and MRI tumor surface was 3.7 mm (2.2-21.3 mm). The median percentage of tumor surface area that differed by {>=}5 mm was 26% (1-86%). Median percentage concordance volumes were 81% (77-86%) in metastases, 77% (60-88%) in hepatocellular carcinoma and 64% (25-85%) in cholangiocarcinoma. Conclusion: Differences between MRI-defined liver cancer GTVs and CT-defined GTVs can be substantial and are more common in primary liver cancer.« less

  2. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  3. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging. PMID:24942656

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Shi, Jim Q.; Zhang, Da

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at themore » isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the GEANT4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization.« less

  5. Reliability of smartphone-based teleradiology for evaluating thoracolumbar spine fractures.

    PubMed

    Stahl, Ido; Dreyfuss, Daniel; Ofir, Dror; Merom, Lior; Raichel, Michael; Hous, Nir; Norman, Doron; Haddad, Elias

    2017-02-01

    Timely interpretation of computed tomography (CT) scans is of paramount importance in diagnosing and managing spinal column fractures, which can be devastating. Out-of-hospital, on-call spine surgeons are often asked to evaluate CT scans of patients who have sustained trauma to the thoracolumbar spine to make diagnosis and to determine the appropriate course of urgent treatment. Capturing radiographic scans and video clips from computer screens and sending them as instant messages have become common means of communication between physicians, aiding in triaging and transfer decision-making in orthopedic and neurosurgical emergencies. The present study aimed to compare the reliability of interpreting CT scans viewed by orthopedic surgeons in two ways for diagnosing, classifying, and treatment planning for thoracolumbar spine fractures: (1) captured as video clips from standard workstation-based picture archiving and communication system (PACS) and sent via a smartphone-based instant messaging application for viewing on a smartphone; and (2) viewed directly on a PACS. Reliability and agreement study. Thirty adults with thoracolumbar spine fractures who had been consecutively admitted to the Division of Orthopedic Surgery of a Level I trauma center during 2014. Intraobserver agreement. CT scans were captured by use of an iPhone 6 smartphone from a computer screen displaying PACS. Then by use of the WhatsApp instant messaging application, video clips of the scans were sent to the personal smartphones of five spine surgeons. These evaluators were asked to diagnose, classify, and determine the course of treatment for each case. Evaluation of the cases was repeated 4 weeks later, this time using the standard method of workstation-based PACS. Intraobserver agreement was interpreted based on the value of Cohen's kappa statistic. The study did not receive any outside funding. Intraobserver agreement for determining fracture level was near perfect (κ=0.94). Intraobserver agreement for AO classification, proposed treatment, neural canal penetration, and Denis classification were substantial (κ values, 0.75, 0.73, 0.71, and 0.69, respectively). Intraobserver agreement for loss of vertebral height and kyphosis were moderate (κ values, 0.55 and 0.45, respectively) CONCLUSIONS: Video clips of CT scans can be readily captured by a smartphone from a workstation-based PACS and then transmitted by use of the WhatsApp instant messaging application. Diagnosing, classifying, and proposing treatment of fractures of the thoracic and lumbar spine can be made with equal reliability by evaluating video clips of CT scans transmitted to a smartphone or by the standard method of viewing the CT scan on a workstation-based PACS. Evaluating video clips of CT scans transmitted to a smartphone is a readily accessible, simple, and inexpensive method. We believe that it can be reliably used for consultations between the emergency physicians or orthopedic or neurosurgical residents with offsite, on-call specialists. It might also enable rural orcommunity emergency department physicians to communicate more efficiently and effectively with surgeons in tertiary referral centers. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. CT scans for pulmonary surveillance may be overused in lower-grade sarcoma.

    PubMed

    Miller, Benjamin J; Carmody Soni, Emily E; Reith, John D; Gibbs, C Parker; Scarborough, Mark T

    2012-01-01

    Chest CT scans are often used to monitor patients after excision of a sarcoma. Although sensitive, CT scans are more expensive than chest radiographs and are associated with possible health risks from a higher radiation dose. We hypothesized that a program based upon limited CT scans in lower-grade sarcoma could be efficacious and less expensive. We retrospectively assigned patients to a high-risk or low-risk hypothetical protocol. Eighty-three low- or intermediate-grade soft tissue sarcomas met our inclusion criteria. Eight patients had pulmonary metastasis. A protocol based on selective CT scans for high-risk patients would have identified seven out of eight lesions. The incremental cost-effectiveness ratio for routine CT scans was $731,400. A program based upon selective CT scans for higher-risk patients is accurate, spares unnecessary radiation to many patients, and is less expensive.

  7. Barium Sulfate

    MedlinePlus

    ... and intestine using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses a ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate enema, ...

  8. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial {sup 18}F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everitt, Sarah, E-mail: Sarah.Everitt@petermac.or; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria; Hicks, Rodney J.

    2009-11-15

    Purpose: To establish whether {sup 18}F-3'-deoxy-3'-fluoro-L-thymidine ({sup 18}F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial {sup 18}F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline {sup 18}F-FLT PET/CT scans were compared with routine staging {sup 18}F-FDG PET/CT scans. Two on-treatment {sup 18}F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptakemore » of {sup 18}F-FLT on PET/CT corresponded to staging {sup 18}F-FDG PET/CT abnormalities. {sup 18}F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of {sup 18}F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in {sup 18}F-FLT tumor uptake of 0.58 x baseline. A marked reduction of {sup 18}F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that {sup 18}F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of {sup 18}F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.« less

  9. High dose microCT does not contribute towards improved microPET/CT image quantitative accuracy and can limit longitudinal scanning of small animals

    NASA Astrophysics Data System (ADS)

    McDougald, Wendy A.; Collins, Richard; Green, Mark; Tavares, Adriana A. S.

    2017-10-01

    Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT) imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1) to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2) to evaluate the absorbed dose associated with varying CT parameters. Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA) software implemented by Mediso. Measured Hounsfield Unit (HU) in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC), uniformity and quantitative bias were also measured. Results: Only less than 2% and 1% of CT acquisition protocols yielded water HU values < -80 and air HU values < -840, respectively. Four out of eleven CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration. Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed towards improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  10. A comparison between intrastomal 3D ultrasonography, CT scanning and findings at surgery in patients with stomal complaints.

    PubMed

    Näsvall, P; Wikner, F; Gunnarsson, U; Rutegård, J; Strigård, K

    2014-10-01

    Since there are no reliable investigative tools for imaging parastomal hernia, new techniques are needed. The aim of this study was to assess the validity of intrastomal three-dimensional ultrasonography (3D) as an alternative to CT scanning for the assessment of stomal complaints. Twenty patients with stomal complaints, indicating surgery, were examined preoperatively with a CT scan in the supine position and 3D intrastomal ultrasonography in the supine and erect positions. Comparison with findings at surgery, considered to be the true state, was made. Both imaging methods, 3D ultrasonography and CT scanning, showed high sensitivity (ultrasound 15/18, CT scan 15/18) and specificity (ultrasound 2/2, CT scan 1/2) when judged by a dedicated radiologist. Corresponding values for interpretation of CT scans in routine clinical practice was for sensitivity 17/18 and for specificity 1/2. 3D ultrasonography has a high validity and is a promising alternative to CT scanning in the supine position to distinguish a bulge from a parastomal hernia.

  11. Systematic review on the value of CT scanning in the diagnosis of anastomotic leakage after colorectal surgery.

    PubMed

    Kornmann, Verena N N; Treskes, Nikki; Hoonhout, Lilian H F; Bollen, Thomas L; van Ramshorst, Bert; Boerma, Djamila

    2013-04-01

    Timely diagnosis of anastomotic leakage after colorectal surgery and adequate treatment is important to reduce morbidity and mortality. Abdominal computed tomography (CT) scanning is the diagnostic tool of preference, but its value may be questionable in the early postoperative period. The accuracy of CT scanning for the detection of anastomotic leakage and its role in timing of intervention was evaluated. A systematic literature search was performed. Relevant publications were identified from four electronic databases between 1990 and 2011. Inclusion criteria were human studies, studies published in English or Dutch, colorectal surgery with primary anastomosis, and abdominal CT scan with reported outcome for the detection of anastomotic leakage. Exclusion criteria were cohort of fewer than five patients, other gastrointestinal surgery, no anastomosis, and radiological imaging other than CT. Eight studies, including 221 abdominal CT scans, fulfilled the inclusion criteria. Overall, the methodological quality of the studies was poor. The overall sensitivity of CT scanning to diagnose leakage was 0.68 (95 % confidence interval 0.59-0.75) for colonic resection. Data on the sequelae of false-negative CT scanning was not available. There is limited good-quality evidence to determine the value of CT scans in the detection of anastomotic leakage. To prevent delay in diagnosis and appropriate treatment of anastomotic leakage, the relatively low sensitivity of CT scanning must be taken into account.

  12. TU-CD-207-11: Patient-Driven Automatic Exposure Control for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Gazi, P; Department of Radiology, UC Davis Medical Center, Sacramento, CA

    Purpose: To implement automatic exposure control (AEC) in dedicated breast CT (bCT) on a patient-specific basis using only the pre-scan scout views. Methods: Using a large cohort (N=153) of bCT data sets, the breast effective diameter (D) and width in orthogonal planes (Wa,Wb) were calculated from the reconstructed bCT image and pre-scan scout views, respectively. D, Wa, and Wb were measured at the breast center-of-mass (COM), making use of the known geometry of our bCT system. These data were then fit to a second-order polynomial “D=F(Wa,Wb)” in a least squares sense in order to provide a functional form for determiningmore » the breast diameter. The coefficient of determination (R{sup 2}) and mean percent error between the measured breast diameter and fit breast diameter were used to evaluate the overall robustness of the polynomial fit. Lastly, previously-reported bCT technique factors derived from Monte Carlo simulations were used to determine the tube current required for each breast diameter in order to match two-view mammographic dose levels. Results: F(Wa,Wb) provided fitted breast diameters in agreement with the measured breast diameters resulting in R{sup 2} values ranging from 0.908 to 0.929 and mean percent errors ranging from 3.2% to 3.7%. For all 153 bCT data sets used in this study, the fitted breast diameters ranged from 7.9 cm to 15.7 cm corresponding to tube current values ranging from 0.6 mA to 4.9 mA in order to deliver the same dose as two-view mammography in a 50% glandular breast with a 80 kV x-ray beam and 16.6 second scan time. Conclusion: The present work provides a robust framework for AEC in dedicated bCT using only the width measurements derived from the two orthogonal pre-scan scout views. Future work will investigate how these automatically chosen exposure levels affect the quality of the reconstructed image.« less

  13. Effect of staff training on radiation dose in pediatric CT.

    PubMed

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p<0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p>0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. MO-F-CAMPUS-I-04: Patient Eye-Lens Dose Reduction in Routine Brain CT Examinations Using Organ-Based Tube Current Modulation and In-Plane Bismuth Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan

    Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less

  15. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  16. Demand for CT scans increases during transition from paediatric to adult care: an observational study from 2009 to 2015.

    PubMed

    Thurley, Pete; Crookdake, Jonathan; Norwood, Mark; Sturrock, Nigel; Fogarty, Andrew W

    2018-02-01

    Avoiding unnecessary radiation exposure is a clinical priority in children and young adults. We aimed to explore demand for CT scans in a busy general hospital with particular interest in the period of transition from paediatric to adult medical care. We used an observational epidemiological study based in a teaching hospital. Data were obtained on numbers and rates of CT scans from 2009 to 2015. The main outcome was age-stratified rates of receiving a CT scan. There were a total of 262,221 CT scans. There was a large step change in the rate of CT scans over the period of transition from paediatric to adult medical care. Individuals aged 10-15 years experienced 6.7 CT scans per 1000 clinical episodes, while those aged 19-24 years experienced 19.8 CT scans per 1000 clinical episodes (p < 0.001). This difference remained significant for all sensitivity analyses. There is almost a threefold increase in rates of CT scans in the two populations before and after the period of transition from paediatric to adult medical care. While we were unable to adjust for case mix or quantify radiation exposure, paediatricians' diagnostic strategies to minimize radiation exposure may have clinical relevance for adult physicians, and hence enable reductions in ionizing radiation to patients. Advances in knowledge: A large increase in rates of CT scans occurs during adolescence, and considering paediatricians' strategies to minimize radiation exposure may enable reductions to all patients.

  17. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  18. WE-D-18A-05: Construction of Realistic Liver Phantoms From Patient Images and a Commercial 3D Printer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, S; Vrieze, T; Kuhlmann, J

    2014-06-15

    Purpose: To assess image quality and radiation dose reduction in abdominal CT imaging, physical phantoms having realistic background textures and lesions are highly desirable. The purpose of this work was to construct a liver phantom with realistic background and lesions using patient CT images and a 3D printer. Methods: Patient CT images containing liver lesions were segmented into liver tissue, contrast-enhanced vessels, and liver lesions using commercial software (Mimics, Materialise, Belgium). Stereolithography (STL) files of each segmented object were created and imported to a 3D printer (Object350 Connex, Stratasys, MN). After test scans were performed to map the eight availablemore » printing materials into CT numbers, printing materials were assigned to each object and a physical liver phantom printed. The printed phantom was scanned on a clinical CT scanner and resulting images were compared with the original patient CT images. Results: The eight available materials used to print the liver phantom had CT number ranging from 62 to 117 HU. In scans of the liver phantom, the liver lesions and veins represented in the STL files were all visible. Although the absolute value of the CT number in the background liver material (approx. 85 HU) was higher than in patients (approx. 40 HU), the difference in CT numbers between lesions and background were representative of the low contrast values needed for optimization tasks. Future work will investigate materials with contrast sufficient to emulate contrast-enhanced arteries. Conclusion: Realistic liver phantoms can be constructed from patient CT images using a commercial 3D printer. This technique may provide phantoms able to determine the effect of radiation dose reduction and noise reduction techniques on the ability to detect subtle liver lesions in the context of realistic background textures.« less

  19. TU-EF-204-07: Add Tube Current Modulation to a Low Dose Simulation Tool for CT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.; Department of Physics, University of Arizona, Tucson, AZ; Wen, G.

    2015-06-15

    Purpose: We extended the capabilities of a low dose simulation tool to model Tube-Current Modulation (TCM). TCM is widely used in clinical practice to reduce radiation dose in CT scans. We expect the tool to be valuable for various clinical applications (e.g., optimize protocols, compare reconstruction techniques and evaluate TCM methods). Methods: The tube current is input as a function of z location, instead of a fixed value. Starting from the line integrals of a scan, a new Poisson noise realization at a lower dose is generated for each view. To validate the new functionality, we compared simulated scans withmore » real scans in image space. Results: First we assessed noise in the difference between the low-dose simulations and the original high-dose scan. When the simulated tube current is a step function of z location, the noise at each segment matches the noise of 3 separate constant-tube-current-simulations. Secondly, with a phantom that forces TCM, we compared a low-dose simulation with an equivalent real low-dose scan. The mean CT number of the simulated scan and the real low-dose scan were 137.7±0.6 and 137.8±0.5 respectively. Furthermore, with 240 ROIs, the noise of the simulated scan and the real low-dose scan were 24.03±0.45 and 23.99±0.43 respectively, and they were not statistically different (2-sample t-test, p-value=0.28). The facts that the noise reflected the trend of the TCM curve, and that the absolute noise measurements were not statistically different validated the TCM function. Conclusion: We successfully added tube-current modulation functionality in an existing low dose simulation tool. We demonstrated that the noise reflected an input tube-current modulation curve. In addition, we verified that the noise and mean CT number of our simulation agreed with a real low dose scan. The authors are all employees of Philips. Yijun Ding is also supported by NIBIB P41EB002035 and NIBIB R01EB000803.« less

  20. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  1. Is triple contrast computed tomographic scanning useful in the selective management of stab wounds to the back?

    PubMed

    McAllister, E; Perez, M; Albrink, M H; Olsen, S M; Rosemurgy, A S

    1994-09-01

    We devised a protocol to prospectively manage stab wounds to the back with the hypothesis that the triple contrast computed tomographic (CT) scan is an effective means of detecting occult injury in these patients. All wounds to the back in hemodynamically stable adults were locally explored. All patients with muscular fascial penetration underwent triple contrast CT scanning utilizing oral, rectal, and IV contrast. Patients did not undergo surgical exploration if their CT scan was interpreted as negative or if the CT scan demonstrated injuries not requiring surgical intervention. Fifty-three patients were entered into the protocol. The time to complete the triple contrast CT scan ranged from 3 to 6 hours at a cost of $1050 for each scan. In 51 patients (96%), the CT scan either had negative findings (n = 31) or showed injuries not requiring exploration (n = 20). These patients did well with nonsurgical management. Two CT scans documented significant injury and led to surgical exploration and therapeutic celiotomies. Although triple contrast CT scanning was able to detect occult injury in patients with stab wounds to the back it did so at considerable cost and the results rarely altered clinical care. Therefore, its routine use in these patients is not recommended.

  2. Optimising μCT imaging of the middle and inner cat ear.

    PubMed

    Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A

    2012-04-01

    This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT. © 2011 Blackwell Verlag GmbH.

  3. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  4. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, K; Takai, Y; Southern Tohoku BNCT Research Center, Koriyama

    2016-06-15

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostatemore » at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by post-indwelled CT images.« less

  5. Improving Spleen Volume Estimation via Computer Assisted Segmentation on Clinically Acquired CT Scans

    PubMed Central

    Xu, Zhoubing; Gertz, Adam L.; Burke, Ryan P.; Bansal, Neil; Kang, Hakmook; Landman, Bennett A.; Abramson, Richard G.

    2016-01-01

    OBJECTIVES Multi-atlas fusion is a promising approach for computer-assisted segmentation of anatomical structures. The purpose of this study was to evaluate the accuracy and time efficiency of multi-atlas segmentation for estimating spleen volumes on clinically-acquired CT scans. MATERIALS AND METHODS Under IRB approval, we obtained 294 deidentified (HIPAA-compliant) abdominal CT scans on 78 subjects from a recent clinical trial. We compared five pipelines for obtaining splenic volumes: Pipeline 1–manual segmentation of all scans, Pipeline 2–automated segmentation of all scans, Pipeline 3–automated segmentation of all scans with manual segmentation for outliers on a rudimentary visual quality check, Pipelines 4 and 5–volumes derived from a unidimensional measurement of craniocaudal spleen length and three-dimensional splenic index measurements, respectively. Using Pipeline 1 results as ground truth, the accuracy of Pipelines 2–5 (Dice similarity coefficient [DSC], Pearson correlation, R-squared, and percent and absolute deviation of volume from ground truth) were compared for point estimates of splenic volume and for change in splenic volume over time. Time cost was also compared for Pipelines 1–5. RESULTS Pipeline 3 was dominant in terms of both accuracy and time cost. With a Pearson correlation coefficient of 0.99, average absolute volume deviation 23.7 cm3, and 1 minute per scan, Pipeline 3 yielded the best results. The second-best approach was Pipeline 5, with a Pearson correlation coefficient 0.98, absolute deviation 46.92 cm3, and 1 minute 30 seconds per scan. Manual segmentation (Pipeline 1) required 11 minutes per scan. CONCLUSION A computer-automated segmentation approach with manual correction of outliers generated accurate splenic volumes with reasonable time efficiency. PMID:27519156

  6. Which is the best strategy for diagnosing bronchial carcinoid tumours? The role of dual tracer PET/CT scan.

    PubMed

    Lococo, Filippo; Treglia, Giorgio

    2014-01-01

    Bronchial carcinoids (BC) are rare well-differentiated neuroendocrine tumours (NET) sub-classified into typical (TC) and atypical carcinoids (AC). A correct pathological identification in the pre-operative setting is a key element for planning the best strategy of care, considering the different biological behavior of TC and AC. Controversial results have been reported on the diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) in BC. On the other hand, there is increasing evidence supporting the use of PET with somatostatin analogues (dotanoc, dotatoc or dotatate) labeled with gallium-68 ((68)Ga) in pulmonary NET. Based on information obtained by using different radiopharmaceuticals and different (68)Ga labeled somatostatin analogues in PET and PET/CT studies, we are able to diagnose BC. In conclusion, by using somatostatin receptor imaging and (18)F-FDG PET/CT scan, we can differentiate BC from benign pulmonary lesions and TC from AC by specific diagnostic patterns. Clinical trials on larger groups of patient would allow for a better and "tailored" therapeutic strategy in NET patients using dual-tracer PET/CT to identify BC and distinguish between TC and AC.

  7. Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, Vinicius O., E-mail: vinicius@radtec.com.br; Machado, Marcos A. D.; Queiroz, Cleiton C.

    2016-02-15

    Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread functionmore » and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.« less

  8. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Chris; Bazalova-Carter, Magdalena

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional datamore » sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Carryn M., E-mail: carryn-anderson@uiowa.edu; Chang, Tangel; Graham, Michael M.

    Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and changemore » of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.« less

  10. Blend sign predicts poor outcome in patients with intracerebral hemorrhage

    PubMed Central

    Cao, Du; Zhu, Dan; Lv, Fa-Jin; Liu, Yang; Yuan, Liang; Zhang, Gang; Xiong, Xin; Li, Rui; Hu, Yun-Xin; Qin, Xin-Yue; Xie, Peng

    2017-01-01

    Introduction Blend sign has been recently described as a novel imaging marker that predicts hematoma expansion. The purpose of our study was to investigate the prognostic value of CT blend sign in patients with ICH. Objectives and methods Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours were included. The presence of blend sign on admission nonenhanced CT was independently assessed by two readers. The functional outcome was assessed by using the modified Rankin Scale (mRS) at 90 days. Results Blend sign was identified in 40 of 238 (16.8%) patients on admission CT scan. The proportion of patients with a poor functional outcome was significantly higher in patients with blend sign than those without blend sign (75.0% versus 47.5%, P = 0.001). The multivariate logistic regression analysis demonstrated that age, intraventricular hemorrhage, admission GCS score, baseline hematoma volume and presence of blend sign on baseline CT independently predict poor functional outcome at 90 days. The CT blend sign independently predicts poor outcome in patients with ICH (odds ratio 3.61, 95% confidence interval [1.47–8.89];p = 0.005). Conclusions Early identification of blend sign is useful in prognostic stratification and may serve as a potential therapeutic target for prospective interventional studies. PMID:28829797

  11. Validation of a Low Dose Simulation Technique for Computed Tomography Images

    PubMed Central

    Muenzel, Daniela; Koehler, Thomas; Brown, Kevin; Žabić, Stanislav; Fingerle, Alexander A.; Waldt, Simone; Bendik, Edgar; Zahel, Tina; Schneider, Armin; Dobritz, Martin; Rummeny, Ernst J.; Noël, Peter B.

    2014-01-01

    Purpose Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. Materials and Methods Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10–80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. Results Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was −1.2% (range −9% to 3.2%) and −0.2% (range −8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9–10.2 HU (noise) and 1.9–13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. Conclusion Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques. PMID:25247422

  12. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  13. Computed tomography scan to detect traumatic arthrotomies and identify periarticular wounds not requiring surgical intervention: an improvement over the saline load test.

    PubMed

    Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A

    2013-09-01

    To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  14. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang

    2015-06-15

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, whichmore » are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality for advanced clinical applications wherein only unevenly distributed sparse views are available. Research Grants: W81XWH-12-1-0138 (DoD), Sinovision Technologies.« less

  15. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependentmore » reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to several-fold when organs were partially included in the scan coverage. Second, selected organ doses from our calculations agreed to within 20% of values derived from empirical formulae based upon measured patient abdominal circumference. Third, the existing DLP-to-effective dose conversion coefficients tended to be smaller than values given in the present study for all examinations except head scans. Conclusions: A comprehensive organ/effective dose database was established to readily calculate doses for given patients undergoing different CT examinations. The comparisons of our results with the existing studies highlight that use of hybrid phantoms with realistic anatomy is important to improve the accuracy of CT organ dosimetry. The comprehensive pediatric dose data developed here are the first organ-specific pediatric CT scan database based on the realistic pediatric hybrid phantoms which are compliant with the reference data from the International Commission on Radiological Protection (ICRP). The organ dose database is being coupled with an adult organ dose database recently published as part of the development of a user-friendly computer program enabling rapid estimates of organ and effective dose doses for patients of any age, gender, examination types, and CT scanner model.« less

  16. 320-Row wide volume CT significantly reduces density heterogeneity observed in the descending aorta: comparisons with 64-row helical CT.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. CT scanning in stroke patients: meeting the challenge in the remote and rural district general hospital.

    PubMed

    Todd, A W; Anderson, E M

    2009-05-01

    National audit data allow crude comparison between centres and indicate that most Scottish hospitals fail to meet current guidelines for CT scanning of the brain in stroke patients. This study identifies some of the reasons for delay in performing CT scans in a largely rural population. This audit study assesses the delays from onset of symptoms, time of admission and request received to CT scan in stroke patients for three different in-patient groups as well as those managed in the community. The reasons for delay in CT scanning varied between different patient groups but for one group of in-patients, changes in booking procedure and introduction of a second CT scanner increased the proportion scanned within 48 hours of request from 65% to 96%. Further developments including the introduction of Saturday and Sunday routine CT scanning, radiologist reporting from home and additional CT scanners placed in remote hospitals may be expected to improve these figures further. Target times of three hours from onset of symptoms to scan to allow thrombolysis may however be impossible to meet for all stroke patients in rural areas.

  18. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    PubMed Central

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images. Conclusions Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode. PMID:26352168

  19. Trends and patterns in the use of computed tomography in children and young adults in Catalonia - results from the EPI-CT study.

    PubMed

    Bosch de Basea, Magda; Salotti, Jane A; Pearce, Mark S; Muchart, Jordi; Riera, Luis; Barber, Ignasi; Pedraza, Salvador; Pardina, Marina; Capdevila, Antoni; Espinosa, Ana; Cardis, Elisabeth

    2016-01-01

    Although there are undeniable diagnostic benefits of CT scanning, its increasing use in paediatric radiology has become a topic of concern regarding patient radioprotection. To assess the rate of CT scanning in Catalonia, Spain, among patients younger than 21 years old at the scan time. This is a sub-study of a larger international cohort study (EPI-CT, the International pediatric CT scan study). Data were retrieved from the radiological information systems (RIS) of eight hospitals in Catalonia since the implementation of digital registration (between 1991 and 2010) until 2013. The absolute number of CT scans annually increased 4.5% between 1991 and 2013, which was less accentuated when RIS was implemented in most hospitals. Because the population attending the hospitals also increased, however, the rate of scanned patients changed little (8.3 to 9.4 per 1,000 population). The proportions of patients with more than one CT and more than three CTs showed a 1.51- and 2.7-fold increase, respectively, over the 23 years. Gradual increases in numbers of examinations and scanned patients were observed in Catalonia, potentially explained by new CT scanning indications and increases in the availability of scanners, the number of scans per patient and the size of the attended population.

  20. CT scan

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003330.htm CT scan To use the sharing features on this page, please enable JavaScript. A computed tomography (CT) scan is an imaging method that uses x- ...

  1. Computed Tomography (CT) - Spine

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezovich, I; Wu, X; Popple, R

    Purpose: To test spatial and dosimetric accuracy of small cranial target irradiation based on 1.5 T MRI scans using static arcs with MLC-defined fields Methods: A plastic (PMMA) phantom simulating a small brain lesion was mounted on a GammaKnife headframe equipped with MRI localizer. The lesion was a 3 mm long, 3.175 mm diameter cylindrical cavity filled with MRI contrast. Radiochromic film passing through the cavity was marked with pin pricks at the cavity center. The cavity was contoured on an MRI image and fused with CT to simulate treatment of a lesion not visible on CT. The transfer ofmore » the target to CT involved registering the MRI contrast cannels of the localizer that were visible on both modalities. Treatments were planned to deliver 800 cGy to the cavity center using multiple static arcs with 5.0×2.4 mm MLC-defined fields. The phantom was aligned on a STx accelerator by registering the conebeam CT with the planning CT. Films from coronal and sagittal planes were scanned and evaluated using ImageJ software Results: Geographic errors in treatment based on 1.5 T scans agreed within 0.33, −0.27 and 1.21 mm in the vertical, lateral and longitudinal dimensions, respectively. The doses delivered to the cavity center were 7.2% higher than planned. The dose distributions were similar to those of a GammaKnife. Conclusion: Radiation can be delivered with an accelerator at mm accuracy to small cranial targets based on 1.5 MRI scans fused to CTs using a standard GammaKnife headframe and MRI localizer. MLC-defined static arcs produce isodose lines very similar to the GammaKnife.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, R; Ding, C; Jiang, S

    Purpose Spine SRS/SAbR treatment plans typically require very steep dose gradients to meet spinal cord constraints and it is crucial that the dose distribution be accurate. However, these plans are typically calculated on helical free-breathing CT scans, which often contain motion artifacts. While the spine itself doesn’t exhibit very much intra-fraction motion, tissues around the spine, particularly the liver, do move with respiration. We investigated the dosimetric effect of liver motion on dose distributions calculated on helical free-breathing CT scans for spine SAbR delivered to the T and L spine. Methods We took 5 spine SAbR plans and used densitymore » overrides to simulate an average reconstruction CT image set, which would more closely represent the patient anatomy during treatment. The value used for the density override was 0.66 g/cc. All patients were planned using our standard beam arrangement, which consists of 13 coplanar step and shoot IMRT beams. The original plan was recalculated with the same MU on the “average” scan and target coverage and spinal cord dose were compared to the original plan. Results The average changes in minimum PTV dose, PTV coverage, max cord dose and volume of cord receiving 10 Gy were 0.6%, 0.8%, 0.3% and 4.4% (0.012 cc), respectively. Conclusion SAbR spine plans are surprisingly robust relative to surrounding organ motion due to respiration. Motion artifacts in helical planning CT scans do not cause clinically significant differences when these plans are re-calculated on pseudo-average CT reconstructions. This is likely due to the beam arrangement used because only three beams pass through the liver and only one beam passes completely through the density override. The effect of the respiratory motion on VMAT plans for spine SAbR is being evaluated.« less

  4. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  5. Respiratory-gated segment reconstruction for radiation treatment planning using 256-slice CT-scanner during free breathing

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.

