Zarse, Chad A; Hameed, Tariq A; Jackson, Molly E; Pishchalnikov, Yuri A; Lingeman, James E; McAteer, James A; Williams, James C
2007-08-01
Calcium oxalate monohydrate (COM) stones are often resistant to breakage using shock wave (SW) lithotripsy. It would be useful to identify by computed tomography (CT) those COM stones that are susceptible to SW's. For this study, 47 COM stones (4-10 mm in diameter) were scanned with micro CT to verify composition and also for assessment of heterogeneity (presence of pronounced lobulation, voids, or apatite inclusions) by blinded observers. Stones were then placed in water and scanned using 64-channel helical CT. As with micro CT, heterogeneity was assessed by blinded observers, using high-bone viewing windows. Then stones were broken in a lithotripter (Dornier Doli-50) over 2 mm mesh, and SW's counted. Results showed that classification of stones using micro CT was highly repeatable among observers (kappa = 0.81), and also predictive of stone fragility. Stones graded as homogeneous required 1,874 +/- 821 SW/g for comminution, while stones with visible structure required half as many SW/g, 912 +/- 678. Similarly, when stones were graded by appearance on helical CT, classification was repeatable (kappa = 0.40), and homogeneous stones required more SW's for comminution than did heterogeneous stones (1,702 +/- 993 SW/g, compared to 907 +/- 773). Stone fragility normalized to stone size did not correlate with Hounsfield units (P = 0.85). In conclusion, COM stones of homogeneous structure require almost twice as many SW's to comminute than stones of similar mineral composition that exhibit internal structural features that are visible by CT. This suggests that stone fragility in patients could be predicted using pre-treatment CT imaging. The findings also show that Hounsfield unit values of COM stones did not correlate with stone fragility. Thus, it is stone morphology, rather than X-ray attenuation, which correlates with fragility to SW's in this common stone type.
Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei
2013-04-01
To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (<55 years). The number, location, and appearance rate of intersegmental planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P < .05). Visible intersegmental planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely related to visualization of intersegmental planes on thoracic CT scans. Aging was excluded as the possible reason. RSNA, 2013
Functional anatomy of the prostate: implications for treatment planning.
McLaughlin, Patrick W; Troyer, Sara; Berri, Sally; Narayana, Vrinda; Meirowitz, Amichay; Roberson, Peter L; Montie, James
2005-10-01
To summarize the functional anatomy relevant to prostate cancer treatment planning. Coronal, axial, and sagittal T2 magnetic resonance imaging (MRI) and MRI angiography were fused by mutual information and registered with computed tomography (CT) scan data sets to improve definition of zonal anatomy of the prostate and critical adjacent structures. The three major prostate zones (inner, outer, and anterior fibromuscular) are visible by T2 MRI imaging. The bladder, bladder neck, and internal (preprostatic) sphincter are a continuous muscular structure and clear definition of the preprostatic sphincter is difficult by MRI. Transition zone hypertrophy may efface the bladder neck and internal sphincter. The external "lower" sphincter is clearly visible by T2 MRI with wide variations in length. The critical erectile structures are the internal pudendal artery (defined by MRI angiogram or T2 MRI), corpus cavernosum, and neurovascular bundle. The neurovascular bundle is visible along the posterior lateral surface of the prostate on CT and MRI, but its terminal branches (cavernosal nerves) are not visible and must be defined by their relationship to the urethra within the genitourinary diaphragm. Visualization of the ejaculatory ducts within the prostate is possible on sagittal MRI. The anatomy of the prostate-rectum interface is clarified by MRI, as is the potentially important distinction of rectal muscle and rectal mucosa. Improved understanding of functional anatomy and imaging of the prostate and critical adjacent structures will improve prostate radiation therapy by improvement of dose and toxicity correlation, limitation of dose to critical structures, and potential improvement in post therapy quality of life.
Bair, Ryan J.; Bair, Eric; Viswanathan, Akila N.
2016-01-01
PURPOSE We assessed a novel Food and Drug Administration–approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen’s kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68–0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05–1.03) in the CT visibility score and 0.83 (95% CI = 0.17–1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional–based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications. PMID:26481393
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-06-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. © The Author 2016. Published by Oxford University Press.
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-01-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stattaus, Joerg, E-mail: joerg.stattaus@uni-due.de; Kuehl, Hilmar; Ladd, Susanne
2007-09-15
Purpose. Our study aimed to determine the visibility of small liver lesions during CT-guided biopsy and to assess the influence of lesion visibility on biopsy results. Material and Methods. Fifty patients underwent CT-guided core biopsy of small focal liver lesions (maximum diameter, 3 cm); 38 biopsies were performed using noncontrast CT, and the remaining 12 were contrast-enhanced. Visibility of all lesions was graded on a 4-point-scale (0 = not visible, 1 = poorly visible, 2 = sufficiently visible, 3 = excellently visible) before and during biopsy (with the needle placed adjacent to and within the target lesion). Results. Forty-three biopsiesmore » (86%) yielded diagnostic results, and seven biopsies were false-negative. In noncontrast biopsies, the rate of insufficiently visualized lesions (grades 0-1) increased significantly during the procedure, from 10.5% to 44.7%, due to needle artifacts. This resulted in more (17.6%) false-negative biopsy results compared to lesions with good visualization (4.8%), although this difference lacks statistical significance. Visualization impairment appeared more often with an intercostal or subcostal vs. an epigastric access and with a subcapsular vs. a central lesion location, respectively. With contrast-enhanced biopsy the visibility of hepatic lesions was only temporarily improved, with a risk of complete obscuration in the late phase. Conclusion. In conclusion, visibility of small liver lesions diminished significantly during CT-guided biopsy due to needle artifacts, with a fourfold increased rate of insufficiently visualized lesions and of false-negative histological results. Contrast enhancement did not reveal better results.« less
Ragagnin, Marilia Nagata; Gorman, Daniel; McCarthy, Ian Donald; Sant'Anna, Bruno Sampaio; de Castro, Cláudio Campi; Turra, Alexander
2018-01-11
Obtaining accurate and reproducible estimates of internal shell volume is a vital requirement for studies into the ecology of a range of shell-occupying organisms, including hermit crabs. Shell internal volume is usually estimated by filling the shell cavity with water or sand, however, there has been no systematic assessment of the reliability of these methods and moreover no comparison with modern alternatives, e.g., computed tomography (CT). This study undertakes the first assessment of the measurement reproducibility of three contrasting approaches across a spectrum of shell architectures and sizes. While our results suggested a certain level of variability inherent for all methods, we conclude that a single measure using sand/water is likely to be sufficient for the majority of studies. However, care must be taken as precision may decline with increasing shell size and structural complexity. CT provided less variation between repeat measures but volume estimates were consistently lower compared to sand/water and will need methodological improvements before it can be used as an alternative. CT indicated volume may be also underestimated using sand/water due to the presence of air spaces visible in filled shells scanned by CT. Lastly, we encourage authors to clearly describe how volume estimates were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C; Suh, Y; Robertson, D
Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance ofmore » the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates.« less
Qualitative Evaluation of Fiducial Markers for Radiotherapy Imaging
Chan, Maria F.; Cohen, Gil’ad N.; Deasy, Joseph O.
2016-01-01
Purpose To evaluate visibility, artifacts, and distortions of various commercial markers in magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound imaging used for radiotherapy planning and treatment guidance. Methods We compare 2 solid gold markers, 4 gold coils, and 1 polymer marker from 3 vendors. Imaging modalities used were 3-T and 1.5-T GE MRIs, Siemens Sequoia 512 Ultrasound, Phillips Big Bore CT, Varian Trilogy linear accelerator (cone-beam CT [CBCT], on-board imager kilovoltage [OBI-kV], electronic portal imaging device megavoltage [EPID-MV]), and Medtronic O-ARM CBCT. Markers were imaged in a 30 × 30 × 10 cm3 custom bolus phantom. In one experiment, Surgilube was used around the markers to reduce air gaps. Images were saved in Digital Imaging and Communications in Medicine (DICOM) format and analyzed using an in-house software. Profiles across the markers were used for objective comparison of the markers’ signals. The visibility and artifacts/distortions produced by each marker were assessed qualitatively and quantitatively. Results All markers are visible in CT, CBCT, OBI-kV, and ultrasound. Gold markers below 0.75 mm in diameter are not visible in EPID-MV images. The larger the markers, the more CT and CBCT image artifacts there are, yet the degree of the artifact depends on scan parameters and the scanner itself. Visibility of gold coils of 0.75 mm diameter or larger is comparable across all imaging modalities studied. The polymer marker causes minimal artifacts in CT and CBCT but has poor visibility in EPID-MV. Gold coils of 0.5 mm exhibit poor visibility in MRI and EPID-MV due to their small size. Gold markers are more visible in 3-T T1 gradient-recalled echo than in 1.5-T T1 fast spin-echo, depending on the scan sequence. In this study, all markers are clearly visible on ultrasound. Conclusion All gold markers are visible in CT, CBCT, kV, and ultrasound; however, only the large diameter markers are visible in MV. When MR and EPID-MV imagers are used, the selection of fiducial markers is not straightforward. For hybrid kV/MV image-guided radiotherapy imaging, larger diameter markers are suggested. If using kV imaging alone, smaller sized markers may be used in smaller sized patients in order to reduce artifacts. Only larger diameter gold markers are visible across all imaging modalities. PMID:25230715
Beeres, Martin; Bucher, Andreas M; Wichmann, Julian L; Frellesen, Claudia; Scholtz, Jan E; Albrecht, Moritz; Bodelle, Boris; Nour-Eldin, Nour-Eldin A; Lee, Clara; Kaup, Moritz; Vogl, Thomas J; Gruber-Rouh, Tatjana
2016-07-01
Evaluation of the intimal flap visibility comparing 2nd and 3rd generation dual-source high-pitch CT. Twenty-five consecutive patients with aortic dissection underwent CT angiography on a second and third generation dual-source CT scanner using prospective ECG-gated high-pitch dual-source CT acquisition mode. Contrast material, saline flush and flow rate were kept equal for optimum comparability. The visibility of the intimal flap as well as the delineation of the different vascular structures was evaluated. In 3rd generation dual-source high-pitch CT we could show a significant improvement of intimal flap visibility in aortic dissection. Especially, the far end of the dissection membrane could be better evaluated in 3rd generation high-pitch CT, reaching statistical significance (P < 0.01). 3rd Generation high-pitch CT angiography shows a better delineation of the aortic intimal flap in a small patient cohort, especially in the far ends of the dissection membrane. This might be due to higher tube power in this CT generation. However, to generalise these findings larger trials are needed.
Cieslak, Kasia P; van Santvoort, Hjalmar C; Vleggaar, Frank P; van Leeuwen, Maarten S; ten Kate, Fibo J; Besselink, Marc G; Molenaar, I Quintus
2014-01-01
In patients suspected of pancreatic or periampullary cancer, abdominal contrast-enhanced computed tomography (CT) is the standard diagnostic modality. A supplementary endoscopic ultrasonography (EUS) is often performed, although there is only limited evidence of its additional diagnostic value. The aim of the study is to evaluate the additional diagnostic value of EUS over CT in deciding on exploratory laparotomy in patients suspected of pancreatic or periampullary cancer. We retrospectively analyzed 86 consecutive patients who routinely underwent CT and EUS before exploratory laparotomy with or without pancreatoduodenectomy for suspected pancreatic or periampullary carcinoma between 2007 and 2010. Primary outcomes were visibility of a mass, resectability on CT/EUS and resection with curative intent. A mass was visible on CT in 72/86 (84%) patients. In these 72 patients, EUS demonstrated a mass in 64/72 (89%) patients. Resectability was accurately predicted by CT in 65/72 (90%) and by EUS in 58/72 (81%) patients. In 14/86 (16%) patients no mass was seen on CT. EUS showed a mass in 12/14 (86%) of these patients. A malignant lesion was histological proven in 11/12 (92%) of these patients. Overall, resectability was accurately predicted by CT and EUS in 90% (77/86) and 84% (72/86), respectively. In patients with a visible mass on CT, suspected for pancreatic or periampullary cancer, EUS has no additional diagnostic value, does not influence the decision to perform laparotomy and should therefore not be performed routinely. In patients without a visible mass on CT, EUS is useful to confirm the presence of a tumor. Copyright © 2014 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Retrospective review of lung cancers diagnosed in annual rounds of CT screening.
Xu, Dong Ming; Yip, Rowena; Smith, James P; Yankelevitz, David F; Henschke, Claudia I
2014-11-01
The purpose of this study was to review the records of patients with diagnoses of lung cancer in annual repeat rounds of CT screening in the International Early Lung Cancer Action Program to determine whether the cancer could have been identified in the previous round of screening. Three radiologists reviewed the scans of 104 lung cancer patients and assigned the findings to one of three categories: 1, cancer was not visible at previous CT screening; 2, cancer was visible at previous CT screening but not identified; 3, abnormality was identified at previous CT screening but not classified as malignant. Nodule size, nodule consistency, cell type, and stage at the previous screening and when identified for further workup for each of the three categories were tabulated. Twenty-four (23%) patients had category 1 findings; 56 (54%) category 2; and 24 (23%) category 3. When diagnosed, seven (29%) category 1, 10 (18%) category 2, and four (17%) category three cancers had progressed beyond stage I. All cancers seen in retrospect were in clinical stage I at the previous screening. Category 1 cancers, compared with categories 2 and 3, had faster growth rates, were less frequently adenocarcinomas (29% vs 54% and 67%, p = 0.01), and were more often small cell carcinomas (29% vs 14% and 12%, p = 0.12). Lung cancers found on annual repeat screenings were frequently identified in the previous round of screening, suggesting that review of the varied appearance and incorporation of advanced image display may be useful for earlier detection.
[The clinical advantage of using three dimensional visualization technology in hepatic surgery].
Lau, Y Y; Lau, X X
2016-09-01
The three-dimensional body visible system is a further development of the three-dimensional CT reconstruction system. It has a lot of merits over the latter system. Clinical application of the three-dimensional body visible system in liver surgery showed the system to have the following merits: (1) The system can support the Couinaud classification of liver anatomy into two hemilivers, four sectors and eight segments. As the system can rotate the liver to any angle and it has the ability to make part or whole of the liver transparent thus making the internal blood vessels and bile ducts visible. Learning liver anatomy and liver surgery becomes easier. (2)The system can clearly localize liver tumors within the liver segment(s). (3)It can help clinicians to decide and to plan different operations on an individual. (4)By carrying out simulation partial hepatectomy using this system, it can help clinicians to estimate the difficulty and the risks involved in different options of liver resection and finally.(5)The system helps clinicians to identify anomalies in hepatic artery, portal vein, hepatic vein and bile duct, thus making the operation safer. In conclusion, this system significantly improves on the conventional three-dimensional CT reconstruction system. It is especially useful for inexperienced liver surgeons.
Xu, Haotong; Zhang, Xiaoming; Christe, Andreas; Ebner, Lukas; Zhang, Shaoxiang; Luo, Zhulin; Wu, Yi; Li, Yin; Tian, Fuzhou
2013-01-01
Background In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. Methods We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. Principal Findings All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. Conclusion This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body. PMID:23614005
Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyungjin; Song, Yong Sub; Hwang, Eui Jin
2015-01-01
To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, ≤ 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.
Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias
2015-01-01
Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935
Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin
2014-10-01
Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Palladino, S; Keyerleber, M A; King, R G; Burgess, K E
2016-11-01
Apocrine gland adenocarcinoma of the anal sac (AGAAS) is associated with high rates of iliosacral lymph node metastasis, which may influence treatment and prognosis. Magnetic resonance imaging (MRI) recently has been shown to be more sensitive than abdominal ultrasound examination (AUS) in affected patients. To compare the rate of detection of iliosacral lymphadenomegaly between AUS and computed tomography (CT) in dogs with AGAAS. Cohort A: A total of 30 presumed normal dogs. Cohort B: A total of 20 dogs with AGAAS that underwent AUS and CT. Using cohort A, mean normalized lymph node : aorta (LN : AO) ratios were established for medial iliac, internal iliac, and sacral lymph nodes. The CT images in cohort B then were reviewed retrospectively and considered enlarged if their LN : AO ratio measured 2 standard deviations above the mean normalized ratio for that particular node in cohort A. Classification and visibility of lymph nodes identified on AUS were compared to corresponding measurements obtained on CT. Computed tomography identified lymphadenomegaly in 13 of 20 AGAAS dogs. Of these 13 dogs, AUS correctly identified and detected all enlarged nodes in only 30.8%, and either misidentified or failed to detect additional enlarged nodes in the remaining dogs. Despite limitations in identifying enlargement in all affected lymph nodes, AUS identified at least 1 enlarged node in 100% of affected dogs. Abdominal ultrasound examination is an effective screening test for lymphadenomegaly in dogs with AGAAS, but CT should be considered in any patient in which an additional metastatic site would impact therapeutic planning. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, SK; Armour, E; Su, L
Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid goldmore » marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.« less
Computed tomographic findings in 44 dogs and 10 cats with grass seed foreign bodies.
Vansteenkiste, D P; Lee, K C L; Lamb, C R
2014-11-01
To supplement recent reports of computed tomographic (CT) findings in dogs and cats with grass seed foreign bodies. Retrospective review of cases that had CT scan and subsequent retrieval of a grass seed during the same period of hospitalisation from a site included in the scan. Records of 44 dogs and 10 cats were reviewed. Most were presented in the months July to December. Median duration of clinical signs was 4 weeks (range 2 days to 2 years). The most frequent clinical signs were soft tissue swelling (30% cases), coughing (28%), sneezing (28%) and discharge (26%). Grass seeds were retrieved from the thorax (35% cases), nasal cavity (31%), ear (7%), other sites in the head and neck (22%), sublumbar muscles (2%) and pelvic limb (2%). The grass seed was visible in CT images in 10 (19%) cases. Secondary lesions were visible in CT images of 52 (96%) cases, including collection of exudate (37%), abscess (24%), enlarged lymph nodes (22%) and pulmonary consolidation (20%). CT images appeared normal in 4% animals. Grass seeds within the respiratory tract are frequently visible in CT images, but in general CT appears to be more useful for localisation of secondary lesions than as a method of definite diagnosis. © 2014 British Small Animal Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portaluri, Maurizio; Bambace, Santa; Perez, Celeste
2005-11-15
Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologistsmore » (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.« less
Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie
2018-06-01
The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.
Martini, K; Becker, A S; Guggenberger, R; Andreisek, G; Frauenfelder, T
2016-07-01
To determine the diagnostic performance of tomosynthesis in depicting osteoarthritic lesions in comparison to conventional radiographs, with use of computed tomography (CT) as standard-of-reference. Imaging of 12 cadaveric hands was performed with tomosynthesis in dorso-palmar (dp) projection, conventional radiographs (dp) and multi-detector CT. Distal interphalangeal joint (DIP)II, DIPIII, proximal interphalangeal joint (PIP)II, PIPIII, first carpometacarpal (CMC) and scaphotrapezotrapezoidal joint (STT) were graded by two independent readers using the Osteoarthritis Research Society International (OARSI) score. The mean score for each feature was calculated for all modalities. Additional wrists were evaluated for presence of calcium pyrophosphate disease (CPPD). CT served as reference-standard. Inter-reader agreement (ICC) was calculated. Comparing tomosynthesis and conventional radiographs to CT, the sensitivity for the presence of osteophytes was 95,7% vs 65,2%; for joint space narrowing 95,8% vs 52,1%; for subchondral sclerosis 61,5% vs 51,3%; for lateral deformity 83.3% vs 83,3%; and for subchondral cysts 45,8% vs 29,2%. Erosions were not present. While tomosynthesis showed no significant difference in OARSI score grading to CT (mean OARSI-score CT: 16.8, SD = 10.6; mean OARSI-score Tomosynthesis: 16.3, SD = 9.6; P = 0.84), conventional radiographs had significant lower mean OARSI scores (mean OARSI-score X-ray: 11.1, SD = 8.3; P = 0.04). Inter-reader agreement for OARSI scoring was excellent (ICC = 0.99). CPPD calcifications present in CT, were also visible with tomosynthesis, but not with conventional radiography. In conclusion, tomosynthesis depicts more osteoarthritic changes in the small joints of the hand than conventional radiography using the OARSI scoring system and CT as the standard of reference. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z; Gong, G
2014-06-01
Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and themore » EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.« less
Rowbottoma, Carl G; Jaffray, David A
2004-03-01
The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 degrees of rotation in the axial plane to the micro-MOSFET was +/-2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams.
NASA Astrophysics Data System (ADS)
Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.
2017-09-01
Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).
Nagatani, Yukihiro; Moriya, Hiroshi; Noma, Satoshi; Sato, Shigetaka; Tsukagoshi, Shinsuke; Yamashiro, Tsuneo; Koyama, Mitsuhiro; Tomiyama, Noriyuki; Ono, Yoshiharu; Murayama, Sadayuki; Murata, Kiyoshi
2018-05-04
The objectives of this study were to compare the visibility and quantification of subsolid nodules (SSNs) on computed tomography (CT) using adaptive iterative dose reduction using three-dimensional processing between 7 and 42 mAs and to assess the association of size-specific dose estimate (SSDE) with relative measured value change between 7 and 84 mAs (RMVC 7-84 ) and relative measured value change between 42 and 84 mAs (RMVC 42-84 ). As a Japanese multicenter research project (Area-detector Computed Tomography for the Investigation of Thoracic Diseases [ACTIve] study), 50 subjects underwent chest CT with 120 kV, 0.35 second per location and three tube currents: 240 mA (84 mAs), 120 mA (42 mAs), and 20 mA (7 mAs). Axial CT images were reconstructed using adaptive iterative dose reduction using three-dimensional processing. SSN visibility was assessed with three grades (1, obscure, to 3, definitely visible) using CT at 84 mAs as reference standard and compared between 7 and 42 mAs using t test. Dimension, mean CT density, and particular SSDE to the nodular center of 71 SSNs and volume of 58 SSNs (diameter >5 mm) were measured. Measured values (MVs) were compared using Wilcoxon signed-rank tests among CTs at three doses. Pearson correlation analyses were performed to assess the association of SSDE with RMVC 7-84 : 100 × (MV at 7 mAs - MV at 84 mAs)/MV at 84 mAs and RMVC 42-84 . SSN visibilities were similar between 7 and 42 mAs (2.76 ± 0.45 vs 2.78 ± 0.40) (P = .67). For larger SSNs (>8 mm), MVs were similar among CTs at three doses (P > .05). For smaller SSNs (<8 mm), dimensions and volumes on CT at 7 mAs were larger and the mean CT density was smaller than 42 and 84 mAs, and SSDE had mild negative correlations with RMVC 7-84 (P < .05). Comparable quantification was demonstrated irrespective of doses for larger SSNs. For smaller SSNs, nodular exaggerating effect associated with decreased SSDE on CT at 7 mAs compared to 84 mAs could result in comparable visibilities to CT at 42 mAs. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre
2016-11-01
To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target may be possible in 85% of the cases while using treatment plans currently deployed in the clinic. With beam replanning to account for the presence of robotic US guidance, intrafractional US may be an option for 95% of the liver SABR cases.
Mandal, I; Paul, S; Venkatramani, R
2018-04-17
The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.
Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han
2012-05-01
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.
Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle
2012-05-10
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less
Tacher, Vania; Duran, Rafael; Lin, MingDe; Sohn, Jae Ho; Sharma, Karun V.; Wang, Zhijun; Chapiro, Julius; Gacchina Johnson, Carmen; Bhagat, Nikhil; Dreher, Matthew R.; Schäfer, Dirk; Woods, David L.; Lewis, Andrew L.; Tang, Yiqing; Grass, Michael; Wood, Bradford J.