  6. Scope for energy improvement for hospital imaging services in the USA.

    PubMed

    Esmaeili, Amin; Twomey, Janet M; Overcash, Michael R; Soltani, Seyed A; McGuire, Charles; Ali, Kamran

    2015-04-01

    To aid radiologists by measuring the carbon footprint of CT scans by quantifying in-hospital and out-of-hospital energy use and to assess public health impacts. The study followed a standard life cycle assessment protocol to measure energy from a CT scan then expanding to all hospital electrical energy related to CT usage. In addition, all the fuel energy used to generate electricity and to manufacture the CT consumables was measured. The study was conducted at two hospitals. The entire life cycle energy for a CT scan was 24-34 kWh of natural resource energy per scan. The actual active patient scan energy that produces the images is only about 1.6% of this total life cycle energy. This large multiplier to get total CT energy is a previously undocumented environmental response to the direct radiology order for a patient CT scan. The CT in-hospital energy related to idle periods, where the machine is on but no patients are being scanned and is 14-30-fold higher than the energy used for the CT image. The in-hospital electrical energy of a CT scan makes up only about 25% of the total energy footprint. The rest is generated outside the hospital: 54-62% for generation and transmission of the electricity, while 13-22% is for all the energy to make the consumables. Different CT scanners have some influences on the results and could help guide purchase of CT equipment. The transparent, detailed life cycle approach allows the data from this study to be used by radiologists to examine details of both direct and of unseen energy impacts of CT scans. The public health (outside-the-hospital) impact (including the patients receiving a CT) needs to be measured and included. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty.

    PubMed

    Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko

    2016-02-01

    Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. The Caudate Lobe: The Blind Spot in Radioembolization or an Overlooked Opportunity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braat, Manon N. G. J. A., E-mail: M.N.G.Braat-3@umcutrecht.nl; Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Doormaal, Pieter J. van, E-mail: P.J.vanDoormaal-4@umcutrecht.nl

    2016-06-15

    PurposeThe caudate lobe (CL) is impartial to the functional left and right hemi-liver and has outspoken inter-individual differences in arterial vascularization. Unfortunately, this complexity is not specifically taken into account during radioembolization treatment (RE), potentially resulting in under- or overtreatment of the CL. The objective of this study was to evaluate the CL coverage in RE and determine the detection rate of the CL arteries on CT angiography during work-up.MethodsIn all consecutive patients who underwent RE treatment between May 2012–January 2015, {sup 99m}Tc-MAA SPECT/CT and posttreatment scans ({sup 90}Y-bremsstrahlung SPECT/CT, {sup 90}Y-PET/CT, or {sup 166}Ho-SPECT/CT) were reviewed for activity inmore » the CL. Pretreatment CT angiographies were reviewed for the visibility of the CL arteries.ResultsEighty-two patients were treated. In 32/82 (39 %) the CL was involved. In 6/32 (19 %) patients, no activity was seen on the posttreatment scan in the CL, whereas in 40/50 (80 %) patients without CL tumor involvement, the CL was treated. {sup 99m}Tc-MAA SPECT/CT and final posttreatment scans were discordant in 16/78 (21 %). {sup 99m}Tc-MAA SPECT/CT had a positive and negative predictive value of 94 % and 46 %, respectively, for activity in the CL after RE. In untreated CLs, significant hypertrophy was observed with a median volume increase of 33 % (p = 0.02). CL arteries were seldom visible on the pretreatment CT; the identification rate was 12–17 %.ConclusionCurrently in RE treatments, targeting or sparing of the CL is highly erratic and independent of tumor involvement. Intentional treatment or bypassing of the CL seems worthwhile to either improve tumor coverage or enhance the functional liver remnant.« less

  9. Effect of CT contrast on volumetric arc therapy planning (RapidArc and helical tomotherapy) for head and neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Alan J.; Vora, Nayana; Suh, Steve

    2015-04-01

    The objectives of the study were to evaluate the effect of intravenous contrast in the dosimetry of helical tomotherapy and RapidArc treatment for head and neck cancer and determine if it is acceptable during the computed tomography (CT) simulation to acquire only CT with contrast for treatment planning of head and neck cancer. Overall, 5 patients with head and neck cancer (4 men and 1 woman) treated on helical tomotherapy were analyzed retrospectively. For each patient, 2 consecutive CT scans were performed. The first CT set was scanned before the contrast injection and secondary study set was scanned 45 secondsmore » after contrast. The 2 CTs were autoregistered using the same Digital Imaging and Communications in Medicine coordinates. Tomotherapy and RapidArc plans were generated on 1 CT data set and subsequently copied to the second CT set. Dose calculation was performed, and dose difference was analyzed to evaluate the influence of intravenous contrast media. The dose matrix used for comparison included mean, minimum and maximum doses of planning target volume (PTV), PTV dose coverage, and V{sub 45} {sub Gy}, V{sub 30} {sub Gy}, and V{sub 20} {sub Gy} organ doses. Treatment planning on contrasted images generally showed a lower dose to both organs and target than plans on noncontrasted images. The doses for the points of interest placed in the organs and target rarely changed more than 2% in any patient. In conclusion, treatment planning using a contrasted image had insignificant effect on the dose to the organs and targets. In our opinion, only CT with contrast needs to be acquired during the CT simulation for head and neck cancer. Dose calculations performed on contrasted images can potentially underestimate the delivery dose slightly. However, the errors of planning on a contrasted image should not affect the result in clinically significant way.« less

  10. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qayyum, F; Armato, S; Straus, C

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volumemore » of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.« less

  11. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less

  12. Heart CT scan

    MedlinePlus

    ... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...

  13. MO-E-17A-09: Has Cancer Risk for Pediatric CT Increased Or Decreased? An Analysis of Cohort Data From 2004-2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S; Kaufman, R

    Purpose: To analyze CT radiation dosimetry trends in a pediatric population imaged with modern (2004-2013) CT technology Methods: The institutional review board approved this retrospective review. Two cohorts of pediatric patients that received CT scans for treatment or surveillance for Wilms tumor (n=73) or Neuroblastoma (n=74) from 2004–2013 were included in this study. Patients were scanned during this time period on a GE Ultra (8 slice; 2004–2007), a GE VCT (2008–2011), or a GE VCT-XTe (2011–2013). Each patient's individual or combined chest, abdomen, and pelvic CT exams (n=4138) were loaded onto a PACS workstation (Intelerad, Canada) and measured to calculatemore » their effective diameter and SSDE. Patient SSDE was used to estimate patient organ dosimetry based on previously published data. Patient's organ dosimetry were sorted by gender, weight, age, scan protocol (i.e., chest, abdomen, or pelvis), and CT scanner technology and averaged accordingly to calculate population averaged absolute and effective dose values. Results: Patient radiation dose burden calculated for all genders, weights, and ages decreased at a rate of 0.2 mSv/year (4.2 mGy/year; average organ dose) from 2004–2013; overall levels decreased by 50% from 3.0 mSv (60.0 mGy) to 1.5 mSv (25.9 mGy). Patient dose decreased at equal rates for both male and female, and for individual scan protocols. The greatest dose savings was found for patients between 0–4 years old (65%) followed by 5-9 years old (45%), 10–14 years old (30%), and > 14 years old (21%). Conclusion: Assuming a linear-nothreshold model, there always will be potential risk of cancer induction from CT. However, as demonstrated among these patient populations, effective and organ dose has decreased over the last decade; thus, potential risk of long-term side effects from pediatric CT examinations has also been reduced.« less

  14. Computed tomography of patients with head trauma following road traffic accident in Benin City, Nigeria.

    PubMed

    Eze, K C; Mazeli, F O

    2011-01-01

    The outcome of head trauma as a result of road accident rests with increased use of CT scan and other radiological imaging modalities for prompt diagnosis is important. To find out the time of presentation for CT scan, symptoms for referral for CT scan and pattern of injuries in patients with cranial CT scan following road traffic accidents. Retrospective analysis of cranial computed tomography (CT) films, request cards, duplicate copy of radiology reports, soft copy CT images and case notes of 61 patients who underwent cranial CT scan on account of road traffic accidents. The study CT scans were performed at the radiology department of University Teaching Hospital between 1st January 2002 and 31st December 2004. 51 patients (83.6%) were male while 10 (16.4%) were female with male to female ratio of 5:1. Thirty - eight (62.3%) patients were aged 20-39 years. Forty two patients (68.9%) presented after one week of injury. No patient presented within the first six hours of injury. The symptoms needing referral for CT scan included head injury 30 (49.2%), seizures 10 16.4%), skull fractures 8 (13.1%) and persistent headache 6 (5.6%). A total of 113 lesions were seen as some patients presented with more than one lesion. The findings on CT scan included 10 patients with normal findings , 21 (34.4%) skull fractures , 21 (34.4%) intra-cerebral haemorrhage , 19 (31.2%) brain contusion , 18 (29.5%) paranasal sinus collection,11 (18.0%) cerebral oedema, 10 (16.4%) subdural haematoma and 5 (8.2%) epidural haematoma. Over 80% of the subdural and epidural haematomas were associated with skull fractures. The yield from plain radiography was poor being positive in only 8 (13.1%) while CT scan was positive in 51 (83.61%). Also 75 (about 66%) of the 113 lesions seen on CT scan were treatable surgically. CT scan is an effective imaging modality of patient with road traffic accident and should be promptly requested in symptomatic patients who sustain trauma to the head toward identification of lesions that are amenable to surgical treatment.

  15. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  16. [Preoperative CT Scan in middle ear cholesteatoma].

    PubMed

    Sethom, Anissa; Akkari, Khemaies; Dridi, Inès; Tmimi, S; Mardassi, Ali; Benzarti, Sonia; Miled, Imed; Chebbi, Mohamed Kamel

    2011-03-01

    To compare preoperative CT scan finding and per-operative lesions in patients operated for middle ear cholesteatoma, A retrospective study including 60 patients with cholesteatoma otitis diagnosed and treated within a period of 5 years, from 2001 to 2005, at ENT department of Military Hospital of Tunis. All patients had computed tomography of the middle and inner ear. High resolution CT scan imaging was performed using millimetric incidences (3 to 5 millimetres). All patients had surgical removal of their cholesteatoma using down wall technic. We evaluated sensitivity, specificity and predictive value of CT-scan comparing otitic damages and CT finding, in order to examine the real contribution of computed tomography in cholesteatoma otitis. CT scan analysis of middle ear bone structures shows satisfaction (with 83% of sensibility). The rate of sensibility decrease (63%) for the tympanic raff. Predictive value of CT scan for the diagnosis of cholesteatoma was low. However, we have noticed an excellent sensibility in the analysis of ossicular damages (90%). Comparative frontal incidence seems to be less sensible for the detection of facial nerve lesions (42%). But when evident on CT scan findings, lesions of facial nerve were usually observed preoperatively (spécificity 78%). Predictive value of computed tomography for the diagnosis of perilymphatic fistulae (FL) was low. In fact, CT scan imaging have showed FL only for four patients among eight. Best results can be obtained if using inframillimetric incidences with performed high resolution computed tomography. Preoperative computed tomography is necessary for the diagnosis and the evaluation of chronic middle ear cholesteatoma in order to show extending lesion and to detect complications. This CT analysis and surgical correlation have showed that sensibility, specificity and predictive value of CT-scan depend on the anatomic structure implicated in cholesteatoma damages.

  17. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guidemore » provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.« less

  18. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  19. With "big data" comes big responsibility: outreach to North Carolina Medicaid patients with 10 or more computed tomography scans in 12 months.

    PubMed

    Biola, Holly; Best, Randall M; Lahlou, Rita M; Burke, Lauren M; Dewar, Charles; Jackson, Carlos T; Broder, Joshua; Grey, Linda; Semelka, Richard C; Dobson, Allen

    2014-01-01

    Patients are being exposed to increasing levels of ionizing radiation, much of it from computed tomography (CT) scans. Adults without a cancer diagnosis who received 10 or more CT scans in 2010 were identified from North Carolina Medicaid claims data and were sent a letter in July 2011 informing them of their radiation exposure; those who had undergone 20 or more CT scans in 2010 were also telephoned. The CT scan exposure of these high-exposure patients during the 12 months following these interventions was compared with that of adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. The average number of CT scans per month for the high-exposure population decreased over time, but most of that reduction occurred 6-9 months before our interventions took place. At about the same time, the number of CT scans per month also decreased in adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. Our data do not include information about CT scans that may have been performed during times when patients were not covered by Medicaid. Some of our letters may not have been received or understood. Some high-exposure patients were unintentionally excluded from our study because organization of data on Medicaid claims varies by setting of care. Our patient education intervention was not temporally associated with significant decreases in subsequent CT exposure. Effecting behavior change to reduce exposure to ionizing radiation requires more than an educational letter or telephone call.

  20. Aortic valve calcification - a commonly observed but frequently ignored finding during CT scanning of the chest.

    PubMed

    Raju, Prashanth; Sallomi, David; George, Bindu; Patel, Hitesh; Patel, Nikhil; Lloyd, Guy

    2012-06-01

    To describe the frequency and severity of Aortic valve calcification (AVC) in an unselected cohort of patients undergoing chest CT scanning and to assess the frequency with which AVC was being reported in the radiology reports. Consecutive CT scan images of the chest and the radiological reports (December 2009 to May 2010) were reviewed at the district general hospital (DGH). AVC on CT scan was visually graded on a scale ranging from 0 to IV (0 = no calcification, IV = severe calcification). Total of 416 (232 male; 184 female) CT chest scans [Contrast enhanced 302 (72%), unenhanced 114 (28%)] were reviewed. Mean age was 70.55 ± 11.48 years. AVC in CT scans was identified in 95 of the 416 patients (22.83%). AVC classification was as follows: Grade I: 60 (63.15%), Grade II: 22 (23.15%), Grade III: 9 (9.47%), Grade IV: 4 (4.21%). Only one CT report mentioned AVC. Only 31 of 95 AVC had Transthoracic echocardiogram (TTE). The interval time between CT scan and TTE was variable.   Aortic valve calcification in CT chest scans is a common finding and studies have shown that it is strongly related to the presence and severity of aortic valve disease. As CT scans are considered as a valuable additional screening tool for detection of aortic stenosis, AVC should always be commented upon in the radiology reports. Furthermore, patients with at least Grade III and IV AVC should be sent for TTE. © 2012 Blackwell Publishing Ltd.

  1. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  2. Evaluation of the dependence of the exposure dose on the attenuation correction in brain PET/CT scans using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong

    2014-01-01

    This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.

  3. The Clinical Impact of Additional Late PET/CT Imaging with 68Ga-PSMA-11 (HBED-CC) in the Diagnosis of Prostate Cancer.

    PubMed

    Afshar-Oromieh, Ali; Sattler, Lars Peter; Mier, Walter; Hadaschik, Boris A; Debus, Jürgen; Holland-Letz, Tim; Kopka, Klaus; Haberkorn, Uwe

    2017-05-01

    Although PET/CT with 68 Ga-PSMA-11 in the diagnosis of prostate cancer (PCa) is routinely performed at 1 h after injection, later scans may be beneficial because most lesions present with higher uptake and contrast. This evaluation aimed to investigate the clinical impact of additional late 68 Ga-PSMA-11 PET/CT. Methods: Between 2011 and 2016, 112 patients with PCa who underwent early (at 1 h after injection) and late (at 3 h after injection) 68 Ga-PSMA-11 PET/CT scans were retrospectively evaluated. The late scans were conducted to clarify unclear findings in early scans or to increase the probability of tumor detection in the case of negative early scans. All patients were asked to drink 1 L of water between early and late scans. In addition, 20 patients received 20 mg of furosemide before late scans. Tumor detection and radioactivity concentration within the urinary bladder were analyzed in both scans. The SUV max and contrast of 149 tumor lesions were measured in 69 patients with pathologic findings. Results: Overall, 134 lesions characteristic for PCa in 57 patients clearly presented at 1 h after injection and 147 lesions in 68 patients at 3 h after injection. Forty-three patients showed no pathologic findings. Eight patients (7.1%) showed 1 unclear finding in early scans, which could be clarified as characteristic for PCa at 3 h after injection. Four patients (3.6%) presented with 1 lesion characteristic for PCa at 3 h after injection only. Twelve patients (10.7%) presented with 12 possible PCa lesions at 1 h after injection, which, however, could not be confirmed as PCa in late scans. Two patients presented with 1 lesion characteristic for PCa at 1 h after injection, which became invisible at 3 h after injection because of low contrast. At 3 h after injection, 62.4% of the lesions demonstrated a higher SUV max and 65.1% a higher contrast than at 1 h after injection. Patients with furosemide presented with lower SUV and radioactivity concentration within the urinary bladder. Conclusion: 68 Ga-PSMA-11 PET/CT at 3 h after injection showed most lesions characteristic for PCa with a higher uptake and contrast. In addition, the radioactivity signal within the urinary bladder was lower at 3 h after injection, especially when furosemide was applied. Consequently, scans at 3 h after injection detected more tumor lesions than at 1 h after injection. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Value of repeat CT scans in low back pain and radiculopathy.

    PubMed

    Schroeder, Josh E; Barzilay, Yair; Kaplan, Leon; Itshayek, Eyal; Hiller, Nurith

    2016-02-01

    We assessed the clinical value of repeat spine CT scan in 108 patients aged 18-60 years who underwent repeat lumbar spine CT scan for low back pain or radiculopathy from January 2008 to December 2010. Patients with a neoplasm or symptoms suggesting underlying disease were excluded from the study. Clinical data was retrospectively reviewed. Index examinations and repeat CT scan performed at a mean of 24.3 ± 11.3 months later were compared by a senior musculoskeletal radiologist. Disc abnormalities (herniation, sequestration, bulge), spinal stenosis, disc space narrowing, and bony changes (osteophytes, fractures, other changes) were documented. Indications for CT scan were low back pain (60 patients, 55%), radiculopathy (46 patients, 43%), or nonspecific back pain (two patients, 2%). A total of 292 spine pathologies were identified in 98 patients (90.7%); in 10 patients (9.3%) no spine pathology was seen on index or repeat CT scan. At repeat CT scan, 269/292 pathologies were unchanged (92.1%); 10/292 improved (3.4%), 8/292 worsened (2.8%, disc herniation or spinal stenosis), and five new pathologies were identified. No substantial therapeutic change was required in patients with worsened or new pathology. Added diagnostic value from repeat CT scan performed within 2-3 years was rare in patients suffering chronic or recurrent low back pain or radiculopathy, suggesting that repeat CT scan should be considered only in patients with progressive neurologic deficits, new neurologic complaints, or signs implying serious underlying conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.

    PubMed

    Pan, Tinsu

    2005-02-01

    We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.

  6. Recent Developments in Computed Tomography for Urolithiasis: Diagnosis and Characterization

    PubMed Central

    Mc Laughlin, P. D.; Crush, L.; Maher, M. M.; O'Connor, O. J.

    2012-01-01

    Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT) and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago) while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi. PMID:22952473

  7. Reduction in radiation doses from paediatric CT scans in Great Britain.

    PubMed

    Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990.

  8. SU-E-I-17: Evaluation of Commercially Available Extension Plates for the ACR CT Accreditation Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene-Donnelly, K; Ogden, K

    Purpose: To evaluate the impact of commercially available extension plates on Hounsfield Unit (HU) values in the ACR CT accreditation phantom (Model 464, Gammex Inc., Middleton, Wi). The extension plates are intended to improve water HU values in scanners where the traditional solution involves scanning the phantom with an adjacent water or CTDI phantom. Methods: The Model 464 phantom was scanned on 9 different CT scanners at 8 separate sites representing 16 and 64 slice MDCT technology from four CT manufacturers. The phantom was scanned with and without the extension plates (Gammex 464 EXTPLT-KIT) in helical and axial modes. Amore » water phantom was also scanned to verify water HU calibration. Technique was 120 kV tube potential, 350 mAs, and 210 mm display field of view. Slice thickness and reconstruction algorithm were based on site clinical protocols. The widest available beam collimation was used. Regions of interest were drawn on the HU test objects in Module 1 of the phantom and mean values recorded. Results: For all axial mode scans, water HU values were within limits with or without the extension plates. For two scanners (both Lightspeed VCT, GE Medical Systems, Waukesha WI), axial mode bone HU values were above the specified range both with and without the extension plates though they were closer to the specified range with the plates installed. In helical scan mode, two scanners (both GE Lightspeed VCT) had water HU values above the specified range without the plates installed. With the plates installed, the water HU values were within range for all scanners in all scan modes. Conclusion: Using the plates, the Lightspeed VCT scanners passed the water HU test when scanning in helical mode. The benefit of the extension plates was evident in helical mode scanning with GE scanners using a nominal 4 cm beam. Disclosure: The extension plates evaluated in this work were provided free of charge to the authors. The authors have no other financial interest in Gammex Inc.« less

  9. SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Quails, N; Carranza, C

    Purpose: The imaging of pregnant patients is medically necessary in certain clinical situations. The purpose of this work was to directly measure uterine doses in a cadaver scanned with CT protocols commonly performed on pregnant patients in order to estimate fetal dose and assess potential risk. Method: One postmortem subject was scanned on a 320-slice CT scanner with standard pulmonary embolism, trauma, and appendicitis protocols. All protocols were performed with the scan parameters and ranges currently used in clinical practice. Exams were performed both with and without iterative reconstruction to highlight the dose savings potential. Optically stimulated luminescent dosimeters (OSLDs)more » were inserted into the uterus in order to approximate fetal doses. Results: In the pulmonary embolism CT protocol, the uterus is outside of the primary beam, and the dose to the uterus was under 1 mGy. In the trauma and appendicitis protocols, the uterus is in the primary beam, the fetal dose estimates were 30.5 mGy for the trauma protocol, and 20.6 mGy for the appendicitis protocol. Iterative reconstruction reduced fetal doses by 30%, with uterine doses at 21.3 for the trauma and 14.3 mGy for the appendicitis protocol. Conclusion: Fetal doses were under 1 mGy when exposed to scatter radiation, and under 50 mGy when exposed to primary radiation with the trauma and appendicitis protocols. Consistent with the National Council on Radiation Protection & Measurements (NCRP) and the International Commission on Radiological Protection (ICRP), these doses exhibit a negligible risk to the fetus, with only a small increased risk of cancer. Still, CT scans are not recommended during pregnancy unless the benefits of the exam clearly outweigh the potential risk. Furthermore, when possible, pregnant patients should be examined on CT scanners equipped with iterative reconstruction in order to keep patient doses as low as reasonable achievable.« less

  10. SU-F-J-39: Dose Reduction Strategy Using Attenuation-Based Tube Current Modulation Method in CBCT for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, K; Lee, H; Kim, C

    2016-06-15

    Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less

  11. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  12. SU-E-I-91: Reproducibility in Prescribed Dose in AEC CT Scans Due to Table Height, Patient Size, and Localizer Acquisition Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winslow, J; Hurwitz, L; Christianson, O

    2014-06-01

    Purpose: In CT scanners, the automatic exposure control (AEC) tube current prescription depends on the acquired prescan localizer image(s). The purpose of this study was to quantify the effect that table height, patient size, and localizer acquisition order may have on the reproducibility in prescribed dose. Methods: Three phantoms were used for this study: the Mercury Phantom (comprises three tapered and four uniform regions of polyethylene 16, 23, 30, and 37 cm in diameter), acrylic sheets, and an adult anthropomorphic phantom. Phantoms were positioned per clinical protocol by our chief CT technologist or broader symmetry. Using a GE Discovery CT750HDmore » scanner, a lateral (LAT) and posterior-anterior (PA) localizer was acquired for each phantom at different table heights. AEC scan acquisitions were prescribed for each combination of phantom, localizer orientation, and table height; the displayed volume CTDI was recorded for each. Results were analyzed versus table height. Results: For the two largest Mercury Phantom section scans based on the PA localizer, the percent change in volume CTDI from ideal were at least 20% lower and 35% greater for table heights 4 cm above and 4 cm below proper centering, respectively. For scans based on the LAT localizer, the percent change in volume CTDI from ideal were no greater than 12% different for 4 cm differences in table height. The properly centered PA and LAT localizer-based volume CTDI values were within 13% of each other. Conclusion: Since uncertainty in vertical patient positioning is inherently greater than lateral positioning and because the variability in dose exceeds any dose penalties incurred, the LAT localizer should be used to precisely and reproducibly deliver the intended amount of radiation prescribed by CT protocols. CT protocols can be adjusted to minimize the expected change in average patient dose.« less

  13. Radiation dose reduction to the breast in thoracic CT: Comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Duan Xinhui; Christner, Jodie A.

    2011-11-15

    Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4)more » scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.« less

  14. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... Medical Imaging Medical X-ray Imaging Full-Body CT Scans - What You Need to Know Share Tweet ... new service for health-conscious people: "Whole-body CT screening." This typically involves scanning the body from ...

  15. Gorlin-Goltz syndrome: incidental finding on routine ct scan following car accident

    PubMed Central

    2009-01-01

    Introduction Gorlin-Goltz syndrome is a rare hereditary disease. Pathogenesis of the syndrome is attributed to abnormalities in the long arm of chromosome 9 (q22.3-q31) and loss or mutations of human patched gene (PTCH1 gene). Multiple basal cell carcinomas (BCCs), odontogenic keratocysts, skeletal abnormalities, hyperkeratosis of palms and soles, intracranial ectopic calcifications of the falx cerebri and facial dysmorphism are considered the main clinical features. Diagnosis is based upon established major and minor clinical and radiological criteria and ideally confirmed by DNA analysis. Because of the different systems affected, a multidisciplinary approach team of various experts is required for a successful management. Case presentation We report the case of a 19 year-old female who was involved in a car accident and found to present imaging findings of Gorlin-Goltz syndrome during a routine whole body computed tomography (CT) scan in order to exclude traumatic injuries. Conclusion Radiologic findings of the syndrome are easily identifiable on CT scans and may prompt to early verification of the disease, which is very important for regular follow-up and better survival rates from the co-existent diseases. PMID:20062724

  16. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perk, T; Bradshaw, T; Muzahir, S

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to trainmore » eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate Cancer Foundation.« less

  17. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C; Mohamed, A; Weygand, J

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less

  18. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247

  19. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  20. A CT scan protocol for the detection of radiographic loosening of the glenoid component after total shoulder arthroplasty

    PubMed Central

    2014-01-01

    Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Lin, T; Jin, L

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases ofmore » reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.« less

  2. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  3. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson, O; Winslow, J; Samei, E

    2014-06-15

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using opticalmore » character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image quality across CT vendors.« less

  4. Chest CT in children: anesthesia and atelectasis.

    PubMed

    Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E

    2014-02-01

    There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.

  5. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration, with the majority of points yielding dose-mapping error <2 Gy (approximately 3% of the total prescribed dose). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, resulting in the smallest errors in mapped dose. Dose differences following registration increased significantly with increasing spatial registration errors, dose, and dose gradient (i.e., SD{sub dose}). This model provides a measurement of the uncertainty in the radiation dose when points are mapped between serial CT scans through deformable registration.« less

  6. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, T; Araki, F

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less

  7. Wide coverage by volume CT: benefits for cardiac imaging

    NASA Astrophysics Data System (ADS)

    Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane

    2005-04-01

    With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec. Under the light of this study, LightSpeed VCT lends itself to be a clinically tested unique platform to achieve routine cardiac imaging.

  8. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  9. Outcome after Discontinuing Long-Term Benzimidazole Treatment in 11 Patients with Non-resectable Alveolar Echinococcosis with Negative FDG-PET/CT and Anti-EmII/3-10 Serology

    PubMed Central

    Stumpe, Katrin D. M.; Grimm, Felix; Deplazes, Peter; Huber, Sabine; Bertogg, Kaja; Fischer, Dorothee R.; Müllhaupt, Beat

    2015-01-01

    Background/Aims Benzimidazoles are efficacious for treating non-resectable alveolar echinococcosis (AE), but their long-term parasitocidal (curative) effect is disputed. In this study, we prospectively analyzed the potential parasitocidal effect of benzimidazoles and whether normalization of FDG-PET/CT scans and anti-Emll/3-10-antibody levels could act as reliable "in vivo" parameters of AE-inactivation permitting to abrogate chemotherapy with a low risk for AE-recurrence. Method This prospective study included 34 patients with non-resectable AE subdivided into group A (n = 11), followed-up after diagnosis and begin of chemotherapy at months 6, 12 and 24, and group B (n = 23) with a medium duration of chemotherapy of 10 (range 2–25) years. All patients were assessed by FDG-PET/CT examinations and anti-EmII/3-10 serology. Chemotherapy was abrogated in patients with normalization of FDG-PET/CT and serum anti-EmII/3-10 levels. These patients were closely followed-up for AE recurrence. Endpoint (parasitocidal efficacy) was defined by the absence of AE-recurrence >24 months after stopping treatment. Results Normalization of FDG-PET/CT scan and anti-EmII/3-10 levels occurred in 11 of 34 patients (32%). After abrogation of chemotherapy in these 11 patients, there was no evidence of AE-recurrence within a median of 70.5 (range 16–82) months. However, the patients’ immunocompetence appears pivotal for the described long-term parasitocidal effect of benzimidazoles. Conclusions The combination of negative FDG-PET/CT-scans and anti-EmII/3-10 antibody levels seem to be reliable parameters for assessing in vivo AE-larval inactivity after long-term benzimidazole chemotherapy. Trial Registration clinicaltrials.gov: NCT00658294 PMID:26389799

  10. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for this article. PMID:24475803

  11. Hyoid bone development: An assessment of optimal CT scanner parameters and 3D volume rendering techniques

    PubMed Central

    Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.

    2015-01-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349

  12. Hyoid Bone Development: An Assessment Of Optimal CT Scanner Parameters and Three-Dimensional Volume Rendering Techniques.

    PubMed

    Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K

    2015-08-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.

  13. How Is Testicular Cancer Diagnosed?

    MedlinePlus

    ... patients with non-seminoma. Many centers have special machines that can do both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET with the more detailed images of the CT. Bone scan A bone scan can help show if a ... Information, ...

  14. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimatemore » average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern.« less

  15. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    PubMed Central

    Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2015-01-01

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm2 field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern. PMID:26127058

  16. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  17. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different CT scan ranges and technical parameters. Organ doses from existing commercial programs do not reasonably match organ doses calculated for the hybrid phantoms due to differences in phantom anatomy, as well as differences in organ dose scaling parameters. The organ dose matrices developed in this study will be extended to cover different technical parameters, CT scanner models, and various age groups.« less

  18. TU-A-12A-12: Improved Airway Measurement Accuracy for Low Dose Quantitative CT (qCT) Using Statistical (ASIR), at Reduced DFOV, and High Resolution Kernels in a Phantom and Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadava, G; Imai, Y; Hsieh, J

    2014-06-15

    Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammexmore » Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of Iodine contrast enhancement and potential reduction in injected contrast without using dual-energy scanning. However, in general, dual-energy scanning has unique value in material characterization and quantification, and its value cannot be discounted. GE Healthcare Employee.« less

  19. Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria

    2012-03-01

    Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.

  20. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    PubMed

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  1. Diagnostic Value of Software-Based Image Fusion of Computed Tomography and F18-FDG PET Scans in Patients with Malignant Lymphoma

    PubMed Central

    Henninger, B.; Putzer, D.; Kendler, D.; Uprimny, C.; Virgolini, I.; Gunsilius, E.; Bale, R.

    2012-01-01

    Aim. The purpose of this study was to evaluate the accuracy of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron emission tomography (PET), computed tomography (CT), and software-based image fusion of both modalities in the imaging of non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). Methods. 77 patients with NHL (n = 58) or HD (n = 19) underwent a FDG PET scan, a contrast-enhanced CT, and a subsequent digital image fusion during initial staging or followup. 109 examinations of each modality were evaluated and compared to each other. Conventional staging procedures, other imaging techniques, laboratory screening, and follow-up data constituted the reference standard for comparison with image fusion. Sensitivity and specificity were calculated for CT and PET separately. Results. Sensitivity and specificity for detecting malignant lymphoma were 90% and 76% for CT and 94% and 91% for PET, respectively. A lymph node region-based analysis (comprising 14 defined anatomical regions) revealed a sensitivity of 81% and a specificity of 97% for CT and 96% and 99% for FDG PET, respectively. Only three of 109 image fusion findings needed further evaluation (false positive). Conclusion. Digital fusion of PET and CT improves the accuracy of staging, restaging, and therapy monitoring in patients with malignant lymphoma and may reduce the need for invasive diagnostic procedures. PMID:22654631

  2. [Performance evaluation of CT automatic exposure control on fast dual spiral scan].

    PubMed

    Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi

    2014-11-01

    The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.

  3. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  4. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients.

    PubMed

    Maxfield, Mark W; Schuster, Kevin M; McGillicuddy, Edward A; Young, Calvin J; Ghita, Monica; Bokhari, S A Jamal; Oliva, Isabel B; Brink, James A; Davis, Kimberly A

    2012-12-01

    A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP) reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol (17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol (61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. Therapeutic study, level IV.

  5. The scab-like sign: A CT finding indicative of haemoptysis in patients with chronic pulmonary aspergillosis?

    PubMed

    Sato, Haruka; Okada, Fumito; Matsumoto, Shunro; Mori, Hiromu; Kashiwagi, Junji; Komatsu, Eiji; Maeda, Toru; Nishida, Haruto; Daa, Tsutomu; Ohtani, Satoshi; Umeki, Kenji; Ando, Masaru; Kadota, Junichi

    2018-05-03

    The aim of this study was to assess the CT findings that characterise haemoptysis in patients with chronic pulmonary aspergillosis (CPA). We retrospectively identified 120 consecutive patients with CPA (84 men and 36 women, 17-89 years of age, mean age 68.4 years) who had undergone a total of 829 CT examinations between January 2007 and February 2017. In the 11 patients who underwent surgical resection, CT images were compared with the pathological results. The scab-like sign was seen on 142 of the 829 CT scans, specifically, in 87 of the 90 CT scans for haemoptysis and in 55 of the 739 CT scans obtained during therapy evaluation. In 48 of those 55 patients, haemoptysis occurred within 55 days (mean 12.0 days) after the CT scan. In the 687 CT scans with no scab-like sign, there were only three instances of subsequent haemoptysis in the respective patients over the following 6 months. Patients with and without scab-like sign differed significantly in the frequency of haemoptysis occurring after a CT scan (p<0.0001). Pathologically, the scab-like sign corresponded to a fibrinopurulent mass or blood crust. The scab-like sign should be considered as a CT finding indicative of haemoptysis. • Haemoptysis is commonly found in patients with CPA. • A CT finding indicative of haemoptysis in CPA patients is described. • Scab-like sign may identify CPA patients at higher risk of haemoptysis.

  6. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.

    1989-06-01

    The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (nmore » = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.« less

  7. Optimization of dose and image quality in adult and pediatric computed tomography scans

    NASA Astrophysics Data System (ADS)

    Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin

    2017-11-01

    Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.

  8. 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT

    PubMed Central

    Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken

    2016-01-01

    Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008

  9. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueck, Jenny, E-mail: jenny.dueck@psi.ch; Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI; Niels Bohr Institute, University of Copenhagen, Copenhagen

    Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) andmore » 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V{sub 95%} (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V{sub 95%} was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V{sub 95%} (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V{sub 95%} are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanehira, T; Sutherland, K; Matsuura, T

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generatedmore » and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.« less

  11. Heart position variability during voluntary moderate deep inspiration breath-hold radiotherapy for breast cancer determined by repeat CBCT scans.

    PubMed

    van Haaren, Paul; Claassen-Janssen, Fiere; van de Sande, Ingrid; Boersma, Liesbeth; van der Sangen, Maurice; Hurkmans, Coen

    2017-08-01

    Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB). For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (Δ HP-FE ) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (Δ HP-CW ) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall. For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the Δ HP-FE and the Δ HP-CW was 0.8±4.2mm (range -9.4-+10.6mm) and 1.0±4.4mm (range -8.3-+10.4mm) respectively. The average gain in heart to chest wall distance was 11.8±4.6mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Tai H., E-mail: tdou@mednet.ucla.edu; Thomas, David H.; O'Connell, Dylan P.

    2015-11-15

    Purpose: To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths. Methods: Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the originalmore » 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs. Results: Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung–chest wall boundary. The mean error across the patient cohort was 1.15 ± 0.37 mm, and the mean 95th percentile error was 2.47 ± 0.78 mm. Conclusion: The proposed ground truth–based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.« less

  13. A dose comparison survey in CT departments of dedicated paediatric hospitals in Australia and Saudi Arabia

    PubMed Central

    Mohiy, Hussain Al; Sim, Jenny; Seeram, Euclid; Annabell, Nathan; Geso, Moshi; Mandarano, Giovanni; Davidson, Rob

    2012-01-01

    AIM: To measure and compare computed tomography (CT) radiation doses delivered to patients in public paediatric hospitals in Australia and Saudi Arabia. METHODS: Doses were measured for routine CT scans of the head, chest and abdomen/pelvis for children aged 3-6 years in all dedicated public paediatric hospitals in Australia and Saudi Arabia using a CT phantom measurement cylinder. RESULTS: CT doses, using the departments’ protocols for 3-6 year old, varied considerably between hospitals. Measured head doses varied from 137.6 to 528.0 mGy·cm, chest doses from 21.9 to 92.5 mGy·cm, and abdomen/pelvis doses from 24.9 to 118.0 mGy·cm. Mean head and abdomen/pelvis doses delivered in Saudi Arabian paediatric CT departments were significantly higher than those in their Australian equivalents. CONCLUSION: CT dose varies substantially across Australian and Saudi Arabian paediatric hospitals. Therefore, diagnostic reference levels should be established for major anatomical regions to standardise dose. PMID:23150767

  14. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Adam L., E-mail: adamliss68@gmail.com; Marsh, Robin B.; Kapadia, Nirav S.

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanningmore » before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.« less

  15. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters

    PubMed Central

    Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-01-01

    Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624

  16. Use of computed tomography to define a sacral safe corridor for placement of 2.7 mm cortical screws in feline sacroiliac luxation.

    PubMed

    Philp, Helen; Durand, Alexane; De Vicente, Felipe

    2018-06-01

    Objectives This study aimed to define a safe corridor for 2.7 mm cortical sacroiliac screw insertion in the dorsal plane (craniocaudal direction) using radiography and CT, and in the transverse plane (dorsoventral direction) using CT in feline cadavers. A further aim was to compare the values obtained by CT with those previously reported by radiography in the transverse plane. Methods Thirteen pelvises were retrieved from feline cadavers and dissected to expose one of the articular surfaces of the sacrum. A 2.7 mm screw was placed in the sacrum to a depth of approximately 1 cm in each exposed articular surface. Dorsoventral radiography and CT scanning of each specimen were performed. Multiplanar reconstructions were performed to allow CT evaluation in both the dorsal and transverse planes. Calculations were made to find the maximum, minimum and optimum angles for screw placement in craniocaudal (radiography and CT) and dorsoventral (CT) directions when using a 2.7 mm cortical screw. Results Radiographic measurement showed a mean optimum craniocaudal angle of 106° (range 97-112°). The mean minimum angle was 95° (range 87-107°), whereas the mean maximum angle was 117° (108-124°). Measurement of the dorsal CT scan images showed a mean optimum craniocaudal angle of 101° (range 94-110°). The mean minimum angle was 90° (range 83-99°), whereas the mean maximum angle was 113° (104-125°). The transverse CT scan images showed a mean dorsoventral minimum angle of 103° (range 95-113°), mean maximum angle of 115° (104-125°) and mean optimum dorsoventral angle of 111° (102-119°). Conclusions and relevance An optimum craniocaudal angle of 101° is recommended for 2.7 mm cortical screw placement in the feline sacral body, with a safety margin between 99° and 104°. No single angle can be recommended in the dorsoventral direction and therefore preoperative measuring on individual cats using CT images is recommended to establish the ideal individual angle in the transverse plane.

  17. Accuracy of Reduced-Dose Computed Tomography for Ureteral Stones in Emergency Department Patients

    PubMed Central

    Moore, Christopher L.; Daniels, Brock; Ghita, Monica; Gunabushanam, Gowthaman; Luty, Seth; Molinaro, Annette M.; Singh, Dinesh; Gross, Cary P.

    2016-01-01

    Study objective Reduced-dose computed tomography (CT) scans have been recommended for diagnosis of kidney stone but are rarely used in the emergency department (ED) setting. Test characteristics are incompletely characterized, particularly in obese patients. Our primary outcome is to determine the sensitivity and specificity of a reduced-dose CT protocol for symptomatic ureteral stones, particularly those large enough to require intervention, using a protocol stratified by patient size. Methods This was a prospective, blinded observational study of 201 patients at an academic medical center. Consenting subjects underwent both regular- and reduced-dose CT, stratified into a high and low body mass index (BMI) protocol based on effective abdominal diameter. Reduced-dose CT scans were interpreted by radiologists blinded to regular-dose interpretations. Follow-up for outcome and intervention was performed at 90 days. Results CT scans with both regular and reduced doses were conducted for 201 patients, with 63% receiving the high BMI reduced-dose protocol. Ureteral stone was identified in 102 patients (50.7%) of those receiving regular-dose CT, with a ureteral stone greater than 5 mm identified in 26 subjects (12.9%). Sensitivity of the reduced-dose CT for any ureteral stone was 90.2% (95% confidence interval [CI] 82.3% to 95.0%), with a specificity of 99.0% (95% CI 93.7% to 100.0%). For stones greater than 5 mm, sensitivity was 100% (95% CI 85.0% to 100.0%). Reduced-dose CT identified 96% of patients who required intervention for ureteral stone within 90 days. Mean reduction in size-specific dose estimate was 18.6 milligray (mGy), from 21.7 mGy (SD 9.7) to 3.4 mGy (SD 0.9). Conclusion CT with substantial dose reduction was 90.2% (95% CI 82.3% to 95.0%) sensitive and 98.9% (95% CI 85.0% to 100.0%) specific for ureteral stones in ED patients with a wide range of BMIs. Reduced-dose CT was 96.0% (95% CI 80.5% to 99.3%) sensitive for ureteral stones requiring intervention within 90 days. PMID:25441242

  18. SU-E-J-251: Incorporation of Pre-Therapy 18F-FDG Uptake with CT Texture Features in a Predictive Model for Radiation Pneumonitis Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, G; Cunliffe, A; Armato, S

    2015-06-15

    Purpose: To determine whether the addition of standardized uptake value (SUV) statistical variables to CT lung texture features can improve a predictive model of radiation pneumonitis (RP) development in patients undergoing radiation therapy. Methods: Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were retrospectively collected including pre-therapy PET/CT scans, pre-/posttherapy diagnostic CT scans and RP status. Twenty texture features (firstorder, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. The mean, maximum, standard deviation, and 50th–95th percentiles of the SUV valuesmore » for all lung voxels in the corresponding PET scans were acquired. For each texture feature, a logistic regression-based classifier consisting of (1) the average change in that texture feature value between the pre- and post-therapy CT scans and (2) the pre-therapy SUV standard deviation (SUV{sub SD}) was created. The RP-classification performance of each logistic regression model was compared to the performance of its texture feature alone by computing areas under the receiver operating characteristic curves (AUCs). T-tests were performed to determine whether the mean AUC across texture features changed significantly when SUV{sub SD} was added to the classifier. Results: The AUC for single-texturefeature classifiers ranged from 0.58–0.81 in high-dose (≥ 30 Gy) regions of the lungs and from 0.53–0.71 in low-dose (< 10 Gy) regions. Adding SUVSD in a logistic regression model using a 50/50 data partition for training and testing significantly increased the mean AUC by 0.08, 0.06 and 0.04 in the low-, medium- and high-dose regions, respectively. Conclusion: Addition of SUVSD from a pre-therapy PET scan to a single CT-based texture feature improves RP-classification performance on average. These findings demonstrate the potential for more accurate prediction of RP using information from multiple imaging modalities. Supported, in part, by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under grant number T32 EB002103; SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. HA receives royalties through the University of Chicago for computer-aided diagnosis technology.« less

  19. Maxillofacial injuries among trauma patients undergoing head computerized tomography; A Ugandan experience

    PubMed Central

    Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane

    2017-01-01

    Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177

  20. Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study

    PubMed Central

    Aragao, Maria de Fatima Vasco; van der Linden, Vanessa; Parizel, Paul; Jungmann, Patricia; Araújo, Luziany; Abath, Marília; Fernandes, Andrezza; Brainer-Lima, Alessandra; Holanda, Arthur; Mello, Roberto; Sarteschi, Camila; Duarte, Maria do Carmo Menezes Bezerra

    2017-01-01

    Objective To compare initial brain computed tomography (CT) scans with follow-up CT scans at one year in children with congenital Zika syndrome, focusing on cerebral calcifications. Design Case series study. Setting Barão de Lucena Hospital, Pernambuco state, Brazil. Participants 37 children with probable or confirmed congenital Zika syndrome during the microcephaly outbreak in 2015 who underwent brain CT shortly after birth and at one year follow-up. Main outcome measure Differences in cerebral calcification patterns between initial and follow-up scans. Results 37 children were evaluated. All presented cerebral calcifications on the initial scan, predominantly at cortical-white matter junction. At follow-up the calcifications had diminished in number, size, or density, or a combination in 34 of the children (92%, 95% confidence interval 79% to 97%), were no longer visible in one child, and remained unchanged in two children. No child showed an increase in calcifications. The calcifications at the cortical-white matter junction which were no longer visible at follow-up occurred predominately in the parietal and occipital lobes. These imaging changes were not associated with any clear clinical improvements. Conclusion The detection of cerebral calcifications should not be considered a major criterion for late diagnosis of congenital Zika syndrome, nor should the absence of calcifications be used to exclude the diagnosis. PMID:29030384

  1. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  2. Comparison of Positron Emission Tomography Scanning and Sentinel Node Biopsy in the Detection of Inguinal Node Metastases in Patients With Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistrangelo, Massimiliano, E-mail: mistrangelo@katamail.co; Centre of Minimally Invasive Surgery, University of Turin; Pelosi, Ettore

    2010-05-01

    Background: Inguinal lymph node metastases in patients with anal cancer are an independent prognostic factor for local failure and overall mortality. Inguinal lymph node status can be adequately assessed with sentinel node biopsy, and the radiotherapy strategy can subsequently be changed. We compared this technique vs. dedicated 18F-fluorodeoxyglucose positron emission tomography (PET) to determine which was the better tool for staging inguinal lymph nodes. Methods and Materials: In our department, 27 patients (9 men and 18 women) underwent both inguinal sentinel node biopsy and PET-CT. PET-CT was performed before treatment and then at 1 and 3 months after treatment. Results:more » PET-CT scans detected no inguinal metastases in 20 of 27 patients and metastases in the remaining 7. Histologic analysis of the sentinel lymph node detected metastases in only three patients (four PET-CT false positives). HIV status was not found to influence the results. None of the patients negative at sentinel node biopsy developed metastases during the follow-up period. PET-CT had a sensitivity of 100%, with a negative predictive value of 100%. Owing to the high number of false positives, PET-CT specificity was 83%, and positive predictive value was 43%. Conclusions: In this series of patients with anal cancer, inguinal sentinel node biopsy was superior to PET-CT for staging inguinal lymph nodes.« less

  3. Medical thoracoscopy vs CT scan-guided Abrams pleural needle biopsy for diagnosis of patients with pleural effusions: a randomized, controlled trial.

    PubMed

    Metintas, Muzaffer; Ak, Guntulu; Dundar, Emine; Yildirim, Huseyin; Ozkan, Ragip; Kurt, Emel; Erginel, Sinan; Alatas, Fusun; Metintas, Selma

    2010-06-01

    In cases of pleural effusion, tissue samples can be obtained through Abrams needle pleural biopsy (ANPB), thoracoscopy, or cutting-needle pleural biopsy under the guidance of CT scan (CT-CNPB) for histopathologic analysis. This study aimed to compare the diagnostic efficiency and reliability of ANPB under CT scan guidance (CT-ANPB) with that of medical thoracoscopy in patients with pleural effusion. Between January 2006 and January 2008, 124 patients with exudative pleural effusion that could not be diagnosed by cytologic analysis were included in the study. All patients were randomized after the CT scan was performed. Patients either underwent CT-ANPB or thoracoscopy. The two groups were compared in terms of diagnostic sensitivity and complications associated with the methods used. Of the 124 patients, malignant mesothelioma was diagnosed in 33, metastatic pleural disease in 47, benign pleural disease in 42, and two were of indeterminate origin. In the CT-ANPB group, the diagnostic sensitivity was 87.5%, as compared with 94.1% in the thoracoscopy group; the difference was not statistically significant (P = .252). No difference was identified between the sensitivities of the two methods based on the cause, the CT scan findings, and the degree of pleural thickening. Complication rates were low and acceptable. We recommend the use of CT-ANPB as the primary method of diagnosis in patients with pleural thickening or lesions observed by CT scan. In patients with only pleural fluid appearance on CT scan and in those who may have benign pleural pathologies other than TB, the primary method of diagnosis should be medical thoracoscopy. clinicaltrials.gov; Identifier: NCT00720954.

  4. Two-Phase Helical Computed Tomography Study of Salivary Gland Warthin Tumors: A Radiologic Findings and Surgical Applications

    PubMed Central

    Joo, Yeon Hee; Kim, Jin Pyeong; Park, Jung Je

    2014-01-01

    Objectives The goal of this study was to define the radiologic characteristics of two-phase computed tomography (CT) of salivary gland Warthin tumors and to compare them to pleomorphic adenomas. We also aimed to provide a foundation for selecting a surgical method on the basis of radiologic findings. Methods We prospectively enrolled 116 patients with parotid gland tumors, who underwent two-phase CT preoperatively. Early and delayed phase scans were obtained, with scanning delays of 30 and 120 seconds, respectively. The attenuation changes and enhancement patterns were analyzed. In cases when the attenuation changes were decreased, we presumed Warthin tumor preoperatively and performed extracapsular dissection. When the attenuation changes were increased, superficial parotidectomy was performed on the parotid gland tumors. We analyzed the operation times, incision sizes, complications, and recurrence rates. Results Attenuation of Warthin tumors was decreased from early to delayed scans. The ratio of CT numbers in Warthin tumors was also significantly different from other tumors. Warthin tumors were diagnosed with a sensitivity of 96.1% and specificity of 97% using two-phase CT. The mean operation time was 38 minutes and the mean incision size was 36.2 mm for Warthin tumors. However, for the other parotid tumors, the average operation time was 122 minutes and the average incision size was 91.8 mm (P<0.05). Conclusion Salivary Warthin tumor has a distinct pattern of contrast enhancement on two-phase CT, which can guide treatment decisions. The preoperative diagnosis of Warthin tumor made extracapsular dissection possible instead of superficial parotidectomy. PMID:25177439

  5. Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels.

    PubMed

    Strauss, Keith J

    2014-10-01

    The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDIvol) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans.

  6. In vitro evaluation of the imaging accuracy of C-arm conebeam CT in cerebral perfusion imaging

    PubMed Central

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2012-01-01

    Purpose: The authors have developed a method to enable cerebral perfusion CT imaging using C-arm based conebeam CT (CBCT). This allows intraprocedural monitoring of brain perfusion during treatment of stroke. Briefly, the technique consists of acquiring multiple scans (each scan comprised of six sweeps) acquired at different time delays with respect to the start of the x-ray contrast agent injection. The projections are then reconstructed into angular blocks and interpolated at desired time points. The authors have previously demonstrated its feasibility in vivo using an animal model. In this paper, the authors describe an in vitro technique to evaluate the accuracy of their method for measuring the relevant temporal signals. Methods: The authors’ evaluation method is based on the concept that any temporal signal can be represented by a Fourier series of weighted sinusoids. A sinusoidal phantom was developed by varying the concentration of iodine as successive steps of a sine wave. Each step corresponding to a different dilution of iodine contrast solution contained in partitions along a cylinder. By translating the phantom along the axis at different velocities, sinusoidal signals at different frequencies were generated. Using their image acquisition and reconstruction algorithm, these sinusoidal signals were imaged with a C-arm system and the 3D volumes were reconstructed. The average value in a slice was plotted as a function of time. The phantom was also imaged using a clinical CT system with 0.5 s rotation. C-arm CBCT results using 6, 3, 2, and 1 scan sequences were compared to those obtained using CT. Data were compared for linear velocities of the phantom ranging from 0.6 to 1 cm/s. This covers the temporal frequencies up to 0.16 Hz corresponding to a frequency range within which 99% of the spectral energy for all temporal signals in cerebral perfusion imaging is contained. Results: The errors in measurement of temporal frequencies are mostly below 2% for all multiscan sequences. For single scan sequences, the errors increase sharply beyond 0.10 Hz. The amplitude errors increase with frequency and with decrease in the number of scans used. Conclusions: Our multiscan perfusion CT approach allows low errors in signal frequency measurement. Increasing the number of scans reduces the amplitude errors. A two-scan sequence appears to offer the best compromise between accuracy and the associated total x-ray and iodine dose. PMID:23127059

  7. Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter.

    PubMed

    Kang, Ki Ser; Song, Kwang-Sup; Lee, Jong Seok; Yang, Jae Jun; Song, In Sup

    2011-03-01

    This study was designed to investigate the characteristics of pedicle transverse diameters (PD), vertebral body transverse diameters (VBD), especially the ratios of PD/VBD (CT ratio), which has never been discussed, in Koreans using computed tomography (CT) scans and to evaluate the possibility of obtaining more accurate estimations of PD from plain radiographs using the CT ratios in each spine level. The T1-L5 vertebrae of 50 participants were analyzed prospectively with CT scans (CT-VBD and CT-PD), and the T9-L5 vertebrae of the same participants were investigated with plain radiographs (X-VBD and X-PD). The CT ratio had a higher correlation with the CT-PD (r2 = 0.630) from T1 to L5, especially in the lower thoracic and lumbar spine (T9-L5, r2 = 0.737). The correlation of VBDs between the two radiologic tools (r2 = 0.896) was higher than that of the PDs (r2 = 0.665). Based on the data, equations for the estimation of a more accurate PD from plain radiographs were developed as follows: estimated PD = estimated VBD × [1.014 × (X-VBD) + 0.152] × the mean CT ratio at each spinal level. The correlation between the estimated PD and the CT-PD (r2 = 0.852) was improved compared with that (r2 = 0.665) between the X-PD and the CT-PD. In conclusion, the CT ratio showed a very similar changing trends to CT-PD from T1 to L5 regardless of sex and body mass, and the measurement error of PD from only plain radiographs could be minimized using estimated VBD and the mean CT ratio at each spinal level.

  8. Computed tomography versus water-soluble contrast swallow in the detection of intrathoracic anastomotic leak complicating esophagogastrectomy (Ivor Lewis): a prospective study in 97 patients.

    PubMed

    Strauss, Christiane; Mal, Frederic; Perniceni, Thierry; Bouzar, Nadia; Lenoir, Stephane; Gayet, Brice; Palau, Robert

    2010-04-01

    Water-soluble contrast swallow (CS) is usually performed before refeeding for anastomosis assessment after esophagectomy with intrathoracic anastomosis but the sensitivity of CS is low. Another diagnostic approach is based on analysis of computed tomography (CT) scan with oral contrast and of CT mediastinal air images. We undertook to compare them prospectively. Ninety-seven patients with an esophageal carcinoma operated by intrathoracic anastomosis were included prospectively in a study based on a CT scan at postoperative day 3 (without oral and intravenous contrast) and CT scan and CS at day 7. CT scan analysis consisted of assessing contrast and air leakage. In case of doubt, an endoscopy was done. A diagnosis of anastomotic leak was made in 13 patients (13.4%), in 2 cases before day 7 and in 3 beyond day 7. At day 3, 94 CT scans were performed, but the diagnostic value was poor. In 95 patients with both CS and CT scan at day 7, CS disclosed a leak in 5 of 11, and CT scan was abnormal in 8 of 11. Leakage of contrast and/or presence of mediastinal gas had the best negative predictive value (95.8%). Endoscopy was done in 16 patients with only mediastinal gas at day 7 CT scan. It disclosed a normal anastomosis in 11, fibrin deposits in 4, and a leak in 1. In comparison with CS only, CT at day 7 improves the sensitivity and negative predictive value for diagnosing an anastomotic leak. In case of doubt endoscopy is advisable. This approach provides an accurate assessment of the anastomosis before refeeding.

  9. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  10. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  11. Performance of Glial Fibrillary Acidic Protein (GFAP) in Detecting Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Head Trauma

    PubMed Central

    Papa, Linda; Zonfrillo, Mark; Ramirez, Jose; Silvestri, Salvatore; Giordano, Philip; Braga, Carolina F.; Tan, Ciara N.; Ameli, Neema J.; Lopez, Marco; Mittal, Manoj K.

    2015-01-01

    Objectives This study examined the performance of serum glial fibrillary acidic protein (GFAP) in detecting traumatic intracranial lesions on computed tomography (CT) scan in children and youth with mild and moderate traumatic brain injury (TBI), and assessed its performance in trauma control patients without head trauma. Methods This prospective cohort study enrolled children and youth presenting to three Level I trauma centers following blunt head trauma with Glasgow Coma Scale (GCS) scores of 9 to 15, as well as trauma control patients with GCS scores of 15 who did not have blunt head trauma. The primary outcome measure was the presence of intracranial lesions on initial CT scan. Blood samples were obtained in all patients within six hours of injury and measured by ELISA for GFAP (ng/ml). Results A total of 257 children and youth were enrolled in the study and had serum samples drawn within 6 hours of injury for analysis: 197 had blunt head trauma and 60 were trauma controls. CT scan of the head was performed in 152 patients and traumatic intracranial lesions on CT scan were evident in 18 (11%), all of whom had GCS scores of 13 to 15. When serum levels of GFAP were compared in children and youth with traumatic intracranial lesions on CT scan to those without CT lesions, median GFAP levels were significantly higher in those with intracranial lesions (1.01, IQR 0.59 to 1.48) than those without lesions (0.18, IQR 0.06 to 0.47). The area under the receiver operating characteristic (ROC) curve (AUC) for GFAP in detecting children and youth with traumatic intracranial lesions on CT was 0.82 (95% CI = 0.71 to 0.93). In those presenting with GCS scores of 15, the AUC for detecting lesions was 0.80 (95% CI = 0.68 to 0.92). Similarly, in children under five years old the AUC was 0.83 (95% CI = 0.56 to 1.00). Performance for detecting intracranial lesions at a GFAP cutoff level of 0.15 ng/ml yielded a sensitivity of 94%, a specificity of 47%, and a negative predictive value of 98%. Conclusions In children and youth of all ages, GFAP measured within 6 hours of injury was associated with traumatic intracranial lesions on CT and with severity of TBI. Further study is required to validate these findings before clinical application. PMID:26469937

  12. Evaluation of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with Flash scan technique

    PubMed Central

    Shi, Jiang W; Dai, Hong Z; Shen, Li; Ji, Yi D

    2016-01-01

    Objective: To assess radiation dose and image quality of chest CT examinations in low-weight children acquired at ultralow tube voltage (70 kVp) combined with Flash scan technique. Materials and methods: 30 consecutive paediatric patients (weight <20 kg) required non-contrast chest CT at 70 kVp with Flash scan mode (Group A). 30 patients for paediatric standard 80-kVp protocols with conventional spiral mode (Group B) were selected from the picture archiving and communication system. For each examination, the volume CT dose index (CTDIvol) and dose–length product (DLP), and the effective dose (adapted as 16-cm phantom) (ED16cm) were estimated. The image noise, signal-to-noise ratio (SNR), overall subjective image quality and respiratory motion artefacts were evaluated. Results: For radiation dose, CTDIvol (mGy), DLP (mGy cm) and ED16cm (mSv) of Group A were significantly lower than those of Group B [CTDIvol: 0.48 ± 0.003 mGy (Group A) vs 0.80 ± 0.005 mGy (Group B); p<0.001 DLP: 10.23 ± 1.35 mGy cm (Group A) vs 15.6 ± 2.02 mGy cm (Group B); p<0.001 ED16cm: 0.61 ± 0.91 mSv (Group A) vs 0.89 ± 0.13 mSv (Group B); p<0.001]. The mean image noise with Group A increased 28.5% (p = 0.002), and the mean SNR decreased 14.8% compared with Group B (p = 0.193). There was no statistical difference in overall subjective image quality grades, and Group A had significantly lower respiratory motion artefact grades than Group B (p < 0.001). Conclusion: Ultralow tube voltage (70 kVp) combined with the Flash scan technique of the chest can obtain images with clinically acceptable image noise and minimum respiratory motion artefacts in low-weight children, whilst reducing radiation dose significantly. Advances in knowledge: The feasibility of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with Flash scan technique has firstly been evaluated in our study. PMID:26781234

  13. Arthroscopic and 3D CT Scan Evaluation of Femoral Footprint of the Anterior Cruciate Ligament in Chronic ACL Deficient Knees.

    PubMed

    Das, Anupam; Yadav, C S; Gamanagatti, Shivanand; Pandey, R M; Mittal, Ravi

    2018-06-13

    The outcome of single-bundle anterior cruciate ligament (ACL) reconstruction depends largely on the anatomic placement of bone tunnel. The lateral intercondylar ridge (LIR) and bifurcate ridge (BR) are useful bony landmarks for femoral tunnel placement. The purpose of our study was to compare the bony landmarks of ACL footprint on femur by three-dimensional computed tomography (3D CT) scan and arthroscopy in chronic ACL-deficient knees. Fifty patients above 18 years of age who were diagnosed of having ACL tear were selected for the study. All the cases were more than 6 months old since the injury. Preoperative 3D CT scan of the affected knee was obtained for each of them. They underwent single-bundle anatomic ACL reconstruction. Measurements were done on the preoperative 3D CT and arthroscopy to quantify the position of the LIR and BR. The proximodistal distance of lateral femoral condyle was 21.41+/-2.5 mm on CT scan and 22.02+/-2.02 mm on arthroscopy. On preoperative 3D CT scan, the midpoint of the LIR was found to be located at a mean distance of 11.17±2.11 mm from the proximal margin of the lateral femoral condyle. On arthroscopy, it was at 10.18+/-1.52 mm from the proximal margin the lateral femoral condyle. The "bifurcate ridge"(BR) was not visible in any of the cases during arthroscopy or CT scan. We concluded that LIR is an easily identifiable bony landmark on arthroscopy in all cases. It can also be identified on CT scans. BR is not identified both on arthroscopy and CT scans in chronic ACL tears. The arthroscopic measurements of bony landmarks are quite close to those of CT scan. Midpoint of LIR is at 52.185% of the proximodistal distance on CT scan evaluation and it is at 46.21% on arthroscopic evaluation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistrangelo, Massimiliano, E-mail: mistrangelo@katamail.com; Pelosi, Ettore; Bello, Marilena

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectalmore » examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.« less

  15. Comparison of Conventional Versus Spiral Computed Tomography with Three Dimensional Reconstruction in Chronic Otitis Media with Ossicular Chain Destruction.