2016-01-01
Purpose To assess the visibility of radiopaque microspheres during transarterial embolization (TAE) in the VX2 rabbit liver tumor model by using multimodality imaging, including single-snapshot radiography, cone-beam computed tomography (CT), multidetector CT, and micro-CT. Materials and Methods The study was approved by the institutional animal care and use committee. Fifteen VX2-tumor-bearing rabbits were assigned to three groups depending on the type of embolic agent injected: 70–150-μm radiopaque microspheres in saline (radiopaque microsphere group), 70–150-μm radiopaque microspheres in contrast material (radiopaque microsphere plus contrast material group), and 70–150-μm radiolucent microspheres in contrast material (nonradiopaque microsphere plus contrast material group). Rabbits were imaged with single-snapshot radiography, cone-beam CT, and multidetector CT. Three to 5 weeks after sacrifice, excised livers were imaged with micro-CT and histologic analysis was performed. The visibility of the embolic agent was assessed with all modalities before and after embolization by using a qualitative three-point scale score reading study and a quantitative assessment of the signal-to-noise ratio (SNR) change in various regions of interest, including the tumor and its feeding arteries. The Kruskal-Wallis test was used to compare the rabbit characteristics across groups, and the Wilcoxon signed rank test was used to compare SNR measurements before and after embolization. Results Radiopaque microspheres were qualitatively visualized within tumor feeding arteries and targeted tissue with all imaging modalities (P < .05), and their presence was confirmed with histologic examination. SNRs of radiopaque microsphere deposition increased after TAE on multidetector CT, cone-beam CT, and micro-CT images (P < .05). Similar results were obtained when contrast material was added to radiopaque microspheres, except for additional image attenuation due to tumor enhancement. For the group with nonradiopaque microspheres and contrast material, retained tumoral contrast remained qualitatively visible with all modalities except for micro-CT, which demonstrated soluble contrast material washout over time. Conclusion Radiopaque microspheres were visible with all imaging modalities and helped increase conspicuity of the tumor as well as its feeding arteries after TAE in a rabbit VX2 liver tumor model. © RSNA, 2015 PMID:26678453
Yamasaki, Yuzo; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Shin, Seitaro; Hino, Takuya; Nagata, Hazumu; Yabuuchi, Hidetake; Nagao, Michinobu; Honda, Hiroshi
2018-05-05
To investigate the performance of second-generation 320-row computed tomographic (CT) angiography (CTA) in detecting coronary arteries and identify factors influencing visibility of the coronary arteries in infants with complex congenital heart disease (CHD). Data of 60 infants (aged 0-2 years, median 2 months) with complex CHD who underwent examination using 320-row CTA with low-dose prospective electrocardiogram-triggered volume target scanning were reviewed. The coronary arteries of each infant were assessed using a 0-4-point scoring system based on the number of coronary segments with a visible course. Clinical parameters, the CT value in the ascending aorta, image noise, and the radiation dose were subjected to univariate and multivariate analyses. The mean coronary score for all examinations was 2.6 ± 1.5 points. The mean attenuation in the ascending aorta was 306.7 ± 66.2 HU and the mean standard deviation was 21.7 ± 4.4. The mean effective radiation dose was 1.27 ± 0.39 mSv. Multivariate regression analysis showed significant correlations between coronary score and body weight (p < 0.05) and between coronary score and the CT value in the ascending aorta (p < 0.02). Second-generation 320-row CTA with prospective electrocardiogram-triggered volume target scanning and hybrid iterative reconstruction allows good visibility of the coronary arteries in infants with complex CHD. Body weight and the CT value in the ascending aorta are important factors influencing the visibility of the coronary arteries in infants.
High energy x-ray phase contrast CT using glancing-angle grating interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.
Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less
Petri, Nils; Gassenmaier, Tobias; Allmendinger, Thomas; Flohr, Thomas; Voelker, Wolfram; Bley, Thorsten A
2017-02-01
To detect an in-stent restenosis, an invasive coronary angiography is commonly performed. Owing to the risk associated with this procedure, a non-invasive method to detect or exclude an in-stent restenosis is desirable. The purpose of this study was to evaluate the influence of cardiac motion on stent lumen visibility in a third-generation dual-source CT scanner (SOMATOM Force; Siemens Healthcare, Forchheim, Germany), employing a pulsatile heart model (CoroSim ® ; Mecora, Aachen, Germany). 13 coronary stents with a diameter of 3.0 mm were implanted in plastic tubes filled with a contrast medium and then fixed onto the pulsatile phantom heart model. The scans were performed while the heart model mimicked the heartbeat. Coronary stents were scanned in an orientation parallel to the scanner z-axis. The evaluation of the stents was performed by employing a medium sharp convolution kernel optimized for vascular imaging. The mean visible stent lumen was reduced from 65.6 ± 5.7% for the stents at rest to 60.8 ± 4.4% for the stents in motion (p-value: <0.001). While the difference in lumen visibility between stents in motion and at rest was significant, the use of this third-generation dual-source CT scanner enabled a high stent lumen visibility under the influence of cardiac motion. Whether this translates into a clinical setting has to be evaluated in further patient studies. Advances in knowledge: The employed modern CT scanner enables a high stent lumen visibility even under the influence of cardiac motion, which is important to detect or exclude an in-stent restenosis.
Tanaka, Toshiaki; Nozawa, Hiroaki; Kawai, Kazushige; Hata, Keisuke; Kiyomatsu, Tomomichi; Nishikawa, Takeshi; Otani, Kensuke; Sasaki, Kazuhito; Murono, Koji; Watanabe, Toshiaki
2017-01-01
Colorectal neuroendocrine tumors (NET) are a rare manifestation of colorectal neoplasia, requiring for radical dissection of the regional lymph nodes along with colorectal resection similar to that required for colorectal cancer. However, thus far, no reports have described the ability of computed tomography (CT) to predict lymph node involvement. In this study, we revealed the prediction rate of lymph node metastasis using contrast-enhanced CT. A total of 21 patients with colorectal NET undergoing colorectal resection were recruited from January 2010 to June 2016. We compared the CT findings between samples with or without pathologically proven lymph node metastasis, in each field (pericolic/perirectal and intermediate nodes). Within the pericolic/perirectal field, any lymph node larger than 5 mm in the CT images was a predictive indicator of lymph node metastasis with a sensitivity, specificity, and area under ROC curve (AUC) of 66.7%, 87.5%, and 0.844, respectively. Within the intermediate field, any visible lymph node on the CT was a predictive indicator of lymph node metastasis with a sensitivity, specificity, and AUC of 100%, 76.4%, and 0.890, respectively. In addition, when we observed lymph nodes larger than 3 mm on the CT images, the sensitivity and specificity were 100% and 82.4%, respectively, with an AUC of 0.8971. CT images provide predictive information for lymph node metastasis with a high rate of accuracy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wei; Department of Radiation Oncology, Shandong's Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan; Currey, Adam
2016-03-15
Purpose: To compare lumpectomy cavity (LC) and planning target volume (PTV) delineated with the use of magnetic resonance imaging (MRI) and computed tomography (CT) and to examine the possibility of replacing CT with MRI for radiation therapy (RT) planning for breast cancer. Methods and Materials: MRI and CT data were acquired for 15 patients with early-stage breast cancer undergoing lumpectomy during RT simulation in prone positions, the same as their RT treatment positions. The LCs were delineated manually on both CT (LC-CT) and MRI acquired with 4 sequences: T1, T2, STIR, and DCE. Various PTVs were created by expanding amore » 15-mm margin from the corresponding LCs and from the union of the LCs for the 4 MRI sequences (PTV-MRI). Differences were measured in terms of cavity visualization score (CVS) and dice coefficient (DC). Results: The mean CVSs for T1, T2, STIR, DCE, and CT defined LCs were 3.47, 3.47, 3.87, 3.50. and 2.60, respectively, implying that the LC is mostly visible with a STIR sequence. The mean reductions of LCs from those for CT were 22%, 43%, 36%, and 17% for T1, T2, STIR, and DCE, respectively. In 14 of 15 cases, MRI (union of T1, T2, STIR, and DCE) defined LC included extra regions that would not be visible from CT. The DCs between CT and MRI (union of T1, T2, STIR, and DCE) defined volumes were 0.65 ± 0.20 for LCs and 0.85 ± 0.06 for PTVs. There was no obvious difference between the volumes of PTV-MRI and PTV-CT, and the average PTV-STIR/PTV-CT volume ratio was 0.83 ± 0.23. Conclusions: The use of MRI improves the visibility of LC in comparison with CT. The volumes of LC and PTV generated based on a MRI sequence are substantially smaller than those based on CT, and the PTV-MRI volumes, defined by the union of T1, T2, STIR, and DCE, were comparable with those of PTV-CT for most of the cases studied.« less
Machiels, Melanie; van Hooft, Jeanin; Jin, Peng; van Berge Henegouwen, Mark I; van Laarhoven, Hanneke M; Alderliesten, Tanja; Hulshof, Maarten C
2015-10-01
Markers placed at the borders of esophageal tumors are potentially useful to facilitate radiotherapy (RT) target delineation, which offers the possibility of image-guided RT. To evaluate and compare the feasibility and technical benefit of endoscopy/EUS-guided marker placement of 3 different types of markers in patients with esophageal cancer referred for RT. Prospective, single-center, feasibility and comparative study. Tertiary-care medical center. Thirty patients with esophageal cancer who were referred for RT. Patients underwent endoscopy/EUS-guided implantation of 1 type of marker. A solid gold marker (SM) with fixed dimensions, a flexible coil-shaped gold marker (FM) with hand-cut length (2-10 mm), and a radiopaque hydrogel marker (HG) were used. Technical feasibility and adverse events were registered. CT scans and cone-beam CT scans (CBCT) acquired during RT were analyzed to determine and compare the visibility and continuous clear visibility of the implanted markers. Technical feasibility, technical benefit, and adverse events of 3 types of markers. A total of 101 markers were placed in 30 patients. Implantation was technically feasible in all patients without grade 3 to 4 adverse events. Two patients with asymptomatic mediastinitis and one with asymptomatic pneumothorax were seen. Visibility on CT scan of all 3 types of implanted markers was adequate for target delineation. Eighty percent of FMs remained continuously visible over the treatment period on CBCT, significantly better than SMs (63%) and HGs (11%) (P = .015). When we selected FMs ≥5 mm, 90.5% remained visible on CBCT between implantation and the end of RT. Single-center, nonrandomized design. Endoscopy/EUS-guided fiducial marker placement for esophageal cancer is both safe and feasible and can be used for target volume delineation purposes on CT. Our results imply a significant advantage of FMs over SMs and HGs, regarding visibility and continuous clear visibility over the treatment period. ( NTR4724.). Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, W; Rao, A; Wendt, R
Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less
Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver
2015-09-01
To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.
Small bowel adenocarcinoma in Crohn disease: CT-enterography features with pathological correlation.
Soyer, Philippe; Hristova, Lora; Boudghène, Frank; Hoeffel, Christine; Dray, Xavier; Laurent, Valérie; Fishman, Elliot K; Boudiaf, Mourad
2012-06-01
The aim of this study was to analyze the clinical, pathological, and CT-enterography findings of small bowel adenocarcinomas in Crohn disease patients. Clinical, histopathological, and imaging findings were retrospectively evaluated in seven Crohn disease patients with small bowel adenocarcinoma. CT-enterography examinations were reviewed for morphologic features and location of tumor, presence of stratification, luminal stenosis, proximal dilatation, adjacent lymph nodes, and correlated with findings at histological examination. The tumor was located in the terminal (n = 6) or distal (n = 1) ileum. On CT-enterography, the tumor was visible in five patients, whereas two patients had no visible tumor. Four different patterns were individualized including small bowel mass (n = 2), long stenosis with heterogeneous submucosal layer (n = 2), short and severe stenosis with proximal small bowel dilatation (n = 2), and sacculated small bowel loop with irregular and asymmetric circumferential thickening (n = 1). Stratification, fat stranding, and comb sign were present in two, two, and one patients, respectively. Identification of a mass being clearly visible suggests strongly the presence of small bowel adenocarcinoma in Crohn disease patients but adenocarcinoma may be completely indistinguishable from benign fibrotic or acute inflammatory stricture. Knowledge of these findings is critical to help suggest the diagnosis of this rare but severe complication of Crohn disease.
Mobile markerless augmented reality and its application in forensic medicine.
Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena
2015-05-01
During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.
CT manifestations of peritoneal carcinomatosis.
Walkey, M M; Friedman, A C; Sohotra, P; Radecki, P D
1988-05-01
Seventy-three abdominopelvic contrast-enhanced CT scans obtained in 60 patients with peritoneal tumor spread were reviewed retrospectively to determine the CT signs of peritoneal malignancy. Ascites was present in 54 studies (74%) and was the most common CT finding. Loculation of the fluid occurred in 25 (46%) of these. In nine (17%) of the 54, a new finding, absence of cul-de-sac fluid in the presence of generalized ascites, was noted. Parietal peritoneal thickening with contrast enhancement of the peritoneum, making the peritoneum visible as a thin line along the abdominal wall, was present in 45 (62%) of studies. This is believed to represent confluent peritoneal metastases. Small-bowel involvement was present in half of the cases (wall thickening and irregularity with or without obstruction). Tumor involvement of the omentum was visible as soft-tissue permeation of fat, enhancing nodules, and/or an omental cake. Of the 26 patients without a previously known malignancy, identification of the primary tumor in addition to peritoneal carcinomatosis was possible in 13 (50%). Appreciation of the spectrum of CT findings in peritoneal carcinomatosis is essential for accurate evaluation of scans in patients with abdominopelvic malignancies.
Yap, W W; Belfield, J C; Bhatnagar, P; Kennish, S; Wah, T M
2012-01-01
Objective Unenhanced helical CT for kidney, ureter and bladder (CT KUB) has become the standard investigation for renal colic. This study aims to determine the sensitivity of scout radiographs in detecting ureteric calculi using CT KUB as a standard reference. Methods A retrospective review of consecutive patients who presented with acute flank pain and were investigated using CT KUB. 201 patients with positive ureteric calculi were included. Two radiologists independently reviewed the scout radiographs with access to CT KUB images. Each observer recorded the presence or absence of calculi, location, size and mean Hounsfield units of each calculus. Results 203 ureteric calculi were analysed from 201 patients. The overall sensitivity of scout radiographs for Observer A was 42.3% and for Observer B 52.2%, with an interobserver reliability κ-value of 0.78. The significance of mean Hounsfield units and size between two groups of patients with visible stones and those not visible were tested; the p-value for both variables was <0.0001, which is statistically significant. The study found that calculi in the upper ureter and larger than 4 mm are more likely to be seen on the scout radiograph. Conclusions Usage of CT scout radiography should be encouraged and reported routinely in conjunction with CT KUB as a baseline for treatment follow-up. PMID:22665926
Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha
2011-03-01
Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a sufficient image contrast on DSA, CT (signal to noise [SNR], 13 ± 2.5), and MRI (SNR, 35 ± 1) in in vitro scans. Successful embolization of renal tissue was confirmed by catheter angiography, revealing at least partial perfusion stop in all kidneys. Signal changes that were attributed to particles residing within the kidney were found in all cases in all the 3 imaging modalities. Localization distribution of particles corresponded well in all imaging modalities. Dynamic imaging during embolization provided real-time monitoring of the inflow of embolization particles within DSA, CT, and MRI. Histologic visualization of the residing particles as well as associated thrombosis in renal arteries could be performed. Visual assessment of the likelihood of embolization particle presence received full rating scores (153/153) after embolization. Multimodal-visible embolization particles have been developed, characterized, and tested in vivo in an animal model. Their implementation in clinical radiology may provide optimization of embolization procedures with regard to prevention of particle misplacement and direct intraprocedural visualization, at the same time improving follow-up examinations by utilizing the complementary characteristics of CT and MRI. Radiation dose savings can also be considered. All these advantages could contribute to future refinements and improvements in embolization therapy. Additionally, new approaches in embolization research may open up.
Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy
NASA Astrophysics Data System (ADS)
Park, Seyoun; Song, Danny Y.; Lee, Junghoon
2016-03-01
Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, R; Bruder, R; Schweikard, A
Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in amore » prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the liver SBRT cases. This project was funded by NIH Grant R41CA174089.« less
Creation of anatomical models from CT data
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.
Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT
Kraft, Otakar; Havel, Martin
2012-01-01
Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
van Hamersvelt, R. W.; Budde, R. P. J.; de Jong, P. A.; Schilham, A. M. R.; Bos, C.; Breur, J. M. P. J.; Leiner, T.
2017-01-01
Background Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. Purpose To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Material and methods Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Results Median stent lumen visibility was 88 (IQR 86–90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78–84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07–0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 –-2.41] mm). Conclusion Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study. PMID:28141852
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T
2017-01-01
Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Median stent lumen visibility was 88 (IQR 86-90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm). Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.
Brook, Olga R; Gourtsoyianni, Sofia; Brook, Alexander; Mahadevan, Anand; Wilcox, Carol; Raptopoulos, Vassilios
2012-06-01
To evaluate spectral computed tomography (CT) with metal artifacts reduction software (MARS) for reduction of metal artifacts associated with gold fiducial seeds. Thirteen consecutive patients with 37 fiducial seeds implanted for radiation therapy of abdominal lesions were included in this HIPAA-compliant, institutional review board-approved prospective study. Six patients were women (46%) and seven were men (54%). The mean age was 61.1 years (median, 58 years; range, 29-78 years). Spectral imaging was used for arterial phase CT. Images were reconstructed with and without MARS in axial, coronal, and sagittal planes. Two radiologists independently reviewed reconstructions and selected the best image, graded the visibility of the tumor, and assessed the amount of artifacts in all planes. A linear-weighted κ statistic and Wilcoxon signed-rank test were used to assess interobserver variability. Histogram analysis with the Kolmogorov-Smirnov test was used for objective evaluation of artifacts reduction. Fiducial seeds were placed in pancreas (n = 5), liver (n = 7), periportal lymph nodes (n = 1), and gallbladder bed (n = 1). MARS-reconstructed images received a better grade than those with standard reconstruction in 60% and 65% of patients by the first and second radiologist, respectively. Tumor visibility was graded higher with standard versus MARS reconstruction (grade, 3.7 ± 1.0 vs 2.8 ± 1.1; P = .001). Reduction of blooming was noted on MARS-reconstructed images (P = .01). Amount of artifacts, for both any and near field, was significantly smaller on sagittal and coronal MARS-reconstructed images than on standard reconstructions (P < .001 for all comparisons). Far-field artifacts were more prominent on axial MARS-reconstructed images than on standard reconstructions (P < .01). Linear-weighted κ statistic showed moderate to perfect agreement between radiologists. CT number distribution was narrower with MARS than with standard reconstruction in 35 of 37 patients (P < .001). Spectral CT with use of MARS improved tumor visibility in the vicinity of gold fiducial seeds.
Analysis of micro computed tomography images; a look inside historic enamelled metal objects
NASA Astrophysics Data System (ADS)
van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen
2010-02-01
In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.
Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J
2016-10-01
To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.
Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J A; de Bruin, Martijn; Faber, Dirk J; Hulshof, Maarten C C M; van Leeuwen, Ton G; van Herk, Marcel; de Boer, Johannes F
2017-12-01
Optical coherence tomography (OCT) is of interest to visualize microscopic esophageal tumor extensions to improve tumor delineation for radiation therapy (RT) planning. Fiducial marker placement is a common method to ensure target localization during planning and treatment. Visualization of these fiducial markers on OCT permits integrating OCT and computed tomography (CT) images used for RT planning via image registration. We studied the visibility of 13 (eight types) commercially available solid and liquid fiducial markers in OCT images at different depths using dedicated esophageal phantoms and evaluated marker placement depth in clinical practice. We designed and fabricated dedicated esophageal phantoms, in which three layers mimic the anatomical wall structures of a healthy human esophagus. We successfully implanted 13 commercially available fiducial markers that varied in diameter and material property at depths between 0.5 and 3.0 mm. The resulting esophageal phantoms were imaged with OCT, and marker visibility was assessed qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). The CNR was defined as the difference between the mean intensity of the fiducial markers and the mean intensity of the background divided by the standard deviation of the background intensity. To determine whether, in current clinical practice, the implanted fiducial markers are within the OCT visualization range (up to 3.0 mm depth), we retrospectively measured the distance of 19 fiducial markers to the esophageal lumen on CT scans of 16 esophageal cancer patients. In the esophageal phantoms, all the included fiducial markers were visible on OCT at all investigated depths. Solid fiducial markers were better visible on OCT than liquid fiducial markers with a 1.74-fold higher CNR. Although fiducial marker identification per type and size was slightly easier for superficially implanted fiducial markers, we observed no difference in the ability of OCT to visualize the markers over the investigated depth range. Retrospective distance measurements of 19 fiducial markers on the CT scan of esophageal cancer patients showed that 84% (distance from the closest border of the marker to the lumen) and 53% (distance from the center of the marker to the lumen) of the fiducial markers were located within the OCT visualization range of up to 3.0 mm. We studied the visibility of eight types of commercially available fiducial markers at different depths on OCT using dedicated esophageal phantoms. All tested fiducial markers were visible at depths ≤3.0 mm and most, but not all, clinically implanted markers were at a depth accessible to OCT. Consequently, the use of fiducial markers as a reference for OCT to CT registration is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.
Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun
2011-08-01
To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.
Ederveen, J C; van Berckel, M M G; Nienhuijs, S W; Weber, R J P; Nederend, J
2018-06-04
Internal herniation, a serious complication after bariatric surgery, is challenging to diagnose. The aim of this study was to determine the accuracy of abdominal CT in diagnosing internal herniation. The study included consecutive patients who had undergone laparoscopic gastric bypass surgery between 1 January 2011 and 1 January 2015 at a bariatric centre of excellence. To select patients suspected of having internal herniation, reports of abdominal CT and reoperations up to 1 January 2017 were screened. CT was presumed negative for internal herniation if no follow-up CT or reoperation was performed within 90 days after the initial CT, or no internal herniation was found during reoperation. The accuracy of abdominal CT in diagnosing internal herniation was calculated using two-way contingency tables. A total of 1475 patients were included (84·7 per cent women, mean age 46·5 years, median initial BMI 41·8 kg/m 2 ). CT and/or reoperation was performed in 192 patients (13·0 per cent) in whom internal herniation was suspected. Internal herniation was proven laparoscopically in 37 of these patients. The incidence of internal herniation was 2·5 per cent. An analysis by complaint included a total of 265 episodes, for which 247 CT scans were undertaken. CT was not used to investigate 18 episodes, but internal herniation was encountered in one-third of these during reoperation. Combining the follow-up and intraoperative findings, the accuracy of CT for internal herniation had a sensitivity of 83·8 (95 per cent c.i. 67·3 to 93·2) per cent, a specificity of 87·1 (81·7 to 91·2) per cent, a positive predictive value of 53·4 (40·0 to 66·5) per cent and a negative predictive value of 96·8 (92·9 to 98·7) per cent. Abdominal CT is an important tool in diagnosing internal herniation, with a high specificity and a high negative predictive value. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
Technical Note: Development and validation of an open data format for CT projection data.
Chen, Baiyu; Duan, Xinhui; Yu, Zhicong; Leng, Shuai; Yu, Lifeng; McCollough, Cynthia
2015-12-01
Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, this work developed and validated a vendor-neutral format for CT projection data, which will further be employed to build a library of patient projection data for public access. A digital imaging and communication in medicine (DICOM)-like format was created for CT projection data (CT-PD), named the DICOM-CT-PD format. The format stores attenuation information in the DICOM image data block and stores parameters necessary for reconstruction in the DICOM header under various tags (51 tags to store the geometry and scan parameters and 9 tags to store patient information). To validate the accuracy and completeness of the new format, CT projection data from helical scans of the ACR CT accreditation phantom were acquired from two clinical CT scanners (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany and Discovery CT750 HD, GE Healthcare, Waukesha, WI). After decoding (by the authors for Siemens, by the manufacturer for GE), the projection data were converted to the DICOM-CT-PD format. Off-line CT reconstructions were performed by internal and external reconstruction researchers using only the information stored in the DICOM-CT-PD files and the DICOM-CT-PD field definitions. Compared with the commercially reconstructed CT images, the off-line reconstructed images created using the DICOM-CT-PD format are similar in terms of CT numbers (differences of 5 HU for the bone insert and -9 HU for the air insert), image noise (±1 HU), and low contrast detectability (6 mm rods visible in both). Because of different reconstruction approaches, slightly different in-plane and cross-plane high contrast spatial resolution were obtained compared to those reconstructed on the scanners (axial plane: GE off-line, 7 lp/cm; GE commercial, 7 lp/cm; Siemens off-line, 8 lp/cm; Siemens commercial, 7 lp/cm. Coronal plane: Siemens off-line, 6 lp/cm; Siemens commercial, 8 lp/cm). A vendor-neutral extended DICOM format has been developed that enables open sharing of CT projection data from third-generation CT scanners. Validation of the format showed that the geometric parameters and attenuation information in the DICOM-CT-PD file were correctly stored, could be retrieved with use of the provided instructions, and contained sufficient data for reconstruction of CT images that approximated those from the commercial scanner.
Femoral head avascular necrosis: a frequently missed incidental finding on multidetector CT.