    PubMed

    Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush

    2016-01-01

    Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.

  16. Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; in vitro and in vivo studies.

    PubMed

    Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S

    2018-01-09

    We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.

  17. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael

    2014-04-01

    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.

  18. Pre-operative predictive factors for gallbladder cholesterol polyps using conventional diagnostic imaging.

    PubMed

    Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho

    2008-11-28

    To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology.

  19. 18F-Choline PET/CT scan in staging and biochemical recurrence in prostate cancer patients: Changes in classification and radiotherapy planning.

    PubMed

    Cardona Arboniés, J; Rodríguez Alfonso, B; Mucientes Rasilla, J; Martínez Ballesteros, C; Zapata Paz, I; Prieto Soriano, A; Carballido Rodriguez, J; Mitjavila Casanovas, M

    To evaluate the role of the 18 F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. A retrospective evaluation was performed on 18 F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of 18 F-Choline. There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. 18 F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of 18 F-choline PET/CT should be considered in prostate cancer management protocols. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  20. A comparison of sequential and spiral scanning techniques in brain CT.

    PubMed

    Pace, Ivana; Zarb, Francis

    2015-01-01

    To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).

  1. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data.

    PubMed

    Bosch de Basea, Magda; Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation.

  2. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data

    PubMed Central

    Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation. PMID:29723272

  3. A Prospective Study Comparing 99mTc-Hydroxyethylene-Diphosphonate Planar Bone Scintigraphy and Whole-Body SPECT/CT with 18F-Fluoride PET/CT and 18F-Fluoride PET/MRI for Diagnosing Bone Metastases.

    PubMed

    Löfgren, Johan; Mortensen, Jann; Rasmussen, Sine H; Madsen, Claus; Loft, Annika; Hansen, Adam E; Oturai, Peter; Jensen, Karl Erik; Mørk, Mette Louise; Reichkendler, Michala; Højgaard, Liselotte; Fischer, Barbara M

    2017-11-01

    We prospectively evaluated and compared the diagnostic performance of 99m Tc-hydroxyethylene-diphosphonate ( 99m Tc-HDP) planar bone scintigraphy (pBS), 99m Tc-HDP SPECT/CT, 18 F-NaF PET/CT, and 18 F-NaF PET/MRI for the detection of bone metastases. Methods: One hundred seventeen patients with histologically proven malignancy referred for clinical pBS were prospectively enrolled. pBS and whole-body SPECT/CT were performed followed by 18 F-NaF PET/CT within 9 d. 18 F-NaF PET/MRI was also performed in 46 patients. Results: Bone metastases were confirmed in 16 patients and excluded in 101, which was lower than expected. The number of equivocal scans was significantly higher for pBS than for SPECT/CT and PET/CT (18 vs. 5 and 6, respectively; P = 0.004 and 0.01, respectively). When equivocal readings were excluded, no statistically significant difference in sensitivity, specificity, positive predictive value, negative predictive value, or overall accuracy were found when comparing the different imaging techniques. In the per-patient analysis, equivocal scans were either assumed positive for metastases ("pessimistic analysis") or assumed negative for metastases ("optimistic analysis"). The percentages of misdiagnosed patients for the pessimistic analysis were 21%, 15%, 9%, and 7% for pBS, SPECT/CT, PET/CT, and PET/MRI, respectively. Corresponding figures for the optimistic analysis were 9%, 12%, 5%, and 7%. In those patients identified as having bone metastases according to the reference standard, SPECT/CT, 18 F-NaF PET/CT, and PET/MRI detected additional lesions compared with pBS in 31%, 63%, and 71%, respectively. Conclusion: 18 F-NaF PET/CT and whole-body SPECT/CT resulted in a significant reduction of equivocal readings compared with pBS, which implies an improved diagnostic confidence. However, the clinical benefit of using, for example, 18 F-NaF PET/CT or PET/MRI as compared with SPECT/CT and pBS in this patient population with a relatively low prevalence of bone metastases (14%) is likely limited. This conclusion is influenced by the low prevalence of patients with osseous metastases. There may well be significant differences in the sensitivity of SPECT/CT, PET/CT, and PET/MRI compared with pBS, but a larger patient population or a patient population with a higher prevalence of bone metastases would have to be studied to demonstrate this. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  5. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  6. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    PubMed

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  7. SU-E-E-11: Novel Matching Module for Respiration-Gated Motion Tumor of Cone-Beam Computed Tomography (CBCT) to 4DCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P; Tsai, Y; Nien, H

    2015-06-15

    Purpose: Four dimensional computed tomography (4DCT) scans reliably record whole respiratory phase and generate internal target volumes (ITV) for radiotherapy planning. However, image guiding with cone-beam computed tomography (CBCT) cannot acquire all or specific respiratory phases. This study was designed to investigate the correlation between average CT and Maximum Intensity Projection (MIP) from 4DCT and CBCT. Methods: Retrospective respiratory gating were performed by GE Discovery CT590 RT. 4DCT and CBCT data from CRIS Dynamic Thorax Phantom with simulated breathing mode were analyzed. The lung tissue equivalent material encompassed 3 cm sphere tissue equivalent material. Simulated breathing cycle period was setmore » as 4 seconds, 5 seconds and 6 seconds for representing variation of patient breathing cycle time, and the sphere material moved toward inferior and superior direction with 1 cm amplitude simulating lung tumor motion during respiration. Results: Under lung window, the volume ratio of CBCT scans to ITVs derived from 10 phases average scans was 1.00 ± 0.02, and 1.03 ± 0.03 for ratio of CBCT scans to MIP scans. Under abdomen window, the ratio of CBCT scans to ITVs derived from 10 phases average scans was 0.39 ± 0.06, and 0.06 ± 0.00 for ratio of CBCT scans to MIP scans. There was a significant difference between lung window Result and abdomen window Result. For reducing image guiding uncertainty, CBCT window was set with width 500 and level-250. The ratio of CBCT scans to ITVs derived from 4 phases average scans with abdomen window was 1.19 ± 0.02, and 1.06 ± 0.01 for ratio of CBCT to MIP scans. Conclusion: CBCT images with suitable window width and level can efficiently reduce image guiding uncertainty for patient with mobile tumor. By our setting, we can match motion tumor to gating tumor location on planning CT more accurately neglecting other motion artifacts during CBCT scans.« less

  8. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  9. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT

    PubMed Central

    Shin, Hyun Joo; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang

    2013-01-01

    Objective To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. Materials and Methods This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Results Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Conclusion Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images. PMID:24265563

  10. Liver Volumetry Plug and Play: Do It Yourself with ImageJ

    PubMed Central

    Dello, Simon A. W. G.; van Dam, Ronald M.; Slangen, Jules J. G.; van de Poll, Marcel C. G.; Bemelmans, Marc H. A.; Greve, Jan Willem W. M.; Beets-Tan, Regina G. H.; Wigmore, Stephen J.

    2007-01-01

    Background A small remnant liver volume is an important risk factor for posthepatectomy liver failure and can be predicted accurately by computed tomography (CT) volumetry using radiologic image analysis software. Unfortunately, this software is expensive and usually requires support by a radiologist. ImageJ is a freely downloadable image analysis software package developed by the National Institute of Health (NIH) and brings liver volumetry to the surgeon’s desktop. We aimed to assess the accuracy of ImageJ for hepatic CT volumetry. Methods ImageJ was downloaded from http://www.rsb.info.nih.gov/ij/. Preoperative CT scans of 15 patients who underwent liver resection for colorectal cancer liver metastases were retrospectively analyzed. Scans were opened in ImageJ; and the liver, all metastases, and the intended parenchymal transection line were manually outlined on each slice. The area of each selected region, metastasis, resection specimen, and remnant liver was multiplied by the slice thickness to calculate volume. Volumes of virtual liver resection specimens measured with ImageJ were compared with specimen weights and calculated volumes obtained during pathology examination after resection. Results There was an excellent correlation between the volumes calculated with ImageJ and the actual measured weights of the resection specimens (r² = 0.98, p < 0.0001). The weight/volume ratio amounted to 0.88 ± 0.04 (standard error) and was in agreement with our earlier findings using CT-linked radiologic software. Conclusion ImageJ can be used for accurate hepatic CT volumetry on a personal computer. This application brings CT volumetry to the surgeon’s desktop at no expense and is particularly useful in cases of tertiary referred patients, who already have a proper CT scan on CD-ROM from the referring institution. Most likely the discrepancy between volume and weight results from exsanguination of the liver after resection. PMID:17726630

  11. Orbit-associated tumors: navigation and control of resection using intraoperative computed tomography.

    PubMed

    Terpolilli, Nicole A; Rachinger, Walter; Kunz, Mathias; Thon, Niklas; Flatz, Wilhelm H; Tonn, Jörg-Christian; Schichor, Christian

    2016-05-01

    OBJECT Treatment of skull base lesions is complex and usually requires a multidisciplinary approach. In meningioma, which is the most common tumor entity in this region, resection is considered to be the most important therapeutic step to avoid tumor recurrence. However, resection of skull base lesions with orbital or optic nerve involvement poses a challenge due to their anatomical structure and their proximity to eloquent areas. Therefore the main goal of surgery should be to achieve the maximum extent of resection while preserving neurological function. In the postoperative course, medical and radiotherapeutic strategies may then be successfully used to treat possible tumor residues. Methods to safely improve the extent of resection in skull base lesions therefore are desirable. The current study reports the authors' experience with the use of intraoperative CT (iCT) combined with neuronavigation with regard to feasibility and possible benefits of the method. METHODS Those patients with tumorous lesions in relationship to the orbit, sphenoid wing, or cavernous sinus who were surgically treated between October 2008 and December 2013 using iCT-based neuronavigation and in whom an intraoperative scan was obtained for control of resection were included. In all cases a second iCT scan was performed under sterile conditions after completion of navigation-guided microsurgical tumor resection. The surgical strategy was adapted accordingly; if necessary, resection was continued. RESULTS Twenty-three patients (19 with WHO Grade I meningioma and 4 with other lesions) were included. The most common clinical symptoms were loss of visual acuity and exophthalmus. Intraoperative control of resection by iCT was successfully obtained in all cases. Intraoperative imaging changed the surgical approach in more than half (52.2%) of these patients, either because iCT demonstrated unexpected residual tumor masses or because the second scan revealed additional tumor tissue that was not detected in the first scan due to overlay by osseous tumor parts; in these cases resection was continued. In the remaining cases resection was concluded as planned because iCT verified the surgeon's microscopic estimation of tumor resection status. Postoperative visual outcome was favorable in more than 80% of patients. CONCLUSIONS Intraoperative CT allows control of resection in case of uncertainty and can help to improve the extent of maximal safe resection, especially in case of osseous tumor parts and masses within the orbit.

  12. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D; Schueler, E; Diehn, M

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered tomore » each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to quantify regional lung ventilation volumetrically with high resolution using widely accessible radiologic equipment. Bill Loo and Peter Maxim are founders of TibaRay, Inc. Bill Loo is also a board member. Bill Loo and Peter Maxim have received research grants from Varian Medical Systems, Inc. and RaySearch Laboratory.« less

  13. Individually optimized contrast-enhanced 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinoma

    PubMed Central

    Xue, Ming; Lane, Barton F.; Kang, Min Kyu; Patel, Kruti; Regine, William F.; Klahr, Paul; Wang, Jiahui; Chen, Shifeng; D’Souza, Warren; Lu, Wei

    2016-01-01

    Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-computed tomography (CT) for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent three CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. Image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) were compared in the three CTs. Interobserver variations were also evaluated in contouring the tumor using simultaneous truth and performance level estimation. Results: Average image quality scores for CE 3D-CT and CE 4D-CT were comparable (4.0 and 3.8, respectively; P = 0.082), and both were significantly better than that for 4D-CT (2.6, P < 0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 Hounsfield units (HU), respectively; P = 0.21), and the latter was significantly higher than in 4D-CT (9.2 HU, P = 0.001). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P = 0.013) and 4D-CT (19.4 HU, P = 0.009). CNRs were comparable in CE 3D-CT and CE 4D-CT (1.4 and 0.8, respectively; P = 0.42), and both were significantly better in 4D-CT (0.6, P = 0.008 and 0.014). Mean tumor volumes were significantly smaller in CE 3D-CT (29.8 cm3, P = 0.03) and CE 4D-CT (22.8 cm3, P = 0.01) than in 4D-CT (42.0 cm3). Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P = 0.17). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusions: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. PMID:27782710

  14. Transcatheter Arterial Embolization with N-Butyl-2-Cyanoacrylate in the Management of Spontaneous Hematomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozyer, Umut, E-mail: umutozyer@gmail.com

    IntroductionSpontaneous hematoma refractory to conservative management is a potentially serious condition that requires prompt diagnosis and intervention. The purpose of this study was to evaluate the performance of computed tomography (CT) in the treatment planning and to report the effectiveness of transcatheter embolization with N-butyl-2-cyanoacrylate (NBCA).Materials and MethodsForty-one interventions in 38 patients within a 12-year period were evaluated. CT and angiograms were reviewed for the location of the hematoma, the presence of extravasation, and the correlation of CT and angiography findings.ResultsArterial extravasation was present on 34/39 CT scans. Angiograms confirmed the CT scans in 29 cases. Angiograms revealed extravasation inmore » four cases which CT showed venous bleeding (n = 2) or no bleeding (n = 2). Five patients with arterial and 1 patient with venous extravasation on CT images had no extravasation on angiograms. Embolization was performed to all arteries with extravasation on angiograms. Empiric embolization of the corresponding artery on the CT was performed when there was no extravasation on angiograms. Embolization procedures were performed with 15 % NBCA diluted with iodized oil. Technical success was achieved in 40/41 (97.6 %) interventions. Clinical success was achieved in 35 patients with a single, in 1 patient with 2, and in 1 patient with 3 interventions. No complications related to embolization procedure occurred. None of the patients died due to a progression of the hematoma.ConclusionNBCA is an effective and safe embolic agent to treat hematoma refractory to conservative management. Contrast-enhanced CT may provide faster and more effective intervention.Level of Evidence IIIRetrospective.« less

  15. SU-E-T-287: Dose Verification On the Variation of Target Volume and Organ at Risk in Preradiation Chemotherapy IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Kong, L; Wang, J

    2015-06-15

    Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less

  16. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience

    PubMed Central

    Jain, Avani S.; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    Aims and Objectives: To assess the diagnostic utility of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Materials and Methods: Eight patients (five male and three female) aged 24–60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. Results: All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent 68Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. Conclusion: The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management. PMID:26917888

  17. Quantitative prediction of stone fragility from routine single and dual energy CT: proof of feasibility

    PubMed Central

    Ferrero, Andrea; Montoya, Juan C.; Vaughan, Lisa E.; Huang, Alice E.; McKeag, Ian O.; Enders, Felicity T.; Williams, James C.; McCollough, Cynthia H.

    2016-01-01

    Rationale and Objectives Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphological features from dual-energy CT images and assess their relationship to stone fragility. Materials and Methods Thirty-three calcified urinary stones were scanned with micro CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low-and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. Results The average stone volume was 300 mm3 (range 134–674 mm3). The average comminution time measured ex vivo was 32 s (range 7–115 s). Stone volume, dual-energy CT number ratio and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R2= 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R2 of 0.54. Conclusion Dual-energy CT number ratios, volume, and morphological metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy. PMID:27717761

  18. Who Explicitly Requests the Ordering of Computed Tomography for Emergency Department Patients? A Multicenter Prospective Study

    PubMed Central

    Broder, Joshua Seth; Bhat, Rahul; Boyd, Joshua P.; Ogloblin, Ivan A.; Limkakeng, Alexander; Hocker, Michael Brian; Drake, Weiying Gao; Miller, Taylor; Harringa, John Brian; Repplinger, Michael Dean

    2016-01-01

    Background Emergency department (ED) computed tomography (CT) use has increased substantially in recent years, resulting in increased radiation exposure for patients. Few studies have assessed which parties contribute to CT ordering in the ED. Objective To determine the proportion of CT scans ordered due to explicit requests by various stakeholders in ED patient care. Methods Prospective, observational study at three university hospital EDs. CT scans ordered during research assistant hours were eligible for inclusion. Attending emergency physicians (EPs) completed standardized data forms to indicate all parties who had explicitly requested that a specific CT be performed. Forms were completed before the CT results were known in order to minimize bias. Results Data were obtained from 77 EPs regarding 944 CTs. The parties most frequently requesting CTs were attending EPs (82.0%, 95% CI 79.4–84.3), resident physicians (28.6%, 95%CI 25.8–31.6), consulting physicians (24.4%, 95%CI 21.7–27.2), and admitting physicians (3.9%, 95%CI 2.9–5.4). In the 168 instances in which the attending EP did not explicitly request the CT, requests most commonly came from consulting physicians (51.2%, 95%CI 43.7–58.6), resident physicians in the ED (39.9%, 95%CI, 32.8–47.4), and admitting physicians (8.9%, 95%CI, 5.5–14.2). EPs were the sole party requesting CT in 46.2% of cases while multiple parties were involved in 39.0%. Patients, families, and radiologists were uncommon sources of such requests. Conclusions Emergency physicians requested the majority of CTs, though nearly 20% were actually not desired by them. Admitting, consulting, and resident physicians in the ED were important contributors to CT utilization. PMID:26873604

  19. Ga-68-DOTATOC: Feasibility of high throughput screening by small animal PET using a clinical high-resolution PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hofmann, Michael; Weitzel, Thilo; Krause, Thomas

    2006-12-01

    As radio peptide tracers have been developed in recent years for the high sensitive detection of neuroendocrine tumors, still the broad application of other peptides to breast and prostate cancer is missing. A rapid screening of new peptides can, in theory, be based on in vivo screening in animals by PET/CT. To test this hypothesis and to asses the minimum screening time needed per animal, we used the application of Ga-68-DOTATOC PET/CT in rats as test system. The Ga-68-DOTATOC yields in a hot spot imaging with minimal background. To delineate liver and spleen, we performed PET/CT of 10 animals on a SIEMENS Biograph 16 LSO HIGHREZ after intravenous injection of 1.5 MBq Ga-68-DOTATOC per animal. Animals were mounted in an '18 slot' holding device and scanned for a single-bed position. The emission times for the PET scan was varied from 1 to 20 min. The images were assessed first for "PET only" and afterwards in PET/CT fusion mode. The detection of the two organs was good at emission times down to 1 min in PET/CT fusion mode. In the "PET only" scans, the liver was clearly to be identified down to 1 min emission in all animals. But the spleen could only be delineated only by 1 min of emission in the PET/CT-fusion mode. In conclusion the screening of "hot spot" enriching peptides is feasible. "PET only" is in terms of delineation of small organs by far inferior to PET/CT fusion. If animal tumors are above a diameter of 10 mm small, animal PET/CT using clinical high resolution scanners will enable rapid screening. Even the determination of bio-distributions becomes feasible by using list mode tools. The time for the whole survey of 18 animals including anesthesia, preparation and mounting was approximately 20 min. By use of several holding devices mounted simultaneously, a survey time of less than 1 h for 180 animals can be expected.

  20. Quantitative Gross and CT measurements of Cadaveric Cervical Vertebrae (C3 – C6) as Guidelines for the Lateral mass screw fixation

    PubMed Central

    Heinneman, Thomas E.; Conti, Mathew S.; Dossous, Paul-Michel F.; Dillon, David J.; Tsiouris, Apostolos J.; Pyo, Se Young; Mtui, Estomih P.; Härtl, Roger

    2016-01-01

    Background Lateral mass screw fixation is the treatment of choice for posterior cervical stabilization. Long or misdirected screws carry a risk of injury to spinal nerve roots or vertebral artery. This study was aimed to assess the gross anatomic and CT measurements of typical cervical vertebrae for the selection of lateral mass screws. Methods Dimensions of the articular pillars were measured on 1) Dry cervical vertebrae with Vernier calipers and 2) Multiplanar reformations of CT scans of the same vertebrae with Viewer software package. The data was statistically evaluated. Results The transverse diameter of the articular pillars with Vernier calipers varied from 6.0 to 15.4 mm (mean=10.5 mm ± 1.5) and on CT scans ranged from 8.2 – 16.1 mm (mean=11.6 mm ± 1.4). The antero-posterior diameter, an estimate of the screw length by Roy-Camille technique varied from 3.9 to 12.7 mm (mean=8.6 mm ± 1.6) by Vernier calipers and from 6.4 to 13.3 mm (mean=9.1 ± 1.2) on CT scans. The oblique AP diameter, an estimate of screw length by Magerl method varied from 10.8 to 20.3 mm (mean=14.9 mm ± 1.8) by Vernier calipers and from 11.4 to 19.3 mm (mean=14.5 mm ± 1.7) on CT. The CT measurements for height, transverse and AP diameter of the articular pillars were 0.5 - 1.0 mm larger than dimensions by Vernier calipers. No statistically significant difference was observed between the caliper and CT measurements for the oblique AP diameter. Conclusion CT measurements of the articular pillars may slightly overestimate the desired screw length selected by spine surgeons when compared to actual anatomy. Although means of the articular pillars correspond to the screw lengths used, substantial number of observations below 10 mm for Roy-Camille trajectory and below 14 mm for Magerl trajectory requires careful preoperative planning and intra-operative confirmation to avoid long/misdirected lateral mass screws. PMID:28377857

  1. Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans

    PubMed Central

    Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen

    2017-01-01

    Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p < 0.05). The sensitivity, specificity and accuracy of these parameters for distinguishing between parapelvic cyst and HNC were 89.2%, 73.3% and 82.1%; 86.5%, 43.3% and 67.2%; 91.9%, 40.0% and 68.7%; and 64.9%, 73.3% and 83.6%, respectively, and the combined specificity was 92.9%. There was no statistical difference in λ between the two groups (p > 0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789

  2. Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study

    PubMed Central

    Ashton, Jeffrey R.; Clark, Darin P.; Moding, Everett J.; Ghaghada, Ketan; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2014-01-01

    Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT. PMID:24520351

  3. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less

  4. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    NASA Astrophysics Data System (ADS)

    Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.

    2013-04-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  5. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  6. Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans.

    PubMed

    Shuryak, Igor; Lubin, Jay H; Brenner, David J

    2014-06-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25-65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans.

  7. The Beatles, the Nobel Prize, and CT scanning of the chest.

    PubMed

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  8. Trends and patterns of computed tomography scan use among children in The Netherlands: 1990-2012.

    PubMed

    Meulepas, Johanna M; Smets, Anne M J B; Nievelstein, Rutger A J; Gradowska, Patrycja; Verbeke, Jonathan; Holscher, Herma C; Rutten, Matthieu J C M; Kieft, Mariëtte; Ronckers, Cécile M; Hauptmann, Michael

    2017-06-01

    To evaluate trends and patterns in CT usage among children (aged 0-17 years) in The Netherlands during the period 1990-2012. Lists of electronically archived paediatric CT scans were requested from the Radiology Information Systems (RIS) of Dutch hospitals which reported >10 paediatric CT scans annually in a survey conducted in 2010. Data included patient identification, birth date, gender, scan date and body part scanned. For non-participating hospitals and for years prior to electronic archiving in some participating hospitals, data were imputed by calendar year and hospital type (academic, general with <500 beds, general with ≥ 500 beds). Based on 236,066 CT scans among 146,368 patients performed between 1990 and 2012, estimated annual numbers of paediatric CT scans in The Netherlands increased from 7,731 in 1990 to 26,023 in 2012. More than 70 % of all scans were of the head and neck. During the last decade, substantial increases of more than 5 % per year were observed in general hospitals with fewer than 500 beds and among children aged 10 years or older. The estimated number of paediatric CT scans has more than tripled in The Netherlands during the last two decades. • Paediatric CT in The Netherlands has tripled during the last two decades. • The number of paediatric CTs increased through 2012 in general hospitals. • Paediatric CTs continued to increase among children aged 10 years or older.

  9. Are CT scans obtained at referring institutions justified prior to transfer to a pediatric trauma center?

    PubMed

    Benedict, Leo Andrew; Paulus, Jessica K; Rideout, Leslie; Chwals, Walter J

    2014-01-01

    To assess whether pediatric trauma patients initially evaluated at referring institutions met Massachusetts statewide trauma field triage criteria for stabilization and immediate transfer to a Pediatric Trauma Center (PTC) without pre-transfer CT imaging. A 3-year retrospective cohort study was completed at our level 1 PTC. Patients with CT imaging at referring institutions were classified according to a triage scheme based on Massachusetts statewide trauma field triage criteria. Demographic data and injury profile characteristics were abstracted from patient medical records and our pediatric trauma registry. A total of 262 patients with 413 CT scans were reviewed from 2008 to 2011. 172 patients scanned (66%, 95% CI: 60%, 71%) met criteria for immediate transfer to a pediatric trauma center. Notably, 110 scans (27% of the total performed at referring institutions) were duplicated within four hours upon arrival to our PTC. GCS score <14 (45%) was the most common requirement for transfer, and CT scan of the head was the most frequent scan obtained (53%). The majority of pediatric trauma patients were subjected to CT scans at referring institutions despite meeting Massachusetts trauma triage guidelines that call for stabilization and immediate transfer to a pediatric trauma center without any CT imaging. © 2014.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, R.

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less

  11. Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

    PubMed Central

    Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu

    2012-01-01

    Objective The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods A total of 16 patients with large skull defects (>100 cm2) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects. PMID:23346326

  12. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin Woo; Kim, Hyo-Cheol, E-mail: angiointervention@gmail.com; Chung, Jin Wook

    Purpose: This study was designed to evaluate the radiologic findings and imaging response of chemoembolization via branches of the splenic artery in patients with hepatocellular carcinoma (HCC). Methods: From January 2001 to July 2010, we observed tumor staining supplied by branches of the splenic artery in 34 (0.6%) of 5,413 patients with HCC. Computed tomography (CT) scans and digital subtraction angiograms of these patients were retrospectively reviewed in consensus by two investigators. Results: A total of 39 tumor feeding-vessels in 34 patients were identified: omental branches from the left gastroepiploic artery (n = 5), branches from the short gastric arterymore » (n = 9), and omental branches directly from the splenic artery (n = 25). Branches of the splenic artery that supplied tumors were revealed on the celiac angiogram in 29 (85%) of 34 patients and were detected on pre-procedure CT images in 27 (79%) of 34 patients. Selective chemoembolization was achieved in 38 of 39 tumor-feeding vessels. Complete or partial response of the tumor fed by branches of the splenic artery, as depicted on follow-up CT scans, was achieved in 21 (62%) patients. No patient developed severe complications directly related to chemoembolization via branches of the splenic artery. Conclusions: Omental branches directly from the splenic artery are common tumor-feeding vessels of the splenic artery in cases of advanced HCC with multiple previous chemoembolizations. Tumor-feeding vessels of the splenic artery are usually visualized on the celiac angiogram or CT scan, and chemoembolization through them can be safely performed in most patients.« less

  14. Safety of Landiolol Hydrochloride as a Premedication for Producing an Appropriate Heart Rate for Multidetector-Row Computed Tomography Coronary Angiography.

    PubMed

    Koyoshi, Rie; Shiga, Yuhei; Idemoto, Yoshiaki; Ueda, Yoko; Tashiro, Kohei; Kuwano, Takashi; Kitajima, Ken; Fujimi, Kanta; Kawamura, Akira; Ogawa, Masahiro; Miura, Shin-Ichiro

    2018-01-01

    We evaluated the safety of a bolus injection of landiolol hydrochloride, an ultrashort-acting β1-selective antagonist, as a premedication prior to multidetector-row computed tomography coronary angiography (CTA). The subjects consisted of 176 patients (M/F = 64:112, 67 ± 11 years) who had heart rate (HR) at rest ≥ 70 beats/min (bpm) and underwent CTA. Systolic/diastolic blood pressure (SBP/DBP) and HR were measured before and after the administration of landiolol. SBP/DBP and HR upon entry to the CT room were 136 ± 17/80 ± 11 mm Hg and 83 ± 10 bpm, respectively. HR was significantly reduced at the time of CTA scan (62 ± 7 bpm). Next, we divided the patients into three groups according to HR upon entry to the CT room: 70 - 79 bpm (n = 76), 80 - 89 bpm (n = 60) and ≥ 90 bpm (n = 40). HR at the time of CTA scan was significantly lower than that upon entry to the CT room in all three groups: 70 - 79 bpm (74 ± 3 bpm upon entry to the CT room to 61 ± 6 bpm at the time of CAT scan), 80 - 89 bpm (84 ± 3 to 63 ± 7 bpm) and ≥ 90 bpm (98 ± 6 to 65 ± 7 bpm). Although SBP/DBP was significantly decreased after the CTA scan (123 ± 18/72 ± 12 mm Hg), landiolol had no severe adverse events throughout CTA. In conclusion, a bolus injection of landiolol reduced HR by about 20 bpm without any severe adverse effects. Thus, a bolus injection of landiolol hydrochloride may be a suitable pretreatment for controlling HR in CTA.

  15. Interobserver agreement of interim and end-of-treatment 18F-FDG PET/CT in diffuse large B-cell lymphoma (DLBCL): impact on clinical practice and trials.

    PubMed

    Burggraaff, Coreline N; Cornelisse, Alexander C; Hoekstra, Otto S; Lugtenburg, Pieternella J; de Keizer, Bart; Arens, Anne I J; Celik, Filiz; Huijbregts, Julia E; De Vet, Henrica C W; Zijlstra, Josee M

    2018-05-04

    We aimed to assess the interobserver agreement of Interim PET (I-PET) and End-of-Treatment PET (EoT-PET) using the Deauville 5-point scale (DS) in first-line DLBCL patients. Methods: I-PET and EoT-PET scans of DLBCL patients were performed in the HOVON84 study (2007-2012), an international multicenter randomized controlled trial. Patients received R-CHOP14 and were randomized to receive rituximab intensification in the first 4 cycles or not. I-PET was made after 4 cycles (for observational purposes), and EoT-PET scan after 6 or 8 cycles. Two independent central reviewers retrospectively scored all scans according to the DS-system, blinded to clinical outcomes. Results were dichotomised as 'negative' (DS: 1-3) or 'positive' (DS: 4-5). Besides percentage overall agreement we calculated agreement for positive and negative scores, expressed as positive agreement (PA) and negative agreement (NA), respectively. Results: 465 I-PET and 457 EoT-PET scans were centrally reviewed; baseline 18 F-FDG PET(/CT) was available in 75-77%, and CT in the remaining cases. Percentage overall agreement for I-PET and EoT-PET were 87.7% and 91.7% ( P =0.049), with NA of 92.0% and 95.0% ( P =0.091), and PA of 73.7% and 76.3% ( P =0.656), respectively. Conclusion: Interobserver agreement using DS in DLBCL patients in I-PET and EoT-PET yields high overall and negative agreement. The lower positive agreement suggests that EoT-PET/CT treatment evaluation in daily practice and I-PET adapted trials may benefit from dual reads and central review, respectively. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  17. SU-F-I-46: Optimizing Dose Reduction in Adult Head CT Protocols While Maintaining Image Quality in Postmortem Head Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Carranza, C; Quails, N

    Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less

  18. Is there a trend in CT scanning scaphoid nonunions for deformity assessment?-A systematic review.

    PubMed

    Ten Berg, Paul W L; de Roo, Marieke G A; Maas, Mario; Strackee, Simon D

    2017-06-01

    The effect of scaphoid nonunion deformity on wrist function is uncertain due to the lack of reliable imaging tools. Advanced three-dimensional (3-D) computed tomography (CT)-based imaging techniques may improve deformity assessment by using a mirrored image of the contralateral intact wrist as anatomic reference. The implementation of such techniques depends on the extent to which conventional CT is currently used in standard practice. The purpose of this systematic review of medical literature was to analyze the trend in CT scanning scaphoid nonunions, either unilaterally or bilaterally. Using Medline and Embase databases, two independent reviewers searched for original full-length clinical articles describing series with at least five patients focusing on reconstructive surgery of scaphoid nonunions with bone grafting and/or fixation, from the years 2000-2015. We excluded reports focusing on only nonunions suspected for avascular necrosis and/or treated with vascularized bone grafting, as their workup often includes magnetic resonance imaging. For data analysis, we evaluated the use of CT scans and distinguished between uni- and bilateral, and pre- and postoperative scans. Seventy-seven articles were included of which 16 were published between 2000 and 2005, 19 between 2006 and 2010, and 42 between 2011 and 2015. For these consecutive intervals, the rates of articles describing the use of pre- and postoperative CT scans increased from 13%, to 16%, to 31%, and from 25%, to 32%, to 52%, respectively. Hereof, only two (3%) articles described the use of bilateral CT scans. There is an evident trend in performing unilateral CT scans before and after reconstructive surgery of a scaphoid nonunion. To improve assessment of scaphoid nonunion deformity using 3-D CT-based imaging techniques, we recommend scanning the contralateral wrist as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Preoperative CT-Scan Can Help to Predict Postoperative Complications after Pancreatoduodenectomy

    PubMed Central

    Schröder, Femke F.; de Graaff, Feike; Bouman, Donald E.; Brusse-Keizer, Marjolein; Slump, Kees H.; Klaase, Joost M.

    2015-01-01

    After pancreatoduodenectomy, complication rates are up to 40%. To predict the risk of developing postoperative pancreatic fistula or severe complications, various factors were evaluated. 110 consecutive patients undergoing pancreatoduodenectomy at our institute between January 2012 and September 2014 with complete CT scan were retrospectively identified. Pre-, per-, and postoperative patients and pathological information were gathered. The CT-scans were analysed for the diameter of the pancreatic duct, attenuation of the pancreas, and the visceral fat area. All data was statistically analysed for predicting POPF and severe complications by univariate and multivariate logistic regression analyses. The POPF rate was 18%. The VFA measured at umbilicus (OR 1.01; 95% CI = 1.00–1.02; P = 0.011) was an independent predictor for POPF. The severe complications rate was 33%. Independent predictors were BMI (OR 1.24; 95% CI = 1.10–1.42; P = 0.001), ASA class III (OR 17.10; 95% CI = 1.60–182.88; P = 0.019), and mean HU (OR 0.98; 95% CI = 0.96–1.00; P = 0.024). In conclusion, VFA measured at the umbilicus seems to be the best predictor for POPF. BMI, ASA III, and the mean HU of the pancreatic body are independent predictors for severe complications following PD. PMID:26605340

  20. Clinical evaluation of the reproducibility of volume measurements of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Kohl, Gerhard; Klotz, Ernst; Heindel, Walter; Diederich, Stefan

    2002-05-01

    High reproducibility of volumetric measurements is an important prerequisite for follow-up of small lung nodules in order to differentiate malignant from benign lesions in a lung cancer screening setting. This study was aimed to evaluate the measurement reproducibility of a new software tool for pulmonary nodule volumetry. In an ongoing study, 147 pulmonary nodules (size 1.6-17.5 mm) were examined with low-dose multidetector CT (Siemens Somatom Volume Zoom, 120 kVp, 20 mAs, detector collimation 4x1 mm, normalized pitch 1.75, slice thickness 1.25 mm, reconstruction increment 0.8 mm). Two consecutive low-dose scans covering the whole lung volume were performed within a few minutes. Between both scans, patients were asked to leave the CT scanner, and the second scan was planned independently from the first one. For all visually detected pulmonary nodules with a diameter <20 mm nodule volume was determined on both scans using a software prototype containing segmentation and volumetry algorithms. Results from both scans were compared. Nodule volume differences were determined as difference between the first and second measurement and ranged from 169 to 87%. The performance of the diagnostic test was measured using ROC analysis. For the detection of a volume doubling the area under curve (Az) was 0.98, for a growth of 50% the Az was 0.89. Further refinement of the segmentation algorithm should lead to more consistent measurements in ill-defined nodules. In conclusion, volumetric measurement of pulmonary nodules in multislice CT data sets is a reliable tool for the detection of growth in small pulmonary nodules.

  1. TU-H-207A-09: An Automated Technique for Estimating Patient-Specific Regional Imparted Energy and Dose From TCM CT Exams Across 13 Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Tian, X; Segars, P

    2016-06-15

    Purpose: To develop an automated technique for estimating patient-specific regional imparted energy and dose from tube current modulated (TCM) computed tomography (CT) exams across a diverse set of head and body protocols. Methods: A library of 58 adult computational anthropomorphic extended cardiac-torso (XCAT) phantoms were used to model a patient population. A validated Monte Carlo program was used to simulate TCM CT exams on the entire library of phantoms for three head and 10 body protocols. The net imparted energy to the phantoms, normalized by dose length product (DLP), and the net tissue mass in each of the scan regionsmore » were computed. A knowledgebase containing relationships between normalized imparted energy and scanned mass was established. An automated computer algorithm was written to estimate the scanned mass from actual clinical CT exams. The scanned mass estimate, DLP of the exam, and knowledgebase were used to estimate the imparted energy to the patient. The algorithm was tested on 20 chest and 20 abdominopelvic TCM CT exams. Results: The normalized imparted energy increased with increasing kV for all protocols. However, the normalized imparted energy was relatively unaffected by the strength of the TCM. The average imparted energy was 681 ± 376 mJ for abdominopelvic exams and 274 ± 141 mJ for chest exams. Overall, the method was successful in providing patientspecific estimates of imparted energy for 98% of the cases tested. Conclusion: Imparted energy normalized by DLP increased with increasing tube potential. However, the strength of the TCM did not have a significant effect on the net amount of energy deposited to tissue. The automated program can be implemented into the clinical workflow to provide estimates of regional imparted energy and dose across a diverse set of clinical protocols.« less

  2. TU-F-CAMPUS-I-04: A Novel Phantom to Evaluate Longitudinal and Angular Automatic Tube Current Modulation (ATCM) in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzan, D; Bujila, R; Nowik, P

    Purpose: To manufacture a phantom specifically designed for the purpose of evaluating the performance of the longitudinal and angular automatic tube current modulation (ATCM) on modern CT scanners. Methods: In order to evaluate angular ATCM, the phantom has an elliptical cross section (aspect ratio 3:2). To evaluate longitudinal ATCM, the phantom consists of 3 sections, with different major axes (25 cm, 30 cm and 35 cm). Each section is 15 cm long in the longitudinal direction. Between each section is a smooth transition. The phantom was milled from a solid block of PMMA. ATCM performance is evaluated by 1) analyzingmore » the applied tube current for each slice of the phantom and 2) analyzing the distribution of image noise (σ) along the scan direction at different positions in the phantom. A demonstration of the ATCM performance evaluation is given by investigating the effects of miscentering during a CT scan. Results: The developed phantom has proven useful for evaluating both the longitudinal and angular ATCM on modern CT scanners (spiral collimations ≥ 4 cm). Further benefits are the smooth transitions between the sections that prevent abnormal responses in the ATCM and the invariant sections that provide a means for investigating the stability of image noise. The homogeneity of the phantom makes image noise at different positions along the scan direction easy to quantify, which is crucial to understand how well the applied ATCM can produce a desired image quality. Conclusion: It is important to understand how the ATCM functions on CT scanners as it can directly affect dose and image quality. The phantom that has been developed is a most valuable tool to understand how different variables during a scan can affect the outcome of the longitudinal and angular ATCM.« less

  3. TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budde, A; GE Healthcare Technologies, Madison, WI; Li, Y

    Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporalmore » center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.« less

  4. SU-F-T-26: A Study of the Consistency of Brachytherapy Treatments for Vaginal Cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shojaei, M; Pella, S; Dumitru, N

    2016-06-15

    Purpose: To evaluate to treatment consistency over the total number of fractions when treatment what HDR brachytherapy using the ML cylinders. At the same time the dosimetric impact on the critical organs is monitored over the total number of fractions. Methods: A retrospective analysis of 10 patients treated with Cylinder applicators, from 2015–2016 were considered for this study. The CT scans of these patients, taken before each treatment were separately imported in to the treatment planning system and paired with the initial CT scan after completing the contouring. Two sets of CT images were fused together with respective to themore » applicator, using landmark registration. The doses of each plan were imported as well and a cumulative dosimetric analysis was made for bladder, bowels, and rectum and PTV. Results: No contour of any of the OAR was exactly similar when CT images were fused on each other. The PTV volumes vary from fraction to fraction. There was always a difference between the doses received by the OARs between treatments. The maximum dose varied between 5% and 30% in rectum and bladder. The minimum dose varied between 5% and 8% in rectum and bladder. The average dose varied between 15% and 20% in rectum and bladder. Deviation in placement were noticed between fractions. Conclusion: The variation in volumes of OARs and isodoses near the OARs, indicate that the estimated doses to OARs on the planning system may not be the same dose delivered to the patient in all the fractions. There are no major differences between the prescribed dose and the delivered dose over the total number of fractions. In some cases the critical organs will benefit if the consecutive plans will made after the CT scans will be registered with the initial scan and then planned.« less

  5. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less

  6. Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.

    PubMed

    Parikh, A K; Shah, C C

    2016-06-01

    The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.

  7. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  8. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise andmore » streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.« less

  9. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    PubMed Central

    Lauzier, Pascal Thériault; Tang, Jie; Speidel, Michael A.; Chen, Guang-Hong

    2012-01-01

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI. PMID:22830741

  10. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2015-06-15

    Purpose: ICRU Report No. 87 Committee and AAPM Task Group 200 designed a three-sectional polyethylene phantom of 30 cm in diameter and 60 cm in length for evaluating the midpoint dose D{sub L}(0) and its rise-to-the-equilibrium curve H(L) = D{sub L}(0)/D{sub eq} from computed tomography (CT) scanning, where D{sub eq} is the equilibrium dose. To aid the use of the phantom in radiation dose assessment and to gain an understanding of dose equilibration and energy absorption in polyethylene, the authors evaluated the short (20 cm) to long (60 cm) phantom dose ratio with a polyethylene diameter of 30 cm, assessedmore » H(L) in polyethylene cylinders of 6–55 cm in diameters, and examined energy absorption in these cylinders. Methods: A GEANT4-based Monte Carlo program was used to simulate the single axial scans of polyethylene cylinders (diameters 6–55 cm and length 90 cm, as well as diameter 30 cm and lengths 20 and 60 cm) on a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare). Axial dose distributions were computed on the phantom central and peripheral axes. An average dose over the central 23 or 100 mm region was evaluated for modeling dose measurement using a 0.6 cm{sup 3} thimble chamber or a 10 cm long pencil ion chamber, respectively. The short (20 cm) to long (90 cm) phantom dose ratios were calculated for the 30 cm diameter polyethylene phantoms scanned at four tube voltages (80–140 kV) and a range of beam apertures (1–25 cm). H(L) was evaluated using the dose integrals computed with the 90 cm long phantoms. The resultant H(L) data were subsequently used to compute the fraction of the total energy absorbed inside or outside the scan range (E{sub in}/E or E{sub out}/E) on the phantom central and peripheral axes, where E = LD{sub eq} was the total energy absorbed along the z axis. Results: The midpoint dose in the 60 cm long polyethylene phantom was equal to that in the 90 cm long polyethylene phantom. The short-to-long phantom dose ratios changed with beam aperture and phantom axis but were insensitive to tube voltage. H(L) was insensitive to tube voltage and CT scanner model. As phantom diameter increased from 6 to 55 cm, E{sub in}/E generally decreased but asymptotically approached constant levels on the peripheral axes of large phantoms. The curve of E{sub in}/E versus scan length was almost identical to that of H(L). Similarly, E{sub out}/E increased with scan length and asymptotically approached the equilibrium for large scan lengths. E{sub out}/D{sub eq} was much less than the equilibrium length L{sub eq} where H(L) = 0.98, even with scan lengths much larger than L{sub eq}. Conclusions: The polyethylene phantom designed by ICRU Report No. 87 Committee and AAPM Task Group 200 is adequately long for assessing the midpoint dose and its equilibration in CT scanning. The short-to-long phantom dose ratios and the H(L) data provided in this paper allow easy evaluations of the midpoint dose, longitudinal dose distribution, and energy absorption in polyethylene phantoms. The results of dose equilibration and energy absorption presented herein may be insightful for the clinical CT scans with various subject sizes and scan lengths.« less

  11. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  12. Blend Sign on Computed Tomography: Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage.

    PubMed

    Li, Qi; Zhang, Gang; Huang, Yuan-Jun; Dong, Mei-Xue; Lv, Fa-Jin; Wei, Xiao; Chen, Jian-Jun; Zhang, Li-Juan; Qin, Xin-Yue; Xie, Peng

    2015-08-01

    Early hematoma growth is not uncommon in patients with intracerebral hemorrhage and is an independent predictor of poor functional outcome. The purpose of our study was to report and validate the use of our newly identified computed tomographic (CT) blend sign in predicting early hematoma growth. Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours after onset of symptoms were included. The follow-up CT scan was performed within 24 hours after the baseline CT scan. Significant hematoma growth was defined as an increase in hematoma volume of >33% or an absolute increase of hematoma volume of >12.5 mL. The blend sign on admission nonenhanced CT was defined as blending of hypoattenuating area and hyperattenuating region with a well-defined margin. Univariate and multivariable logistic regression analyses were performed to assess the relationship between the presence of the blend sign on nonenhanced admission CT and early hematoma growth. A total of 172 patients were included in our study. Blend sign was observed in 29 of 172 (16.9%) patients with intracerebral hemorrhage on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively. The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth. © 2015 American Heart Association, Inc.

  13. Delayed splenic vascular injury after nonoperative management of blunt splenic trauma.

    PubMed

    Furlan, Alessandro; Tublin, Mitchell E; Rees, Mitchell A; Nicholas, Dederia H; Sperry, Jason L; Alarcon, Louis H

    2017-05-01

    Delayed splenic vascular injury (DSVI) is traditionally considered a rare, often clinically occult, harbinger of splenic rupture in patients with splenic trauma that are managed conservatively. The purpose of our study was to assess the incidence of DSVI and associated features in patients admitted with blunt splenic trauma and managed nonoperatively. A retrospective analysis was conducted over a 4-y time. Patients admitted with blunt splenic trauma, managed no-operatively and with a follow-up contrast-enhanced computed tomography (CT) scan study during admission were included. The CT scans were reviewed for American Association for the Surgery of Trauma splenic injury score, amount of hemoperitoneum, and presence of DSVI. Logistic regression models were used to investigate the risk factors associated with DSVI. A total of 100 patients (60 men and 40 women) constituted the study group. Follow-up CT scan demonstrated a 23% incidence of DSVI. Splenic artery angiography validated DSVI in 15% of the total patient population. Most DSVIs were detected only on arterial phase CT scan imaging. The American Association for the Surgery of Trauma splenic injury score (odds ratio = 1.73; P = 0.045) and the amount of hemoperitoneum (odds ratio = 1.90; P = 0.023) on admission CT scan were associated with the development of DSVI on follow-up CT scan. DSVI on follow-up CT scan imaging of patients managed nonoperatively after splenic injury is common and associated with splenic injury score assessed on admission CT scan. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Advantages and limitations of computed tomography scans for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Potter, J.L.; Fullerton, G.D.

    1982-09-01

    Forty-five Chest computed tomography (CT) scans performed on patients with lung carcinoma (LC) were evaluated in an attempt to understand the pattern of intrathoracic tumor spread and the advantages and limitations this technique offers for treatment planning when compared to planning done by conventional X rays. The following findings can help treatment planning. (1) When regular X rays do not show location (i.e., hemithorax opacification), CT scan will show it in 68% of patients. If regular X rays show a well localized mass, unsuspected tumor extensions were disclosed in 78% of these patients. Hence, CT scans should be done inmore » all LC patients prior to treatment planning; (2) Mediastinal masses frequently spread anteriorly toward the sternum and posteriorly around the vertebral bodies toward the cord and costal pleura. This should be considered for radiotherapy boost techniques; (3) Lung masses spread in one third of cases toward the lateral costal pleura. Thus, the usual 1-2cm of safety margin around the LC are not sufficient in some cases; (4) Tumor size can appear much smaller in regular X rays than in CT scans. Hence, CT scans are necessary for accurate staging and evaluation of tumor response. Some CT scan limitations are: (1) Atelectasis blends with tumor in approximately half of the patients, thus obscuring tumor boundaries; (2) CT numbers and contrast enhancement did not help to differentiate between these two structures; and (3) Limited definition of CT scan prevents investigation of suspected microscopic spread around tumor masses.« less

  15. Patient characteristics associated with differences in radiation exposure from pediatric abdomen-pelvis CT scans: a quantile regression analysis.

    PubMed

    Cooper, Jennifer N; Lodwick, Daniel L; Adler, Brent; Lee, Choonsik; Minneci, Peter C; Deans, Katherine J

    2017-06-01

    Computed tomography (CT) is a widely used diagnostic tool in pediatric medicine. However, due to concerns regarding radiation exposure, it is essential to identify patient characteristics associated with higher radiation burden from CT imaging, in order to more effectively target efforts towards dose reduction. Our objective was to identify the effects of various demographic and clinical patient characteristics on radiation exposure from single abdomen/pelvis CT scans in children. CT scans performed at our institution between January 2013 and August 2015 in patients under 16 years of age were processed using a software tool that estimates patient-specific organ and effective doses and merges these estimates with data from the electronic health record and billing record. Quantile regression models at the 50th, 75th, and 90th percentiles were used to estimate the effects of patients' demographic and clinical characteristics on effective dose. 2390 abdomen/pelvis CT scans (median effective dose 1.52mSv) were included. Of all characteristics examined, only older age, female gender, higher BMI, and whether the scan was a multiphase exam or an exam that required repeating for movement were significant predictors of higher effective dose at each quantile examined (all p<0.05). The effects of obesity and multiphase or repeat scanning on effective dose were magnified in higher dose scans. Older age, female gender, obesity, and multiphase or repeat scanning are all associated with increased effective dose from abdomen/pelvis CT. Targeted efforts to reduce dose from abdominal CT in these groups should be undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessing stapes piston position using computed tomography: a cadaveric study.

    PubMed

    Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary

    2009-02-01

    Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.

  17. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.more » Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule{>=}3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.« less

  18. SU-F-J-140: Using Handheld Stereo Depth Cameras to Extend Medical Imaging for Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, C; Xing, L; Yu, S

    Purpose: A correct body contour is essential for the accuracy of dose calculation in radiation therapy. While modern medical imaging technologies provide highly accurate representations of body contours, there are times when a patient’s anatomy cannot be fully captured or there is a lack of easy access to CT/MRI scanning. Recently, handheld cameras have emerged that are capable of performing three dimensional (3D) scans of patient surface anatomy. By combining 3D camera and medical imaging data, the patient’s surface contour can be fully captured. Methods: A proof-of-concept system matches a patient surface model, created using a handheld stereo depth cameramore » (DC), to the available areas of a body contour segmented from a CT scan. The matched surface contour is then converted to a DICOM structure and added to the CT dataset to provide additional contour information. In order to evaluate the system, a 3D model of a patient was created by segmenting the body contour with a treatment planning system (TPS) and fabricated with a 3D printer. A DC and associated software were used to create a 3D scan of the printed phantom. The surface created by the camera was then registered to a CT model that had been cropped to simulate missing scan data. The aligned surface was then imported into the TPS and compared with the originally segmented contour. Results: The RMS error for the alignment between the camera and cropped CT models was 2.26 mm. Mean distance between the aligned camera surface and ground truth model was −1.23 +/−2.47 mm. Maximum deviations were < 1 cm and occurred in areas of high concavity or where anatomy was close to the couch. Conclusion: The proof-of-concept study shows an accurate, easy and affordable method to extend medical imaging for radiation therapy planning using 3D cameras without additional radiation. Intel provided the camera hardware used in this study.« less

  19. Stability of Markers Used for Real-Time Tumor Tracking After Percutaneous Intrapulmonary Placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voort van Zyp, Noelle C. van der, E-mail: n.vandervoortvanzyp@erasmusmc.nl; Hoogeman, Mischa S.; Water, Steven van de

    2011-11-01

    Purpose: To determine the stability of markers used for real-time tumor tracking after percutaneous intrapulmonary placement. Methods and Materials: A total of 42 patients with 44 lesions, 111 markers, and {>=}2 repeat computed tomography (CT) scans were studied. The tumor on the repeat CT scans was registered with the tumor on the planning CT scan. Next, the three-dimensional marker coordinates were determined on the planning CT scan and repeat CT scans. Marker stability was analyzed by the displacement of the markers and the displacement of the center of mass (COM) of the marker configurations. In addition, we assessed the reliabilitymore » of using the intermarker distance as a check for displacements in the COM of the marker configurations. Results: The median marker displacement was 1.3 mm (range, 0.1-53.6). The marker displacement was >5 mm in 12% of the markers and >10 mm in 5% of the markers. The causes of marker displacement >5 mm included marker migration (2 of 13) and target volume changes (5 of 13). Nonsynchronous tumor and marker movement during breathing might have been responsible for the displacements >5 mm in the other 6 of 13 markers. The median displacement in the COM of the marker configurations was 1.0 mm (range, 0.1-23.3). Displacements in the COM of the marker configurations of {>=}2.0 mm were detected by changes in the intermarker distance of >1.5 mm in 96% of the treatment fractions. Conclusion: The median marker displacement was small (1.3 mm). Nevertheless, displacements >5 mm occurred in 12% of the markers. Therefore, we recommend the implantation of multiple markers because multiple markers will enable a quick and reliable check of marker displacement by determining the change in the intermarker distance. A displacement in the COM of the marker configuration of {>=}2.0 mm was almost always detected (96%) by a change in the distance between the markers of >1.5 mm. This enabled the displaced marker to be disabled, such that tumor localization was not compromised.« less

  20. Neural network and its application to CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  1. Lung PET scan

    MedlinePlus

    ... PET - chest; PET - lung; PET - tumor imaging; PET/CT - lung; Solitary pulmonary nodule - PET ... minutes. PET scans are performed along with a CT scan. This is because the combined information from ...

  2. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  3. F-18 fluoride positron emission tomography/computed tomography in the diagnosis of avascular necrosis of the femoral head: Comparison with magnetic resonance imaging

    PubMed Central

    Gayana, Shankaramurthy; Bhattacharya, Anish; Sen, Ramesh Kumar; Singh, Paramjeet; Prakash, Mahesh; Mittal, Bhagwant Rai

    2016-01-01

    Objective: Femoral head avascular necrosis (FHAVN) is one of the increasingly common causes of musculoskeletal disability and poses a major diagnostic and therapeutic challenge. Although radiography, scintigraphy, computed tomography (CT), and magnetic resonance imaging (MRI) have been widely used in the diagnosis of FHAVN, positron emission tomography (PET) has recently been evaluated to assess vascularity of the femoral head. In this study, the authors compared F-18 fluoride PET/CT with MRI in the initial diagnosis of FHAVN. Patients and Methods: We prospectively studied 51 consecutive patients with a high clinical suspicion of FHAVN. All patients underwent MRI and F-18 fluoride PET/CT, the time interval between the two scans being 4–10 (mean 8) days. Two nuclear medicine physicians blinded to the MRI report read the PET/CT scans. Clinical assessment was also done. Final diagnoses were made by surgical pathology or clinical and radiologic follow-up. Results: A final diagnosis of avascular necrosis (AVN) was made in 40 patients. MRI was 96.5% sensitive, 100% specific, and 98.03% accurate while PET/CT was 100% sensitive, specific, and accurate in diagnosing FHAVN. The agreement between the two imaging modalities for the diagnosis of AVN was 96.07%. Conclusion: F-18 fluoride PET/CT showed good agreement with MRI in the initial diagnosis of FHAVN and can be better than MRI in detecting early disease. PMID:26917886

  4. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less

  5. Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.

    PubMed

    Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C

    2014-10-01

    Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.

  6. Safe cervical spine clearance in adult obtunded blunt trauma patients on the basis of a normal multidetector CT scan--a meta-analysis and cohort study.

    PubMed

    Raza, Mushahid; Elkhodair, Samer; Zaheer, Asif; Yousaf, Sohail

    2013-11-01

    A true gold standard to rule out a significant cervical spine injury in subset of blunt trauma patients with altered sensorium is still to be agreed upon. The objective of this study is to determine whether in obtunded adult patients with blunt trauma, a clinically significant injury to the cervical spine be ruled out on the basis of a normal multidetector cervical spine computed tomography. Comprehensive database search was conducted to include all the prospective and retrospective studies on blunt trauma patients with altered sensorium undergoing cervical spine multidetector CT scan as core imaging modality to "clear" the cervical spine. The studies used two main gold standards, magnetic resonance imaging of the cervical spine and/or prolonged clinical follow-up. The data was extracted to report true positive, true negatives, false positives and false negatives. Meta-analysis of sensitivity, specificity, negative and positive predictive values was performed using Meta Analyst Beta 3.13 software. We also performed a retrospective investigation comparing a robust clinical follow-up and/or cervical spine MR findings in 53 obtunded blunt trauma patients, who previously had undergone a normal multidetector CT scan of the cervical spine reported by a radiologist. A total of 10 studies involving 1850 obtunded blunt trauma patients with initial cervical spine CT scan reported as normal were included in the final meta-analysis. The cumulative negative predictive value and specificity of cervical spine CT of the ten studies was 99.7% (99.4-99.9%, 95% confidence interval). The positive predictive value and sensitivity was 93.7% (84.0-97.7%, 95% confidence interval). In the retrospective review of our obtunded blunt trauma patients, none was later diagnosed to have significant cervical spine injury that required a change in clinical management. In a blunt trauma patient with altered sensorium, a normal cervical spine CT scan is conclusive to safely rule out a clinically significant cervical spine injury. The results of this meta-analysis strongly support the removal of cervical precautions in obtunded blunt trauma patient after normal cervical spine computed tomography. Any further imaging like magnetic resonance imaging of the cervical spine should be performed on case-to-case basis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahbaee, Pooyan, E-mail: psahbae@ncsu.edu; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor)more » were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient anatomy, a first order approximation of organ and effective doses from routine CT scan protocols can be reasonably estimated using size specific factors. Estimation accuracy is generally poor for organ outside the scan range and for neurological protocols. The dose calculator designed in this study can be used to conveniently estimate and report the dose values for a patient across a multiplicity of CT scan protocols.« less

  8. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; McNitt-Gray, M

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate themore » complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less

  9. Radiation exposure - how do CT scans for appendicitis compare between a free standing children's hospital and non-dedicated pediatric facilities?

    PubMed

    Sharp, Nicole E; Raghavan, Maneesha U; Svetanoff, Wendy J; Thomas, Priscilla T; Sharp, Susan W; Brown, James C; Rivard, Douglas C; St Peter, Shawn D; Holcomb, George W

    2014-06-01

    We compare the amount of radiation children receive from CT scans performed at non-dedicated pediatric facilities (OH) versus those at a dedicated children's hospital (CH). Using a retrospective chart review, all children undergoing CT scanning for appendicitis at an OH were compared to children undergoing CT imaging for appendicitis at a CH between January 2011 and November 2012. One hundred sixty-three children underwent CT scans at 42 different OH. Body mass index was similar between the two groups (21.00±6.49kg/m(2), 19.58±5.18kg/m(2), P=0.07). Dose length product (DLP) was 620±540.3 at OH and 253.78±211.08 at CH (P < 0.001). OH CT scans accurately diagnosed appendicitis in 81%, while CT scans at CH were accurate in 95% (P=0.026). CTDIvol was recorded in 65 patients with subset analysis showing CTDIvol of 16.98±15.58 and 4.89±2.64, a DLP of 586.25±521.59 and 143.54±41.19, and size-specific dose estimate (SSDE) of 26.71±23.1 and 3.81±2.02 at OH and CH, respectively (P<0.001). Using SSDE as a marker for radiation exposure, children received 86% less radiation and had improved diagnostic accuracy when CT scans are performed at a CH. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Postoperative PET/CT and target delineation before adjuvant radiotherapy in patients with oral cavity squamous cell carcinoma.

    PubMed

    Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy

    2016-04-01

    The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.