Barille, M F; Wu, Jim S; McMahon, Colm J
2014-03-01
To determine the incidence of missed femoral head avascular necrosis (AVN) on pelvic computed tomography (CT) performed for clinical indications other than assessment for AVN. The study was a Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study. The picture archiving and communication system (PACS) database was queried for patients with diagnosis of femoral head AVN on magnetic resonance imaging (MRI), who also underwent pelvic multidetector CT after or <30 days before the MRI examination. The MRI and CT images of 144 hips of 72 patients (39 patients with reported AVN on MRI and 33 age-matched controls; mean age = 60 years, 28 male, 44 female), were reviewed in consensus by two readers in a randomized, blinded manner. Using MRI-proven CT-visible AVN as a reference standard, the incidence of missed AVN on initial CT interpretation was determined. Readers confirmed AVN in 33 patients on the MRI images. Nine hips with AVN underwent joint replacement of the affected joint(s) prior to subsequent CT and were excluded. Forty-three MRI-proven AVN cases in 28 patients (15 bilateral, 13 unilateral) were available for analysis. The study readers diagnosed 35/43 (81%) MRI-proven AVN cases in 22/28 (79%) patients. Four of the 35 (11%) cases of MRI-proven, CT-visible AVN were prospectively reported in 3/22 (14%) patients at initial clinical interpretation, with a miss rate of 89% per hip and 86% per patient. Multidetector CT has high accuracy for detection of AVN; however, this is frequently missed as an incidental finding (89% missed in the present study). Assessment for signs of femoral AVN should be part of routine search pattern in interpretation of pelvic CT. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre
2010-03-01
For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.
Lung lobe modeling and segmentation with individualized surface meshes
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael
2008-03-01
An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.
The visible human male: a technical report.
Spitzer, V; Ackerman, M J; Scherzinger, A L; Whitlock, D
1996-01-01
The National Library of Medicine's Visible Human Male data set consists of digital magnetic resonance (MR), computed tomography (CT), and anatomic images derived from a single male cadaver. The data set is 15 gigabytes in size and is available from the National Library of Medicine under a no-cost license agreement. The history of the Visible Human Male cadaver and the methods and technology to produce the data set are described. PMID:8653448
4D XCAT phantom for multimodality imaging research
Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.
2010-01-01
Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209
NASA Astrophysics Data System (ADS)
Alshipli, Marwan; Kabir, Norlaili A.
2017-05-01
Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.
Aortic valve calcifications on chest films: how much calcium do I need?
Mahnken, Andreas H; Dohmen, Guido; Koos, Ralf
2011-08-01
Aortic valve calcifications (AVC) as seen on conventional chest films or on CT are associated with aortic valve stenosis (AVS). The absence of AVC on chest films does not exclude high grade AVS. The aim of this study was to analyse if there is a threshold for the detection of AVC from conventional chest films in patients suffering from high grade AVS. The explanted aortic valves of 29 patients (16 male, mean age 72.3 +/- 11.5 years) with high grade AVS were examined by dual-source CT. AVC were quantified using the Agatston AVC score. In all patients conventional chest films obtained the day before surgery were evaluated for the presence of AVC. Results were analysed with students t-test, Spearman's rank correlation and ROC analysis. On conventional chest films AVC were visible in 18 patients. On CT all specimen presented with AVC with an Agatston AVC score ranging from 40.7 to 1870 (mean 991.3 +/- 463.1). In patients with AVC visible on chest films the AVC score was significantly higher (1264.0 +/- 318.2) when compared with patients without visible calcifications (544.9 +/- 274.4; P < 0.0001). There was a strong correlation between the AVC score and the visibility of AVC on chest films (r = 0.781). ROC analysis identified an ideal threshold of 718 for AVC score to separate conventional chest films with and without visible AVC. Unlike in coronary calcifications, there is a threshold for identifying AVC from conventional chest films. This finding may be of diagnostic value, as conventional chest films may be used to semiquantitatively evaluate the extent of AVC.
Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.
Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael
2016-07-01
'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance (MR) imaging and multi-modality positron emission tomography-CT (PET-CT). In our experiments, the AB-VH markedly improved the computational efficiency for the VH construction and thus improved the subsequent VH-driven volume manipulations. This efficiency was achieved without major degradation in the VH visually and numerical differences between the AB-VH and its full-bin counterpart. We applied several variants of the K-means clustering algorithm with varying Ks (the number of clusters) and found that higher values of K resulted in better performance at a lower computational gain. The AB-VH also had an improved performance when compared to the conventional method of down-sampling of the histogram bins (equal binning) for volume rendering visualisation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Results of subscale MTF compression experiments
NASA Astrophysics Data System (ADS)
Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General
2016-10-01
In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.
Bolliger, Stephan A; Thali, Michael J; Bolliger, Michael J; Kneubuehl, Beat P
2010-11-01
By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.
Invisible fat on CT: making it visible by MRI.
Ünal, Emre; Karaosmanoğlu, Ali Devrim; Akata, Deniz; Özmen, Mustafa Nasuh; Karçaaltıncaba, Muşturay
2016-01-01
Presence of fat in a lesion significantly narrows the differential diagnosis. Small quantities of macroscopic fat and intracellular fat are invisible on computed tomography (CT) and ultrasonography. Magnetic resonance imaging (MRI) can reveal any fatty change in a lesion and can also differentiate macroscopic fat from intracellular and intravoxel fat. Hypodensity on CT may be a sign of invisible fat and MRI can help to diagnose even minute amounts of fat in liver, pancreas, adrenal, musculoskeletal, and omental pseudolesions and lesions. This article will review the superiority of MRI over CT in demonstrating fat in abdominal lesions.
Invisible fat on CT: making it visible by MRI
Ünal, Emre; Karaosmanoğlu, Ali Devrim; Akata, Deniz; Özmen, Mustafa Nasuh; Karçaaltıncaba, Muşturay
2016-01-01
Presence of fat in a lesion significantly narrows the differential diagnosis. Small quantities of macroscopic fat and intracellular fat are invisible on computed tomography (CT) and ultrasonography. Magnetic resonance imaging (MRI) can reveal any fatty change in a lesion and can also differentiate macroscopic fat from intracellular and intravoxel fat. Hypodensity on CT may be a sign of invisible fat and MRI can help to diagnose even minute amounts of fat in liver, pancreas, adrenal, musculoskeletal, and omental pseudolesions and lesions. This article will review the superiority of MRI over CT in demonstrating fat in abdominal lesions. PMID:26782156
NASA Astrophysics Data System (ADS)
Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen
2012-08-01
The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.
Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K
2014-01-01
Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.
SPECT/CT in patients with lower back pain after lumbar fusion surgery.
Sumer, Johannes; Schmidt, Daniela; Ritt, Philipp; Lell, Michael; Forst, Raimund; Kuwert, Torsten; Richter, Richard
2013-10-01
The aim of the study was to investigate the incremental diagnostic value of skeletal hybrid imaging with single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) over conventional nuclear medical imaging in patients with lower back pain after lumbar fusion surgery (LFS). This retrospective study comprised 37 patients suffering from lower back pain after LFS in whom three-phase planar bone scintigraphies of the lumbar spine including SPECT/CT of that region had been performed. The findings visible on these imaging data sets were classified into the following five diagnostic categories: (a) metal loosening; (b) insufficient stabilizing function of the metal implants indicated by metabolically active facet joint arthritis and/or intervertebral osteochondrosis in the instrumented region; (c) adjacent instability defined as metabolically active degenerative disease in the segments adjacent to the instrumented region; (d) indeterminate; and (e) normal. In the case of eight patients no lesions were visible on their planar scintigraphy and SPECT (planar/SPECT) or SPECT/CT images. In the remaining 29 patients, planar/SPECT disclosed 62 pathological foci of uptake within the graft region and SPECT/CT revealed 55. The rate of reclassification by SPECT/CT compared with planar/SPECT was 5/12 for lesions categorized as metal loosening by planar/SPECT, 16/29 for foci with a planar/SPECT diagnosis of insufficient stabilizing function, 7/20 when the planar/SPECT diagnosis had been adjacent instability, and 1/1 for the lesions indeterminate on planar/SPECT. Two lesions had been detected on SPECT/CT only. The overall rate of reclassification was 45.2% (28/62) (95% confidence interval, 33.4-57.5%). Because of its significantly higher accuracy compared with planar/SPECT, SPECT/CT should be the conventional nuclear medical procedure of choice for patients with lower back pain after LFS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortuin, Ansje S., E-mail: A.Fortuin@rad.umcn.nl; Deserno, Willem M.L.L.G.; Meijer, Hanneke J.M.
2012-11-01
Purpose: To determine the clinical value of two novel molecular imaging techniques: {sup 11}C-choline positron emission tomography (PET)/computed tomography (CT) and ferumoxtran-10 enhanced magnetic resonance imaging (magnetic resonance lymphography [MRL]) for lymph node (LN) treatment in prostate cancer (PCa) patients. Therefore, we evaluated the ability of PET/CT and MRL to assess the number, size, and location of LN metastases in patients with primary or recurrent PCa. Methods and Materials: A total of 29 patients underwent MRL and PET/CT for LN evaluation. The MRL and PET/CT data were analyzed independently. The number, size, and location of the LN metastases were determined.more » The location was described as within or outside the standard clinical target volume for elective pelvic irradiation as defined by the Radiation Therapy Oncology Group. Subsequently, the results from MRL and PET/CT were compared. Results: Of the 738 LNs visible on MRL, 151 were positive in 23 of 29 patients. Of the 132 LNs visible on PET/CT, 34 were positive in 13 of 29 patients. MRL detected significantly more positive LNs (p < 0.001) in more patients than PET/CT (p = 0.002). The mean diameter of the detected suspicious LNs on MRL was significantly smaller than those detected by PET/CT, 4.9 mm and 8.4 mm, respectively (p < 0.0001). In 14 (61%) of 23 patients, suspicious LNs were found outside the clinical target volume with MRL and in 4 (31%) of 13 patients with PET/CT. Conclusion: In patients with PCa, both molecular imaging techniques, MRL and {sup 11}C-choline PET/CT, can detect LNs suspicious for metastasis, irrespective of the existing size and shape criteria for CT and conventional magnetic resonance imaging. On MRL and PET/CT, 61% and 31% of the suspicious LNs were located outside the conventional clinical target volume. Therefore, these techniques could help to individualize treatment selection and enable image-guided radiotherapy for patients with PCa LN metastases.« less
Mohebbi, Saleh; Andrade, José; Nolte, Lena; Meyer, Heiko; Heisterkamp, Alexander; Majdani, Omid
2017-01-01
The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies. PMID:28873437
Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
James, T Dobbins; McAdams, H Page; Song, Jae-Woo; Li, Christina M; Godfrey, Devon J; DeLong, David M; Paik, Sang-Hyun; Martinez-Jimenez, Santiago
2008-06-01
The authors report interim clinical results from an ongoing NIH-sponsored trial to evaluate digital chest tomosynthesis for improving detectability of small lung nodules. Twenty-one patients undergoing computed tomography (CT) to follow up lung nodules were consented and enrolled to receive an additional digital PA chest radiograph and digital tomosynthesis exam. Tomosynthesis was performed with a commercial CsI/a-Si flat-panel detector and a custom-built tube mover. Seventy-one images were acquired in 11 s, reconstructed with the matrix inversion tomosynthesis algorithm at 5-mm plane spacing, and then averaged (seven planes) to reduce noise and low-contrast artifacts. Total exposure for tomosynthesis imaging was equivalent to that of 11 digital PA radiographs (comparable to a typical screen-film lateral radiograph or two digital lateral radiographs). CT scans (1.25-mm section thickness) were reviewed to confirm presence and location of nodules. Three chest radiologists independently reviewed tomosynthesis images and PA chest radiographs to confirm visualization of nodules identified by CT. Nodules were scored as: definitely visible, uncertain, or not visible. 175 nodules (diameter range 3.5-25.5 mm) were seen by CT and grouped according to size: < 5, 5-10, and > 10 mm. When considering as true positives only nodules that were scored definitely visible, sensitivities for all nodules by tomosynthesis and PA radiography were 70% (+/- 5%) and 22% (+/- 4%), respectively, (p < 0.0001). Digital tomosynthesis showed significantly improved sensitivity of detection of known small lung nodules in all three size groups, when compared to PA chest radiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ya-Lin; Close, Laird M.; Males, Jared R.
We used the Magellan adaptive optics system and its VisAO CCD camera to image the young low mass brown dwarf companion CT Chamaeleontis B for the first time at visible wavelengths. We detect it at r', i', z', and Y{sub S}. With our new photometry and T {sub eff} ∼ 2500 K derived from the shape of its K-band spectrum, we find that CT Cha B has A{sub V} = 3.4 ± 1.1 mag, and a mass of 14-24 M{sub J} according to the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r' detection indicates thatmore » the companion has significant Hα emission and a mass accretion rate ∼6 × 10{sup –10} M {sub ☉} yr{sup –1}, similar to some substellar companions. Proper motion analysis shows that another point source within 2'' of CT Cha A is not physical. This paper demonstrates how visible wavelength adaptive optics photometry (r', i', z', Y{sub S}) allows for a better estimate of extinction, luminosity, and mass accretion rate of young substellar companions.« less
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa
2015-03-01
We used the Magellan adaptive optics system and its VisAO CCD camera to image the young low mass brown dwarf companion CT Chamaeleontis B for the first time at visible wavelengths. We detect it at r', i', z', and YS . With our new photometry and T eff ~ 2500 K derived from the shape of its K-band spectrum, we find that CT Cha B has AV = 3.4 ± 1.1 mag, and a mass of 14-24 MJ according to the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r' detection indicates that the companion has significant Hα emission and a mass accretion rate ~6 × 10-10 M ⊙ yr-1, similar to some substellar companions. Proper motion analysis shows that another point source within 2'' of CT Cha A is not physical. This paper demonstrates how visible wavelength adaptive optics photometry (r', i', z', YS ) allows for a better estimate of extinction, luminosity, and mass accretion rate of young substellar companions. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas
2018-01-01
Background The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Methods Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Results Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. Conclusions We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study. PMID:29600049
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas; Baste, Jean-Marc
2018-01-01
The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study.
NASA Astrophysics Data System (ADS)
Zulkarnain; Khan, Ishaat M.; Ahmad, Afaq; Miyan, Lal; Ahmad, Musheer; Azizc, Nafe
2017-08-01
The charge transfer interaction between p-nitroaniline (PNA) and chloranilic (CAA) acid was studied spectrophotometrically in methanol at different temperatures within the range 298-328 K. This experimental work explores the nature of charge-transfer interactions that play a significant role in chemistry and biology. Structure of synthesized charge transfer (CT) complex was investigated by different technique such as X-ray crystallography, FTIR, 1HNMR, UV-visible spectroscopy, XRD and TGA-DTA, which indicates the presence of N+sbnd Hrbd2bd O- bond between donor and acceptor moieties. Spectrophotometric studies of CT complexes were carried out in methanol at different temperatures to estimate thermodynamic parameters such as formation constant (KCT), molar absorptivity (εCT), free energy change (ΔG), enthalpy change (ΔH), resonance energy (RN), oscillator strength (f), transition dipole moment (μEN) and interaction energy (ECT) were also calculated. The effect of temperatures on all the parameters was studied in methanol. 1:1 stoichiometric of CT-complex was ascertained by Benesi-Hildebrand plots giving straight line, which are good agreement with other analysis. Synthesized CT complex was screened for its antimicrobial activity such as antibacterial activity against two gram-positive bacteria, Staphylococcus aureus and bacillus subtilis and two gram negative bacteria Escherichia coli and pseudomonas aeruginosa, and antifungal activity against fungi Fusarium oxysporum, and Aspergillus flavus.
Sonia; Komal; Kukreti, Shrikant; Kaushik, Mahima
2018-04-24
Nanomaterials offer a wide range of biomedical applications including gene/drug delivery, biosensing and bioimaging. The cytotoxic and genotoxic potential of nanoparticles need to be thoroughly investigated before their biomedical usage. This study aims to investigate and compare the nanotoxicology of chitosan (CH-Au-Np) and citrate (CI-Au-Np) reduced gold nanoparticles via exploring their interaction with Calf thymus DNA (Ct-DNA) utilizing various physicochemical techniques. Structural characterization of these Nps was done using UV-Visible Spectroscopy and Transmission Electron Microscopy (TEM). Analysis of UV-Visible absorbance spectra indicates that interaction of CH-Au-Np with Ct-DNA causes destabilization of DNA by inducing significant structural and conformational changes in Ct-DNA in a concentration dependent manner, whereas there was negligible interaction between CI-Au-Np and Ct-DNA. These observations were further supported by the results of agarose gel mobility, UV-thermal melting, Circular Dichroism (CD), Dynamic Light Scattering (DLS) and TEM studies. Fluorescence spectral studies using acridine orange (AO) as a fluorescence probe and analysis of thermodynamic parameters reveal that the interactions between Ct-DNA and CH-Au-Np were mainly governed by Van der Waal interactions and Hydrogen bonding. An insightful understanding of genotoxicity induced by CH-Au-Np can be advantageous, as it may provide valuable anticancer approach for cytotoxic drug designing. Copyright © 2018 Elsevier B.V. All rights reserved.
The Caudate Lobe: The Blind Spot in Radioembolization or an Overlooked Opportunity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braat, Manon N. G. J. A., E-mail: M.N.G.Braat-3@umcutrecht.nl; Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Doormaal, Pieter J. van, E-mail: P.J.vanDoormaal-4@umcutrecht.nl
2016-06-15
PurposeThe caudate lobe (CL) is impartial to the functional left and right hemi-liver and has outspoken inter-individual differences in arterial vascularization. Unfortunately, this complexity is not specifically taken into account during radioembolization treatment (RE), potentially resulting in under- or overtreatment of the CL. The objective of this study was to evaluate the CL coverage in RE and determine the detection rate of the CL arteries on CT angiography during work-up.MethodsIn all consecutive patients who underwent RE treatment between May 2012–January 2015, {sup 99m}Tc-MAA SPECT/CT and posttreatment scans ({sup 90}Y-bremsstrahlung SPECT/CT, {sup 90}Y-PET/CT, or {sup 166}Ho-SPECT/CT) were reviewed for activity inmore » the CL. Pretreatment CT angiographies were reviewed for the visibility of the CL arteries.ResultsEighty-two patients were treated. In 32/82 (39 %) the CL was involved. In 6/32 (19 %) patients, no activity was seen on the posttreatment scan in the CL, whereas in 40/50 (80 %) patients without CL tumor involvement, the CL was treated. {sup 99m}Tc-MAA SPECT/CT and final posttreatment scans were discordant in 16/78 (21 %). {sup 99m}Tc-MAA SPECT/CT had a positive and negative predictive value of 94 % and 46 %, respectively, for activity in the CL after RE. In untreated CLs, significant hypertrophy was observed with a median volume increase of 33 % (p = 0.02). CL arteries were seldom visible on the pretreatment CT; the identification rate was 12–17 %.ConclusionCurrently in RE treatments, targeting or sparing of the CL is highly erratic and independent of tumor involvement. Intentional treatment or bypassing of the CL seems worthwhile to either improve tumor coverage or enhance the functional liver remnant.« less
SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owrangi, A; Jolly, S; Balter, J
2014-06-01
Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction,more » each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.« less
4D CT sorting based on patient internal anatomy
NASA Astrophysics Data System (ADS)
Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.
2009-08-01
Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our 4D CT internal sorting method eliminates the need of externally recorded surrogates of respiratory motion. It is an automatic, accurate, robust, cost efficient and yet simple method and therefore can be readily implemented in clinical settings.
Stirling, Aaron D; Murray, Conor P; Lee, Mark A
2017-10-01
To investigate the blood supply to the nipple areola complex (NAC) on thoracic CT angiograms (CTA) to improve breast pedicle design in reduction mammoplasty. In a single centre, CT scans of the thorax were retrospectively reviewed for suitability by a cardiothoracic radiologist. Suitable scans had one or both breasts visible in extended fields, with contrast enhancement of breast vasculature in a female patient. The arterial sources, intercostal space perforated, glandular/subcutaneous course, vessel entry point, and the presence of periareolar anastomoses were recorded for the NAC of each breast. From 69 patients, 132 breasts were suitable for inclusion. The most reproducible arterial contribution to the NAC was perforating branches arising from the internal thoracic artery (ITA) (n = 108, 81.8%), followed by the long thoracic artery (LTA) (n = 31, 23.5%) and anterior intercostal arteries (AI) (n = 21, 15.9%). Blood supply was superficial versus deep in (n = 86, 79.6%) of ITA sources, (n = 28, 90.3%) of LTA sources, and 10 (47.6%) of AI sources. The most vascularly reliable breast pedicle would be asymmetrical in 7.9% as a conservative estimate. We suggest that breast CT angiography can provide valuable information about NAC blood supply to aid customised pedicle design, especially in high-risk, large-volume breast reductions where the risk of vascular-dependent complications is the greatest and asymmetrical dominant vasculature may be present. Superficial ITA perforator supplies are predominant in a majority of women, followed by LTA- and AIA-based sources, respectively.
Fourth update on CT angiography of coronary stents: in vitro evaluation of 24 novel stent types.
Hickethier, Tilman; Wenning, Justus; Doerner, Jonas; Maintz, David; Michels, Guido; Bunck, Alexander C
2017-01-01
Background Non-invasive evaluation of coronary stent patency by coronary computed tomography angiography (cCTA) remains challenging. Multiple studies showed that CT technology but also individual stent design strongly influence the assessability of coronary stents by cCTA. Purpose To expand the available data on cCTA characteristics of coronary stents by 24 novel types to help interpreting examinations of patients after stent placement and selecting which stents are suitable for assessment by cCTA. Material and Methods Twenty-four novel coronary stents (17 cobalt-chromium, six stainless-steel, one platinum-chromium) were examined in a coronary phantom. Standard cCTA parameters with stent-specific algorithms were used. Image quality was quantified for each stent using established parameters (in-stent attenuation alteration and visible lumen diameter). Results Most stents (n = 14) showed lumen visibilities of 45-55%. No severe restriction of lumen visibility (>60%) was found. The majority of stents (n = 13) caused only small intraluminal attenuation deviations and no severe alterations (>20%) were found. When grouped by manufacturing material, no significant differences were found between cobalt-chromium and stainless-steel with identical mean visible diameters (1.52 ± 0.17 mm vs. 1.52 ± 0.13 mm) and comparable attenuation alterations (35.04 ± 16.56 HU vs. 21.25 ± 14.60 HU). The only platinum-chromium stent showed a smaller visible diameter (1.23 mm) and higher attenuation alteration (41.70 HU), but was also deemed to be assessable by cCTA. Conclusion All 24 novel evaluated stents are eligible for non-invasive evaluation by cCTA without significant differences between cobalt-chromium and stainless-steel stents. This updated catalogue of CT appearances of current coronary stents may serve as reference when taking care of patients with stents in need of coronary imaging.
US characteristics for the prediction of neoplasm in gallbladder polyps 10 mm or larger.
Kim, Jin Sil; Lee, Jeong Kyong; Kim, Yookyung; Lee, Sang Min
2016-04-01
To evaluate the characteristics of gallbladder polyps 10 mm or larger to predict a neoplasm in US examinations. Fifty-three patients with gallbladder polyps ≥ 10 mm with follow-up images or pathologic diagnosis were included in the retrospective study. All images and reports were reviewed to determine the imaging characteristics of gallbladder polyps. Univariate and multivariate analyses were used to evaluate predictors for a neoplastic polyp. A neoplastic polyp was verified in 12 of 53 patients and the mean size was 13.9 mm. The univariate analysis revealed that adjacent gallbladder wall thickening, larger size (≥15 mm), older age (≥57 years), absence of hyperechoic foci in a polyp, CT visibility, sessile shape, a solitary polyp, and an irregular surface were significant predictors for a neoplastic polyp. In the multivariate analysis, larger size (≥15 mm) was a significant predictor for a neoplastic polyp. A polyp size ≥15 mm was the strongest predictor for a neoplastic polyp with US. The hyperechoic foci in a polyp and CT visibility would be useful indicators for the differentiation of a neoplastic polyp, in addition to the established predictors. • A polyp size ≥15 mm is the strongest predictor for a neoplastic polyp with US. • Hyperechoic foci in a polyp and CT visibility are new predictors. • The rate of malignancy is low in polyps even 10 mm or larger (15.1 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, EM; University of Wollongong, Wollongong, NSW; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW
2016-06-15
Purpose: Breast cancers predominantly arise from Glandular Breast Tissue (GBT). If the GBT can be treated effectively post-operatively utilising radiotherapy this may be adequate volumetric coverage for adjuvant breast radiotherapy. Adequate imaging of the GBT is necessary and will be assessed between MRI and CT modalities. GBT visualisation is acknowledged to be qualitatively superior on Magnetic Resonance Image (MRI) compared to Computed Tomography (CT), the current radiotherapy imaging standard, however this has not been quantitatively assessed. For radiotherapy purposes it is important that any treatment volume can be consistently defined between observers. This study investigates the consistency of CT andmore » MRI GBT contours for potential radiotherapy planning. Methods: Ten experts (9 breast radiation oncologists and 1 radiologist) contoured the extent of the visible GBT for 33 patients on MRI and CT (both without contrast), which was performed according to a contouring guideline in supine and prone patient positions. The GBT volume was not a conventional whole breast radiotherapy planning volume, but rather the extent of GBT that was indicated from the CT or MR imaging. Volumes were compared utilizing the dice similarity coefficient (DSC), kappa statistic, and Hausdorff Distances (HDs) to ascertain the modality that was most consistently volumed. Results: The inter-observer concordance was of substantial agreement (kappa above 0.6) for the CT supine, CT prone, MRI supine and MRI prone datasets. The MRI GBT volumes were larger than the CT GBT volumes (p<0.001). Inter-observer conformity was higher for CT than MRI, although the magnitude of this difference was small (VOI<0.04). Conformity between modalities (CT and MRI) was in agreement for both prone and supine, DSC=0.75. Prone GBT volumes were larger than supine for both MRI and CT. Conclusion: MRI improves the extent of GBT delineation. The role of MRI guided, GBT-targeted radiotherapy requires investigation in a clinical trial. This work was supported by a grant number APP1033237 from Cancer Australia and the National Breast Cancer Foundation.« less
Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulin, Kenneth; Urie, Marcia M., E-mail: murie@qarc.or; Cherlow, Joel M.