  11. Patient-specific Radiation Dose and Cancer Risk for Pediatric Chest CT

    PubMed Central

    Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2011-01-01

    Purpose: To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. Materials and Methods: The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0–16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDIvol) or dose–length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Results: Organ dose normalized by tube current–time product or CTDIvol decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current–time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current–time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (<10% variation). Conclusion: The correlations of dose and risk with patient size and age can be used to estimate patient-specific dose and risk. They can further guide the design and optimization of pediatric chest CT protocols. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1 PMID:21467251

  12. Quantification of image contrast of infarcts on computed tomography scans.

    PubMed

    Gomolka, R S; Chrzan, R M; Urbanik, A; Kazmierski, R; Grzanka, A D; Nowinski, W L

    2017-02-01

    Introduction Accurate identification of infarcts in non-contrast computed tomography (NC-CT) scans of the brain is fundamental in the diagnosis and management of patients with stroke. Quantification of image contrast properties at the boundaries of ischemic infarct regions in NC-CT can contribute to a more precise manual or automatic delineation of these regions. Here we explore these properties quantitatively. Methods We retrospectively investigated 519 NC-CT studies of 425 patients with clinically confirmed ischemic strokes. The average and standard deviation (SD) of patients' age was 67.5 ± 12.4 years and the average(median)±SD time from symptoms onset to NC-CT examination was 27.4(12)±35.7 h. For every scan with an ischemic lesion identified by experts, the image contrast of the lesion vs. normal surrounding parenchyma was calculated as a difference of mean Hounsfield Unit (HU) of 1-5 consecutive voxels (the contrast window width) belonging to the lesion and to the parenchyma. This contrast was calculated at each single voxel of ischemic lesion boundaries (previously delineated by the experts) in horizontal and vertical directions in each image. The distributions of obtained horizontal, vertical and both contrasts combined were calculated among all 519 NC-CTs. Results The highest applicative contrast window width was identified as 5 voxels. The ischemic infarcts were found to be characterized by 6.60 HU, 8.28 HU and 7.55 HU mean values for distributions of horizontal, vertical and combined contrasts. Approximately 40-50% of the infarct boundary voxels were found to refer to the image contrast below 5 HU. Conclusion Low image contrast of ischemic lesions prevents accurate delineation of the infarcts in NC-CT.

  13. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  14. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less

  15. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    PubMed

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  16. Enteral Contrast in the Computed Tomography Diagnosis of Appendicitis

    PubMed Central

    Drake, Frederick Thurston; Alfonso, Rafael; Bhargava, Puneet; Cuevas, Carlos; Dighe, Manjiri K.; Florence, Michael G.; Johnson, Morris G.; Jurkovich, Gregory J.; Steele, Scott R.; Symons, Rebecca Gaston; Thirlby, Richard C.; Flum, David R.

    2014-01-01

    Objective Our goal was to perform a comparative effectiveness study of intravenous (IV)-only versus IV + enteral contrast in computed tomographic (CT) scans performed for patients undergoing appendectomy across a diverse group of hospitals. Background Small randomized trials from tertiary centers suggest that enteral contrast does not improve diagnostic performance of CT for suspected appendicitis, but generalizability has not been demonstrated. Eliminating enteral contrast may improve efficiency, patient comfort, and safety. Methods We analyzed data for adult patients who underwent nonelective appendectomy at 56 hospitals over a 2-year period. Data were obtained directly from patient charts by trained abstractors. Multivariate logistic regression was utilized to adjust for potential confounding. The main outcome measure was concordance between final radiology interpretation and final pathology report. Results A total of 9047 adults underwent appendectomy and 8089 (89.4%) underwent CT, 54.1% of these with IV contrast only and 28.5% with IV + enteral contrast. Pathology findings correlated with radiographic findings in 90.0% of patients who received IV + enteral contrast and 90.4% of patients scanned with IV contrast alone. Hospitals were categorized as rural or urban and by their teaching status. Regardless of hospital type, there was no difference in concordance between IV-only and IV + enteral contrast. After adjusting for age, sex, comorbid conditions, weight, hospital type, and perforation, odds ratio of concordance for IV + enteral contrast versus IV contrast alone was 0.95 (95% CI: 0.72–1.25). Conclusions Enteral contrast does not improve CT evaluation of appendicitis in patients undergoing appendectomy. These broadly generalizable results from a diverse group of hospitals suggest that enteral contrast can be eliminated in CT scans for suspected appendicitis. PMID:24598250

  17. SU-F-R-39: Effects of Radiation Dose Reduction On Renal Cell Carcinoma Discrimination Using Multi-Phasic CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Young, S; Lo, P

    Purpose: A method to discriminate different types of renal cell carcinoma (RCC) was developed using attenuation values observed in multiphasic contrast-enhanced CT. This work evaluates the sensitivity of this RCC discrimination task at different CT radiation dose levels. Methods: We selected 5 cases of kidney lesion patients who had undergone four-phase CT scans covering the abdomen to the lilac crest. Through an IRB-approved study, the scans were conducted on 64-slice CT scanners (Definition AS/Definition Flash, Siemens Healthcare) using automatic tube-current modulation (TCM). The protocol included an initial baseline unenhanced scan, followed by three post-contrast injection phases. CTDIvol (32 cm phantom)more » measured between 9 to 35 mGy for any given phase. As a preliminary study, we limited the scope to the cortico-medullary phase—shown previously to be the most discriminative phase. A previously validated method was used to simulate a reduced dose acquisition via adding noise to raw CT sinogram data, emulating corresponding images at simulated doses of 50%, 25%, and 10%. To discriminate the lesion subtype, ROIs were placed in the most enhancing region of the lesion. The mean HU value of an ROI was extracted and used to discriminate to the worst-case RCC subtype, ranked in the order of clear cell, papillary, chromophobe and the benign oncocytoma. Results: Two patients exhibited a change of worst case RCC subtype between original and simulated scans, at 25% and 10% doses. In one case, the worst-case RCC subtype changed from oncocytoma to chromophobe at 10% and 25% doses, while the other case changed from oncocytoma to clear cell at 10% dose. Conclusion: Based on preliminary results from an initial cohort of 5 patients, worst-case RCC subtypes remained constant at all simulated dose levels except for 2 patients. Further study conducted on more patients will be needed to confirm our findings. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant Support from: U01 CA181156.« less

  18. Cervix Motion in 50 Cervical Cancer Patients Assessed by Daily Cone Beam Computed Tomographic Imaging of a New Type of Marker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langerak, Thomas, E-mail: t.langerak@erasmusmc.nl; Mens, Jan Willem; Quint, Sandra

    Purpose: To evaluate a new type of marker and a new method of marker implantation and to assess interfraction cervix motion for a large population of patients with locally advanced cervical cancer by daily cone beam computed tomographic (CBCT) imaging. Methods and Materials: We investigated the position of markers in 50 patients treated in prone position during at least 23 fractions. To reduce streaking artifacts in the planning CT scan, a new type of polymeric marker was used and compared with conventional gold markers. In addition, a new method of implantation was used in an attempt to reduce marker loss.more » In each fraction, a CT scan was acquired before dose delivery and aligned to the bony anatomy of the planning CT scan, simulating the clinical setup protocol. First, sufficient visibility of the markers was verified. Then, systematic and random displacement of the marker centroids was recorded and analyzed in 3 directions with regard to the planning CT and the first CBCT (to evaluate the presence of a vaginal catheter in the planning CT). Streaking artifacts were quantified with the standard deviation of the mean squared intensity difference in a radius around the marker. Results: Marker loss was minimal during treatment: in only 3 of the 50 patients 1 marker was lost. Streaking artifacts for the new markers were reduced compared with conventional gold markers. For the planning CT, M/Σ/σ were 0.4/3.4/2.2 mm, 1.0/5.5/4.5 mm, and −3.9/5.1/3.6 mm for the left-right, anterior-posterior, and cranial-caudal directions, respectively. With regard to the first CBCT scan, M/Σ/σ were 0.8/2.8/2.1, 0.6/4.4/4.4, and −1.3/4.5/3.6 mm. Conclusions: A new type of marker and implantation method was shown to have significantly reduced marker loss and streaking artifacts compared with gold fiducial markers. The recorded marker displacement confirms results reported in the existing literature but for a larger dataset.« less

  19. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiagarajan, Anuradha, E-mail: anu_thiagarajan@hotmail.com; Caria, Nicola; Schoeder, Heiko

    2012-05-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings.more » Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p < 0.001). Although no significant difference in size was noted between GTVctpet and GTVctmr (p = 0.39), there was poor concordance between them (CI = 0.62). In addition, although CI (ctpetmr vs. ref) was low, it was significantly higher than CI (ctpet vs. ref) and CI (ctmr vs. ref) (p < 0.001), suggesting that neither modality should be used alone. Qualitative analyses to explain the low CI (ctpetmr vs. ref) revealed underestimation of mucosal disease when GTV was contoured without knowledge of PE findings. Similar trends were observed for nodal GTVs. However, CI (ctpet vs. ref), CI (ctmr vs. ref), and CI (ctpetmr vs. ref) were high (>0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV delineation. Conclusion: PET and MRI are complementary and combined use is ideal. However, the low CI (ctpetmr vs. ref) particularly for primary tumors underscores the limitations of defining GTVs using imaging alone. PE is invaluable and must be incorporated.« less

  20. WE-B-207-02: CT Lung Cancer Screening and the Medical Physicist: A Dosimetry Summary of CT Participants in the National Lung Cancer Screening Trial (NLST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less

  1. Management of minor head injury in patients receiving oral anticoagulant therapy: a prospective study of a 24-hour observation protocol.

    PubMed

    Menditto, Vincenzo G; Lucci, Moira; Polonara, Stefano; Pomponio, Giovanni; Gabrielli, Armando

    2012-06-01

    Patients receiving warfarin who experience minor head injury are at risk of intracranial hemorrhage, and optimal management after a single head computed tomography (CT) scan is unclear. We evaluate a protocol of 24-hour observation followed by a second head CT scan. In this prospective case series, we enrolled consecutive patients receiving warfarin and showing no intracranial lesions on a first CT scan after minor head injury treated at a Level II trauma center. We implemented a structured clinical pathway, including 24-hour observation and a CT scan performed before discharge. We then evaluated the frequency of death, admission, neurosurgery, and delayed intracranial hemorrhage. We enrolled and observed 97 consecutive patients. Ten refused the second CT scan and were well during 30-day follow-up. Repeated CT scanning in the remaining 87 patients revealed a new hemorrhage lesion in 5 (6%), with 3 subsequently hospitalized and 1 receiving craniotomy. Two patients discharged after completing the study protocol with 2 negative CT scan results were admitted 2 and 8 days later with symptomatic subdural hematomas; neither received surgery. Two of the 5 patients with delayed bleeding at 24 hours had an initial international normalized ratio greater than 3.0, as did both patients with delayed bleeding beyond 24 hours. The relative risk of delayed hemorrhage with an initial international normalized ratio greater than 3.0 was 14 (95% confidence interval 4 to 49). For patients receiving warfarin who experience minor head injury and have a negative initial head CT scan result, a protocol of 24-hour observation followed by a second CT scan will identify most occurrences of delayed bleeding. An initial international normalized ratio greater than 3 suggests higher risk. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  2. Predictors of positive 18F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica.

    PubMed

    Prieto-Peña, Diana; Martínez-Rodríguez, Isabel; Loricera, Javier; Banzo, Ignacio; Calderón-Goercke, Mónica; Calvo-Río, Vanesa; González-Vela, Carmen; Corrales, Alfonso; Castañeda, Santos; Blanco, Ricardo; Hernández, José L; González-Gay, Miguel Á

    2018-05-18

    Polymyalgia rheumatica (PMR) is often the presenting manifestation of giant cell arteritis (GCA). Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scan often discloses the presence of large vessel vasculitis (LVV) in PMR patients. We aimed to identify predictive factors of a positive PET/CT scan for LVV in patients classified as having isolated PMR according to well-established criteria. A set of consecutive patients with PMR from a single hospital were assessed. All of them underwent PET/CT scan between January 2010 and February 2018 based on clinical considerations. Patients with PMR associated to other diseases, including those with cranial features of GCA, were excluded. The remaining patients were categorized in classic PMR (if fulfilled the 2012 EULAR/ACR classification criteria at disease diagnosis; n = 84) or atypical PMR (who did not fulfill these criteria; n = 16). Only information on patients with classic PMR was assessed. The mean age of the 84 patients (51 women) with classic PMR was 71.4 ± 9.2 years. A PET/CT scan was positive in 51 (60.7%). Persistence of classic PMR symptoms was the most common reason to perform a PET/CT scan. Nevertheless, patients with positive PET/CT scan often had unusual symptoms. The best set of predictors of a positive PET/CT scan were bilateral diffuse lower limb pain (OR = 8.8, 95% CI: 1.7-46.3; p = 0.01), pelvic girdle pain (OR = 4.9, 95% CI: 1.50-16.53; p = 0.01) and inflammatory low back pain (OR = 4.7, 95% CI: 1.03-21.5; p = 0.04). Inflammatory low back pain, pelvic girdle and diffuse lower limb pain are predictors of positive PET/CT scan for LVV in PMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Radiological features of experimental staphylococcal septic arthritis by micro computed tomography scan

    PubMed Central

    Fatima, Farah; Fei, Ying; Ali, Abukar; Mohammad, Majd; Erlandsson, Malin C.; Bokarewa, Maria I.; Nawaz, Muhammad; Valadi, Hadi; Na, Manli

    2017-01-01

    Background Permanent joint dysfunction due to bone destruction occurs in up to 50% of patients with septic arthritis. Recently, imaging technologies such as micro computed tomography (μCT) scan have been widely used for preclinical models of autoimmune joint disorders. However, the radiological features of septic arthritis in mice are still largely unknown. Methods NMRI mice were intravenously or intra-articularly inoculated with S. aureus Newman or LS-1 strain. The radiological and clinical signs of septic arthritis were followed for 10 days using μCT. We assessed the correlations between joint radiological changes and clinical signs, histological changes, and serum levels of cytokines. Results On days 5–7 after intravenous infection, bone destruction verified by μCT became evident in most of the infected joints. Radiological signs of bone destruction were dependent on the bacterial dose. The site most commonly affected by septic arthritis was the distal femur in knees. The bone destruction detected by μCT was positively correlated with histological changes in both local and hematogenous septic arthritis. The serum levels of IL-6 were significantly correlated with the severity of joint destruction. Conclusion μCT is a sensitive method for monitoring disease progression and determining the severity of bone destruction in a mouse model of septic arthritis. IL-6 may be used as a biomarker for bone destruction in septic arthritis. PMID:28152087

  4. Sensitivity and accuracy of hybrid fluorescence-mediated tomography in deep tissue regions.

    PubMed

    Rosenhain, Stefanie; Al Rawashdeh, Wa'el; Kiessling, Fabian; Gremse, Felix

    2017-09-01

    Fluorescence-mediated tomography (FMT) enables noninvasive assessment of the three-dimensional distribution of near-infrared fluorescence in mice. The combination with micro-computed tomography (µCT) provides anatomical data, enabling improved fluorescence reconstruction and image analysis. The aim of our study was to assess sensitivity and accuracy of µCT-FMT under realistic in vivo conditions in deeply-seated regions. Accordingly, we acquired fluorescence reflectance images (FRI) and µCT-FMT scans of mice which were prepared with rectal insertions with different amounts of fluorescent dye. Default and high-sensitivity scans were acquired and background signal was analyzed for three FMT channels (670 nm, 745 nm, and 790 nm). Analysis was performed for the original and an improved FMT reconstruction using the µCT data. While FRI and the original FMT reconstruction could detect 100 pmol, the improved FMT reconstruction could detect 10 pmol and significantly improved signal localization. By using a finer sampling grid and increasing the exposure time, the sensitivity could be further improved to detect 0.5 pmol. Background signal was highest in the 670 nm channel and most prominent in the gastro-intestinal tract and in organs with high relative amounts of blood. In conclusion, we show that µCT-FMT allows sensitive and accurate assessment of fluorescence in deep tissue regions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Shi, F; Tian, Z

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less

  6. Estimating the lifetime risk of cancer associated with multiple CT scans.

    PubMed

    Ivanov, V K; Kashcheev, V V; Chekin, S Yu; Menyaylo, A N; Pryakhin, E A; Tsyb, A F; Mettler, F A

    2014-12-01

    Multiple CT scans are often done on the same patient resulting in an increased risk of cancer. Prior publications have estimated risks on a population basis and often using an effective dose. Simply adding up the risks from single scans does not correctly account for the survival function. A methodology for estimating personal radiation risks attributed to multiple CT imaging using organ doses is presented in this article. The estimated magnitude of the attributable risk fraction for the possible development of radiation-induced cancer indicates the necessity for strong clinical justification when ordering multiple CT scans.

  7. [Non-operation management of 12 cases with brain abscess demonstrated by CT scan].

    PubMed

    Long, J

    1990-12-01

    This paper reported 12 cases with brain abscess demonstrated by CT scan. Using antibiotic management without surgical intervention, in 10 cases the curative effects were satisfactory. The paper indicated that CT scan was very useful in prompt and correct diagnosis of brain abscess and with sequential CT scan medical therapy was feasible. It is significant in treatment of brain abscess especially for the patients who have a poor general condition, have the brain abscess located in important functional area or have multiple abscesses so that the operation is difficult for them.

  8. Vomiting--is this a good indication for CT head scans in patients with minor head injury?

    PubMed

    Bainbridge, J; Khirwadkar, H; Hourihan, M D

    2012-02-01

    The National Institute for Health and Clinical Excellence head injury guidelines advise CT imaging within 1 h if there is more than one episode of vomiting post-head injury in adults and three or more episodes in children. Since the guideline publication, studies have found that, following head injury, vomiting alone is associated with an abnormal CT head scan in 13-45% of cases. CT head scan requests referred from the emergency department between 1 May 2009 and 30 April 2010 were retrospectively reviewed. Patients with vomiting as the sole indication for an "immediate" CT head scan performed within 1 h were included in the study. Reports produced by experienced neuroradiologists were reviewed and the detection of significant head injury was noted. There were 1264 CT head scans performed during our study period. 151 (124 adults, 27 children) were indicated owing to vomiting following head injury. 5 of the 124 adult scans and 1 of the 27 paediatric scans showed an abnormal finding, giving positive predictive values (PPV) of 4% and 3.7%, respectively. None of these patients required either acute or delayed neurosurgical intervention. In our experience, vomiting alone has a PPV of 4% for significant head injury in adults. However, none of these injuries were serious enough to warrant acute or delayed intervention. Given these findings, vomiting following head injury is a reasonable indication for a CT head scan; however, as none of the patients required acute intervention, we suggest that these scans do not usually need to be performed within 1 h of request.

  9. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans.

    PubMed

    Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H

    2015-06-01

    Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of FDG SPECT/CT is then limited and cannot replace PET/CT.

  10. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  11. Effect of emergency department CT on neuroimaging case volume and positive scan rates.

    PubMed

    Oguz, Kader Karli; Yousem, David M; Deluca, Tom; Herskovits, Edward H; Beauchamp, Norman J

    2002-09-01

    The authors performed this study to determine the effect a computed tomographic (CT) scanner in the emergency department (ED) has on neuroimaging case volume and positive scan rates. The total numbers of ED visits and neuroradiology CT scans requested from the ED were recorded for 1998 and 2000, the years before and after the installation of a CT unit in the ED. For each examination type (brain, face, cervical spine), studies were graded for major findings (those that affected patient care), minor findings, and normal findings. The CT utilization rates and positive study rates were compared for each type of study performed for both years. There was a statistically significant increase in the utilization rate after installation of the CT unit (P < .001). The fractions of studies with major findings, minor findings, and normal findings changed significantly after installation of the CT unit for facial examinations (P = .002) but not for brain (P = .12) or cervical spine (P = .24) examinations. In all types of studies, the percentage of normal examinations increased. In toto, there was a significant decrease in the positive scan rate after installation of the CT scanner (P = .004). After installation of a CT scanner in the ED, there was increased utilization and a decreased rate of positive neuroradiologic examinations, the latter primarily due to lower positive rates for facial CT scans.

  12. Serial changes and prognostic implications of CT findings in combined pulmonary fibrosis and emphysema: comparison with fibrotic idiopathic interstitial pneumonias alone.

    PubMed

    Lee, Geewon; Kim, Ki Uk; Lee, Ji Won; Suh, Young Ju; Jeong, Yeon Joo

    2017-05-01

    Background Although fibrotic idiopathic interstitial pneumonias (IIPs) alone and those combined with pulmonary emphysema are naturally progressive diseases, the process of deterioration and outcomes are variable. Purpose To evaluate and compare serial changes of computed tomography (CT) abnormalities and prognostic predictive factors in fibrotic IIPs alone and those combined with pulmonary emphysema. Material and Methods A total of 148 patients with fibrotic IIPs alone (82 patients) and those combined with pulmonary emphysema (66 patients) were enrolled. Semi-quantitative CT analysis was used to assess the extents of CT characteristics which were evaluated on initial and follow-up CT images. Univariate and multivariate analyses were performed to assess the effects of clinical and CT variables on survival. Results Significant differences were noted between fibrotic scores, as determined using initial CT scans, in the fibrotic IIPs alone (21.22 ± 9.83) and those combined with pulmonary emphysema groups (14.70 ± 7.28) ( P < 0.001). At follow-up CT scans, changes in the extent of ground glass opacities (GGO) were greater ( P = 0.031) and lung cancer was more prevalent ( P = 0.001) in the fibrotic IIPs combined with pulmonary emphysema group. Multivariate Cox proportional hazards analysis showed changes in the extent of GGO (hazard ratio, 1.056) and the presence of lung cancer (hazard ratio, 4.631) were predictive factors of poor survivals. Conclusion Although patients with fibrotic IIPs alone and those combined with pulmonary emphysema have similar mortalities, lung cancer was more prevalent in patients with fibrotic IIPs combined with pulmonary emphysema. Furthermore, changes in the extent of GGO and the presence of lung cancer were independent prognostic factors of poor survivals.

  13. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  14. Reducing Head CT Use for Children With Head Injuries in a Community Emergency Department.

    PubMed

    Jennings, Rebecca M; Burtner, Jennifer J; Pellicer, Joseph F; Nair, Deepthi K; Bradford, Miranda C; Shaffer, Michele; Uspal, Neil G; Tieder, Joel S

    2017-04-01

    Clinical decision rules have reduced use of computed tomography (CT) to evaluate minor pediatric head injury in pediatric emergency departments (EDs). CT use remains high in community EDs, where the majority of children seek medical care. We sought to reduce the rate of CT scans used to evaluate pediatric head injury from 29% to 20% in a community ED. We evaluated a quality improvement (QI) project in a community ED aimed at decreasing the use of head CT scans in children by implementing a validated head trauma prediction rule for traumatic brain injury. A multidisciplinary team identified key drivers of CT use and implemented decision aids to improve the use of prediction rules. The team identified and mitigated barriers. An affiliated children's hospital offered Maintenance of Certification credit and QI coaching to participants. We used statistical process control charts to evaluate the effect of the intervention on monthly CT scan rates and performed a Wald test of equivalence to compare preintervention and postintervention CT scan proportions. The baseline period (February 2013-July 2014) included 695 patients with a CT scan rate of 29.2% (95% confidence interval, 25.8%-32.6%). The postintervention period (August 2014-October 2015) included 651 patients with a CT scan rate of 17.4% (95% confidence interval, 14.5%-20.2%, P < .01). Barriers included targeting providers with variable pediatric experience and parental imaging expectations. We demonstrate that a Maintenance of Certification QI project sponsored by a children's hospital can facilitate evidence-based pediatric care and decrease the rate of unnecessary CT use in a community setting. Copyright © 2017 by the American Academy of Pediatrics.

  15. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, A; Armato, S; Castillo, R

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacementmore » vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of these features is the first step towards quantifying radiation-induced changes between preand post-therapy scans. Supported, in part, by NIH Grant Nos. S10 RR021039, and P30 CA14599, the Virginia and D. K. Ludwig Fund for Cancer Research, Imaging Research Institute, Biological Sciences Division, The University of Chicago, and The Institute for Translational Medicine Pilot Award, The University of Chicago.« less

  17. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    PubMed

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  18. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  19. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kVmore » beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.« less

  20. Effect of different CT scanners and settings on femoral failure loads calculated by finite element models.

    PubMed

    Eggermont, Florieke; Derikx, Loes C; Free, Jeffrey; van Leeuwen, Ruud; van der Linden, Yvette M; Verdonschot, Nico; Tanck, Esther

    2018-03-06

    In a multi-center patient study, using different CT scanners, CT-based finite element (FE) models are utilized to calculate failure loads of femora with metastases. Previous studies showed that using different CT scanners can result in different outcomes. This study aims to quantify the effects of (i) different CT scanners; (ii) different CT protocols with variations in slice thickness, field of view (FOV), and reconstruction kernel; and (iii) air between calibration phantom and patient, on Hounsfield Units (HU), bone mineral density (BMD), and FE failure load. Six cadaveric femora were scanned on four CT scanners. Scans were made with multiple CT protocols and with or without an air gap between the body model and calibration phantom. HU and calibrated BMD were determined in cortical and trabecular regions of interest. Non-linear isotropic FE models were constructed to calculate failure load. Mean differences between CT scanners varied up to 7% in cortical HU, 6% in trabecular HU, 6% in cortical BMD, 12% in trabecular BMD, and 17% in failure load. Changes in slice thickness and FOV had little effect (≤4%), while reconstruction kernels had a larger effect on HU (16%), BMD (17%), and failure load (9%). Air between the body model and calibration phantom slightly decreased the HU, BMD, and failure loads (≤8%). In conclusion, this study showed that quantitative analysis of CT images acquired with different CT scanners, and particularly reconstruction kernels, can induce relatively large differences in HU, BMD, and failure loads. Additionally, if possible, air artifacts should be avoided. © 2018 Orthopaedic Research Society. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  1. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations.

    PubMed

    Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L

    2018-01-01

    The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.

  2. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, K; Kadoya, N; Chiba, M

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previousmore » dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.« less

  3. Chemotherapy Response Assessment by FDG-PET-CT in Early-stage Classical Hodgkin Lymphoma: Moving Beyond the Five-Point Deauville Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Sarah A., E-mail: samilgrom@mdanderson.org; Dong, Wenli; Akhtari, Mani

    Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CTmore » scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined with the Deauville score, it might improve risk stratification and contribute to response-adapted individualization of therapy.« less

  4. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Stafford, R; Yung, J

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR.more » Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.« less

  5. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less

  6. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children.

    PubMed

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-08-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children.

  7. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France.

    PubMed

    Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O

    2015-01-06

    Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. The cohort included 67,274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans.

  8. Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.

    PubMed

    Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S

    2017-01-01

    PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).

  9. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    PubMed Central

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Methods: Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. Results: The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and −1.716 for liver, −0.153 and −1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P > 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = −8.11 for liver, −7.83 for pancreas, and −5.38 for renal cortex, all P < 0.05). However, the subjective scores for the 40 keV (FBP) and 60 keV (40% ASiR) spectral CT images determined by two radiologists were all >3, indicating clinically acceptable image quality. Conclusions: Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality. PMID:28345547

  10. Radiation from CT scans in paediatric trauma patients: Indications, effective dose, and impact on surgical decisions.

    PubMed

    Livingston, Michael H; Igric, Ana; Vogt, Kelly; Parry, Neil; Merritt, Neil H

    2014-01-01

    The purpose of this study was to determine the effective dose of radiation due to computed tomography (CT) scans in paediatric trauma patients at a level 1 Canadian paediatric trauma centre. We also explored the indications and actions taken as a result of these scans. We performed a retrospective review of paediatric trauma patients presenting to our centre from January 1, 2007 to December 31, 2008. All CT scans performed during the initial trauma resuscitation, hospital stay, and 6 months afterwards were included. Effective dose was calculated using the reported dose length product for each scan and conversion factors specific for body region and age of the patient. 157 paediatric trauma patients were identified during the 2-year study period. Mean Injury Severity Score was 22.5 (range 12-75). 133 patients received at least one CT scan. The mean number of scans per patient was 2.6 (range 0-16). Most scans resulted in no further action (56%) or additional imaging (32%). A decision to perform a procedure (2%), surgery (8%), or withdrawal of life support (2%) was less common. The average dose per patient was 13.5mSv, which is 4.5 times the background radiation compared to the general population. CT head was the most commonly performed type of scan and was most likely to be repeated. CT body, defined as a scan of the chest, abdomen, and/or pelvis, was associated with the highest effective dose. CT is a significant source of radiation in paediatric trauma patients. Clinicians should carefully consider the indications for each scan, especially when performing non-resuscitation scans. There is a need for evidence-based treatment algorithms to assist clinicians in selecting appropriate imaging for patients with severe multisystem trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. SU-E-J-106: The Use of Deformable Image Registration with Cone-Beam CT for a Better Evaluation of Cumulative Dose to Organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillion, O; Gingras, L; Archambault, L

    2015-06-15

    Purpose: The knowledge of dose accumulation in the patient tissues in radiotherapy helps in determining the treatment outcomes. This project aims at providing a workflow to map cumulative doses that takes into account interfraction organ motion without the need for manual re-contouring. Methods: Five prostate cancer patients were studied. Each patient had a planning CT (pCT) and 5 to 13 CBCT scans. On each series, a physician contoured the prostate, rectum, bladder, seminal vesicles and the intestine. First, a deformable image registration (DIR) of the pCTs onto the daily CBCTs yielded registered CTs (rCT) . This rCT combined the accuratemore » CT numbers of the pCT with the daily anatomy of the CBCT. Second, the original plans (220 cGy per fraction for 25 fractions) were copied on the rCT for dose re-calculation. Third, the DIR software Elastix was used to find the inverse transform from the rCT to the pCT. This transformation was then applied to the rCT dose grid to map the dose voxels back to their pCT location. Finally, the sum of these deformed dose grids for each patient was applied on the pCT to calculate the actual dose delivered to organs. Results: The discrepancy between the planned D98 and D2 and these indices re-calculated on the rCT, are, on average, of −1 ± 1 cGy and 1 ± 2 cGy per fraction, respectively. For fractions with large anatomical motion, the D98 discrepancy on the re-calculated dose grid mapped onto the pCT can raise to −17 ± 4 cGy. The obtained cumulative dose distributions illustrate the same behavior. Conclusion: This approach allowed the evaluation of cumulative doses to organs with the help of uncontoured daily CBCT scans. With this workflow, the easy evaluation of doses delivered for EBRT treatments could ultimately lead to a better follow-up of prostate cancer patients.« less

  12. Unenhanced low-dose versus standard-dose CT localization in patients with upper urinary calculi for minimally invasive percutaneous nephrolithotomy (MPCNL)

    PubMed Central

    Licheng, Jiang; Yidong, Fan; Ping, Wang; Keqiang, Yan; Xueting, Wang; Yingchen, Zhang; Lei, Gao; Jiyang, Ding; Zhonghua, Xu

    2014-01-01

    Background & objectives: With the ethical concern about the dose of CT scan and wide use of CT in protocol of suspected renal colic, more attention has been paid to low dose CT. The aim of the present study was to make a comparison of unenhanced low-dose spiral CT localization with unenhanced standard-dose spiral CT in patients with upper urinary tract calculi for minimally invasive percutaneous nephrolithotomy (MPCNL) treatment. Methods: Twenty eight patients with ureter and renal calculus, preparing to take MPCNL, underwent both abdominal low-dose CT (25 mAs) and standard-dose CT (100 mAs). Low-dose CT and standard-dose CT were independently evaluated for the characterization of renal/ureteral calculi, perirenal adjacent organs, blood vessels, indirect signs of renal or ureteral calculus (renal enlargement, pyeloureteral dilatation), and the indices of localization (percutaneous puncture angulation and depth) used in the MPCNL procedure. Results: In all 28 patients, low-dose CT was 100 per cent coincidence 100 per cent sensitive and 100 per cent specific for depicting the location of the renal and ureteral calculus, renal enlargement, pyeloureteral dilatation, adjacent organs, and the presumptive puncture point and a 96.3 per cent coincidence 96 per cent sensitivity and 93 per cent specificity for blood vessel signs within the renal sinus, and with an obvious lower radiation exposure for patients when compared to standard-dose CT (P<0.05). The indices of puncture depth, puncture angulation, and maximum calculus transverse diameter on the axial surface showed no significant difference between the two doses of CT scans, with a significant variation in calculus visualization slice numbers (P<0.05). Interpretation & conclusions: Our findings show that unenhanced low-dose CT achieves a sensitivity and accuracy similar to that of standard-dose CT in assessing the localization of renal ureteral calculus and adjacent organs conditions and identifying the maximum calculus transverse diameter on the axial surface, percutaneous puncture depth, and angulation in patients, with a significant lower radiation exposure, who are to be treated by MPCNL, and can be used as an alternative localization method. PMID:24820832

  13. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  14. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial.

    PubMed

    Sierink, Joanne C; Treskes, Kaij; Edwards, Michael J R; Beuker, Benn J A; den Hartog, Dennis; Hohmann, Joachim; Dijkgraaf, Marcel G W; Luitse, Jan S K; Beenen, Ludo F M; Hollmann, Markus W; Goslings, J Carel

    2016-08-13

    Published work suggests a survival benefit for patients with trauma who undergo total-body CT scanning during the initial trauma assessment; however, level 1 evidence is absent. We aimed to assess the effect of total-body CT scanning compared with the standard work-up on in-hospital mortality in patients with trauma. We undertook an international, multicentre, randomised controlled trial at four hospitals in the Netherlands and one in Switzerland. Patients aged 18 years or older with trauma with compromised vital parameters, clinical suspicion of life-threatening injuries, or severe injury were randomly assigned (1:1) by ALEA randomisation to immediate total-body CT scanning or to a standard work-up with conventional imaging supplemented with selective CT scanning. Neither doctors nor patients were masked to treatment allocation. The primary endpoint was in-hospital mortality, analysed in the intention-to-treat population and in subgroups of patients with polytrauma and those with traumatic brain injury. The χ(2) test was used to assess differences in mortality. This trial is registered with ClinicalTrials.gov, number NCT01523626. Between April 22, 2011, and Jan 1, 2014, 5475 patients were assessed for eligibility, 1403 of whom were randomly assigned: 702 to immediate total-body CT scanning and 701 to the standard work-up. 541 patients in the immediate total-body CT scanning group and 542 in the standard work-up group were included in the primary analysis. In-hospital mortality did not differ between groups (total-body CT 86 [16%] of 541 vs standard work-up 85 [16%] of 542; p=0.92). In-hospital mortality also did not differ between groups in subgroup analyses in patients with polytrauma (total-body CT 81 [22%] of 362 vs standard work-up 82 [25%] of 331; p=0.46) and traumatic brain injury (68 [38%] of 178 vs 66 [44%] of 151; p=0.31). Three serious adverse events were reported in patients in the total-body CT group (1%), one in the standard work-up group (<1%), and one in a patient who was excluded after random allocation. All five patients died. Diagnosing patients with an immediate total-body CT scan does not reduce in-hospital mortality compared with the standard radiological work-up. Because of the increased radiation dose, future research should focus on the selection of patients who will benefit from immediate total-body CT. ZonMw, the Netherlands Organisation for Health Research and Development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Investigating different computed tomography techniques for internal target volume definition.

    PubMed

    Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen

    2017-01-01

    The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.

  16. TOMOGRAPHIC MORPHOLOGICAL STUDY OF THE CRANIUM AND ITS CORRELATION WITH CRANIAL HALO USE IN ADULTS

    PubMed Central

    ALMEIDA, TIAGO FERREIRA DE; CHARAFEDDINE, HOMAR TOLEDO; ARAÚJO, FERNANDO FLORES DE; CRISTANTE, ALEXANDRE FOGAÇA; MARCON, RAPHAEL MARTUS; LETAIF, OLAVO BIRAGHI

    2017-01-01

    ABSTRACT Objective: To evaluate using tomographic study the thickness of the cranial board at the insertions points of the cranial halo pins in adults Methods: This is a retrospective, cross-sectional, descriptive analysis of Computed Tomography (CT) scans of adult patients' crania. The study included adults between 20 and 50 years without cranial abnormalities. We excluded any exam with cranial abnormalities Results: We analyzed 50 CT scans, including 27 men and 23 women, at the original insertion points and alternative points (1 and 2 cm above the frontal and parietal bones). The average values were 7.4333 mm in the frontal bone and 6.0290 mm in the parietal bone Conclusion: There was no statistically significant difference between the classical and alternative points, making room for alternative fixings and safer introduction of the pins, if necessary.Level of Evidence II, Retrospective Study. PMID:28642643

  17. Human identification based on cranial computed tomography scan — a case report

    PubMed Central

    Silva, RF; Botelho, TL; Prado, FB; Kawagushi, JT; Daruge Júnior, E; Bérzin, F

    2011-01-01

    Today, there is increasing use of CT scanning on a clinical basis, aiding in the diagnosis of diseases or injuries. This exam also provides important information that allows identification of individuals. This paper reports the use of a CT scan on the skull, taken when the victim was alive, for the positive identification of a victim of a traffic accident in which the fingerprint analysis was impossible. The authors emphasize that the CT scan is a tool primarily used in clinical diagnosis and may contribute significantly to forensic purpose, allowing the exploration of virtual corpses before the classic autopsy. The use of CT scans might increase the quantity and quality of information involved in the death of the person examined. PMID:21493883

  18. Is appendiceal CT scan overused for evaluating patients with right lower quadrant pain?

    PubMed

    Safran, D B; Pilati, D; Folz, E; Oller, D

    2001-05-01

    Reports citing excellent sensitivity, specificity, and predictive accuracy of focused appendiceal computed tomography (CT) and showing an overall reduction in resource use and nontherapeutic laparotomies have led to increasing use of that imaging modality. Diagnostic algorithms have begun to incorporate appendiceal CT for patients presenting to the emergency department with right lower quadrant pain. We present a series of 4 cases in which use of appendiceal CT ultimately led to increased cost, resource use, and complexity in patient care. The results of these cases support an argument against unbridled use of appendiceal CT scanning and reinforce the need for clinical evaluation by the operating surgeon before routine performance of appendiceal CT scan.

  19. WE-B-207-00: CT Lung Cancer Screening Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less

  20. Effect of topogram-tube angle combination on CT radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Shim, J.; Yoon, M.

    2017-09-01

    This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S; Yuen, C; Huang, V

    Purpose: In this abstract we implement and validate a 4D VMAT Acuros XB dose calculation using Gafchromic film. Special attention is paid to the physical material assignment in the CT dataset and to reported dose to water and dose to medium. Methods: A QUASAR phantom with a 3 cm sinusoidal tumor motion and 5 second period was scanned using 4D computed tomography. A CT was also obtained of the static QUASAR phantom with the tumor at the central position. A VMAT plan was created on the average CT dataset and was delivered on a Varian TrueBeam linear accelerator. The trajectorymore » log file from this treatment was acquired and used to create 10 VMAT subplans (one for each portion of the breathing cycle). Motion for each subplan was simulated by moving the beam isocentre in the superior/inferior direction in the Treatment Planning System on the static CT scan. The 10 plans were calculated (both dose to medium and dose to water) and summed for 1) the original HU values from the static CT scan and 2) the correct physical material assignment in the CT dataset. To acquire a breathing phase synchronized film measurements the trajectory log was used to create a VMAT delivery plan which includes dynamic couch motion using the Developer Mode. Three different treatment start phases were investigated (mid inhalation, full inhalation and full exhalation). Results: For each scenario the coronal dose distributions were measured using Gafchromic film and compared to the corresponding calculation with Film QA Pro Software using a Gamma test with a 3%/3mm distance to agreement criteria. Good agreement was found between calculation and measurement. No statistically significant difference in agreement was found between calculations to original HU values vs calculations to over-written (material-assigned) HU values. Conclusion: The investigated 4D dose calculation method agrees well with measurement.« less

  2. SU-E-J-265: Feasibility Study of Texture Analysis for Prognosis of Local Tumor Recurrence Within 5-Years for Pharyngeal-Laryngeal Carcinoma Patients Received Radiotherapy Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, W; Tu, S

    Purpose: Pharyngeal and laryngeal carcinomas (PLC) are among the top leading cancers in Asian populations. Typically the tumor may recur and progress in a short period of time if radiotherapy fails to deliver a successful treatment. Here we used image texture features extracted from images of computed tomography (CT) planning and conducted a retrospective study to evaluate whether texture analysis is a feasible approach to predict local tumor recurrence for PLC patients received radiotherapy treatment. Methods: CT planning images of 100 patients with PLC treated by radiotherapy at our facility between 2001 and 2010 are collected. These patients were receivedmore » two separate CT scans, before and mid-course of the treatment delivery. Before the radiotherapy, a CT scanning was used for the first treatment planning. A total of 30 fractions were used in the treatment and patients were scanned with a second CT around the end of the fifteenth delivery for an adaptive treatment planning. Only patients who were treated with intensity modulated radiation therapy and RapidArc were selected. Treatment planning software of Eclipse was used. The changes of texture parameters between two CT acquisitions were computed to determine whether they were correlated to the local tumor recurrence. The following texture parameters were used in the preliminary assessment: mean, variance, standard deviation, skewness, kurtosis, energy, entropy, inverse difference moment, cluster shade, inertia, cluster prominence, gray-level co-occurrence matrix, and gray-level run-length matrix. The study was reviewed and approved by the committee of our institutional review board. Results: Our calculations suggested the following texture parameters were correlated with the local tumor recurrence: skewness, kurtosis, entropy, and inertia (p<0.0.05). Conclusion: The preliminary results were positive. However some works remain crucial to be completed, including addition of texture parameters for different image features, sensitivity of tumor segmentation variations, and effect of image filtering.« less

  3. Bone Metastases in Castration-Resistant Prostate Cancer: Associations between Morphologic CT Patterns, Glycolytic Activity, and Androgen Receptor Expression on PET and Overall Survival

    PubMed Central

    Wassberg, Cecilia; Fox, Josef J.; Wibmer, Andreas; Goldman, Debra A.; Kuk, Deborah; Gonen, Mithat; Larson, Steven M.; Morris, Michael J.; Scher, Howard I.; Hricak, Hedvig

    2014-01-01

    Purpose To compare the features of bone metastases at computed tomography (CT) to tracer uptake at fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and fluorine 18 16β-fluoro-5-dihydrotestosterone (FDHT) PET and to determine associations between these imaging features and overall survival in men with castration-resistant prostate cancer. Materials and Methods This is a retrospective study of 38 patients with castration-resistant prostate cancer. Two readers independently evaluated CT, FDG PET, and FDHT PET features of bone metastases. Associations between imaging findings and overall survival were determined by using univariate Cox proportional hazards regression. Results In 38 patients, reader 1 detected 881 lesions and reader 2 detected 867 lesions. Attenuation coefficients at CT correlated inversely with FDG (reader 1: r = −0.3007; P < .001; reader 2: r = −0.3147; P < .001) and FDHT (reader 1: r = −0.2680; P = .001; reader 2: r = −0.3656; P < .001) uptake. The number of lesions on CT scans was significantly associated with overall survival (reader 1: hazard ratio [HR], 1.025; P = .05; reader 2: HR, 1.021; P = .04). The numbers of lesions on FDG and FDHT PET scans were significantly associated with overall survival for reader 1 (HR, 1.051–1.109; P < .001) and reader 2 (HR, 1.026–1.082; P ≤ .009). Patients with higher FDHT uptake (lesion with the highest maximum standardized uptake value) had significantly shorter overall survival (reader 1: HR, 1.078; P = .02; reader 2: HR, 1.092; P = .02). FDG uptake intensity was not associated with overall survival (reader 1, P = .65; reader 2, P = .38). Conclusion In patients with castration-resistant prostate cancer, numbers of bone lesions on CT, FDG PET, and FDHT PET scans and the intensity of FDHT uptake are significantly associated with overall survival. © RSNA, 2013 PMID:24475817

  4. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Peter, E-mail: p.h.fritz@t-online.d; Kraus, Hans-Joerg; Muehlnickel, Werner

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTVmore » enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.« less

  5. SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, K; Li, H; Zhao, T

    2014-06-15

    Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). Themore » dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.« less

  6. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians.

    PubMed

    Mathews, John D; Forsythe, Anna V; Brady, Zoe; Butler, Martin W; Goergen, Stacy K; Byrnes, Graham B; Giles, Graham G; Wallace, Anthony B; Anderson, Philip R; Guiver, Tenniel A; McGale, Paul; Cain, Timothy M; Dowty, James G; Bickerstaffe, Adrian C; Darby, Sarah C

    2013-05-21

    To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Population based, cohort, data linkage study in Australia. COHORT MEMBERS: 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. 60,674 cancers were recorded, including 3150 in 680,211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100,000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose.

  7. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    PubMed

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases with patient size, and the radiation dose received by larger patients as a result of more than 3 O-arm scans in standard mode may exceed the dose received during standard CT of the abdomen. Understanding radiation imparted to patients by cone-beam CT is important for assessing risks and benefits of this technology, especially when spinal surgical procedures require multiple intraoperative scans.

  8. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  9. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C; Cunliffe, A; Al-Hallaq, H

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lungmore » were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number R25GM109439.« less

  10. Investigating the necessity of computed tomographic scans in children with headaches: a retrospective review.

    PubMed

    Gandhi, Rohit; Lewis, Evan Cole; Evans, Jeanette W; Sell, Erick

    2015-03-01

    Headaches are a common problem in the pediatric population. In 2002, the American Academy of Neurology (AAN) developed guidelines on neuroimaging for patients presenting with headache. Our objective was to determine the frequency of computed tomographic (CT) scanning ordered by a range of medical practitioners for pediatric patients presenting with primary headache. A retrospective chart review was conducted at the Children's Hospital of Eastern Ontario (CHEO), a tertiary care centre in Ontario. One hundred fifty-one records of patients referred to the outpatient neurology clinic at CHEO with ''headache'' or ''migraine'' as the primary complaint from 2004 to 2009 were randomly selected. Ninety-nine patients with normal neurologic examinations were ultimately included. Thirty-four patients (34%; 95% CI 25-45) had undergone CT scanning. None of the 34 CT scans (0%; 95% CI 0-10) showed significant findings, and none changed the headache diagnosis or management. Eleven (32%) of the CT scans were ordered by CHEO neurologists, 15 (44%) by community physicians, and 8 (24%) by CHEO emergency physicians. A high proportion of children presenting with primary headaches and a normal neurologic examination undergo CT scanning, despite well-established AAN guidelines regarding neuroimaging. Most of these CT scans do not appear to alter diagnosis and management. A variety of non-evidencebased factors may be encouraging physicians to overinvestigate this population and, as a result, increasing the risk of adverse events due to radiation exposure. Implementing initiatives at a site-based level that promote the use of established guidelines before performing CT scanning in this population may be beneficial.

  11. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    PubMed

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  12. The impact of the introduction of PECARN head CT rules on the utilisation of head CT scans in a private tertiary hospital in Sub-Saharan Africa.

    PubMed

    Kobe, Isaac O; Qureshi, Mahmoud M; Hassan, Saidi; Oluoch-Olunya, David L

    2017-12-01

    The decision to order head CT scans to rule out clinically significant traumatic brain injury in mild head injury in children is made on the basis of clinical decision rules of which the Paediatric Emergency Care Applied Research Network (PECARN) CT head rules have been found to be most sensitive. The purpose of this study is to determine the proportion of head CT scans done for children with mild head injury and to determine disposition of patients from casualty after the introduction of PECARN head CT rules compared to the period before. The research question is "will introduction of the PECARN CT head rules reduce the proportion of head CT scans requested for children under 18 years with mild head injury at the AKUHN?" A before and after quasi experimental study with a study population including all children under 18 years presenting to the AKUHN with mild head injury and a Glasgow coma scale of 14 and above on presentation. Sample size was 85. A total of 42 patients files were analysed in the before study while 43 patients were selected for the after study. The median age was 5 years. The proportion of head CT scans reduced from 56% in the before group to 33% in the after group with no missed clinically significant traumatic brain injury. More patients were discharged home after evaluation in the after group (81%) than in the before group (58%). The number of head CT scans ordered reduced without missing any clinically significant traumatic brain injury.

  13. [Exposure to CT scans in childhood and long-term cancer risk: A review of epidemiological studies].

    PubMed

    Baysson, Hélène; Journy, Neige; Roué, Tristan; Ducou-Lepointe, Hubert; Etard, Cécile; Bernier, Marie-Odile

    2016-02-01

    Amongst medical exams requiring ionizing radiation, computed tomography (CT) scans are used more frequently, including in children. These CT examinations are associated with absorbed doses that are much higher than those associated with conventional radiology. In comparison to adults, children have a greater sensitivity to radiation and a longer life span with more years at cancer risks. Five epidemiological studies on cancer risks after CT scan exposure during childhood were published between 2012 and 2015. The results of these studies are consistent and show an increase of cancer risks in children who have been exposed to several CT scans. However, methodological limits due to indication bias, retrospective assessment of radiation exposure from CT scans and lack of statistical power are to be taken into consideration. International projects such as EPI-CT (Epidemiological study to quantify risks for pediatric computerized tomography and to optimize dose), with a focus on dosimetric reconstruction and minimization of bias will provide more precise results. In the meantime, available results reinforce the necessity of justification and optimization of doses. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  14. Journal Club: Head CT scans in the emergency department for syncope and dizziness.

    PubMed

    Mitsunaga, Myles M; Yoon, Hyo-Chun

    2015-01-01

    The purpose of this study was to determine the yield of acutely abnormal findings on head CT scans in patients presenting to the emergency department with dizziness, near-syncope, or syncope and to determine the clinical factors that potentially predicted acutely abnormal head CT findings and hospital admission. We retrospectively reviewed the electronic medical records of all patients presenting to an HMO emergency department between July 1, 2012, and December 31, 2012, who underwent head CT for a primary complaint of dizziness, syncope, or near-syncope. The primary outcomes were head CT scans with acutely abnormal findings and hospital admission. Binary logistic regression was used to assess the association between clinical variables and acute head CT findings and between clinical variables and hospital admission. Of the 253 patients who presented with dizziness, 7.1% had head CT scans with acutely abnormal findings, and 18.6% were admitted. Of the 236 patients who presented with syncope or near-syncope, 6.4% had head CT scans with acutely abnormal findings, and 39.8% were admitted. The following three clinical factors were found to be significantly correlated with acutely abnormal head CT findings: a focal neurologic deficit (p = 0.003), age greater than 60 years (p = 0.011), and acute head trauma (p = 0.026). Our results suggest that most patients presenting with syncope or dizziness to the emergency department may not benefit from head CT unless they are older, have a focal neurologic deficit, or have a history of recent head trauma.

  15. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadra, Jefferson A.; Hazeli, Kavan; Ramesh, K. T.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites withmore » existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).« less

  16. Planning the Breast Boost: Comparison of Three Techniques and Evolution of Tumor Bed During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepel, Jaroslaw T.; Department of Radiation Oncology, Brown University, Rhode Island Hospital, Providence, RI; Evans, Suzanne B.

    2009-06-01

    Purpose: To evaluate the accuracy of two clinical techniques for electron boost planning compared with computed tomography (CT)-based planning. Additionally, we evaluated the tumor bed characteristics at whole breast planning and boost planning. Methods and Materials: A total of 30 women underwent tumor bed boost planning within 2 weeks of completing whole breast radiotherapy using three planning techniques: scar-based planning, palpation/clinical-based planning, and CT-based planning. The plans were analyzed for dosimetric coverage of the CT-delineated tumor bed. The cavity visualization score was used to define the CT-delineated tumor bed as well or poorly defined. Results: Scar-based planning resulted in inferiormore » tumor bed coverage compared with CT-based planning, with the minimal dose received by 90% of the target volume >90% in 53% and a geographic miss in 53%. The results of palpation/clinical-based planning were significantly better: 87% and 10% for the minimal dose received by 90% of the target volume >90% and geographic miss, respectively. Of the 30 tumor beds, 16 were poorly defined by the cavity visualization score. Of these 16, 8 were well demarcated by the surgical clips. The evaluation of the 22 well-defined tumor beds revealed similar results. A comparison of the tumor bed volume from the initial planning CT scan to the boost planning CT scan revealed a decrease in size in 77% of cases. The mean decrease in volume was 52%. Conclusion: The results of our study have shown that CT-based planning allows for optimal tumor bed coverage compared with clinical and scar-based approaches. However, in the setting of a poorly visualized cavity on CT without surgical clips, palpation/clinical-based planning can help delineate the appropriate target volumes and is superior to scar-based planning. CT simulation at boost planning could allow for a reduction in the boost volumes.« less

  17. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Christner, Jodie A.; Duan Xinhui

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less

  18. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy.

    PubMed

    Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A

    2015-05-01

    Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.

  19. Evaluation of diagnostic value of CT scan, physical examination and ultrasound based on pathological findings in patients with pelvic masses.

    PubMed

    Firoozabadi, Razieh Dehghani; Karimi Zarchi, Mojgan; Mansurian, Hamid Reza; Moghadam, Bita Rafiei; Teimoori, Soraya; Naseri, Ali

    2011-01-01

    Because benign and malignant cervical and ovarian masses occur with different percentages in different age groups, the importance of primary diagnosis and selection of a suitable surgical procedure is underlined. Diagnosis of pelvic masses is carried out using ultrasound, physical examination, CT scan and MRI. The objective of this study is to evaluate the diagnostic value of CT scan in pelvic masses in comparison with physical examination-ultrasound based on pathology of the lesion in patients undergoing laparotomic surgery. This analytic-descriptive study focused on age, sonographic findings, physical examinations, CT scan and pathological findings in 139 patients with pelvic mass, gathered with questionnaires and statistically analayzed using the SPSS software programme. Of 139 patients with pelvic mass (patients aged from 17 to 75 years old), 62 (44%) cases were diagnosed as benign and 77 (55.4%) as malignant; among them malignant tratoma serocyst adenocarsinoma with 33 (23.7%) cases and benign myoma with 21 (15.2%) cases comprised the most frequent cases. The sensitivity and specificity of sonography-physical examination were 51.9% and 87.9% respectively and the sensitivity and specificity of CT scan images were 79.2% and 91.6% respectively. It was shown that CT scan images were more consistant with pathological findings in predicting appropriate surgical procedures than do sonography-physical examinations. The sensitivity of CT scan is far higher than that of sonography-physical examination in the diagnosis of pelvic mass malignancy.

  20. Sensitivity and Specificity of Emergency Physicians and Trainees for Identifying Internally Concealed Drug Packages on Abdominal Computed Tomography Scan: Do Lung Windows Improve Accuracy?

    PubMed

    Asha, Stephen Edward; Cooke, Andrew

    2015-09-01

    Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. Denoising of polychromatic CT images based on their own noise properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less

  2. Computed tomography has an important role in hollow viscus and mesenteric injuries after blunt abdominal trauma.

    PubMed

    Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk

    2010-05-01

    Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolutemore » uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.« less

  4. SU-E-J-103: Setup Errors Analysis by Cone-Beam CT (CBCT)-Based Imaged-Guided Intensity Modulated Radiotherapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H; Wang, W; Hu, W

    2014-06-01

    Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scanmore » based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7σ). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (σ) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.« less

  5. [Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis].

    PubMed

    Gierhake, D; Weber, J E; Villringer, K; Ebinger, M; Audebert, H J; Fiebach, J B

    2013-01-01

    To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a.m. to 6:30 p.m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95%) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69%) mainly caused by suboptimal positioning of patient or eye lens protection. Motion artefacts were observed in 8 exams (12%). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. © Georg Thieme Verlag KG Stuttgart · New York.

  6. TH-EF-BRA-04: Individually Optimized Contrast-Enhanced 4D-CT for Radiotherapy Simulation in Pancreatic Ductal Adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Xue, M; Lane, B

    Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent 3 CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. We compared image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) in the 3 CTs. We also evaluated interobserver variations in contouring the tumor using simultaneous truth and performance level estimation (STAPLE). Results: Average image quality scores for CE 3DCT and CE 4D-CT were comparablemore » (4.0 and 3.8, respectively; P=0.47), and both were significantly better than that for 4D-CT (2.6, P<0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 HU, respectively; P=0.71), and the latter was significantly higher than in 4D-CT (9.2 HU, P=0.03). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P<0.001) and 4D-CT (19.4 HU, P=0.005). CNRs were comparable in CE 3D-CT and CE 4DCT (1.4 and 0.8, respectively; P=0.23), and the former was significantly better than in 4D-CT (0.6, P = 0.04). Mean tumor volumes were smaller in CE 3D-CT (29.8 cm{sup 3}) and CE 4D-CT (22.8 cm{sup 3}) than in 4D-CT (42.0 cm{sup 3}), although these differences were not statistically significant. Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P=0.23). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusion: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. Supported in part by Philips Healthcare.« less

  7. Relative hypotension increases the probability of the need for angioembolisation in pelvic fracture patients without contrast extravasation on computed tomography scan.

    PubMed

    Kuo, Ling-Wei; Yang, Shang-Ju; Fu, Chih-Yuan; Liao, Chien-Hung; Wang, Shang-Yu; Wu, Shih-Chi

    2016-01-01

    In the evaluation of haemorrhage in trauma patients with pelvic fractures, contrast extravasation (CE) on computed tomography (CT) scan often implies active arterial bleeding. However, the absence of CE on CT scan does not always exclude the need for transcatheter arterial embolisation (TAE) to achieve haemostasis. In the current study, we evaluated the factors associated with the need for TAE in patients without CE on CT scan. These factors may be evaluated as adjuncts to CT scanning in the management of patients with pelvic fractures. We retrospectively reviewed our trauma registry and medical records of patients with pelvic fractures. When CE was observed, indicating active haemorrhage, the patients underwent TAE to achieve haemostasis. In contrast, patients without CE were held for observation and treatment of their injuries, and if their condition deteriorated after a delayed interval, they were then also referred for TAE if no other focus of haemorrhage was found. Patients without CE on CT scan but with retroperitoneal haemorrhage requiring TAE were investigated. Their demographic characteristics, associated injuries, fracture patterns, and changes in systolic blood pressure were described and analysed. In total, 201 patients with pelvic fracture underwent CT scan examination; 47 (23.4%) had CE by CT scan, whereas the other 154 (76.6%) did not. Of the 154 patients who did not show CE by CT scan, 124 (80.5%) patients never underwent TAE; however, 30 (19.5%) of these patients did eventually undergo TAE. In comparing the patients who underwent TAE to those who did not undergo TAE among patients without CE on CT scan, the systolic blood pressure (SBP) on arrival (median: 100.0 mmHg vs 136.0 mmHg, p<0.01) and the lowest SBP recorded in the ED (median: 68.0 mmHg vs 129.0 mmHg, p<0.01) were significantly lower in the patients who underwent TAE. The ROC curve analysis revealed that the most appropriate cutoff value of decrement of SBP (SBP on arrival minus the lowest SBP in the ED) was 30 mmHg (AUC=0.89). In the management of pelvic fracture patients, greater attention should be directed toward patients with relative hypotension. The higher likelihood of haemodynamic deterioration and the need for TAE for haemorrhage control should remain under consideration in such cases, despite the absence of CE by CT scan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma.

    PubMed

    Giovanella, Luca; Trimboli, Pierpaolo; Verburg, Frederik A; Treglia, Giorgio; Piccardo, Arnoldo; Foppiani, Luca; Ceriani, Luca

    2013-06-01

    To assess the relationship between serum thyroglobulin (Tg) levels, Tg doubling time (Tg-DT) and the diagnostic performance of (18)F-FDG PET/CT in detecting recurrences of (131)I-negative differentiated thyroid carcinoma (DTC). Included in the present study were 102 patients with DTC. All patients were treated by thyroid ablation (e.g. thyroidectomy and (131)I), and underwent (18)F-FDG PET/CT due to detectable Tg levels and negative conventional imaging. Consecutive serum Tg measurements performed before the (18)F-FDG PET/CT examination were used for Tg-DT calculation. The (18)F-FDG PET/CT results were assessed as true or false after histological and/or clinical follow-up. Serum Tg levels were higher in patients with a positive (18)F-FDG PET/CT scan (median 6.7 ng/mL, range 0.7-73.6 ng/mL) than in patients with a negative scan (median 1.8 ng/mL, range 0.5-4.9 ng/mL; P < 0.001). In 43 (88 %) of 49 patients with a true-positive (18)F-FDG PET/CT scan, the Tg levels were >5.5 ng/mL, and in 31 (74 %) of 42 patients with a true-negative (18)F-FDG PET/CT scan, the Tg levels were ≤5.5 ng/mL. A Tg-DT of <1 year was found in 46 of 49 patients (94 %) with a true-positive (18)F-FDG PET/CT scan, and 40 of 42 patients (95 %) with a true-negative scan had a stable or increased Tg-DT. Moreover, combining Tg levels and Tg-DT as selection criteria correctly distinguished between patients with a positive and a negative scan (P<0.0001). The accuracy of (18)F-FDG PET/CT significantly improves when the serum Tg level is above 5.5 ng/mL during levothyroxine treatment or when the Tg-DT is less than 1 year, independent of the absolute value.

  9. A survey of emergency physicians' fear of malpractice and its association with the decision to order computed tomography scans for children with minor head trauma.

    PubMed

    Wong, Andrew C; Kowalenko, Terry; Roahen-Harrison, Stephanie; Smith, Barbara; Maio, Ronald F; Stanley, Rachel M

    2011-03-01

    The objective of the study was to determine whether fear of malpractice is associated with emergency physicians' decision to order head computed tomography (CT) in 3 age-specific scenarios of pediatric minor head trauma. We hypothesized that physicians with higher fear of malpractice scores will be more likely to order head CT scans. Board-eligible/board-certified members of the Michigan College of Emergency Physicians were sent a 2-part survey consisting of case scenarios and demographic questions. Effect of fear of malpractice on the decision to order a CT scan was evaluated using a cumulative logit model. Two hundred forty-six members (36.5%) completed the surveys. In scenario 1 (infant), being a male and working in a university setting were associated with reduced odds of ordering a CT scan (odds ratio [OR], 0.40; 95% confidence interval [CI], 0.18-0.88; and OR, 0.35; 95% CI, 0.13-0.96, respectively). In scenario 2 (toddler), working for 15 years or more, at multiple hospitals, and for a private group were associated with reduced odds of ordering a CT scan (OR, 0.46; 95% CI, 0.26-0.79; OR, 0.36; 95% CI, 0.16-0.80; and OR, 0.51; 95% CI, 0.27-0.94, respectively). No demographic variables were significantly associated with ordering a CT scan in scenario 3 (teen). Overall, the fear of malpractice was not significantly associated with ordering a CT scan (OR, 1.28; 95% CI, 0.73-2.26; and OR, 1.70; 95% CI, 0.97-3.0). Only in scenario 2 was high fear significantly associated with increased odds of ordering a CT scan (OR, 2.09; 95% CI, 1.08-4.05). Members of Michigan College of Emergency Physicians with a higher fear of malpractice score tended to order more head CT scans in pediatric minor head trauma. However, this trend was shown to be statistically significant only in 1 case and not overall.