2010-08-01
Purpose: Variability in computed tomography/magnetic resonance imaging (CT/MR) cranial image registration was assessed using a benchmark case developed by the Quality Assurance Review Center to credential institutions for participation in Children's Oncology Group Protocol ACNS0221 for treatment of pediatric low-grade glioma. Methods and Materials: Two DICOM image sets, an MR and a CT of the same patient, were provided to each institution. A small target in the posterior occipital lobe was readily visible on two slices of the MR scan and not visible on the CT scan. Each institution registered the two scans using whatever software system and method itmore » ordinarily uses for such a case. The target volume was then contoured on the two MR slices, and the coordinates of the center of the corresponding target in the CT coordinate system were reported. The average of all submissions was used to determine the true center of the target. Results: Results are reported from 51 submissions representing 45 institutions and 11 software systems. The average error in the position of the center of the target was 1.8 mm (1 standard deviation = 2.2 mm). The least variation in position was in the lateral direction. Manual registration gave significantly better results than did automatic registration (p = 0.02). Conclusion: When MR and CT scans of the head are registered with currently available software, there is inherent uncertainty of approximately 2 mm (1 standard deviation), which should be considered when defining planning target volumes and PRVs for organs at risk on registered image sets.« less
Nagayama, Yasunori; Nakaura, Takeshi; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Yuki, Hideaki; Hirarta, Kenichiro; Oda, Seitaro; Kidoh, Masafumi; Utsunomiya, Daisuke; Yamashita, Yasuyuki
2017-02-01
The purpose of this study was to evaluate the feasibility of a contrast medium (CM), radiation dose reduction protocol for cerebral bone-subtraction CT angiography (BSCTA) using 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE). Seventy-five patients who had undergone BSCTA under the 120- (n = 37) or the 80-kVp protocol (n = 38) were included. CM was 370 mgI/kg for the 120-kVp and 296 mgI/kg for the 80-kVp protocol; the 120- and the 80-kVp images were reconstructed with filtered back-projection (FBP) and SAFIRE, respectively. We compared effective dose (ED), CT attenuation, image noise, and contrast-to-noise ratio (CNR) of two protocols. We also scored arterial contrast, sharpness, depiction of small arteries, visibility near skull base/clip, and overall image quality on a four-point scale. ED was 62% lower at 80- than 120-kVp (0.59 ± 0.06 vs 1.56 ± 0.13 mSv, p < 0.01). CT attenuation of the internal carotid artery (ICA) and middle cerebral artery (MCA) was significantly higher on 80- than 120-kVp (ICA: 557.4 ± 105.7 vs 370.0 ± 59.3 Hounsfield units (HU), p < 0.01; MCA: 551.9 ± 107.9 vs 364.6 ± 62.2 HU, p < 0.01). The CNR was also significantly higher on 80- than 120-kVp (ICA: 46.2 ± 10.2 vs 36.9 ± 7.6, p < 0.01; MCA: 45.7 ± 10.0 vs 35.7 ± 9.0, p < 0.01). Visibility near skull base and clip was not significantly different (p = 0.45). The other subjective scores were higher with the 80- than the 120-kVp protocol (p < 0.05). The 80-kVp acquisition with SAFIRE yields better image quality for BSCTA and substantial reduction in the radiation and CM dose compared to the 120-kVp with FBP protocol.
NASA Astrophysics Data System (ADS)
Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.
2017-08-01
The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.
Sanders, Michelle; Arduca, Yolanda; Karamitsios, Mary; Boots, Marilyn; Vance, Alasdair
2005-05-01
Internalizing and externalizing disorders are frequently comorbid with attention deficit hyperactivity disorder, combined type (ADHD-CT) and dysthymic disorder (DD) in referred primary school-age children, yet there has been relatively little systematic research of the nature of these comorbid disorders. We describe the characteristics of parent- and child-reported internalizing and externalizing disorders in primary school-age children with ADHD-CT and DD. A cross-sectional study of 45 clinically referred medication naive children with ADHD-CT and DD, examining parent and child reports of internalizing and externalizing disorders, defined categorically and dimensionally. Generalized anxiety disorder and separation anxiety disorder were increased in the DD groups, whether ADHD-CT was present or not. Major depressive disorder was increased in the ADHD-CT and DD group compared to the ADHD-CT alone and the DD alone groups. Conduct disorder was increased in the ADHD-CT alone group compared to the DD with and without ADHD-CT groups. Verbal and fullscale IQ were increased in the DD groups, whether ADHD-CT was present or not, compared to the ADHD-CT alone group. There is emerging evidence that DD and anxiety may represent a different phenotypic expression of a common underlying aetiological process, while the co-occurrence of ADHD-CT and anxiety disorders remains unclear. Only the ADHD-CT and DD group is significantly associated with major depressive disorder, which suggests an additive effect. In contrast, conduct disorder and decreased verbal and fullscale IQ are only associated with the ADHD-CT group, which may suggest a protective effect of DD when comorbid with ADHD-CT. From a research perspective, it is important to confirm these found associations in larger samples derived from epidemiological populations.
18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. ...
18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. MORTARS, BOSSES, MOST SHOES, STEMS, TAPPETS, CAMS AND BULL WHEELS ARE CLEARLY VISIBLE AND INTACT. NAMEPLATE CASTING IS CLEARLY VISIBLE ON THE UPPER MORTAR BLOCKS (BELOW CENTER) UNION IRON WORKS, SAN FRANCISCO C-L, SEE CA-290-45 (CT) FOR A SIMILAR COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurney-Champion, Oliver J., E-mail: o.j.gurney-champion@amc.uva.nl; Lens, Eelco; Horst, Astrid van der
2015-05-15
Purpose: In radiation therapy of pancreatic cancer, tumor alignment prior to each treatment fraction is improved when intratumoral gold fiducial markers (from here onwards: markers), which are visible on computed tomography (CT) and cone beam CT, are used. Visibility of these markers on magnetic resonance imaging (MRI) might improve image registration between CT and magnetic resonance (MR) images for tumor delineation purposes. However, concomitant image artifacts induced by markers are undesirable. The extent of visibility and artifact size depend on MRI-sequence parameters. The authors’ goal was to determine for various markers their potential to be visible and to generate artifacts,more » using measures that are independent of the MRI-sequence parameters. Methods: The authors selected ten different markers suitable for endoscopic placement in the pancreas and placed them into a phantom. The markers varied in diameter (0.28–0.6 mm), shape, and iron content (0%–0.5%). For each marker, the authors calculated T{sub 2}{sup ∗}-maps and ΔB{sub 0}-maps using MRI measurements. A decrease in relaxation time T{sub 2}{sup ∗} can cause signal voids, associated with visibility, while a change in the magnetic field B{sub 0} can cause signal shifts, which are associated with artifacts. These shifts inhibit accurate tumor delineation. As a measure for potential visibility, the authors used the volume of low T{sub 2}{sup ∗}, i.e., the volume for which T{sub 2}{sup ∗} differed from the background by >15 ms. As a measure for potential artifacts, the authors used the volume for which |ΔB{sub 0}| > 9.4 × 10{sup −8} T (4 Hz). To test whether there is a correlation between visibility and artifact size, the authors calculated the Spearman’s correlation coefficient (R{sub s}) between the volume of low T{sub 2}{sup ∗} and the volume of high |ΔB{sub 0}|. The authors compared the maps with images obtained using a clinical MR-sequence. Finally, for the best visible marker as well as the marker that showed the smallest artifact, the authors compared the phantom data with in vivo MR-images in four pancreatic cancer patients. Results: The authors found a strong correlation (R{sub s} = 1.00, p < 0.01) between the volume of low T{sub 2}{sup ∗} and the volume with high |ΔB{sub 0}|. Visibility in clinical MR-images increased with lower T{sub 2}{sup ∗}. Signal shift artifacts became worse for markers with high |ΔB{sub 0}|. The marker that was best visible in the phantom, a folded marker with 0.5% iron content, was also visible in vivo, but showed artifacts on diffusion weighted images. The marker with the smallest artifact in the phantom, a small, stretched, ironless marker, was indiscernible on in vivo MR-images. Conclusions: Changes in T{sub 2}{sup ∗} and ΔB{sub 0} are sequence-independent measures for potential visibility and artifact size, respectively. Improved visibility of markers correlates strongly to signal shift artifacts; therefore, marker choice will depend on the clinical purpose. When visibility of the markers is most important, markers that contain iron are optimal, preferably in a folded configuration. For artifact sensitive imaging, small ironless markers are best, preferably in a stretched configuration.« less
Interior micro-CT with an offset detector
Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua
2014-01-01
Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826
The application of cone-beam CT in the aging of bone calluses: a new perspective?
Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C
2013-11-01
In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.
Hirata, Kenichiro; Utsunomiya, Daisuke; Kidoh, Masafumi; Funama, Yoshinori; Oda, Seitaro; Yuki, Hideaki; Nagayama, Yasunori; Iyama, Yuji; Nakaura, Takeshi; Sakabe, Daisuke; Tsujita, Kenichi; Yamashita, Yasuyuki
2018-05-01
We aimed to evaluate the image quality performance of coronary CT angiography (CTA) under the different settings of forward-projected model-based iterative reconstruction solutions (FIRST).Thirty patients undergoing coronary CTA were included. Each image was reconstructed using filtered back projection (FBP), adaptive iterative dose reduction 3D (AIDR-3D), and 2 model-based iterative reconstructions including FIRST-body and FIRST-cardiac sharp (CS). CT number and noise were measured in the coronary vessels and plaque. Subjective image-quality scores were obtained for noise and structure visibility.In the objective image analysis, FIRST-body produced the significantly highest contrast-to-noise ratio. Regarding subjective image quality, FIRST-CS had the highest score for structure visibility, although the image noise score was inferior to that of FIRST-body.In conclusion, FIRST provides significant improvements in objective and subjective image quality compared with FBP and AIDR-3D. FIRST-body effectively reduces image noise, but the structure visibility with FIRST-CS was superior to FIRST-body.
Facilitating Identification of Poorly Preserved Marine Microfossils through 3D Printing
NASA Astrophysics Data System (ADS)
Christensen, R. V.; Robinson, M. M.; Sessa, J.
2016-12-01
The Paleocene-Eocene Thermal Maximum (PETM) was a period of sudden and intense global warming that occurred 56 Myr, and is widely considered a possible analogue for future climatic changes. Marine microfossils are important proxies used in the reconstruction of PETM paleoenvironments and paleoclimate. The correct species-level identification of foraminifera and pteropod specimens is necessary to understand ocean temperature, chemistry, nutrient availability, and ecosystem structure during this hyperthermal event. During periods of extreme or rapid environmental perturbations foraminifera can be poorly preserved. Pteropod identification is equally challenging as aragonitic shells are vulnerable to changing ocean acidity and often only internal molds are left to be identified. The macroscopic rendering of the internal and external test morphology of marine microfossils via 3D printing allows for a more experiential species-recognition education, especially of difficult to identify specimens. A selected microfossil specimen is scanned using computerized tomography (CT), creating x-ray slices of the specimen that are then processed into a digital model. The digitized fossil can then be analyzed using 3D software and subsequently printed using a wide variety of materials. The magnified model can be easily manipulated in a student's hand, and thus can be studied in a more visible and tactile way than traditional methods allow. This invaluable teaching tool physically manifests what was previously limited to textbook images and illustrations or the view field of a microscope. We show the step-by-step 3-D printing process of several PETM marine microfossil specimens from CT scans and demonstrate their advantage over 2-D SEM images for learning to identify microfossils to the species level. In addition, we provide samples to demonstrate the utility of 3-D models in identifying poorly preserved foraminifer specimens and species of pteropods from internal molds.
Dedicated Cone-Beam CT System for Extremity Imaging
Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.
2014-01-01
Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for this article. PMID:24475803
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Neves, A A; Silva, E J; Roter, J M; Belladona, F G; Alves, H D; Lopes, R T; Paciornik, S; De-Deus, G A
2015-11-01
To propose an automated image processing routine based on free software to quantify root canal preparation outcomes in pairs of sound and instrumented roots after micro-CT scanning procedures. Seven mesial roots of human mandibular molars with different canal configuration systems were studied: (i) Vertucci's type 1, (ii) Vertucci's type 2, (iii) two individual canals, (iv) Vertucci's type 6, canals (v) with and (vi) without debris, and (vii) canal with visible pulp calcification. All teeth were instrumented with the BioRaCe system and scanned in a Skyscan 1173 micro-CT before and after canal preparation. After reconstruction, the instrumented stack of images (IS) was registered against the preoperative sound stack of images (SS). Image processing included contrast equalization and noise filtering. Sound canal volumes were obtained by a minimum threshold. For the IS, a fixed conservative threshold was chosen as the best compromise between instrumented canal and dentine whilst avoiding debris, resulting in instrumented canal plus empty spaces. Arithmetic and logical operations between sound and instrumented stacks were used to identify debris. Noninstrumented dentine was calculated using a minimum threshold in the IS and subtracting from the SS and total debris. Removed dentine volume was obtained by subtracting SS from IS. Quantitative data on total debris present in the root canal space after instrumentation, noninstrumented areas and removed dentine volume were obtained for each test case, as well as three-dimensional volume renderings. After standardization of acquisition, reconstruction and image processing micro-CT images, a quantitative approach for calculation of root canal biomechanical outcomes was achieved using free software. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Böning, G; Schäfer, M; Grupp, U; Kaul, D; Kahn, J; Pavel, M; Maurer, M; Denecke, T; Hamm, B; Streitparth, F
2015-08-01
To investigate whether dose reduction via adaptive statistical iterative reconstruction (ASIR) affects image quality and diagnostic accuracy in neuroendocrine tumor (NET) staging. A total of 28 NET patients were enrolled in the study. Inclusion criteria were histologically proven NET and visible tumor in abdominal computed tomography (CT). In an intraindividual study design, the patients underwent a baseline CT (filtered back projection, FBP) and follow-up CT (ASIR 40%) using matched scan parameters. Image quality was assessed subjectively using a 5-grade scoring system and objectively by determining signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNRs). Applied volume computed tomography dose index (CTDIvol) of each scan was taken from the dose report. ASIR 40% significantly reduced CTDIvol (10.17±3.06mGy [FBP], 6.34±2.25mGy [ASIR] (p<0.001) by 37.6% and significantly increased CNRs (complete tumor-to-liver, 2.76±1.87 [FBP], 3.2±2.32 [ASIR]) (p<0.05) (complete tumor-to-muscle, 2.74±2.67 [FBP], 4.31±4.61 [ASIR]) (p<0.05) compared to FBP. Subjective scoring revealed no significant changes for diagnostic confidence (5.0±0 [FBP], 5.0±0 [ASIR]), visibility of suspicious lesion (4.8±0.5 [FBP], 4.8±0.5 [ASIR]) and artifacts (5.0±0 [FBP], 5.0±0 [ASIR]). ASIR 40% significantly decreased scores for noise (4.3±0.6 [FBP], 4.0±0.8 [ASIR]) (p<0.05), contrast (4.4±0.6 [FBP], 4.1±0.8 [ASIR]) (p<0.001) and visibility of small structures (4.5±0.7 [FBP], 4.3±0.8 [ASIR]) (p<0.001). In clinical practice ASIR can be used to reduce radiation dose without sacrificing image quality and diagnostic confidence in staging CT of NET patients. This may be beneficial for patients with frequent follow-up and significant cumulative radiation exposure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudry, J; Bergman, A; British Columbia Cancer Agency, Vancouver, BC
Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based onmore » total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.« less
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
Orlandi, Palmer A.; Fishman, Peter H.
1998-01-01
The mechanism by which cholera toxin (CT) is internalized from the plasma membrane before its intracellular reduction and subsequent activation of adenylyl cyclase is not well understood. Ganglioside GM1, the receptor for CT, is predominantly clustered in detergent-insoluble glycolipid rafts and in caveolae, noncoated, cholesterol-rich invaginations on the plasma membrane. In this study, we used filipin, a sterol-binding agent that disrupts caveolae and caveolae-like structures, to explore their role in the internalization and activation of CT in CaCo-2 human intestinal epithelial cells. When toxin internalization was quantified, only 33% of surface-bound toxin was internalized by filipin-treated cells within 1 h compared with 79% in untreated cells. However, CT activation as determined by its reduction to form the A1 peptide and CT activity as measured by cyclic AMP accumulation were inhibited in filipin-treated cells. Another sterol-binding agent, 2-hydroxy-β-cyclodextrin, gave comparable results. The cationic amphiphilic drug chlorpromazine, an inhibitor of clathrin-dependent, receptor-mediated endocytosis, however, affected neither CT internalization, activation, nor activity in contrast to its inhibitory effects on diphtheria toxin cytotoxicity. As filipin did not inhibit the latter, the two drugs appeared to distinguish between caveolae- and coated pit–mediated processes. In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin. Thus, filipin inhibition correlated more closely with alterations in the biochemical characteristics of CT-bound membranes due to the interactions of filipin with cholesterol rather than with the expressed levels of caveolin and caveolar structure. Our results indicated that the internalization and activation of CT was dependent on and mediated through cholesterol- and glycolipid-rich microdomains at the plasma membrane rather than through a specific morphological structure and that these glycolipid microdomains have the necessary components required to mediate endocytosis. PMID:9585410
Deciphering the mechanism of interaction of edifenphos with calf thymus DNA
NASA Astrophysics Data System (ADS)
Ahmad, Ajaz; Ahmad, Masood
2018-01-01
Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofler, J.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
NASA Astrophysics Data System (ADS)
Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.
2018-01-01
Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual mixtures of CT-GNP-5 or -10 with DOM, whereas emissions for mixtures of CT-GNP-30 or -50 with DOM were enhanced at the surface plasmon resonance (SPR) wavelength. The emission spectra (ultraviolet range) for protein-like constituents of DOM were quenched. Resonance Rayleigh scattering (RRS) was more intense for the CT-GNP-30 and -50 than for the CT-GNP-5 and -10 controls. Intensity-based DLS particle size distributions (PSDs) of DOM controls, CT-GNP-5 and -10 nm controls, and 5- and 10 nm GNP-DOM mixtures exhibited multimodal aggregation. Analyses of CT-GNP-5 and CT-GNP-10 nm mixtures with DOM indicated overcoating of DOM molecules occurred in close proximity (< 10 nm) to GNPs, whereas similar overcoating was not supported for the CT-GNP-30 or -50 mixtures with DOM. These fundamental observations can be exploited to improve our comprehension of nanomaterial interactions with environmental systems.
SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Y; Turian, J; Templeton, A
2015-06-15
Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT.more » PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.« less
NASA Astrophysics Data System (ADS)
Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J. A.; de Bruin, Daniel M.; Faber, Dirk J.; Hulshof, Maarten C. C. M.; van Leeuwen, Ton G.; van Herk, Marcel B.; de Boer, Johannes F.
2017-03-01
Radiation therapy (RT) is used in operable and inoperable esophageal cancer patients. Endoscopic ultrasound-guided fiducial marker placement allows improved translation of the disease extent on endoscopy to computed tomography (CT) images used for RT planning and enables image-guided RT. However, microscopic tumor extent at the time of RT planning is unknown. Endoscopic optical coherence tomography (OCT) is a high-resolution (10-30µm) imaging modality with the potential for accurately determining the longitudinal disease extent. Visibility of fiducial markers on OCT is crucial for integrating OCT findings with the RT planning CT. We investigated the visibility on OCT (NinePoint Medical, Inc.) of 13 commercially available solid (Visicoil, Gold Anchor, Flexicoil, Polymark, and QLRAD) and liquid (BioXmark, Lipiodol, and Hydrogel) fiducial markers of different diameter. We designed and manufactured a set of dedicated Silicone-based esophageal phantoms to perform imaging in a controlled environment. The esophageal phantoms consist of several layers with different TiO2 concentrations to simulate the scattering properties of a typical healthy human esophagus. Markers were placed at various depths (0.5, 1.1, 2.0, and 3.0mm). OCT imaging allowed detection of all fiducial markers and phantom layers. The signal to background ratio was 6-fold higher for the solid fiducial markers than the liquid fiducial markers, yet OCT was capable of visualizing all 13 fiducial markers at all investigated depths. We conclude that RT fiducial markers can be visualized with OCT. This allows integration of OCT findings with CT for image-guided RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Meng, E-mail: mengwu@stanford.edu; Fahrig, Rebecca
2014-11-01
Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images thatmore » are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT volume. Conclusions: Their proposed prior CT-augmented OPAST reconstruction algorithm improves lung nodule visibility and depth resolution for the SBDX system.« less
A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1996-01-01
The feasibility of automatically identifying internal features of hardwood logs using CT imagery has been established previously. Features of primary interest are bark, knots, voids, decay, and clear wood. Our previous approach: filtered original CT images, applied histogram segmentation, grew volumes to extract 3-d regions, and applied a rule base, with Dempster-...
Rana, A K; Turner, H E; Deans, K A
2013-01-01
Patients with suspected subarachnoid haemorrhage, a normal noncontrast computed tomography (CT) and cerebrospinal fluid (CSF) evidence of haemoglobin breakdown products often undergo CT angiography (CTA). If this is normal, then invasive catheter angiography may be offered. In current clinical practice, haemoglobin breakdown products are detected by spectrophotometry rather than visible xanthochromia, and CTA is performed on multidetector scanners. The aim of this study was to determine if such patients should still have a catheter angiography, given the associated risks. Patients positive for CSF spectrophotometry (n=26) were retrospectively identified from the clinical biochemistry information system and imaging data from the electronic radiology records were reviewed. Discharge letters were consulted to relate the biochemistry and radiology results to the final diagnosis. 15 patients with CT angiography were found. Nine patients had normal CT angiography. No causative aneurysms had been missed. One patient had small, coincidental aneurysms missed on initial reading of the CTA. The likelihood of a clinically significant aneurysm in a patient who is CT negative, lumbar puncture positive and CTA negative is low. Double reporting of negative CT angiograms may be advisable.
Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C
2012-06-01
To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezovich, I; Wu, X; Popple, R
Purpose: To test spatial and dosimetric accuracy of small cranial target irradiation based on 1.5 T MRI scans using static arcs with MLC-defined fields Methods: A plastic (PMMA) phantom simulating a small brain lesion was mounted on a GammaKnife headframe equipped with MRI localizer. The lesion was a 3 mm long, 3.175 mm diameter cylindrical cavity filled with MRI contrast. Radiochromic film passing through the cavity was marked with pin pricks at the cavity center. The cavity was contoured on an MRI image and fused with CT to simulate treatment of a lesion not visible on CT. The transfer ofmore » the target to CT involved registering the MRI contrast cannels of the localizer that were visible on both modalities. Treatments were planned to deliver 800 cGy to the cavity center using multiple static arcs with 5.0×2.4 mm MLC-defined fields. The phantom was aligned on a STx accelerator by registering the conebeam CT with the planning CT. Films from coronal and sagittal planes were scanned and evaluated using ImageJ software Results: Geographic errors in treatment based on 1.5 T scans agreed within 0.33, −0.27 and 1.21 mm in the vertical, lateral and longitudinal dimensions, respectively. The doses delivered to the cavity center were 7.2% higher than planned. The dose distributions were similar to those of a GammaKnife. Conclusion: Radiation can be delivered with an accelerator at mm accuracy to small cranial targets based on 1.5 MRI scans fused to CTs using a standard GammaKnife headframe and MRI localizer. MLC-defined static arcs produce isodose lines very similar to the GammaKnife.« less
8. VIEW EASTNORTHEAST OF TRANSFORMER BAYS AND SUBSTATION; BUILDING 8 ...
8. VIEW EAST-NORTHEAST OF TRANSFORMER BAYS AND SUB-STATION; BUILDING 8 IS AT EXTREME LEFT CENTER; BUILD-ING 50 IS VISIBLE AT LEFT CENTER BEHIND BUILDING 8 - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT
DISGUISED IN AN OCEANIC CAMOUFLAGE PAINT SCHEME, EVERGREEN MAKES HER ...