  10. The presurgical workup before third molar surgery: how much is enough?

    PubMed

    Better, Hadar; Abramovitz, Itzhak; Shlomi, Biniamin; Kahn, Adrian; Levy, Yaakov; Shaham, Amit; Chaushu, Gavriel

    2004-06-01

    We sought to assess the indications for patient referral for computed tomography (CT) scan before third molar extraction. The influence of the data obtained from the CT scans on the surgical outcome and morbidity was also evaluated. There were 189 patients in the study (120 females and 69 males). Sixty-five patients were referred to receive CT and formed the study group. The remaining patients were included in the control group. There were no statistically significant differences between the groups with regard to demographic data and tooth and root angulations. Indications for tooth extraction such as pain, swelling, pericoronitis, caries, endodontic problems, pathology, and prosthetic considerations were similar. The proximity of the tooth root to the inferior alveolar canal was the only statistically significant difference between the 2 groups (P <.001). The treatment plan outcomes for extraction, surgical extraction, and follow-up were comparable. The surgeon changed the initial decision from "surgical extraction" to "follow-up" in only 1 case after CT scan. Within the limits of the present study, it can be concluded that the main reason for CT scan referral is the proximity of the third molar root to the inferior alveolar canal (<1 mm). The data obtained from the CT scan had minimal effect on the final surgical outcome. The routine use of CT scan in cases of third molar extractions cannot be recommended.

  11. Limited clinical relevance of imaging techniques in the follow-up of patients with advanced chronic lymphocytic leukemia: results of a meta-analysis.

    PubMed

    Eichhorst, Barbara F; Fischer, Kirsten; Fink, Anna-Maria; Elter, Thomas; Wendtner, Clemens M; Goede, Valentin; Bergmann, Manuela; Stilgenbauer, Stephan; Hopfinger, Georg; Ritgen, Matthias; Bahlo, Jasmin; Busch, Raymonde; Hallek, Michael

    2011-02-10

    The clinical value of imaging is well established for the follow-up of many lymphoid malignancies but not for chronic lymphocytic leukemia (CLL). A meta-analysis was performed with the dataset of 3 German CLL Study Group phase 3 trials (CLL4, CLL5, and CLL8) that included 1372 patients receiving first-line therapy for CLL. Response as well as progression during follow-up was reassessed according to the National Cancer Institute Working Group1996 criteria. A total of 481 events were counted as progressive disease during treatment or follow-up. Of these, 372 progressions (77%) were detected by clinical symptoms or blood counts. Computed tomography (CT) scans or ultrasound were relevant in 44 and 29 cases (9% and 6%), respectively. The decision for relapse treatment was determined by CT scan or ultrasound results in only 2 of 176 patients (1%). CT scan results had an impact on the prognosis of patients in complete remission only after the administration of conventional chemotherapy but not after chemoimmunotherapy. In conclusion, physical examination and blood count remain the methods of choice for staging and clinical follow-up of patients with CLL as recommended by the International Workshop on Chronic Lymphocytic Leukemia 2008 guidelines. These trials are registered at http://www.isrctn.org as ISRCTN 75653261 and ISRCTN 36294212 and at http://www.clinicaltrials.gov as NCT00281918.

  12. Mild brain injury and anticoagulants: Less is enough.

    PubMed

    Campiglio, Laura; Bianchi, Francesca; Cattalini, Claudio; Belvedere, Daniela; Rosci, Chiara Emilia; Casellato, Chiara Livia; Secchi, Manuela; Saetti, Maria Cristina; Baratelli, Elena; Innocenti, Alessandro; Cova, Ilaria; Gambini, Chiara; Romano, Luca; Oggioni, Gaia; Pagani, Rossella; Gardinali, Marco; Priori, Alberto

    2017-08-01

    Despite the higher theoretical risk of traumatic intracranial hemorrhage (ICH) in anticoagulated patients with mild head injury, the value of sequential head CT scans to identify bleeding remains controversial. This study evaluated the utility of 2 sequential CT scans at a 48-hour interval (CT1 and CT2) in patients with mild head trauma (Glasgow Coma Scale 13-15) taking oral anticoagulants. We retrospectively evaluated the clinical records of all patients on chronic anticoagulation treatment admitted to the emergency department for mild head injury. A total of 344 patients were included, and 337 (97.9%) had a negative CT1. CT2 was performed on 284 of the 337 patients with a negative CT1 and was positive in 4 patients (1.4%), but none of the patients developed concomitant neurologic worsening or required neurosurgery. Systematic routine use of a second CT scan in mild head trauma in patients taking anticoagulants is expensive and clinically unnecessary.

  13. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  14. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  15. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Weixing; Zhao Binghui; Conover, David

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less

  16. Micro-computed Tomography Provides High Accuracy Congenital Heart Disease Diagnosis in Neonatal and Fetal Mice

    PubMed Central

    Kim, Andrew J.; Francis, Richard; Liu, Xiaoqin; Devine, William A.; Ramirez, Ricardo; Anderton, Shane J.; Wong, Li Yin; Faruque, Fahim; Gabriel, George C.; Leatherbury, Linda; Tobita, Kimimasa; Lo, Cecilia W.

    2013-01-01

    Background Mice are well suited for modeling human congenital heart defects (CHD), given their four-chamber cardiac anatomy. However, mice with CHD invariably die prenatally/neonatally, causing CHD phenotypes to be missed. Therefore, we investigated the efficacy of noninvasive micro-computed tomography (micro-CT) to screen for CHD in stillborn/fetal mice. These studies were carried out using chemically mutagenized mice expected to be enriched for birth defects including CHD. Methods and Results Stillborn/fetal mice obtained from the breeding of N-ethyl-N-nitrosourea (ENU) mutagenized mice were formalin-fixed and stained with iodine, then micro-CT scanned. Those diagnosed with CHD and some CHD-negative pups were necropsied. A subset of these were further analyzed by histopathology to confirm the CHD/no-CHD diagnosis. Micro-CT scanning of 2105 fetal/newborn mice revealed an abundance of ventricular septal defects (VSD) (n=307). Overall, we observed an accuracy of 89.8% for VSD diagnosis. Outflow tract anomalies identified by micro-CT included double outlet right ventricle (n=36), transposition of the great arteries (n=14), and persistent truncus arteriosus (n=3). These were diagnosed with a 97.4% accuracy. Aortic arch anomalies also were readily detected with an overall 99.6% accuracy. This included right aortic arch (n=28) and coarctation/interrupted aortic arch (n=12). Also detected by micro-CT were atrioventricular septal defects (n=22), tricuspid hypoplasia/atresia (n=13), and coronary artery fistulas (n=16). They yielded accuracies of 98.9%, 100%, and 97.8% respectively. Conclusions Contrast enhanced micro-CT imaging in neonatal/fetal mice can reliably detect a wide spectrum of CHD. We conclude micro-CT imaging can be used for routine rapid assessments of structural heart defects in fetal/newborn mice. PMID:23759365

  17. 'Out of hours' adult CT head interpretation by senior emergency department staff following an intensive teaching session: a prospective blinded pilot study of 405 patients.

    PubMed

    Jamal, Karim; Mandel, Laura; Jamal, Leila; Gilani, Shamim

    2014-06-01

    Cranial CT is the gold standard for the investigation of intracranial emergencies. The aim of this pilot study was to audit whether senior emergency physicians were able to report CT head scans accurately and reliably having attended structured teaching. Senior emergency physicians attended a 3 h teaching session. Following this, they independently reported adult CT head scans between 22:00 and 08:00 using a pro forma. CT head examinations performed in this 'out of hours' period were formally reported by a consultant radiologist on the following morning. Data were collected in a blinded fashion over an 8-month period. 405 adult CT head examinations were performed. 360 pro formas were available for analysis, and the rest were excluded either because a consultant radiologist had been rung to discuss the results (five patients) or because the pro forma was not completed (40 patients). Concordance between consultant radiologists and emergency physicians was found in 339 (94%) of the cases (κ coefficient 0.78). None of the discordant cases was managed inappropriately or had an adverse clinical outcome. All cases of extradural, subdural and subarachnoid haemorrhage were detected by emergency physicians. In conclusion, we feel that this model can be employed as a safe and long-term alternative provided that the radiology department are committed to providing ongoing teaching and that a database is maintained to highlight problem areas. Emergency physicians need to remember that the clinical status of the patient must never be ignored, irrespective of their CT head findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Chen, G; Tai, A

    2014-06-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition ASmore » Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Sweet Ping, E-mail: sweet.ng@petermac.org; David, Steven; Alamgeer, Muhammad

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scansmore » were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary staging for LABC.« less

  20. Assessment of Osteoporosis in Injured Older Women Admitted to a Safety-Net Level One Trauma Center: A Unique Opportunity to Fulfill an Unmet Need

    PubMed Central

    Young, Elisabeth S.; Reed, May J.; Pham, Tam N.; Gross, Joel A.; Taitsman, Lisa A.

    2017-01-01

    Background Older trauma patients often undergo computed tomography (CT) as part of the initial work-up. CT imaging can also be used opportunistically to measure bone density and assess osteoporosis. Methods In this retrospective cohort study, osteoporosis was ascertained from admission CT scans in women aged ≥65 admitted to the ICU for traumatic injury during a 3-year period at a single, safety-net, level 1 trauma center. Osteoporosis was defined by established CT-based criteria of average L1 vertebral body Hounsfield units <110. Evidence of diagnosis and/or treatment of osteoporosis was the primary outcome. Results The study cohort consisted of 215 women over a 3-year study period, of which 101 (47%) had evidence of osteoporosis by CT scan criteria. There were no differences in injury severity score, hospital length of stay, cost, or discharge disposition between groups with and without evidence of osteoporosis. Only 55 (59%) of the 94 patients with osteoporosis who survived to discharge had a documented osteoporosis diagnosis and/or corresponding evaluation/treatment plan. Conclusion Nearly half of older women admitted with traumatic injuries had underlying osteoporosis, but 41% had neither clinical recognition of this finding nor a treatment plan for osteoporosis. Admission for traumatic injury is an opportunity to assess osteoporosis, initiate appropriate intervention, and coordinate follow-up care. Trauma and acute care teams should consider assessment of osteoporosis in women who undergo CT imaging and provide a bridge to outpatient services. PMID:29234352

  1. SU-E-J-141: Comparison of Dose Calculation On Automatically Generated MRBased ED Maps and Corresponding Patient CT for Clinical Prostate EBRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadewaldt, N; Schulz, H; Helle, M

    2014-06-01

    Purpose: To analyze the effect of computing radiation dose on automatically generated MR-based simulated CT images compared to true patient CTs. Methods: Six prostate cancer patients received a regular planning CT for RT planning as well as a conventional 3D fast-field dual-echo scan on a Philips 3.0T Achieva, adding approximately 2 min of scan time to the clinical protocol. Simulated CTs (simCT) where synthesized by assigning known average CT values to the tissue classes air, water, fat, cortical and cancellous bone. For this, Dixon reconstruction of the nearly out-of-phase (echo 1) and in-phase images (echo 2) allowed for water andmore » fat classification. Model based bone segmentation was performed on a combination of the DIXON images. A subsequent automatic threshold divides into cortical and cancellous bone. For validation, the simCT was registered to the true CT and clinical treatment plans were re-computed on the simCT in pinnacle{sup 3}. To differentiate effects related to the 5 tissue classes and changes in the patient anatomy not compensated by rigid registration, we also calculate the dose on a stratified CT, where HU values are sorted in to the same 5 tissue classes as the simCT. Results: Dose and volume parameters on PTV and risk organs as used for the clinical approval were compared. All deviations are below 1.1%, except the anal sphincter mean dose, which is at most 2.2%, but well below clinical acceptance threshold. Average deviations are below 0.4% for PTV and risk organs and 1.3% for the anal sphincter. The deviations of the stratifiedCT are in the same range as for the simCT. All plans would have passed clinical acceptance thresholds on the simulated CT images. Conclusion: This study demonstrated the clinical usability of MR based dose calculation with the presented Dixon acquisition and subsequent fully automatic image processing. N. Schadewaldt, H. Schulz, M. Helle and S. Renisch are employed by Phlips Technologie Innovative Techonologies, a subsidiary of Royal Philips NV.« less

  2. Utility of 18 F-FDG PET/CT scan to diagnose the etiology of fever of unknown origin in patients on dialysis.

    PubMed

    Tek Chand, Kalawat; Chennu, Krishna Kishore; Amancharla Yadagiri, Lakshmi; Manthri Gupta, Ranadheer; Rapur, Ram; Vishnubotla, Siva Kumar

    2017-04-01

    Studies on fever of unknown origin (FUO) in patients of chronic kidney disease and end stage renal disease patients on dialysis were not many. In this study, we used 18 F-FDG PET/CT scan whole body survey for detection of hidden infection, in patients on dialysis, labelled as FUO. In this retrospective study, 20 patients of end stage renal disease on dialysis were investigated for the cause of FUO using 18F-FDG PET/CT scan. All these patients satisfied the definition of FUO as defined by Petersdorf and Beeson. Any focal abnormal site of increased FDG concentration detected by PET/CT, either a solitary or multiple lesions was documented and at least one of the detected abnormal sites of radio tracer concentration was further examined for histopathology. All patients were on renal replacement therapy. Of these, 18 were on hemodialysis and two were on peritoneal dialysis. 18F-FDG PET/CT scan showed metabolically active lesions in 15 patients and metabolically quiescent in five patients. After 18F-FDG PET/CT scan all, but one patient had a change in treatment for fever. Anti-tuberculous treatment was given in 15 patients, antibiotics in four patients and anti-malaria treatment in one patient. The present study is first study of 18F-FDG PET/CT scan in patients of end stage renal disease on dialysis with FUO. The study showed that the 18 F FDG PET/CT scan may present an opportunity to attain the diagnosis in end stage renal disease patients on dialysis with FUO. © 2016 International Society for Hemodialysis.

  3. Avoiding CT scans in children with single-suture craniosynostosis.

    PubMed

    Schweitzer, T; Böhm, H; Meyer-Marcotty, P; Collmann, H; Ernestus, R-I; Krauß, J

    2012-07-01

    During the last decades, computed tomography (CT) has become the predominant imaging technique in the diagnosis of craniosynostosis. In most craniofacial centers, at least one three-dimensional (3D) computed tomographic scan is obtained in every case of suspected craniosynostosis. However, with regard to the risk of radiation exposure particularly in young infants, CT scanning and even plain radiography should be indicated extremely carefully. Our current diagnostic protocol in the management of single-suture craniosynostosis is mainly based on careful clinical examination with regard to severity and degree of the abnormality and on ophthalmoscopic surveillance. Imaging techniques consist of ultrasound examination in young infants while routine plain radiographs are usually postponed to the date of surgery or the end of the first year. CT and magnetic resonance imaging (MRI) are confined to special diagnostic problems rarely encountered in isolated craniosynostosis. The results of this approach were evaluated retrospectively in 137 infants who were referred to our outpatient clinic for evaluation and/or treatment of suspected single suture craniosynostosis or positional deformity during a 2-year period (2008-2009). In 133 (97.1%) of the 137 infants, the diagnosis of single-suture craniosynostosis (n = 110) or positional plagiocephaly (n = 27) was achieved through clinical analysis only. Two further cases were classified by ultrasound, while the remaining two cases needed additional digital radiographs. In no case was CT scanning retrospectively considered necessary for establishing the diagnosis. Yet in 17.6% of cases, a cranial CT scan had already been performed elsewhere (n = 16) or had been definitely scheduled (n = 8). CT scanning is rarely necessary for evaluation of single-suture craniosynostosis. Taking into account that there is a quantifiable risk of developing cancer in further lifetime, every single CT scan should be carefully indicated.

  4. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping.

    PubMed

    Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime

    2017-06-01

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.

  5. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos

    Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less

  6. Paediatric blunt abdominal trauma - are we doing too many computed tomography scans?

    PubMed

    Arnold, M; Moore, S W

    2013-02-14

    Blunt abdominal trauma in childhood contributes significantly to both morbidity and mortality. Selective non-operative management of blunt abdominal trauma in children depends on both diagnostic and clinical factors. Computed tomography (CT) scanning is widely used to facilitate better management. Increased availability of CT may, however, result in its overuse in the management of blunt abdominal trauma in children, which carries significant radiation exposure risks. To evaluate the use and value of CT scanning in the overall management and outcome of blunt abdominal trauma in children in the Tygerberg Academic Hospital trauma unit, Parow, Cape Town, South Africa, before and after improved access to CT as a result of installation of a new rapid CT scanner in the trauma management area (previously the scanner had been 4 floors away). Patients aged 0 - 13 years who were referred with blunt abdominal trauma due to vehicle-related accidents before the introduction of the new CT scanner (group 1, n=66, November 2003 - March 2009) were compared with those seen in the 1-year period after the scanner was installed (group 2, n=37, April 2009 - April 2010). Details of clinical presentation, imaging results and their influence on management were retrospectively reviewed. A follow-up group was evaluated after stricter criteria for abdominal CT scanning (viz. prior evaluation by paediatric surgical personnel) were introduced (group 3, n=14, November 2011 - May 2012) to evaluate the impact of this clinical screening on the rate of negative scans. There were 66 patients in group 1 and 37 in group 2. An apparent increase in CT use with increased availability was accompanied by a marked increase in negative CT scans (38.9% compared with 6.2%; p<0.006). Despite a slightly higher prevalence of associated injuries in group 2, as well as a slightly longer length of hospital stay, there was a similar prevalence of intra-abdominal injuries detected in positive scans in the two groups. In addition, rates of small-bowel perforation in the two groups were similar. The rate of negative scans in group 3 was 46.2% (6/13), but all except one of these patients had a severe brain injury preventing adequate clinical evaluation of intra-abdominal injury. CT scanning for blunt abdominal trauma in children is essential in the presence of appropriate clinical indications. Ease of access probably increases availability, but the rate of negative scans may increase. Management guidelines should be in place to direct CT scanning to cases in which clinical examination and/or other modalities indicate a likelihood of intra-abdominal injury. The principle of 'as low (radiation) dose as reasonably achievable' (ALARA) should be adhered to because of the increased radiation exposure risks in children.

  7. Interfraction Liver Shape Variability and Impact on GTV Position During Liver Stereotactic Radiotherapy Using Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, Cynthia L., E-mail: cynthia.eccles@rob.ox.ac.uk; Dawson, Laura A.; Moseley, Joanne L.

    2011-07-01

    Purpose: For patients receiving liver stereotactic body radiotherapy (SBRT), abdominal compression can reduce organ motion, and daily image guidance can reduce setup error. The reproducibility of liver shape under compression may impact treatment delivery accuracy. The purpose of this study was to measure the interfractional variability in liver shape under compression, after best-fit rigid liver-to-liver registration from kilovoltage (kV) cone beam computed tomography (CBCT) scans to planning computed tomography (CT) scans and its impact on gross tumor volume (GTV) position. Methods and Materials: Evaluable patients were treated in a Research Ethics Board-approved SBRT six-fraction study with abdominal compression. Kilovoltage CBCTmore » scans were acquired before treatment and reconstructed as respiratory sorted CBCT scans offline. Manual rigid liver-to-liver registrations were performed from exhale-phase CBCT scans to exhale planning CT scans. Each CBCT liver was contoured, exported, and compared with the planning CT scan for spatial differences, by use of in house-developed finite-element model-based deformable registration (MORFEUS). Results: We evaluated 83 CBCT scans from 16 patients with 30 GTVs. The mean volume of liver that deformed by greater than 3 mm was 21.7%. Excluding 1 outlier, the maximum volume that deformed by greater than 3 mm was 36.3% in a single patient. Over all patients, the absolute maximum deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior directions were 10.5 mm (SD, 2.2), 12.9 mm (SD, 3.6), and 5.6 mm (SD, 2.7), respectively. The absolute mean predicted impact of liver volume displacements on GTV by use of center of mass displacements was 0.09 mm (SD, 0.13), 0.13 mm (SD, 0.18), and 0.08 mm (SD, 0.07) in the left-right, anterior-posterior, and superior-inferior directions, respectively. Conclusions: Interfraction liver deformations in patients undergoing SBRT under abdominal compression after rigid liver-to-liver registrations on respiratory sorted CBCT scans were small in most patients (<5 mm).« less

  8. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    PubMed

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.

  9. Incidental findings in children with blunt head trauma evaluated with cranial CT scans.

    PubMed

    Rogers, Alexander J; Maher, Cormac O; Schunk, Jeff E; Quayle, Kimberly; Jacobs, Elizabeth; Lichenstein, Richard; Powell, Elizabeth; Miskin, Michelle; Dayan, Peter; Holmes, James F; Kuppermann, Nathan

    2013-08-01

    Cranial computed tomography (CT) scans are frequently obtained in the evaluation of blunt head trauma in children. These scans may detect unexpected incidental findings. The objectives of this study were to determine the prevalence and significance of incidental findings on cranial CT scans in children evaluated for blunt head trauma. This was a secondary analysis of a multicenter study of pediatric blunt head trauma. Patients <18 years of age with blunt head trauma were eligible, with those undergoing cranial CT scan included in this substudy. Patients with coagulopathies, ventricular shunts, known previous brain surgery or abnormalities were excluded. We abstracted radiology reports for nontraumatic findings. We reviewed and categorized findings by their clinical urgency. Of the 43,904 head-injured children enrolled in the parent study, 15,831 underwent CT scans, and these latter patients serve as the study cohort. On 670 of these scans, nontraumatic findings were identified, with 16 excluded due to previously known abnormalities or surgeries. The remaining 654 represent a 4% prevalence of incidental findings. Of these, 195 (30%), representing 1% of the overall sample, warranted immediate intervention or outpatient follow-up. A small but important number of children evaluated with CT scans after blunt head trauma had incidental findings. Physicians who order cranial CTs must be prepared to interpret incidental findings, communicate with families, and ensure appropriate follow-up. There are ethical implications and potential health impacts of informing patients about incidental findings.

  10. Unenhanced 320-row multidetector computed tomography of the brain in children: comparison of image quality and radiation dose among wide-volume, one-shot volume, and helical scan modes.

    PubMed

    Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One

    2018-04-01

    The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.

  11. Pretreatment with diphenoxylate hydrochloride/atropine sulfate (Lomotil) does not decrease physiologic bowel FDG activity on PET/CT scans of the abdomen and pelvis.

    PubMed

    Murphy, Robert; Doerger, Kirk M; Nathan, Mark A; Lowe, Val J

    2009-01-01

    Physiologic uptake of 2-[(18)F]-fluoro-2-deoxy-D: -glucose (FDG) by bowel can confound positron emission tomography/computed tomography (PET/CT) assessment for abdominal pathology, particularly within the bowel itself. We wished to determine if oral administration of the antimotility agent, Lomotil (5 mg diphenoxylate hydrochloride/0.05 mg atropine sulfate; G.D. Searle and Company, a division of Pfizer), prior to PET/CT scanning would reduce physiologic uptake of FDG by the small bowel and colon (lower gastrointestinal [GI] tract). Patients undergoing PET/CT scans for lymphoma were enrolled in a prospective, randomized, double-blinded study and received either 10 mL water (control group) or 10 mL Lomotil (experimental group) orally 30-60 min prior to scanning. Scans were reviewed independently by two blinded experienced readers and scored for the degree of FDG activity in the lower GI tract relative to liver activity. The administration of Lomotil prior to PET/CT scanning did not reduce physiologic FDG activity in the small bowel and colon. In contrast, increased radiotracer uptake by the lower GI tract was observed in the Lomotil group compared to the control group. Pretreatment with Lomotil prior to PET/CT scanning confers no benefit toward the reduction of physiologic FDG uptake by the small bowel and colon.

  12. Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom

    PubMed Central

    Kim, K. P.; Berrington de González, A.; Pearce, M. S.; Salotti, J. A.; Parker, L.; McHugh, K.; Craft, A. W.; Lee, C.

    2012-01-01

    Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240 000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries. PMID:22228685

  13. Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom.

    PubMed

    Kim, K P; Berrington de González, A; Pearce, M S; Salotti, J A; Parker, L; McHugh, K; Craft, A W; Lee, C

    2012-07-01

    Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240,000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries.

  14. CT Scans - Multiple Languages

    MedlinePlus

    ... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...

  15. The effect of sagittal rotation of the glenoid on axial glenoid width and glenoid version in computed tomography scan imaging.

    PubMed

    Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T

    2016-01-01

    Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Volumetric gain of the human pancreas after left partial pancreatic resection: A CT-scan based retrospective study.

    PubMed

    Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana

    2015-01-01

    Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  17. Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer.

    PubMed

    Kornerup, Josefine S; Brodin, Patrik; Birk Christensen, Charlotte; Björk-Eriksson, Thomas; Kiil-Berthelsen, Anne; Borgwardt, Lise; Munck Af Rosenschöld, Per

    2015-04-01

    PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.

  18. Variations in the intensive use of head CT for elderly patients with hemorrhagic stroke.

    PubMed

    Bekelis, Kimon; Fisher, Elliott S; Labropoulos, Nicos; Zhou, Weiping; Skinner, Jonathan

    2015-04-01

    To investigate the variability in head computed tomographic (CT) scanning in patients with hemorrhagic stroke in U.S. hospitals, its association with mortality, and the number of different physicians consulted. The study was approved by the Committee for the Protection of Human Subjects at Dartmouth College. A retrospective analysis of the Medicare fee-for-service claims data was performed for elderly patients admitted for hemorrhagic stroke in 2008-2009, with 1-year follow-up through 2010. Risk-adjusted primary outcome measures were mean number of head CT scans performed and high-intensity use of head CT (six or more head CT scans performed in the year after admission). We examined the association of high-intensity use of head CT with the number of different physicians consulted and mortality. A total of 53 272 patients (mean age, 79.6 years; 31 377 women [58.9%]) with hemorrhagic stroke were identified in the study period. The mean number of head CT scans conducted in the year after admission for stroke was 3.4; 8737 patients (16.4%) underwent six or more scans. Among the hospitals with the highest case volume (more than 50 patients with hemorrhagic stroke), risk-adjusted rates ranged from 8.0% to 48.1%. The correlation coefficient between number of physicians consulted and rates of high-intensity use of head CT was 0.522 (P < .01) for all hospitals and 0.50 (P < .01) for the highest-volume hospitals. No improvement in 1-year mortality was found for patients undergoing six or more head CT scans (odds ratio, 0.84; 95% confidence interval: 0.69, 1.02). High rates of head CT use for patients with hemorrhagic stroke are frequently observed, without an association with decreased mortality. A higher number of physicians consulted was associated with high-intensity use of head CT. © RSNA, 2014 Online supplemental material is available for this article.

  19. Use of the initial trauma CT scan to aid in diagnosis of open pelvic fractures.

    PubMed

    Scolaro, John A; Wilson, David J; Routt, Milton Lee Chip; Firoozabadi, Reza

    2015-10-01

    Open pelvic disruptions represent high-energy injuries. The prompt identification and management of these injuries decreases their associated morbidity and mortality. Computed tomography (CT) scans are routinely obtained in the initial evaluation of patients with pelvic injuries. The purpose of this study is to identify the incidence and source of air densities noted on computed tomography (CT) scans of the abdominal and pelvic region in patients with pelvic fractures and evaluate the use of initial CT imaging as an adjunctive diagnostic tool to identify open injuries. A retrospective review of a prospectively collected database was performed at a single institution. Seven hundred and twenty-two consecutive patients with a pelvic disruption over a two-year period were included. Review of initial injury CT scans was performed using bone and lung viewing algorithms to identify the presence of extra-luminal air. The primary outcome was the presence, location and source of air identified on pre-operative CT scans. Secondary measurements were identification of air by plain radiograph and correlation between identified air densities on CT and clinically diagnosed open pelvic fractures. Ninety-eight patients were identified as having extra-luminal air densities on CT scans. Eighty-one patients were included in the final analysis following application of inclusion and exclusion criteria. Air was noted by the radiologist in forty-five (55.6%) instances. Six patients (7.4%) were clinically diagnosed with an open pelvic ring disruption; in two patients (2.4%) this diagnosis was delayed. In all patients, the CT was able to track air from its origin. In patients with pelvic disruptions, the injury CT should also be evaluated for the presence and source of extra-luminal air. In some patients, this finding may represent an open pelvic ring disruption. A complete physical exam and CT evaluation should be used to decrease the missed or delayed diagnosis of an open pelvic ring injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. TH-E-BRF-04: Characterizing the Response of Texture-Based CT Image Features for Quantification of Radiation-Induced Normal Lung Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, S; Court, L; Briere, T

    2014-06-15

    Purpose: Radiation induced lung damage (RILD) is an important dose-limiting toxicity for patients treated with radiation therapy. Scoring systems for RILD are subjective and limit our ability to find robust predictors of toxicity. We investigate the dose and time-related response for texture-based lung CT image features that serve as potential quantitative measures of RILD. Methods: Pre- and post-RT diagnostic imaging studies were collected for retrospective analysis of 21 patients treated with photon or proton radiotherapy for NSCLC. Total lung and selected isodose contours (0–5, 5–15, 15–25Gy, etc.) were deformably registered from the treatment planning scan to the pre-RT and availablemore » follow-up CT studies for each patient. A CT image analysis framework was utilized to extract 3698 unique texture-based features (including co-occurrence and run length matrices) for each region of interest defined by the isodose contours and the total lung volume. Linear mixed models were fit to determine the relationship between feature change (relative to pre-RT), planned dose and time post-RT. Results: Seventy-three follow-up CT scans from 21 patients (median: 3 scans/patient) were analyzed to describe CT image feature change. At the p=0.05 level, dose affected feature change in 2706 (73.1%) of the available features. Similarly, time affected feature change in 408 (11.0%) of the available features. Both dose and time were significant predictors of feature change in a total of 231 (6.2%) of the extracted image features. Conclusion: Characterizing the dose and time-related response of a large number of texture-based CT image features is the first step toward identifying objective measures of lung toxicity necessary for assessment and prediction of RILD. There is evidence that numerous features are sensitive to both the radiation dose and time after RT. Beyond characterizing feature response, further investigation is warranted to determine the utility of these features as surrogates of clinically significant lung injury.« less

Top