DISGUISED IN AN OCEANIC CAMOUFLAGE PAINT SCHEME, EVERGREEN MAKES HER WAY THROUGH THE NORTH ATLANTIC DURING WORLD WAR II. HER 3" GUN IS VISIBLE BEHIND THE STACK - U.S. Coast Guard Cutter EVERGREEN, New London, New London County, CT
Collins, Sean P; Matheson, Jodi S; Hamor, Ralph E; Mitchell, Mark A; Labelle, Amber L; O'Brien, Robert T
2013-09-01
To compare the diagnostic quality of computed tomography (CT) images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Eleven privately owned cats with nasal disease presenting to a single referral hospital. All cats received a complete ophthalmic examination. A 16 multislice helical CT system was utilized to acquire images of the skull and neck with and without the use of general anesthesia. Images were acquired before and after the administration of intravenous iodinated contrast. Images of normal ocular and orbital structures were evaluated via consensus by two board-certified radiologists. Visibility of ocular and orbital structures, degree of motion, and streak artifact were assessed and scored for each image set in the transverse, dorsal, and sagittal planes. The use of general anesthesia did not significantly affect the diagnostic quality of images. No motion artifact was observed in any CT image. Streak artifact was significantly increased in scans performed in the transverse orientation but not in the dorsal orientation or sagittal orientation and did not affect the diagnostic quality of the images. Contrast enhancement did not significantly enhance the visibility of any ocular or orbital structures. Diagnostic CT images of normal ocular and orbital structures can be acquired without the use of general anesthesia in the cat. © 2012 American College of Veterinary Ophthalmologists.
Han, Sangwon; Oh, Minyoung; Yoon, Seokho; Kim, Jinsoo; Kim, Ji-Wan; Chang, Jae-Suk; Ryu, Jin-Sook
2017-03-01
Avascular necrosis (AVN) of the femoral head is a major complication after internal fixation of a femoral neck fracture and determines the functional prognosis. We investigated postoperative bone single-photon emission computed tomography/computed tomography (SPECT/CT) for assessing the risk of femoral head AVN. We retrospectively reviewed 53 consecutive patients who underwent bone SPECT/CT within 2 weeks of internal fixation of a femoral neck fracture and follow-up serial hip radiographs over at least 12 months. Nine patients developed femoral head AVN. In 15 patients who showed normal uptake on immediate postoperative SPECT/CT, no AVN occurred, whereas 9 of 38 patients who showed cold defects of the femoral head later developed AVN. The negative predictive value of immediate postoperative SPECT/CT for AVN was 100 %, whereas the positive predictive value was 24 %. Among 38 patients with cold defects, 1 developed AVN 3 months postoperatively. A follow-up bone SPECT/CT was performed in the other 37 patients at 2-10 months postoperatively. The follow-up bone SPECT/CT revealed completely normalized femoral head uptake in 27, partially normalized uptake in 8, and persistent cold defects in 2 patients. AVN developed in 3.7 % (1/27), 62.5 % (5/8), and 100 % (2/2) of each group, respectively. According to the time point of imaging, radiotracer uptake patterns of the femoral head on postoperative bone SPECT/CT indicate the risk of AVN after internal fixation of femoral neck fractures differently. Postoperative bone SPECT/CT may help orthopedic surgeons determine the appropriate follow-up of these patients.
The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.
Iaizzo, Paul A
2016-12-01
Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart ® Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart ® methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible ® Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart ® methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Rogers, Ian S.; Cury, Ricardo C.; Blankstein, Ron; Shapiro, Michael D.; Nieman, Koen; Hoffmann, Udo; Brady, Thomas J.; Abbara, Suhny
2010-01-01
Background Despite rapid advances in cardiac computed tomography (CT), a strategy for optimal visualization of perfusion abnormalities on CT has yet to be validated. Objective To evaluate the performance of several post-processing techniques of source data sets to detect and characterize perfusion defects in acute myocardial infarctions with cardiac CT. Methods Twenty-one subjects (18 men; 60 ± 13 years) that were successfully treated with percutaneous coronary intervention for ST-segment myocardial infarction underwent 64-slice cardiac CT and 1.5 Tesla cardiac MRI scans following revascularization. Delayed enhancement MRI images were analyzed to identify the location of infarcted myocardium. Contiguous short axis images of the left ventricular myocardium were created from the CT source images using 0.75mm multiplanar reconstruction (MPR), 5mm MPR, 5mm maximal intensity projection (MIP), and 5mm minimum intensity projection (MinIP) techniques. Segments already confirmed to contain infarction by MRI were then evaluated qualitatively and quantitatively with CT. Results Overall, 143 myocardial segments were analyzed. On qualitative analysis, the MinIP and thick MPR techniques had greater visibility and definition than the thin MPR and MIP techniques (p < 0.001). On quantitative analysis, the absolute difference in Hounsfield Unit (HU) attenuation between normal and infarcted segments was significantly greater for the MinIP (65.4 HU) and thin MPR (61.2 HU) techniques. However, the relative difference in HU attenuation was significantly greatest for the MinIP technique alone (95%, p < 0.001). Contrast to noise was greatest for the MinIP (4.2) and thick MPR (4.1) techniques (p < 0.001). Conclusion The results of our current investigation found that MinIP and thick MPR detected infarcted myocardium with greater visibility and definition than MIP and thin MPR. PMID:20579617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
The influence of CT based attenuation correction on PET/CT registration: an evaluation study
NASA Astrophysics Data System (ADS)
Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin
2007-03-01
We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.
Feasibility of hydrogel fiducial markers for in vivo proton range verification using PET
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Campbell, Patrick; Wang, Min; Alqathami, Mamdooh; Mawlawi, Osama; Kerr, Matthew; Cho, Sang Hyun
2016-03-01
Biocompatible/biodegradable hydrogel polymers were immersed in 18O-enriched water and 16O-water to create 18O-water hydrogels and 16O-water hydrogels. In both cases, the hydrogels were made of ~91 wt% water and ~9 wt% polymer. In addition, 5-8 μm Zn powder was suspended in 16O-water and 18O-enriched water and cross-linked with hydrogel polymers to create Zn/16O-water hydrogels (30/70 wt%, ~9 wt% polymer) and Zn/18O-water hydrogels (10/90 wt%), respectively. A block of extra-firm ‘wet’ tofu (12.3 × 8.8 × 4.9 cm, ρ ≈ 1.05 g cm-3) immersed in water was injected with Zn/16O-water hydrogels (0.9 ml each) at four different depths using an 18-gauge needle. Similarly, Zn/18O-water hydrogels (0.9 ml) were injected into a second tofu phantom. As a reference, both 16O-water hydrogels (1.8 ml) and 18O-water hydrogels (0.9 ml) in Petri dishes were irradiated in a ‘dry’ environment. The hydrogels in the wet tofu phantoms and dry Petri dishes were scanned via CT and images were used for treatment planning. Then, they were positioned at the proton distal dose fall-off region and irradiated (2 Gy) followed by PET/CT imaging. Notably high PET signals were observed only in 18O-water hydrogels in the dry environment. The visibility of the Zn/16O-water hydrogels injected into the tofu phantom was outstanding in CT images, but these hydrogels provided no noticeable PET signals. The visibility of the Zn/18O-water hydrogels in the wet tofu were excellent on CT and moderate on PET; however, the PET signals were weaker than those in the dry environment, possibly owing to 18O-water leaching out. The hydrogel markers studied here could be used to develop universal PET/CT fiducial markers. Their PET visibility (attributed more to activated 18O-water than Zn) after proton irradiation can be used for proton therapy/range verification. More investigation is needed to slow down the leaching of 18O-water.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2009-10-01
Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherman Rydhög, Jonas, E-mail: per.jonas.scherman.rydhoeg@regionh.dk; Munck af Rosenschöld, Per; Irming Jølck, Rasmus
Purpose: A new biodegradable liquid fiducial marker was devised to allow for easy insertion in lung tumors using thin needles. The purpose of this study was to evaluate the visibility of the liquid fiducial markers for image-guided radiation therapy and compare to existing solid fiducial markers and to one existing liquid fiducial marker currently commercially available. Methods: Fiducial marker visibility was quantified in terms of contrast to noise ratio (CNR) on planar kilovoltage x-ray images in a thorax phantom for different concentrations of the radio-opaque component of the new liquid fiducial marker, four solid fiducial markers, and one existing liquidmore » fiducial marker. Additionally, the image artifacts produced on computer tomography (CT) and cone-beam CT (CBCT) of all fiducial markers were quantified. Results: The authors found that the new liquid fiducial marker with the highest concentration of the radio-opaque component had a CNR > 2.05 for 62/63 exposures, which compared favorably to the existing solid fiducial markers and to the existing liquid fiducial marker evaluated. On CT and CBCT, the new liquid fiducial marker with the highest concentration produced lower streaking index artifact (30 and 14, respectively) than the solid gold markers (113 and 20, respectively) and the existing liquid fiducial marker (39 and 20, respectively). The size of the image artifact was larger for all of the liquid fiducial markers compared to the solid fiducial markers because of their larger physical size. Conclusions: The visibility and the image artifacts produced by the new liquid fiducial markers were comparable to existing solid fiducial markers and the existing liquid fiducial marker. The authors conclude that the new liquid fiducial marker represents an alternative to the fiducial markers tested.« less
High-performance C-arm cone-beam CT guidance of thoracic surgery
NASA Astrophysics Data System (ADS)
Schafer, Sebastian; Otake, Yoshito; Uneri, Ali; Mirota, Daniel J.; Nithiananthan, Sajendra; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Graumann, Rainer; Sussman, Marc; Siewerdsen, Jeffrey H.
2012-02-01
Localizing sub-palpable nodules in minimally invasive video-assisted thoracic surgery (VATS) presents a significant challenge. To overcome inherent problems of preoperative nodule tagging using CT fluoroscopic guidance, an intraoperative C-arm cone-beam CT (CBCT) image-guidance system has been developed for direct localization of subpalpable tumors in the OR, including real-time tracking of surgical tools (including thoracoscope), and video-CBCT registration for augmentation of the thoracoscopic scene. Acquisition protocols for nodule visibility in the inflated and deflated lung were delineated in phantom and animal/cadaver studies. Motion compensated reconstruction was implemented to account for motion induced by the ventilated contralateral lung. Experience in CBCT-guided targeting of simulated lung nodules included phantoms, porcine models, and cadavers. Phantom studies defined low-dose acquisition protocols providing contrast-to-noise ratio sufficient for lung nodule visualization, confirmed in porcine specimens with simulated nodules (3-6mm diameter PE spheres, ~100-150HU contrast, 2.1mGy). Nodule visibility in CBCT of the collapsed lung, with reduced contrast according to air volume retention, was more challenging, but initial studies confirmed visibility using scan protocols at slightly increased dose (~4.6-11.1mGy). Motion compensated reconstruction employing a 4D deformation map in the backprojection process reduced artifacts associated with motion blur. Augmentation of thoracoscopic video with renderings of the target and critical structures (e.g., pulmonary artery) showed geometric accuracy consistent with camera calibration and the tracking system (2.4mm registration error). Initial results suggest a potentially valuable role for CBCT guidance in VATS, improving precision in minimally invasive, lungconserving surgeries, avoid critical structures, obviate the burdens of preoperative localization, and improve patient safety.
Javadrashid, Reza; Golamian, Masoud; Shahrzad, Maryam; Hajalioghli, Parisa; Shahmorady, Zahra; Fouladi, Daniel F; Sadrarhami, Shohreh; Akhoundzadeh, Leila
2017-05-01
The study sought to compare the usefulness of 4 imaging modalities in visualizing various intraorbital foreign bodies (IOFBs) in different sizes. Six different materials including metal, wood, plastic, stone, glass. and graphite were cut in cylindrical shapes in 4 sizes (dimensions: 0.5, 1, 2, and 3 mm) and placed intraorbitally in the extraocular space of fresh sheep's head. Four skilled radiologists rated the visibility of the objects individually using plain radiography, spiral computed tomography (CT), magnetic resonance imaging (MRI), and cone-beam computed tomography (CBCT) in accordance with a previously described grading system. Excluding wood, all embedded foreign bodies were best visualized in CT and CBCT images with almost equal accuracies. Wood could only be detected using MRI, and then only when fragments were more than 2 mm in size. There were 3 false-positive MRI reports, suggesting air bubbles as wood IOFBs. Because of lower cost and using less radiation in comparison with conventional CT, CBCT can be used as the initial imaging technique in cases with suspected IOFBs. Optimal imaging technique for wood IOFBs is yet to be defined. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Status of the internal orbit after reduction of zygomaticomaxillary complex fractures.
Ellis, Edward; Reddy, Likith
2004-03-01
We sought to determine the status of the internal orbit before and after reduction of zygomaticomaxillary complex (ZMC) fractures when treated without internal orbital reconstruction. We conducted a retrospective study of preoperative and postoperative computed tomography (CT) scans in 65 patients with unilateral ZMC fractures who were treated by reduction of the ZMC complex without internal orbital reconstruction. The size and location of the internal orbital defects, orbital soft tissue displacement, and orbital volume were assessed in the preoperative and postoperative CT scans. Reduction in the ZMC fractures was considered ideal in 58 of the 65 patients. Only minor malpositions occurred in the remaining 7 patients. The size of the internal orbital defects increased slightly with ZMC reduction but the internal orbital fractures were realigned, and few had increases in orbital volume or soft tissue sagging into the sinuses. Examination of follow-up CT scans in several patients taken weeks to months later showed that the residual defects became smaller and that none of these patients had an increase in orbital volume or soft tissue sagging. The preoperative CT scan can be used to assess the amount of internal orbital disruption for purposes of developing a treatment plan in patients with ZMC fractures. When there is minimal or no soft tissue herniation and minimal disruption of the internal orbit, ZMC reduction is adequate treatment.
Zwingenberger, Allison L; Daniel, Leticia; Steffey, Michele A; Mayhew, Philipp D; Mayhew, Kelli N; Culp, William T N; Hunt, Geraldine B
2014-11-01
To correlate changes in hepatic volume, hepatic perfusion, and vascular anatomy of dogs with congenital extrahepatic portosystemic shunts, before and after attenuation with an ameroid constrictor. Prospective study. Dogs (n = 22) with congenital extrahepatic portosystemic shunts. CT angiography and perfusion scans were performed before and after attenuation of a portosystemic shunt with an ameroid constrictor. Changes in hepatic volume, hepatic perfusion, and vascular anatomy were measured. Portal scintigraphy was performed in 8 dogs preoperatively and 22 dogs postoperatively. Dogs with smaller preoperative liver volumes had greater increases in liver volume postoperatively compared with those with larger preoperative liver volumes. Hepatic arterial fraction was increased in dogs preoperatively and returned to normal range after shunt attenuation, and was correlated with increase in liver size and decreased shunt fraction. Three dogs with no visible portal vasculature preoperatively developed portal branches postoperatively. Dogs with smaller preoperative liver volumes had the largest postoperative increase in liver volume. Hepatic arterial perfusion and portal scintigraphy correlate with liver volume and are indicators of successful shunt attenuation. Dogs without visible vasculature on CT angiography had visible portal vasculature postoperatively. © Copyright 2014 by The American College of Veterinary Surgeons.
Dewaele, Alexis; Van Houtte, Mieke; Vincke, John
2014-11-01
The role of visibility management strategies, as an extended measure of outness related to sexual orientation, has been rarely studied with the aim of explaining the experience of external stressors (i.e., experiences of everyday discrimination and perceived sanctioning of cross-gender behavior) and internal stressors (i.e., internalized homonegativity and general mental distress). In this study, we examined gender differences within these relationships. A non-representative sample of 2,378 lesbians, gay men, and bisexuals was recruited. We found that lesbian and bisexual women scored significantly higher on perceived cross-gender sanctioning and general mental distress compared to gay and bisexual men. Multivariate analysis showed that visibility management was significantly related to the experience of internalized homonegativity in both men and women. Visibility management mediated the relationship between experiences of every day discrimination on the one hand and internalized homonegativity and general mental distress on the other. Finally, we found that compared to gay and bisexual men, lesbian and bisexual women who maintained relatively closed visibility management strategies, reported lower scores on internalized homonegativity but higher scores on general mental distress. We found fewer gender differences related to visibility management than expected and those that we did find were relatively small. Flemish lesbian and bisexual women and gay and bisexual men appear to more alike than different.
Pallesen, Lars P; Khomenko, Andrei; Dzialowski, Imanuel; Barlinn, Jessica; Barlinn, Kristian; Zerna, Charlotte; van der Hoeven, Erik Jrj; Algra, Ale; Kapelle, L Jaap; Michel, Patrik; Bodechtel, Ulf; Demchuk, Andrew M; Schonewille, Wouter; Puetz, Volker
2017-02-01
Background Coma is associated with poor outcome in patients with basilar artery occlusion. Aims We sought to assess whether the posterior circulation Acute Stroke Prognosis Early CT Score and the Pons-Midbrain Index applied to CT angiography source images predict the outcome of comatose patients in the Basilar Artery International Cooperation Study. Methods Basilar Artery International Cooperation Study was a prospective, observational registry of patients with acute basilar artery occlusion with 48 recruiting centers worldwide. We applied posterior circulation Acute Stroke Prognosis Early CT Score and Pons-Midbrain Index to CT angiography source images of Basilar Artery International Cooperation Study patients who presented with coma. We calculated adjusted risk ratios to assess the association of dichotomized posterior circulation Acute Stroke Prognosis Early CT Score (≥8 vs. <8) and Pons-Midbrain Index (<3 vs. ≥3) with mortality and favourable outcome (modified Rankin Scale score 0-3) at one month. Results Of 619 patients in the Basilar Artery International Cooperation Study registry, CT angiography source images were available for review in 158 patients. Among these, 78 patients (49%) presented with coma. Compared to non-comatose patients, comatose patients were more likely to die (risk ratios 2.34; CI 95% 1.56-3.52) and less likely to have a favourable outcome (risk ratios 0.44; CI 95% 0.24-0.80). Among comatose patients, a Pons-Midbrain Index < 3 was related to reduced mortality (adjusted RR 0.66; 95% CI 0.46-0.96), but not to favourable outcome (adjusted RR 1.19; 95% CI 0.39-3.62). Posterior circulation Acute Stroke Prognosis Early CT Score dichotomized at ≥ 8 vs. <8 was not significantly associated with death (adjusted RR 0.70; 95% CI 0.46-1.05). Conclusion In comatose patients with basilar artery occlusion, the extent of brainstem ischemia appears to be related to mortality but not to favourable outcome.
Growth sensitivity of Corynespora cassiicola to Thiophanate-methyl, Iprodione, and Fludioxonil
USDA-ARS?s Scientific Manuscript database
Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei, causal agent of Corynespora leaf spot, can cause devastating epidemics in African violet (Saintpaulia ionantha H. Wendl.) production facilities. Because of phytotoxicity and visible residue issues with some fungicides such as chlorothalonil, pro...
Uprimny, Christian; Svirydenka, Anna; Fritz, Josef; Kroiss, Alexander Stephan; Nilica, Bernhard; Decristoforo, Clemens; Haubner, Roland; von Guggenberg, Elisabeth; Buxbaum, Sabine; Horninger, Wolfgang; Virgolini, Irene Johanna
2018-05-16
The purpose of this study was to investigate the diagnostic performance of 68 Ga-PSMA-11 PET/CT in the evaluation of bone metastases in metastatic prostate cancer (PC) patients scheduled for radionuclide therapy in comparison to [ 18 F]sodium fluoride ( 18 F-NaF) PET/CT. Sixteen metastatic PC patients with known skeletal metastases, who underwent both 68 Ga-PSMA-11 PET/CT and 18 F-NaF PET/CT for assessment of metastatic burden prior to radionuclide therapy, were analysed retrospectively. The performance of both tracers was calculated on a lesion-based comparison. Intensity of tracer accumulation of pathologic bone lesions on 18 F-NaF PET and 68 Ga-PSMA-11 PET was measured with maximum standardized uptake values (SUV max ) and compared to background activity of normal bone. In addition, SUV max values of PET-positive bone lesions were analysed with respect to morphologic characteristics on CT. Bone metastases were either confirmed by CT or follow-up PET scan. In contrast to 468 PET-positive lesions suggestive of bone metastases on 18 F-NaF PET, only 351 of the lesions were also judged positive on 68 Ga-PSMA-11 PET (75.0%). Intensity of tracer accumulation of pathologic skeletal lesions was significantly higher on 18 F-NaF PET compared to 68 Ga-PSMA-11 PET, showing a median SUV max of 27.0 and 6.0, respectively (p < 0.001). Background activity of normal bone was lower on 68 Ga-PSMA-11 PET, with a median SUV max of 1.0 in comparison to 2.7 on 18 F-NaF PET; however, tumour to background ratio was significantly higher on 18 F-NaF PET (9.8 versus 5.9 on 68 Ga-PSMA-11 PET; p = 0.042). Based on morphologic lesion characterisation on CT, 18 F-NaF PET revealed median SUV max values of 23.6 for osteosclerotic, 35.0 for osteolytic, and 19.0 for lesions not visible on CT, whereas on 68 Ga-PSMA-11 PET median SUV max values of 5.0 in osteosclerotic, 29.5 in osteolytic, and 7.5 in lesions not seen on CT were measured. Intensity of tracer accumulation between 18 F-NaF PET and 68 Ga-PSMA-11 PET was significantly higher in osteosclerotic (p < 0.001) and lesions not visible on CT (p = 0.012). In comparison to 68 Ga-PSMA-11 PET/CT, 18 F-NaF PET/CT detects a higher number of pathologic bone lesions in advanced stage PC patients scheduled for radionuclide therapy. Our data suggest that 68 Ga-PSMA-11 PET should be combined with 18 F-NaF PET in PC patients with skeletal metastases for restaging prior to initiation or modification of therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen
2013-10-15
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widelymore » used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.« less
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.
2013-01-01
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies. PMID:24089917
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C
2013-10-01
To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.
Lockhart, Mark E; Tessler, Franklin N; Canon, Cheri L; Smith, J Kevin; Larrison, Matthew C; Fineberg, Naomi S; Roy, Brandon P; Clements, Ronald H
2007-03-01
The purpose of this study was to evaluate the sensitivity and specificity of seven CT signs in the diagnosis of internal hernia after laparoscopic Roux-en-Y gastric bypass. With institutional review board approval, the CT scans of 18 patients (17 women, one man) with surgically proven internal hernia after laparoscopic Roux-en-Y gastric bypass were retrieved, as were CT studies of a control group of 18 women who had undergone gastric bypass but did not have internal hernia at reoperation. The scans were reviewed by three radiologists for the presence of seven CT signs of internal hernia: swirled appearance of mesenteric fat or vessels, mushroom shape of hernia, tubular distal mesenteric fat surrounded by bowel loops, small-bowel obstruction, clustered loops of small bowel, small bowel other than duodenum posterior to the superior mesenteric artery, and right-sided location of the distal jejunal anastomosis. Sensitivity and specificity were calculated for each sign. Stepwise logistic regression was performed to ascertain an independent set of variables predictive of the presence of internal hernia. Mesenteric swirl was the best single predictor of hernia; sensitivity was 61%, 78%, and 83%, and specificity was 94%, 89%, and 67% for the three reviewers. The combination of swirled mesentery and mushroom shape of the mesentery was better than swirled mesentery alone, sensitivity being 78%, 83%, and 83%, and specificity being 83%, 89%, and 67%, but the difference was not statistically significant. Mesenteric swirl is the best indicator of internal hernia after laparoscopic Roux-en-Y gastric bypass, and even minor degrees of swirl should be considered suspicious.
NASA Astrophysics Data System (ADS)
Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim
2009-01-01
The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r2. Only three of the ten patients showed correlation higher than r2 = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r2 = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.
Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim
2009-01-21
The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r(2). Only three of the ten patients showed correlation higher than r(2) = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r(2) = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.
Keil, Holger; Beisemann, Nils; Schnetzke, Marc; Vetter, Sven Yves; Swartman, Benedict; Grützner, Paul Alfred; Franke, Jochen
2018-04-10
In acetabular fractures, the assessment of reduction and implant placement has limitations in conventional 2D intraoperative imaging. 3D imaging offers the opportunity to acquire CT-like images and thus to improve the results. However, clinical experience shows that even 3D imaging has limitations, especially regarding artifacts when implants are placed. The purpose of this study was to assess the difference between intraoperative 3D imaging and postoperative CT regarding reduction and implant placement. Twenty consecutive cases of acetabular fractures were selected with a complete set of intraoperative 3D imaging and postoperative CT data. The largest detectable step and the largest detectable gap were measured in all three standard planes. These values were compared between the 3D data sets and CT data sets. Additionally, possible correlations between the possible confounders age and BMI and the difference between 3D and CT values were tested. The mean difference of largest visible step between the 3D imaging and CT scan was 2.0 ± 1.8 mm (0.0-5.8, p = 0.02) in the axial, 1.3 ± 1.4 mm (0.0-3.7, p = 0.15) in the sagittal and 1.9 ± 2.4 mm (0.0-7.4, p = 0.22) in the coronal views. The mean difference of largest visible gap between the 3D imaging and CT scan was 3.1 ± 3.6 mm (0.0-14.1, p = 0.03) in the axial, 4.6 ± 2.7 mm (1.2-8.7, p = 0.001) in the sagittal and 3.5 ± 4.0 mm (0.0-15.4, p = 0.06) in the coronal views. A positive correlation between the age and the difference in gap measurements in the sagittal view was shown (rho = 0.556, p = 0.011). Intraoperative 3D imaging is a valuable adjunct in assessing reduction and implant placement in acetabular fractures but has limitations due to artifacts caused by implant material. This can lead to missed malreduction and impairment of clinical outcome, so postoperative CT should be considered in these cases.
Jiang, Tao; Liang, Jian; Zhang, Mu-xue; Wang, Ding-yong; Wei, Shi-qiang; Lu, Song
2016-02-15
As an important fraction of dissolved organic matter (DOM), chromophoric dissolved organic matter (CDOM) plays a key role in decision of the optical properties and photogeochemistry of DOM, and further affects pollutant fate and global carbon cycle. These optical properties are ascribed to two chromophoric systems including superposition of individual chromophores and charge-transfer (CT) complexation between electron donor (e.g., phenols and indoles) and acceptor (e.g., quinones and other oxidized aromatics) in DOM structures. Thus in this study, based on the "double-chromophoric system" model, DOM samples from four typical water-level fluctuation zones of Three Gorges Reservoir (TGR) areas were selected, to investigate the effect and contribution of charge-transfer complex to ultraviolet-visible (UV-Vis) absorption property of CDOM. Using NaBH, reduction method, original featureless absorption curve was classified into two independent curves caused by individual chromophoric group, which were derived from a simple superposition of independent chromophore and charge-transfer complex, respectively. Also, the changes in curve properties and specific parameters before and after NaBH4 reduction were compared. The results showed that in all DOM samples from the four sites of TGR, more than 35% of absorption was attributed from CT complex. Shibaozhai of Zhongxian and Zhenxi of Fuling showed the highest proportion ( > 50%). It suggested that the role of CT complex in CDOM property could not be neglected. After removal of CT complex, absorption curve showed blue-shift and CDOM concentration [a (355)] decreased significantly. Meanwhile, because of deforming of bonds by reduction, DOM structures became more dispersive and the molecular size was decreased, resulting in the lower spectral slope (S) observed, which evidentially supported that the supermolecular association structure of DOM was self-assembled through CT complex. Meanwhile, deceasing hydrophobic components led to decreased apparent aromaticity (lower SUVA values), whereas specific parameters including SUVA, CDOM and SR still were applicable for comparison among different DOM samples instead of the same sample without consideration of "double-cbromopboric system" model involving tbe role of CT complex. Comparatively, S(275-295) was dynamic due to tbe impact of CT effect. Furtbermore, establisbing DOC estimation model by short-wavelength range of CDOM was recommended because of its stability despite of CT complex.
Investigating different computed tomography techniques for internal target volume definition.
Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen
2017-01-01
The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.
Long-term absorption of poly-L-lactic Acid interference screws.
Barber, F Alan; Dockery, W Dee
2006-08-01
To evaluate the long term in vivo degradation of poly-L-lactic acid (PLLA) interference screws with computed tomography (CT) and radiography as used in patellar tendon autograft anterior cruciate ligament (ACL) reconstruction. A total of 20 patients who had undergone patellar tendon autograft ACL reconstruction fixed with PLLA screws at least 7 years earlier were evaluated by physical examination, radiography, and CT to determine whether PLLA screw reabsorption and bone ingrowth had occurred. This study was granted Institutional Review Board approval. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee (IKDC) scores were obtained. CT data were measured in Hounsfield units. In all, 15 men and 5 women were evaluated 104 months after surgery (range, 89 to 124 months). CT and radiography demonstrated that the bone plug had fused to the tunnel wall, and that no intact interference screw was left. A parallel, threaded, and corticated screw tract was visible adjacent to the bone plug. No bone ingrowth had occurred at the screw site, although, occasionally, minimal calcification was seen. This was never as dense as cancellous bone, and no trabeculae were ever present. No positive pivot-shift test results were obtained. Lysholm, Tegner, and Cincinnati scores were 83, 5.6, and 75, respectively, at follow-up. Average KT difference was 0.7 mm. PLLA interference screws completely degraded, and the resulting area demonstrated a low Hounsfield count, consistent with soft tissue 7 years after insertion. No significant bone ingrowth occurred at the screw site. Femoral and tibial ACL tunnels were absent of anything but fibrous tissue and usually had a sclerotic cortical lining. PLLA biodegradable ACL screws eventually disappear completely. PLLA material is not replaced by bone. ACL graft tunnels are filled with nonossified material. This study provides a baseline for comparison with other biodegradable interference screws that may encourage bone ingrowth as they degrade. Level IV (no or historical control).
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
Komura, Akifumi; Kawasaki, Tomohiro; Yamada, Yuichi; Uzuyama, Shiho; Asano, Yoshitaka; Shinoda, Jun
2018-06-19
The aim of this study is to investigate glucose uptake on FDG-PET in patients with chronic mental and cognitive symptoms following a single blunt mild traumatic brain injury (TBI) and without visible brain lesions on CT/MRI. Eighty-nine consecutive patients (mean age 43.8±10.75) who had a single blunt mild TBI from a traffic accident and suffering from chronic mental and cognitive symptoms without visible brain lesions on CT/MRI were enrolled in the study. Patients underwent FDG-PET imaging, and the mean interval between the TBI and FDG-PET was 50.0 months. The Wechsler Adult Intelligence Scale version III testing was performed within one month of the FDG-PET. A control group consisting of 93 healthy adult volunteers (mean age 42.2±14.3 years) also underwent FDG-PET. The glucose uptake pattern from FDG-PET in the patient group was compared to that from normal controls using statistical parametric mapping. Glucose uptake was significantly decreased in the bilateral prefrontal area and significantly increased around the limbic system in the patient group compared to normal controls. This topographical pattern of glucose uptake is different from that reported previously in patients with diffuse axonal injury (DAI), but may be similar to that seen in patients with major depression disorder. These results suggest that the pathological mechanism causing chronic mental and cognitive symptoms in patients with a single blunt mild TBI and without visible brain lesions might be different from that due to primary axonopathy in patients with DAI.
SPET/CT image co-registration in the abdomen with a simple and cost-effective tool.
Förster, Gregor J; Laumann, Christina; Nickel, Otmar; Kann, Peter; Rieker, Olaf; Bartenstein, Peter
2003-01-01
Fusion of morphology and function has been shown to improve diagnostic accuracy in many clinical circumstances. Taking this into account, a number of instruments combining computed tomography (CT) with positron emission tomography (PET) or single-photon emission tomography (SPET) are appearing on the market. The aim of this study was to evaluate a simple and cost-effective approach to generate fusion images of similar quality. For the evaluation of the proposed approach, patients with neuroendocrine abdominal tumours with liver metastases were chosen, since the exact superimposition in the abdomen is more difficult than in other regions. Five hours following the injection of 110 MBq (111)In-DTPA-octreotide, patients were fixed in a vacuum cushion (MED-TEC, Vac-Loc) and investigated with helical CT in a mid-inspiration position ( n=14). Directly following the CT, a SPET study (SPET1) of the abdominal region was performed without changing the position of the patient. A second SPET study (SPET2), 24 h p.i., was acquired after repositioning the patient in his or her individually moulded vacuum cushion. A total of nine markers suitable for imaging with CT and SPET were fixed on the cushion. Datasets were fused by means of internal landmarks (e.g. metastases or margin of abdominal organs) or by the external markers. Image fusion using external markers was fast and easy to handle compared with the use of internal landmarks. Using this technique, all lesions detectable by SPET ( n=28) appeared exactly superpositioned on the respective CT morphology by visual inspection. Image fusion of CT/SPET1 and CT/SPET2 showed a mean deviation of the external markers that in the former case was smaller than the voxel size of 4.67 mm: 4.17+/-0.61 (CT/SPET1; +/-SD) and 5.52+/-1.56 mm (CT/SPET2), respectively. Using internal landmarks, the mean deviation of the chosen landmarks was 6.47+/-1.37 and 7.78+/-1.21 mm. Vector subtraction of corresponding anatomical points of the CT and the re-sampled SPET volume datasets resulted in a similar accuracy. Vector subtraction of the metastases showed a significantly less accurate superimposition when internal landmarks were used ( P<0.001). The vacuum cushion did not affect the image quality of CT and SPET. The proposed technique is a simple and cost-effective way to generate abdominal datasets suitable for image fusion. External markers positioned on the cushion allow for a rapid and robust overlay even if no readily identifiable internal landmarks are present. This technique is, in principle, also suitable for CT/PET fusion as well as for fusions of MRI data with PET or SPET.
Hickethier, Tilman; Baeßler, Bettina; Kroeger, Jan Robert; Doerner, Jonas; Pahn, Gregor; Maintz, David; Michels, Guido; Bunck, Alexander C
Accurate assessment of coronary stents using non-invasive CT imaging remains challenging despite new stent materials and improvements in CT technology. Virtual monoenergetic (monoE) images reconstructed from dual energy CT acquisitions potentially decrease artifacts caused by coronary stents. A novel spectral detector technology provides monoE and conventional images simultaneously for all conducted scans. The purpose of our study was to systematically investigate the influence of different monoE reconstructions on the visualization of coronary stent lumen in comparison to conventional images. Ten different coronary stents (diameter 3.0 mm) embedded in plastic tubes filled with contrast agent (500 HU) were scanned with a 128-row spectral detector CT (IQon, Philips, 120 kV, 125 mAs). Images were reconstructed (0.67 mm slice thickness, 0.35 mm increment) with a stent-specific conventional reconstruction kernel and 6 different monoE settings (60, 70, 80, 90, 100, 150 keV). Image quality for each stent and reconstruction was quantified using established parameters: image noise (standard deviation (SD) within a standardized ROI), in-stent attenuation difference (mean attenuation difference between stented and non-stented lumen) and visible lumen diameter (mean visible diameter of the stented tube). Image noise was significantly lower in all monoE data dets compared to conventional images (conventional: 13.41, 60 keV: 11.62, 70 keV: 11.67, 80 keV: 11.69, 90 keV: 11.71, 100 keV: 11.75, 150 keV: 11.80 HU SD; p < 0.01). The in-stent attenuation difference was significantly smaller in monoE data with higher keV levels than in conventional images (conventional: 148.18, 60 keV: 154.13 p = 0.036, 70 keV: 143.43 p = 0.109, 80 keV: 137.25 p = 0.052, 90 keV: 133.02 p = 0.043, 100 keV: 130.12 p = 0.039, 150 keV: 123.99 HU p = 0.035). The visible lumen diameter was significantly greater in monoE data with higher keV levels than in conventional images (conventional: 0.65, 60 keV: 0.68 p = 0.542, 70 keV: 0.71 p = 0.053, 80 keV: 0.74 p < 0.01, 90 keV: 0.77 p < 0.01, 100 keV: 0.82 p < 0.01, 150 keV: 0.87 mm p < 0.01). In comparison to conventional CT images, well-established parameters for objective assessment of CT image quality for coronary stents are significantly improved by utilization of monoE reconstructions with adequate keV levels derived from data acquired on a novel spectral detector CT platform. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Diagnostic value of computed tomography in dogs with chronic nasal disease.
Saunders, Jimmy H; van Bree, Henri; Gielen, Ingrid; de Rooster, Hilde
2003-01-01
Computed tomographic (CT) studies of 80 dogs with chronic nasal disease (nasal neoplasia (n = 19), nasal aspergillosis (n = 46), nonspecific rhinitis (n = 11), and foreign body rhinitis (n = 4)) were reviewed retrospectively by two independent observers. Each observer filled out a custom-designed list to record his or her interpretation of the CT signs and selected a diagnosis. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the diagnosis of each disease. The agreement between observers was evaluated. The CT signs corresponded to those previously described in the literature. CT had an accuracy greater than 90% for each observer in all disease processes. The sensitivity, specificity, PPV, and NPV were greater than 80% in all dogs with the exception of the PPV of foreign body rhinitis (80% for observer A and 44% for observer B). There was a substantial, to almost perfect, agreement between the two observers regarding the CT signs and diagnosis. This study indicates a high accuracy of CT for diagnosis of dogs with chronic nasal disease. The differentiation between nasal aspergillosis restricted to the nasal passages and foreign body rhinitis may be difficult when the foreign body is not visible.
Diagnosis and classification of pancreatic and duodenal injuries in emergency radiology.
Linsenmaier, Ulrich; Wirth, Stefan; Reiser, Maximilian; Körner, Markus
2008-10-01
Pancreatic and duodenal injuries after blunt abdominal trauma are rare; however, delays in diagnosis and treatment can significantly increase morbidity and mortality. Multidetector computed tomography (CT) has a major role in early diagnosis of pancreatic and duodenal injuries. Detecting the often subtle signs of injury with whole-body CT can be difficult because this technique usually does not include a dedicated protocol for scanning the pancreas. Specific injury patterns in the pancreas and duodenum often have variable expression at early posttraumatic multidetector CT: They may be hardly visible, or there may be considerable exudate, hematomas, organ ruptures, or active bleeding. An accurate multidetector CT technique allows optimized detection of subtle abnormalities. In duodenal injuries, differentiation between a contusion of the duodenal wall or mural hematoma and a duodenal perforation is vital. In pancreatic injuries, determination of involvement of the pancreatic duct is essential. The latter conditions require immediate surgical intervention. Use of organ injury scales and a surgical classification adapted for multidetector CT enables classification of organ injuries for trauma scoring, treatment planning, and outcome control. In addition, multidetector CT reliably demonstrates potential complications of duodenal and pancreatic injuries, such as posttraumatic pancreatitis, pseudocysts, fistulas, exudates, and abscesses. (c) RSNA, 2008.
[Clinical decision to perform cranial computed tomography in children with non-severe head injury].
Franco-Koehrlen, Celine Alicia; Iglesias-Leboreiro, José; Bernárdez-Zapata, Isabel; Rendón-Macías, Mario Enrique
The main goal of this article was to evaluate if the decision to perform cranial computed tomography (CT) in children with minor head injury is determined by the presence or absence of the physician during assessment in the emergency room. Clinical files of 92 patients from 8 months to 4 years of age were selected. Those children were evaluated at the emergency department of the Spanish Hospital of Mexico due to non-severe traumatic brain injury. Glasgow Coma Scale (GCS) score was determined in all patients. Groups of patients were compared: 1) patients having CT, 2) patients with a physician who attended the initial assessment, 3) patients whose attending physician did not arrive to assess the patient and 4) patients assessed by the emergency room staff. 38% of patients with non-severe brain injury underwent CT, 8.6% had a brain injury visible on the CT. Moderate intensity impacts were greater in patients with CT. Regarding the ECG, it was found that most children scored 15 points (p=0.03). In patients without a physician, a greater trend was demonstrated for performing CT. Patients with minor head injury but without neurological signs should undergo a detailed clinical evaluation in order to avoid unwarranted CT. Copyright © 2015. Publicado por Masson Doyma México S.A.
Soyama, Takeshi; Sakuhara, Yusuke; Kudo, Kohsuke; Abo, Daisuke; Wang, Jeff; Ito, Yoichi M; Hasegawa, Yu; Shirato, Hiroki
2016-07-01
This preliminary study compared ultrasonography-computed tomography (US-CT) fusion imaging and conventional ultrasonography (US) for accuracy and time required for target identification using a combination of real phantoms and sets of digitally modified computed tomography (CT) images (digital/real hybrid phantoms). In this randomized prospective study, 27 spheres visible on B-mode US were placed at depths of 3.5, 8.5, and 13.5 cm (nine spheres each). All 27 spheres were digitally erased from the CT images, and a radiopaque sphere was digitally placed at each of the 27 locations to create 27 different sets of CT images. Twenty clinicians were instructed to identify the sphere target using US alone and fusion imaging. The accuracy of target identification of the two methods was compared using McNemar's test. The mean time required for target identification and error distances were compared using paired t tests. At all three depths, target identification was more accurate and the mean time required for target identification was significantly less with US-CT fusion imaging than with US alone, and the mean error distances were also shorter with US-CT fusion imaging. US-CT fusion imaging was superior to US alone in terms of accurate and rapid identification of target lesions.
Dose assessment of digital tomosynthesis in pediatric imaging
NASA Astrophysics Data System (ADS)
Gislason, Amber; Elbakri, Idris A.; Reed, Martin
2009-02-01
We investigated the potential for digital tomosynthesis (DT) to reduce pediatric x-ray dose while maintaining image quality. We utilized the DT feature (VolumeRadTM) on the GE DefiniumTM 8000 flat panel system installed in the Winnipeg Children's Hospital. Facial bones, cervical spine, thoracic spine, and knee of children aged 5, 10, and 15 years were represented by acrylic phantoms for DT dose measurements. Effective dose was estimated for DT and for corresponding digital radiography (DR) and computed tomography (CT) patient image sets. Anthropomorphic phantoms of selected body parts were imaged by DR, DT, and CT. Pediatric radiologists rated visualization of selected anatomic features in these images. Dose and image quality comparisons between DR, DT, and CT determined the usefulness of tomosynthesis for pediatric imaging. CT effective dose was highest; total DR effective dose was not always lowest - depending how many projections were in the DR image set. For the cervical spine, DT dose was close to and occasionally lower than DR dose. Expert radiologists rated visibility of the central facial complex in a skull phantom as better than DR and comparable to CT. Digital tomosynthesis has a significantly lower dose than CT. This study has demonstrated DT shows promise to replace CT for some facial bones and spinal diagnoses. Other clinical applications will be evaluated in the future.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2010-01-01
Introduction Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning. PMID:19695725
Boomsma, Martijn F; Slouwerhof, Inge; van Dalen, Jorn A; Edens, Mireille A; Mueller, Dirk; Milles, Julien; Maas, Mario
2015-11-01
The purpose of this research is to study the use of an internal reference standard for fat- and muscle as a replacement for an external reference standard with a phantom. By using a phantomless internal reference standard, Hounsfield unit (HU) measurements of various tissues can potentially be assessed in patients with a CT scan of the pelvis without an added phantom at time of CT acquisition. This paves the way for development of a tool for quantification of the change in tissue density in one patient over time and between patients. This could make every CT scan made without contrast available for research purposes. Fifty patients with unilateral metal-on-metal total hip replacements, scanned together with a calibration reference phantom used in bone mineral density measurements, were included in this study. On computed tomography scans of the pelvis without the use of intravenous iodine contrast, reference values for fat and muscle were measured in the phantom as well as within the patient's body. The conformity between the references was examined with the intra-class correlation coefficient. The mean HU (± SD) of reference values for fat for the internal- and phantom references were -91.5 (±7.0) and -90.9 (±7.8), respectively. For muscle, the mean HU (± SD) for the internal- and phantom references were 59.2 (±6.2) and 60.0 (±7.2), respectively. The intra-class correlation coefficients for fat and muscle were 0.90 and 0.84 respectively and show excellent agreement between the phantom and internal references. Internal references can be used with similar accuracy as references from an external phantom. There is no need to use an external phantom to asses CT density measurements of body tissue.
Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A
2010-04-01
The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.
2016-10-01
An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.
WE-G-209-00: Identifying Image Artifacts, Their Causes, and How to Fix Them
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
Dähring, H; Grandke, J; Teichgräber, U; Hilger, I
2015-12-01
Heterogeneous magnetic nanoparticle (MNP) distributions within tumors can cause regions of temperature under dosage and reduce the therapeutic efficiency. Here, micro-computed tomography (CT) imaging was used as a tool to determine the MNP distribution in vivo. The therapeutic success was evaluated based on tumor volume and temperature distribution. Tumor-bearing mice were intratumorally injected with iron oxide particles. MNP distribution was assessed by micro-CT with a low radiation dose protocol. MNPs were clearly visible, and the exact distribution to nontumor structures was detected by micro-CT. Knowledge of the intratumoral MNP distribution allowed the generation of higher temperatures within the tumor and led to higher temperature values after exposure to an alternating magnetic field (AMF). Consequently, the tumor size after 28 days was reduced to 14 and 73 % of the initial tumor volume for the MNP/AMF/CT and MNP/AMF groups, respectively. The MNP distribution pattern mainly governed the generated temperature spots in the tumor. Knowing the MNP distribution enabled individualized hyperthermia treatment and improved the overall therapeutic efficiency.
Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study.
Kok, A C; Terra, M P; Muller, S; Askeland, C; van Dijk, C N; Kerkhoffs, G M M J; Tuijthof, G J M
2014-10-01
Talar osteochondral defects (OCDs) are imaged using magnetic resonance imaging (MRI) or computed tomography (CT). For extensive follow-up, ultrasound might be a fast, non-invasive alternative that images both bone and cartilage. In this study the potential of ultrasound, as compared with CT, in the imaging and grading of OCDs is explored. On the basis of prior CT scans, nine ankles of patients without OCDs and nine ankles of patients with anterocentral OCDs were selected and classified using the Loomer CT classification. A blinded expert skeletal radiologist imaged all ankles with ultrasound and recorded the presence of OCDs. Similarly to CT, ultrasound revealed typical morphologic OCD features, for example, cortex irregularities and loose fragments. Cartilage disruptions, Loomer grades IV (displaced fragment) and V (cyst with fibrous roof), were visible as well. This study encourages further research on the use of ultrasound as a follow-up imaging modality for OCDs located anteriorly or centrally on the talar dome. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
WE-G-209-01: Digital Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schueler, B.
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
Smilg, Jacqueline S; Berger, Lee R
2015-01-01
In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.
Smilg, Jacqueline S.; Berger, Lee R.
2015-01-01
In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application. PMID:26684299
Experimental validation of a multi-energy x-ray adapted scatter separation method
NASA Astrophysics Data System (ADS)
Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.
2016-12-01
Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.
Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study
Aragao, Maria de Fatima Vasco; van der Linden, Vanessa; Parizel, Paul; Jungmann, Patricia; Araújo, Luziany; Abath, Marília; Fernandes, Andrezza; Brainer-Lima, Alessandra; Holanda, Arthur; Mello, Roberto; Sarteschi, Camila; Duarte, Maria do Carmo Menezes Bezerra
2017-01-01
Objective To compare initial brain computed tomography (CT) scans with follow-up CT scans at one year in children with congenital Zika syndrome, focusing on cerebral calcifications. Design Case series study. Setting Barão de Lucena Hospital, Pernambuco state, Brazil. Participants 37 children with probable or confirmed congenital Zika syndrome during the microcephaly outbreak in 2015 who underwent brain CT shortly after birth and at one year follow-up. Main outcome measure Differences in cerebral calcification patterns between initial and follow-up scans. Results 37 children were evaluated. All presented cerebral calcifications on the initial scan, predominantly at cortical-white matter junction. At follow-up the calcifications had diminished in number, size, or density, or a combination in 34 of the children (92%, 95% confidence interval 79% to 97%), were no longer visible in one child, and remained unchanged in two children. No child showed an increase in calcifications. The calcifications at the cortical-white matter junction which were no longer visible at follow-up occurred predominately in the parietal and occipital lobes. These imaging changes were not associated with any clear clinical improvements. Conclusion The detection of cerebral calcifications should not be considered a major criterion for late diagnosis of congenital Zika syndrome, nor should the absence of calcifications be used to exclude the diagnosis. PMID:29030384
The economic potential of CT scanners for hardwood sawmills
Donald G. Hodges; Walter C. Anderson; Charles W. McMillin
1990-01-01
Research has demonstrated that a knowledge of internal log defects prior to sawing could improve lumber value yields significantly. This study evaluated the potential economic returns from investments in computerized tomographic (CT) scanners to detect internal defects in hardwood logs at southern sawmills. The results indicate that such investments would be profitable...
Automated Analysis of CT Images for the Inspection of Hardwood Logs
Harbin Li; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects so that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammar, Hamid, E-mail: hamid.mammar@unice.fr; CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice; Kerrou, Khaldoun
2012-11-01
Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake valuemore » (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.« less
Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja
2018-04-01
Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].
Damyanovich, A Z; Rieker, M; Zhang, B; Bissonnette, J-P; Jaffray, D A
2018-03-27
The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm) 3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible 'lines' in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently 'dense' to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm) 2 -2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm) 2 -2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%-90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be ⩽0.05 mm for both axial and coronal acquisitions, and over >95% of the differences were observed to be ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI systems.
NASA Astrophysics Data System (ADS)
Damyanovich, A. Z.; Rieker, M.; Zhang, B.; Bissonnette, J.-P.; Jaffray, D. A.
2018-04-01
The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm)3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible ‘lines’ in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently ‘dense’ to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm)2-2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm)2-2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%–90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be ⩽0.05 mm for both axial and coronal acquisitions, and over >95% of the differences were observed to be ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales
2015-09-15
The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less
Imaging a moving lung tumor with megavoltage cone beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayou, Olivier, E-mail: ogayou@wpahs.org; Colonias, Athanasios
2015-05-15
Purpose: Respiratory motion may affect the accuracy of image guidance of radiation treatment of lung cancer. A cone beam computed tomography (CBCT) image spans several breathing cycles, resulting in a blurred object with a theoretical size equal to the sum of tumor size and breathing motion. However, several factors may affect this theoretical relationship. The objective of this study was to analyze the effect of tumor motion on megavoltage (MV)-CBCT images, by comparing target sizes on simulation and pretreatment images of a large cohort of lung cancer patients. Methods: Ninety-three MV-CBCT images from 17 patients were analyzed. Internal target volumesmore » were contoured on each MV-CBCT dataset [internal target volume (ITV{sub CB})]. Their extent in each dimension was compared to that of two volumes contoured on simulation 4-dimensional computed tomography (4D-CT) images: the combination of the tumor contours of each phase of the 4D-CT (ITV{sub 4D}) and the volume contoured on the average CT calculated from the 4D-CT phases (ITV{sub ave}). Tumor size and breathing amplitude were assessed by contouring the tumor on each CBCT raw projection where it could be unambiguously identified. The effect of breathing amplitude on the quality of the MV-CBCT image reconstruction was analyzed. Results: The mean differences between the sizes of ITV{sub CB} and ITV{sub 4D} were −1.6 ± 3.3 mm (p < 0.001), −2.4 ± 3.1 mm (p < 0.001), and −7.2 ± 5.3 mm (p < 0.001) in the anterior/posterior (AP), left/right (LR), and superior/inferior (SI) directions, respectively, showing that MV-CBCT underestimates the full target size. The corresponding mean differences between ITV{sub CB} and ITV{sub ave} were 0.3 ± 2.6 mm (p = 0.307), 0.0 ± 2.4 mm (p = 0.86), and −4.0 ± 4.3 mm (p < 0.001), indicating that the average CT image is more representative of what is visible on MV-CBCT in the AP and LR directions. In the SI directions, differences between ITV{sub CB} and ITV{sub ave} could be separated into two groups based on tumor motion: −3.2 ± 3.2 mm for tumor motion less than 15 mm and −10.9 ± 6.3 mm for tumor motion greater than 15 mm. Deviations of measured target extents from their theoretical values derived from tumor size and motion were correlated with motion amplitude similarly for both MV-CBCT and average CT images, suggesting that the two images were subject to similar motion artifacts for motion less than 15 mm. Conclusions: MV-CBCT images are affected by tumor motion and tend to under-represent the full target volume. For tumor motion up to 15 mm, the volume contoured on average CT is comparable to that contoured on the MV-CBCT. Therefore, the average CT should be used in image registration for localization purposes, and the standard 5 mm PTV margin seems adequate. For tumor motion greater than 15 mm, an additional setup margin may need to be used to account for the increased uncertainty in tumor localization.« less
Malignant Jugular Paraganglioma: Unusual Presentation on 68Ga DOTANOC PET/CT.
Jain, Tarun Kumar; Basher, Rajender Kumar; Shukla, Jaya; Mittal, Bhagwant Rai; Panda, Naresh K
2016-02-01
Metastatic jugular paraganglioma are rare tumors and account for less than 1% of the cases of head and neck tumors. We report a 40-year-old woman of jugular paraganglioma, presenting with right-sided neck swelling, hearing loss, and pulsatile tinnitus. Contrast-enhanced CT temporal bone revealed a mass in the right jugular foramina and extending inferiorly to internal jugular vein. Ga DOTANOC PET/CT was performed, which revealed somatostatin receptor expressing lesion in the right internal jugular vein and extension into sigmoid sinus and additional metastatic focus in the sacrum.
NASA Astrophysics Data System (ADS)
Wada, Yoshiki; Mitani, Tadaoki; Yamashita, Masahiro; Koda, Takao
1985-08-01
Polarized reflection and luminescence have been measured for the single crystals of [MA2][MX2A2](ClO4)4 (M=Pt, Pd, X=Cl, Br, I and A=ethylenediamine, cyclohexanediamine). The strong absorption bands due to the charge-transfer (CT) exciton transitions between the mixed-valent metal ions have been investigated in detail in the visible or infrared energy regions. The dependence of the CT excitation energies on the species M and X is shown to be consistent with the prediction by the Peierls-Hubbard model which incorporates the effect of the electron-electron correlation on inter-metal sites. The oscillator strength of the CT excitons are observed to be enhanced by substituting heavier halogen ions. This enhancement is interpreted by a halogen-linked super-transfer mechanism. The unusually large values of the oscillator strength can be qualitatively explained in terms of the trimer CT model.
Comment on 'Amplification of endpoint structure for new particle mass measurement at the LHC'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, A. J.; Gwenlan, C.; Young, C. J. S.
2011-06-01
We present a comment on the kinematic variable m{sub CT2} recently proposed in Won Sang Cho, Jihn E. Kim, and Ji-Hun Kim, Phys. Rev. D 81, 095010 (2010). The variable is designed to be applied to models such as R-parity conserving supersymmetry (SUSY) when there is pair production of new heavy particles each of which decays to a single massless visible and a massive invisible component. It was proposed by Cho, Kim, and Kim that a measurement of the peak of the m{sub CT2} distribution could be used to precisely constrain the masses of the SUSY particles. We show that,more » for the an example characterized by direct squark decays, when standard model backgrounds are included in simulations, the sensitivity of the m{sub CT2} variable to the SUSY particle masses is more seriously impacted for m{sub CT2} than for other previously proposed variables.« less
Duran, Rafael; Sharma, Karun; Dreher, Matthew R; Ashrafi, Koorosh; Mirpour, Sahar; Lin, MingDe; Schernthaner, Ruediger E; Schlachter, Todd R; Tacher, Vania; Lewis, Andrew L; Willis, Sean; den Hartog, Mark; Radaelli, Alessandro; Negussie, Ayele H; Wood, Bradford J; Geschwind, Jean-François H
2016-01-01
Embolotherapy using microshperes is currently performed with soluble contrast to aid in visualization. However, administered payload visibility dimishes soon after delivery due to soluble contrast washout, leaving the radiolucent bead's location unknown. The objective of our study was to characterize inherently radiopaque beads (RO Beads) in terms of physicomechanical properties, deliverability and imaging visibility in a rabbit VX2 liver tumor model. RO Beads, which are based on LC Bead® platform, were compared to LC Bead. Bead size (light microscopy), equilibrium water content (EWC), density, X-ray attenuation and iodine distribution (micro-CT), suspension (settling times), deliverability and in vitro penetration were investigated. Fifteen rabbits were embolized with either LC Bead or RO Beads + soluble contrast (iodixanol-320), or RO Beads+dextrose. Appearance was evaluated with fluoroscopy, X-ray single shot, cone-beam CT (CBCT). Both bead types had a similar size distribution. RO Beads had lower EWC (60-72%) and higher density (1.21-1.36 g/cc) with a homogeneous iodine distribution within the bead's interior. RO Beads suspension time was shorter than LC Bead, with durable suspension (>5 min) in 100% iodixanol. RO Beads ≤300 µm were deliverable through a 2.3-Fr microcatheter. Both bead types showed similar penetration. Soluble contrast could identify target and non-target embolization on fluoroscopy during administration. However, the imaging appearance vanished quickly for LC Bead as contrast washed-out. RO Beads+contrast significantly increased visibility on X-ray single shot compared to LC Bead+contrast in target and non-target arteries (P=0.0043). Similarly, RO beads demonstrated better visibility on CBCT in target arteries (P=0.0238) with a trend in non-target arteries (P=0.0519). RO Beads+dextrose were not sufficiently visible to monitor embolization using fluoroscopy. RO Beads provide better conspicuity to determine target and non-target embolization compared to LC Bead which may improve intra-procedural monitoring and post-procedural evaluation of transarterial embolization.
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
Objective To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Methods Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Results Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79±1.17, 1.69±0.59, 0.74±0.29, and 0.37±0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Conclusions Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED. PMID:24691208
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.
Wang, Hui; Peng, Rui; Hood, Zachary D.; ...
2016-05-24
In the MXenes family of two-dimensional transition-metal carbides there were successful demonstrations of co-catalysts with rutile TiO 2 for visible-light-induced solar hydrogen production from water splitting. The physicochemical properties of Ti 3C 2T x MXene coupled with TiO 2 were investigated by a variety of characterization techniques. The effect of the Ti 3C 2T x loading on the photocatalytic performance of the TiO 2/Ti 3C 2T x composites was elucidated. Moreover, with an optimized Ti 3C 2T x content of 5 wt %, the TiO 2/Ti 3C 2T x composite shows a 400 % enhancement in the photocatalytic hydrogen evolutionmore » reaction compared with that of pure rutile TiO 2. We also expanded our exploration to other MXenes (Nb 2CT x and Ti 2CT x) as co-catalysts coupled with TiO 2, and these materials also exhibited enhanced hydrogen production. These results manifest the generality of MXenes as effective co-catalysts for solar hydrogen production.« less
Modeling and segmentation of intra-cochlear anatomy in conventional CT
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Rutherford, Robert B.; Labadie, Robert F.; Majdani, Omid; Dawant, Benoit M.
2010-03-01
Cochlear implant surgery is a procedure performed to treat profound hearing loss. Since the cochlea is not visible in surgery, the physician uses anatomical landmarks to estimate the pose of the cochlea. Research has indicated that implanting the electrode in a particular cavity of the cochlea, the scala tympani, results in better hearing restoration. The success of the scala tympani implantation is largely dependent on the point of entry and angle of electrode insertion. Errors can occur due to the imprecise nature of landmark-based, manual navigation as well as inter-patient variations between scala tympani and the anatomical landmarks. In this work, we use point distribution models of the intra-cochlear anatomy to study the inter-patient variations between the cochlea and the typical anatomic landmarks, and we implement an active shape model technique to automatically localize intra-cochlear anatomy in conventional CT images, where intra-cochlear structures are not visible. This fully automatic segmentation could aid the surgeon to choose the point of entry and angle of approach to maximize the likelihood of scala tympani insertion, resulting in more substantial hearing restoration.
Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics
USDA-ARS?s Scientific Manuscript database
An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... vertical separation of the anchor lights and vertical placement of the forward anchor light above the hull... forward of height light to visibility; visibility; visibility; sides in stern in above hull forward rule...
Jeong, Jewon; Kim, Hyun-Joo; Oh, Eunsun; Cha, Jang Gyu; Hwang, Jiyoung; Hong, Seong Sook; Chang, Yun Woo
2018-05-23
The development of dual-energy CT and metal artefact reduction software provides a further chance of reducing metal-related artefacts. However, there have been only a few studies regarding whether MARs practically affect visibility of structures around a metallic hip prosthesis on post-operative CT evaluation. Twenty-seven patients with 42 metallic hip prostheses underwent DECT. The datasets were reconstructed with 70, 90 and 110 keV with and without MARs. The areas were classified into 10 zones according to the reference zone. All the images were reviewed in terms of the severity of the beam-hardening artefacts, differentiation of the bony cortex and trabeculae and visualization of trabecular patterns with a three-point scale. The metallic screw diameter was measured in the acetabulum with 110 keV images. The scores were the worst on 70 keV images without MARs [mean scores:1.84-4.22 (p < 0.001-1.000)]. The structures in zone II were best visualized on 110 keV (p < 0.001-0.011, mean scores: 2.86-5.22). In other zones, there is general similarity in mean scores whether applying MARs or not (p < 0.001-0.920). The mean diameter of the screw was 5.85 mm without MARs and 3.44 mm with MARs (mean reference diameter: 6.48 mm). The 110 keV images without MARs are best for evaluating acetabular zone II. The visibility of the bony structures around the hip prosthesis is similar in the other zones with or without MARs regardless of keV. MARS may not be needed for the evaluation of the metallic hip prosthesis itself at sufficient high-energy levels; however, MARS still has a role in the evaluation of other soft tissues around the prosthesis. © 2018 The Royal Australian and New Zealand College of Radiologists.
Computed Tomography of the Abdomen in Eight Clinically Normal Common Marmosets (Callithrix jacchus).
du Plessis, W M; Groenewald, H B; Elliott, D
2017-08-01
The aim of this study was to provide a detailed anatomical description of the abdomen in the clinically normal common marmoset by means of computed tomography (CT). Eight clinically healthy mature common marmosets ranging from 12 to 48 months and 235 to 365 g bodyweight were anesthetized and pre- and post-contrast CT examinations were performed using different CT settings in dorsal recumbency. Abdominal organs were identified and visibility noted. Diagnostic quality abdominal images could be obtained of the common marmoset despite its small size using a dual-slice CT scanner. Representative cross-sectional images were chosen from different animals illustrating the abdominal CT anatomy of clinically normal common marmosets. Identification or delineation of abdominal organs greatly improved with i.v. contrast. A modified high-frequency algorithm with edge enhancement added valuable information for identification of small structures such as the ureters. The Hounsfield unit (HU) of major abdominal organs differed from that of small animals (domestic dogs and cats). Due to their size and different anatomy, standard small animal CT protocols need to be critically assessed and adapted for exotics, such as the common marmoset. The established normal reference range of HU of major abdominal organs and adapted settings for a CT protocol will aid clinical assessment of the common marmoset. © 2017 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemkiewicz, J; Palmiotti, A; Miner, M
2014-06-01
Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU valuesmore » were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation treatment planning accuracy.« less
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.
2014-02-01
Second harmonic generation (SHG) in Bis (Cinnamic acid): Hexamine cocrystal was extensively analyzed through charge transfer (CT). The CT interactions through hydrogen bonding were well established with the aid of vibrational analysis and Natural Bond Orbital (NBO) analysis. The retentivity of coplanar nature of the cinnamic acid in the cocrystal was confirmed through UV-Visible spectroscopy and supported by Raman studies. Structural analysis indicated the quinoidal character of the given material presenting a high SHG efficiency. The first order hyperpolarizability value was calculated theoretically by density functional theory (DFT) and Hartree-Fock (HF) methods in support for the large value of SHG.
Han, Ga Jin; Kim, Suk; Lee, Nam Kyung; Kim, Chang Won; Seo, Hyeong Il; Kim, Hyun Sung; Kim, Tae Un
2018-01-01
Postpancreatectomy hemorrhage (PPH) is an uncommon but serious complication of Whipple surgery. To evaluate the radiologic features associated with late PPH at the first postoperative follow up CT, before bleeding. To evaluate the radiological features associated with late PPH at the first follow-up CT, two radiologists retrospectively reviewed the initial postoperative follow-up CT images of 151 patients, who had undergone Whipple surgery. Twenty patients showed PPH due to vascular problem or anastomotic ulcer. The research compared CT and clinical findings of 20 patients with late PPH and 131 patients without late PPH, including presence of suggestive feature of pancreatic fistula (presence of air at fluid along pancreaticojejunostomy [PJ]), abscess (fluid collection with an enhancing rim or gas), fluid along hepaticojejunostomy or PJ, the density of ascites, and the size of visible gastroduodenal artery (GDA) stump. CT findings including pancreatic fistula, abscess, and large GDA stump were associated with PPH on univariate analysis ( p ≤ 0.009). On multivariate analysis, radiological features suggestive of a pancreatic fistula, abscess, and a GDA stump > 4.45 mm were associated with PPH ( p ≤ 0.031). Early postoperative CT findings including GDA stump size larger than 4.45 mm, fluid collection with an enhancing rim or gas, and air at fluid along PJ, could predict late PPH.
Establishment of metrological traceability in porosity measurements by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Hermanek, Petr; Carmignato, Simone
2017-09-01
Internal porosity is an inherent phenomenon to many manufacturing processes, such as casting, additive manufacturing, and others. Since these defects cannot be completely avoided by improving production processes, it is important to have a reliable method to detect and evaluate them accurately. The accurate evaluation becomes even more important concerning current industrial trends to minimize size and weight of products on one side, and enhance their complexity and performance on the other. X-ray computed tomography (CT) has emerged as a promising instrument for holistic porosity measurements offering several advantages over equivalent methods already established in the detection of internal defects. The main shortcomings of the conventional techniques pertain to too general information about total porosity content (e.g. Archimedes method) or the destructive way of testing (e.g. microscopy of cross-sections). On the contrary, CT is a nondestructive technique providing complete information about size, shape and distribution of internal porosity. However, due to the lack of international standards and the fact that it is relatively a new measurement technique, CT as a measurement technology has not yet reached maturity. This study proposes a procedure for the establishment of measurement traceability in porosity measurements by CT including the necessary evaluation of measurement uncertainty. The traceability transfer is carried out through a novel reference standard calibrated by optical and tactile coordinate measuring systems. The measurement uncertainty is calculated following international standards and guidelines. In addition, the accuracy of porosity measurements by CT with the associated measurement uncertainty is evaluated using the reference standard.
Computed tomographic anatomy of the equine stifle joint.
Vekens, Elke Van der; Bergman, Erik H J; Vanderperren, Katrien; Raes, Els V; Puchalski, Sarah M; Bree, Henri J J van; Saunders, Jimmy H
2011-04-01
To provide a detailed computed tomography (CT) reference of the anatomically normal equine stifle joint. Sample-16 hind limbs from 8 equine cadavers; no horses had evidence of orthopedic disease of the stifle joints. CT of the stifle joint was performed on 8 hind limbs. In all limbs, CT was also performed after intra-articular injection of 60 mL of contrast material (150 mg of iodine/mL) in the lateral and medial compartments of the femorotibial joint and 80 mL of contrast material in the femoropatellar joint (CT arthrography). Reformatted CT images in the transverse, parasagittal, and dorsal plane were matched with corresponding anatomic slices of the 8 remaining limbs. The femur, tibia, and patella were clearly visible. The patellar ligaments, common origin of the tendinous portions of the long digital extensor muscle and peroneus tertius muscle, collateral ligaments, tendinous portion of the popliteus muscle, and cranial and caudal cruciate ligaments could also be consistently evaluated. The cruciate ligaments and the meniscotibial ligaments could be completely assessed in the arthrogram sequences. Margins of the meniscofemoral ligament and the lateral and medial femoropatellar ligaments were difficult to visualize on the precontrast and postcontrast images. CT and CT arthrography were used to accurately identify and characterize osseous and soft tissue structures of the equine stifle joint. This technique may be of value when results from other diagnostic imaging techniques are inconclusive. The images provided will serve as a CT reference for the equine stifle joint.
Caroff, J; Mihalea, C; Neki, H; Ruijters, D; Ikka, L; Benachour, N; Moret, J; Spelle, L
2014-07-01
The WEB aneurysm embolization system is still under evaluation but seems to be a promising technique to treat wide-neck bifurcation aneurysms. However, this device is barely visible using conventional DSA; thus, high-resolution contrast-enhanced flat panel detector CT (VasoCT) may be useful before detachment to assess the sizing and positioning of the WEB. The purpose of this study was to evaluate the interest of VasoCT during WEB procedures. From March 2012 to July 2013, twelve patients (10 women and 2 men; age range, 44-55 years) were treated for 13 intracranial aneurysms with the WEB device. DSA and VasoCT were used and compared to depict any protrusion of the device in parent arteries before detachment. Two neuroradiologists reviewed each VasoCT scan, and the quality was graded on a subjective quality scale. The mesh of the WEB was very well-depicted in all cases, allowing a very good assessment of its deployment. Device protrusion was clearly detected with VasoCT in 5 cases, leading to WEB repositioning or size substitution. During follow-up, VasoCT also allows good assessment of eventual residual blood flow inside the aneurysm or the WEB device. Unlike DSA, VasoCT is an excellent tool to assess WEB deployment and positioning. In our experience, it allowed a precise evaluation of the WEB sizing and its relation to the parent vessel. Such information very likely enhances the ability to safely use this device, avoiding potential thromboembolic events in cases of protrusion in the parent arteries. © 2014 by American Journal of Neuroradiology.
Bolstad, Kirsten; Flatabø, Silje; Aadnevik, Daniel; Dalehaug, Ingvild; Vetti, Nils
2018-01-01
Background Metal implants may introduce severe artifacts in computed tomography (CT) images. Over the last few years dedicated algorithms have been developed in order to reduce metal artifacts in CT images. Purpose To investigate and compare metal artifact reduction algorithms (MARs) from four different CT vendors when imaging three different orthopedic metal implants. Material and Methods Three clinical metal implants were attached to the leg of an anthropomorphic phantom: cobalt-chrome; stainless steel; and titanium. Four commercial MARs were investigated: SmartMAR (GE); O-MAR (Philips); iMAR (Siemens); and SEMAR (Toshiba). The images were evaluated subjectively by three observers and analyzed objectively by calculating the fraction of pixels with CT number above 500 HU in a region of interest around the metal. The average CT number and image noise were also measured. Results Both subjective evaluation and objective analysis showed that MARs reduced metal artifacts and improved the image quality for CT images containing metal implants of steel and cobalt-chrome. When using MARs on titanium, all MARs introduced new visible artifacts. Conclusion The effect of MARs varied between CT vendors and different metal implants used in orthopedic surgery. Both in subjective evaluation and objective analysis the effect of applying MARs was most obvious on steel and cobalt-chrome implants when using SEMAR from Toshiba followed by SmartMAR from GE. However, MARs may also introduce new image artifacts especially when used on titanium implants. Therefore, it is important to reconstruct all CT images containing metal with and without MARs.
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Sen, A
Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-Tmore » scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning on a day to day basis.« less
Bosch de Basea, Magda; Salotti, Jane A; Pearce, Mark S; Muchart, Jordi; Riera, Luis; Barber, Ignasi; Pedraza, Salvador; Pardina, Marina; Capdevila, Antoni; Espinosa, Ana; Cardis, Elisabeth
2016-01-01
Although there are undeniable diagnostic benefits of CT scanning, its increasing use in paediatric radiology has become a topic of concern regarding patient radioprotection. To assess the rate of CT scanning in Catalonia, Spain, among patients younger than 21 years old at the scan time. This is a sub-study of a larger international cohort study (EPI-CT, the International pediatric CT scan study). Data were retrieved from the radiological information systems (RIS) of eight hospitals in Catalonia since the implementation of digital registration (between 1991 and 2010) until 2013. The absolute number of CT scans annually increased 4.5% between 1991 and 2013, which was less accentuated when RIS was implemented in most hospitals. Because the population attending the hospitals also increased, however, the rate of scanned patients changed little (8.3 to 9.4 per 1,000 population). The proportions of patients with more than one CT and more than three CTs showed a 1.51- and 2.7-fold increase, respectively, over the 23 years. Gradual increases in numbers of examinations and scanned patients were observed in Catalonia, potentially explained by new CT scanning indications and increases in the availability of scanners, the number of scans per patient and the size of the attended population.
An Easily Assembled Laboratory Exercise in Computed Tomography
ERIC Educational Resources Information Center
Mylott, Elliot; Klepetka, Ryan; Dunlap, Justin C.; Widenhorn, Ralf
2011-01-01
In this paper, we present a laboratory activity in computed tomography (CT) primarily composed of a photogate and a rotary motion sensor that can be assembled quickly and partially automates data collection and analysis. We use an enclosure made with a light filter that is largely opaque in the visible spectrum but mostly transparent to the near…
Lautenschlaeger, Ines E; Hartmann, Antje; Sicken, Julia; Mohrs, Sabrina; Scholz, Volkher B; Neiger, Reto; Kramer, Martin
2013-01-01
Scintigraphy is currently the reference standard for diagnosing feline hyperthyroidism; however, computed tomography (CT) is more widely available in veterinary practice. The purposes of this prospective study were to describe the CT appearance of thyroid glands in cats with hyperthyroidism and compare CT findings with findings from (99m) Tc-pertechnetate scintigraphy. Twenty-five adult hyperthyroid cats were included. Plain CT images were acquired for each cat and the following characteristics recorded for each thyroid lobe: visibility, delineation, position, attenuation, shape, and subjective size. Scintigraphic images were also acquired and the following characteristics recorded: radiopharmaceutical uptake, delineation, ectopic foci, shape, and subjective size. In CT images, thyroid lobes were most commonly found between the second and fourth cervical vertebrae, dorsolateral to the trachea. Affected thyroid lobes (based on scintigraphy reference standard) were most commonly oval and moderately enlarged in CT images. A heterogeneous attenuation pattern (isoattenuating to adjacent soft tissues with hypo- and hyperattenuating foci) was most commonly found in affected thyroid lobes. A positive correlation (P < 0.01) was identified between CT and scintigraphy for left-to-right thyroid lobe size relationship and subjective size of the larger thyroid lobe. The CT estimated mass was significantly higher (median = 148.8; range = [0;357.6]) for the more active thyroid lobe compared to the less active thyroid lobe (median = 84.6; range = [0;312.3]); (W = 154; P < 0.01). Findings indicated that CT may not reliably differentiate unilateral vs. bilateral hyperthyroidism in cats; however, CT may be a reliable alternative test for correctly identifying the more active thyroid lobe. © 2013 Veterinary Radiology & Ultrasound.
Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu
2010-07-01
The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopyguided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of > or = 2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities and specificities. The cutoff value of the new preopD (the sum of the preopDs determined by lateral radiography and coronal CT scan) was 5.80 mm, and its sensitivity and specificity were 100% and 83.3%, respectively. Because a new preopD cutoff value of 5.80 mm is a good indicator for residual articular displacement after internal fixation of >2 mm, it is also a good indicator for the need for arthroscopic evaluation after internal fixation.
Echocardiography as an indication of continuous-time cardiac quiescence
NASA Astrophysics Data System (ADS)
Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.
2016-07-01
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.
In vitro DNA binding studies of therapeutic and prophylactic drug citral.
Alam, Md Fazle; Varshney, Supriya; Khan, Masood Alam; Laskar, Amaj Ahmed; Younus, Hina
2018-07-01
The study of drug-DNA interactions is of great importance, as it paves the way towards the design of better therapeutic agents. Here, the interaction of DNA with a therapeutic and prophylactic drug citral has been studied. We have attempted to ascertain the mode of binding of citral with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of the UV-visible absorbance spectra and fluorescence spectra indicated the formation of a complex between citral and Ct-DNA. Competitive binding assays with ethidium bromide (EB), acridine orange (AO) and Hoechst 33258 reflected that citral possibly intercalates within the Ct-DNA. These observations were further confirmed by circular dichroism (CD) spectral analysis, viscosity measurements, DNA melting and molecular docking studies. This study is expected to contribute to a better understanding of molecular mechanisms of citral, and design of new drugs in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Active contour based segmentation of resected livers in CT images
NASA Astrophysics Data System (ADS)
Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan
2015-03-01
The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.
Embolization of an Internal Iliac Artery Aneurysm after Image-Guided Direct Puncture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heye, S., E-mail: sam.heye@uzleuven.be; Vaninbroukx, J.; Daenens, K.
2012-08-15
Objective: To evaluate the feasibility, safety, and efficacy of embolization of internal iliac artery aneurysm (IIAA) after percutaneous direct puncture under (cone-beam) computed tomography (CT) guidance. Methods: A retrospective case series of three patients, in whom IIAA not accessible by way of the transarterial route, was reviewed. CT-guided puncture of the IIAA sac was performed in one patient. Two patients underwent puncture of the IIAA under cone-beam CT guidance. Results: Access to the IIAA sac was successful in all three patients. In two of the three patients, the posterior and/or anterior division was first embolized using platinum microcoils. The aneurysmmore » sac was embolized with thrombin in one patient and with a mixture of glue and Lipiodol in two patients. No complications were seen. On follow-up CT, no opacification of the aneurysm sac was seen. The volume of one IIAA remained stable at follow-up, and the remaining two IIAAs decreased in size. Conclusion: Embolization of IIAA after direct percutaneous puncture under cone-beam CT/CT-guidance is feasible and safe and results in good short-term outcome.« less
A Computer Vision System forLocating and Identifying Internal Log Defects Using CT Imagery
Dongping Zhu; Richard W. Conners; Frederick Lamb; Philip A. Araman
1991-01-01
A number of researchers have shown the ability of magnetic resonance imaging (MRI) and computer tomography (CT) imaging to detect internal defects in logs. However, if these devices are ever to play a role in the forest products industry, automatic methods for analyzing data from these devices must be developed. This paper reports research aimed at developing a...
Ultrafast CT scanning of an oak log for internal defects
Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder
1989-01-01
Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...
Menditto, Vincenzo G; Lucci, Moira; Polonara, Stefano; Pomponio, Giovanni; Gabrielli, Armando
2012-06-01
Patients receiving warfarin who experience minor head injury are at risk of intracranial hemorrhage, and optimal management after a single head computed tomography (CT) scan is unclear. We evaluate a protocol of 24-hour observation followed by a second head CT scan. In this prospective case series, we enrolled consecutive patients receiving warfarin and showing no intracranial lesions on a first CT scan after minor head injury treated at a Level II trauma center. We implemented a structured clinical pathway, including 24-hour observation and a CT scan performed before discharge. We then evaluated the frequency of death, admission, neurosurgery, and delayed intracranial hemorrhage. We enrolled and observed 97 consecutive patients. Ten refused the second CT scan and were well during 30-day follow-up. Repeated CT scanning in the remaining 87 patients revealed a new hemorrhage lesion in 5 (6%), with 3 subsequently hospitalized and 1 receiving craniotomy. Two patients discharged after completing the study protocol with 2 negative CT scan results were admitted 2 and 8 days later with symptomatic subdural hematomas; neither received surgery. Two of the 5 patients with delayed bleeding at 24 hours had an initial international normalized ratio greater than 3.0, as did both patients with delayed bleeding beyond 24 hours. The relative risk of delayed hemorrhage with an initial international normalized ratio greater than 3.0 was 14 (95% confidence interval 4 to 49). For patients receiving warfarin who experience minor head injury and have a negative initial head CT scan result, a protocol of 24-hour observation followed by a second CT scan will identify most occurrences of delayed bleeding. An initial international normalized ratio greater than 3 suggests higher risk. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besemer, A; Marsh, I; Bednarz, B
Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), andmore » individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by NIH Grant R21 CA198392-01.« less
[Over- or underestimated? Bibliographic survey of the biomedical periodicals published in Hungary].
Berhidi, Anna; Horváth, Katalin; Horváth, Gabriella; Vasas, Lívia
2013-06-30
This publication - based on an article published in 2006 - emphasises the qualities of the current biomedical periodicals of Hungarian editions. The aim of this study was to analyse how Hungarian journals meet the requirements of the scientific aspect and international visibility. Authors evaluated 93 Hungarian biomedical periodicals by 4 viewpoints of the two criteria mentioned above. 35% of the analysed journals complete the attributes of scientific aspect, 5% the international visibility, 6% fulfill all examined criteria, and 25% are indexed in international databases. 6 biomedical Hungarian periodicals covered by each of the three main bibliographic databases (Medline, Scopus, Web of Science) have the best qualities. Authors recommend to improve viewpoints of the scientific aspect and international visibility. The basis of qualitative adequacy are the accurate authors' guidelines, title, abstract, keywords of the articles in English, and the ability to publish on time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Read, Paul W.; Baisden, Joseph M.
Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less
Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke
2007-11-01
To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.
Neutrons Image Additive Manufactured Turbine Blade in 3-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-04-29
The video displays the Inconel 718 Turbine Blade made by Additive Manufacturing. First a gray scale neutron computed tomogram (CT) is displayed with transparency in order to show the internal structure. Then the neutron CT is overlapped with the engineering drawing that was used to print the part and a comparison of external and internal structures is possible. This provides a map of the accuracy of the printed turbine (printing tolerance). Internal surface roughness can also be observed. Credits: Experimental Measurements: Hassina Z. Bilheaux, Video and Printing Tolerance Analysis: Jean C. Bilheaux
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
[Possibilities of follow-up imaging after implantation of a carbon fiber-reinforced hip prosthesis].
Krüger, T; Alter, C; Reichel, H; Birke, A; Hein, W; Spielmann, R P
1998-03-01
There are many problems in the radiological diagnosis of aseptic loosening in total hip arthroplasty. Computed tomography (CT) and magnetic resonance tomography (MRT) are not usable for metallic implants (stainless steel, cobalt alloy, titanium alloy). From April 1993 to December 1993 15 CFRP non-cemented hip prostheses have been implanted. In a prospective clinical study plane radiographs, CT and MRT have been analysed. Three stems were revised (1 femoral fracture, 1 severe thigh pain, 1 aseptic loosening). CFRP are not visible in plane radiographs. There was a complete (two-third of the cases) or nearly complete (one-third of the cases) small sclerotic interface between the prosthesis and the bone, these were apparent in CT and MRT in stable implant cases and did not have any clinical correlations. The small sclerotic interface is quite different in comparison to so called "Reactive Lines". In one case of aseptic loosening there was an interposition of soft tissue between prosthesis and bone in MRT and CT. CFRP inaugurates new diagnostic possibilities in aseptic loosening of hip prosthesis and in tumour surgery too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Daniel R., E-mail: drsimpson@ucsd.edu; Scanderbeg, Daniel J.; Carmona, Ruben
Purpose/Objectives: A report of clinical outcomes of a computed tomography (CT)-based image guided brachytherapy (IGBT) technique for treatment of cervical cancer. Methods and Materials: Seventy-six women with International Federation of Gynecology and Obstetrics stage IB to IVA cervical carcinoma diagnosed between 2007 and 2014 were treated with definitive external beam radiation therapy (EBRT) with or without concurrent chemotherapy followed by high-dose-rate (HDR) IGBT. All patients underwent planning CT simulation at each implantation. A high-risk clinical target volume (HRCTV) encompassing any visible tumor and the entire cervix was contoured on the simulation CT. When available, magnetic resonance imaging (MRI) was performedmore » at implantation to assist with tumor delineation. The prescription dose was prescribed to the HRCTV. Results: The median follow-up time was 17 months. Thirteen patients (17%) had an MRI done before brachytherapy, and 16 patients (21%) were treated without MRI guidance. The mean EBRT/IGBT sum 2-Gy equivalent dose (EQD2) delivered to the 90% volume of the HRCTV was 86.3 Gy. The mean maximum EQD2s delivered to 2 cm{sup 3} of the rectum, sigmoid, and bladder were 67.5 Gy, 66.2 Gy, and 75.3 Gy, respectively. The 2-year cumulative incidences of local, locoregional, and distant failure were 5.8% (95% confidence interval [CI]: 1.4%-14.8%), 15.1% (95% CI: 5.4%-29.4%), and 24.3% (95% CI: 12.1%-38.9%), respectively. The 2-year overall and disease-free survival rates were 75% (95% CI, 61%-91%) and 73% (95% CI, 60%-90%), respectively. Twenty-nine patients (38%) experienced grade ≥2 acute toxicity, with 5 cases of acute grade 3 toxicity and no grade ≥4 toxicities. One patient experienced grade 3 gastrointestinal toxicity. No other late grade ≥3 events were observed. Conclusions: This is the largest report to date of CT/MRI-based IGBT for the treatment of cervical cancer. The results are promising, with excellent local control and acceptable toxicity. Further investigation is needed to assess the long-term safety and efficacy of this treatment.« less
4D XMT of Reaction in Carbonates: Reactive Transport Dynamics at Multiples Scales
NASA Astrophysics Data System (ADS)
Menke, H. P.; Reynolds, C. A.; Andrew, M. G.; Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.
2016-12-01
Upscaling pore scale rock-fluid interaction processes for predictive modelling poses a challenge to underground carbon storage. We have completed experiments and flow modelling to investigate the impact of pore-space heterogeneity and scale on the dissolution of two limestones at both the mm and cm scales. Two samples were reacted with reservoir condition CO2-saturated brine at both scales and scanned dynamically as dissolution took place. First, 1-cm long 4-mm diameter micro cores were scanned during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using a laboratory μ-CT. Second, 3.8-cm diameter, 8-cm long macro cores were reacted at the same conditions inside a reservoir condition flow rig and imaged using a medical CT scanner. Each sample was imaged 10 times over the course of 1.5 hours at a 250 x 250 x 500-μm resolution. The reacted macro cores were then scanned inside a μ-CT at a 27-μm resolution to assess the alteration in pore-scale reaction-induced heterogeneity. It was found that both limestones showed channel formation at the pore-scale and progressive high porosity pathway dissolution at the core-scale with the more heterogeneous rock having dissolution progressing along direction of flow more quickly. Additionally, upon analysis of the high-resolution macro core images it was found that the dissolution pathways contained a distinct microstructure that was not visible at the resolution of the medical CT, where the reactive fluid had not completely dissolved the internal pore-structure. Flow was modelled in connected pathways, the flow streamlines were traced and streamline density for each voxel was calculated. It was found that the streamline density was highest in the most well-connected pathways and that density increased with increasing heterogeneity as the number of connected pathways decreased and flow was consolidated along fewer pathways. This work represents the first study of scale dependency using reservoir condition 4D X-ray tomography and provides insight into the mechanisms that control local reaction rates at multiple scales.
Nondestructive Evaluation of Hardwood Logs Using Automated Interpretation of CT Images
Daniel L. Schmoldt; Dongping Zhu; Richard W. Conners
1993-01-01
Computed tomography (CT) imaging is being used to examine the internal structure of hardwood logs. The following steps are used to automatically interpret CT images: (1) preprocessing to remove unwanted portions of the image, e.g., annual ring structure, (2) image-by-image segmentation to produce relatively homogeneous image areas, (3) volume growing to create volumes...
Interactive machine learning for postprocessing CT images of hardwood logs
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
2003-01-01
This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography (CT) images. Several studies have shown that the commercial value of resulting boards can be increased substantially if log sawing strategies are chosen using prior knowledge of internal log defects. Although CT imaging offers a potential means of obtaining...
Complications in CT-guided procedures: do we really need postinterventional CT control scans?
Nattenmüller, Johanna; Filsinger, Matthias; Bryant, Mark; Stiller, Wolfram; Radeleff, Boris; Grenacher, Lars; Kauczor, Hans-Ullrich; Hosch, Waldemar
2014-02-01
The aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans. Retrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only. The complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21). Complications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.
Quantitative and qualitative computed tomographic characteristics of bronchiectasis in 12 dogs.
Cannon, Matthew S; Johnson, Lynelle R; Pesavento, Patricia A; Kass, Philip H; Wisner, Erik R
2013-01-01
Bronchiectasis is an irreversible dilatation of the bronchi resulting from chronic airway inflammation. In people, computed tomography (CT) has been described as the noninvasive gold standard for diagnosing bronchiectasis. In dogs, normal CT bronchoarterial ratios have been described as <2.0. The purpose of this retrospective study was to describe quantitative and qualitative CT characteristics of bronchiectasis in a cohort of dogs with confirmed disease. Inclusion criteria for the study were thoracic radiography, thoracic CT, and a diagnosis of bronchiectasis based on bronchoscopy and/or histopathology. For each included dog, a single observer measured CT bronchoarterial ratios at 6 lobar locations. Qualitative thoracic radiography and CT characteristics were recorded by consensus opinion of two board-certified veterinary radiologists. Twelve dogs met inclusion criteria. The mean bronchoarterial ratio from 28 bronchiectatic lung lobes was 2.71 ± 0.80 (range 1.4 to 4.33), and 23/28 measurements were >2.0. Averaged bronchoarterial ratios from bronchiectatic lung lobes were significantly larger (P < 0.01) than averaged ratios from nonbronchiectatic lung lobes. Qualitative CT characteristics of bronchiectasis included lack of peripheral airway tapering (12/12), lobar consolidation (11/12), bronchial wall thickening (7/12), and bronchial lumen occlusion (4/12). Radiographs detected lack of airway tapering in 7/12 dogs. In conclusion, the most common CT characteristics of bronchiectasis were dilatation, a lack of peripheral airway tapering, and lobar consolidation. Lack of peripheral airway tapering was not visible in thoracic radiographs for some dogs. For some affected dogs, bronchoarterial ratios were less than published normal values. © 2013 Veterinary Radiology & Ultrasound.
NASA Astrophysics Data System (ADS)
Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.
2016-03-01
Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.
NASA Astrophysics Data System (ADS)
Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto
2011-03-01
Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.
Semework, Mulugeta
2015-12-01
Numerous research and clinical interventions, such as targeting drug deliveries or surgeries and finding blood clots, abscesses, or lesions, require accurate localization of various body parts. Individual differences in anatomy make it hard to use typical stereotactic procedures that rely on external landmarks and standardized atlases. For instance, it is not unusual to incorrectly place a craniotomy in brain surgery. This project was thus performed to find a new and easy method to correctly establish the relationship between external landmarks and medical scans of internal organs, such as specific regions of the brain. This paper introduces an MRI, CT, and radiographically visible compound that can be applied to any surface and therefore provide an external reference point to an internal (eye-invisible) structure. Tested on nonhuman primates and isolated brain scans, this compound showed up with the same color in different scan types, making practical work possible. Conventional, and mostly of specific utility, products such as contrast agents were differentially colored or completely failed to show up and were not flexible. This compound can be customized to have different viscosities, colors, odors, and other characteristics. It can also be mixed with hardening materials such as acrylic for industrial or engineering uses, for example. Laparoscopy wands, electroencephalogram leads, and other equipment could also be embedded with or surrounded by the compound for ease in 3-dimensional visualizations. A pending U.S. patent endorses this invention. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok
2017-06-01
The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P < .001). Preoperative hepatic magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Benke, Małgorzata; Wocial, Krzysztof; Lewandowska, Weronika; Rutkowski, Piotr Łukasz; Teterycz, Paweł; Jarek, Piotr; Dedecjus, Marek
2018-06-29
Background Localization and histopathological examination of sentinel lymph node (SLN) is a standard of melanoma treatment. The first stage of identification of the SLN is the preoperative lymphoscintigraphy. The aim of this study was to assess and compare diagnostic value of planar lymphoscintigraphy (PL) and SPECT/CT in sentinel lymph node biopsy (SLNB) procedure performed in patients with cutaneous trunk melanoma. Material and Methods Between 2015 and 2016, patients with trunk melanoma (N=255, F/M 95/160), aged from 17 to 88 after an excisional biopsy, with primary tumor ≥ pT1b (AJCC 2009, median Breslow thickness 2.0± 3.13) were included in the study. In all the patients PL was followed by SPECT/CT 1-3 h after injection of 99mTc- colloid particles, and SLNB was performed the next day. Results SPECT-CT revealed 78 (18.6%) SLN more than PL, and in 40 patients showed additional lymph drainage regions leading to surgical adjustments. In 18 patients (7.1%) SPECT-CT revealed SLN not visible in the PL (false-negative PL) and in 22 patients (8.6%), foci of uptake interpreted in PL as hot SLNs were found to be non-nodal sites of uptake when assessed on SPECT/CT (false positive PL). SPECT-CT vs. PL mismatch was observed in 31 patients (12.2%) and was the most common in patients with primary lesions located in the anterior inferior medial region (75%). Conclusions Results of the presented study indicates the high diagnostic value of SPECT-CT in assessment of SLNs and proved that SPECT-CT increases the sensitivity and accuracy of SLN identification as compared to PL even in very experienced hands.
Perisinakis, Kostas; Pouli, Styliani; Tzedakis, Antonis; Spanakis, Kostas; Hatzidakis, Adam; Raissaki, Maria; Damilakis, John
2018-05-01
To assess the underestimation of radiation dose to the thyroid of children undergoing contrast enhanced CT if contrast medium uptake is not taken into account. 161 pediatric head, head & neck and chest CT examinations were retrospectively studied to identify those involving pre- and post-contrast imaging and thyroid inclusion in imaged volume. CT density of thyroid tissue in HU was measured in non-enhanced (NECT) and corresponding contrast-enhanced CT (CECT) images. Resulting CT number increase (ΔHU) was recorded for each patient and corresponded to a % w/w iodine concentration. The relation of %w/w iodine concentration to %dose increase induced by iodinated contrast uptake was derived by Monte Carlo simulation experiments. The thyroid gland was visible in 11 chest and 3 neck CT examinations involving both pre- and post-contrast imaging. The %w/w concentration of iodine in the thyroid tissue at the time of CECT acquisition was found to be 0.13%-0.58% w/w (mean = 0.26%). The %increase of dose to thyroid tissue was found to be linearly correlated to%w/w iodine uptake. The increase in radiation dose to thyroid due to contrast uptake ranged from 12% to 44%, with a mean value of 23%. The radiation dose to the pediatric thyroid from CECT exposure may be underestimated by up to 44% if contrast medium uptake is not taken into account. Meticulous demarcation of imaged volume in pediatric chest CT examinations is imperative to avoid unnecessary direct exposure of thyroid, especially in CT examinations following intravenous administration of contrast medium. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Grandl, Susanne; Sztrókay-Gaul, Anikó; Mittone, Alberto; Gasilov, Sergey; Brun, Emmanuel; Bravin, Alberto; Mayr, Doris; Auweter, Sigrid D; Hellerhoff, Karin; Reiser, Maximilian; Coan, Paola
2016-01-01
Neoadjuvant chemotherapy is the state-of-the-art treatment in advanced breast cancer. A correct visualization of the post-therapeutic tumor size is of high prognostic relevance. X-ray phase-contrast computed tomography (PC-CT) has been shown to provide improved soft-tissue contrast at a resolution formerly restricted to histopathology, at low doses. This study aimed at assessing ex-vivo the potential use of PC-CT for visualizing the effects of neoadjuvant chemotherapy on breast carcinoma. The analysis was performed on two ex-vivo formalin-fixed mastectomy samples containing an invasive carcinoma removed from two patients treated with neoadjuvant chemotherapy. Images were matched with corresponding histological slices. The visibility of typical post-therapeutic tissue changes was assessed and compared to results obtained with conventional clinical imaging modalities. PC-CT depicted the different tissue types with an excellent correlation to histopathology. Post-therapeutic tissue changes were correctly visualized and the residual tumor mass could be detected. PC-CT outperformed clinical imaging modalities in the detection of chemotherapy-induced tissue alterations including post-therapeutic tumor size. PC-CT might become a unique diagnostic tool in the prediction of tumor response to neoadjuvant chemotherapy. PC-CT might be used to assist during histopathological diagnosis, offering a high-resolution and high-contrast virtual histological tool for the accurate delineation of tumor boundaries.
NASA Astrophysics Data System (ADS)
Zheng, Bin; Leader, J. K.; Coxson, Harvey O.; Scuirba, Frank C.; Fuhrman, Carl R.; Balkan, Arzu; Weissfeld, Joel L.; Maitz, Glenn S.; Gur, David
2006-03-01
The fraction of lung voxels below a pixel value "cut-off" has been correlated with pathologic estimates of emphysema. We performed a "standard" quantitative CT (QCT) lung analysis using a -950 HU cut-off to determine the volume fraction of emphysema (below the cut-off) and a "corrected" QCT analysis after removing small group (5 and 10 pixels) of connected pixels ("blobs") below the cut-off. CT examinations two dataset of 15 subjects each with a range of visible emphysema and pulmonary obstruction were acquired at "low-dose and conventional dose reconstructed using a high-spatial frequency kernel at 2.5 mm section thickness for the same subject. The "blob" size (i.e., connected-pixels) removed was inversely related to the computed fraction of emphysema. The slopes of emphysema fraction versus blob size were 0.013, 0.009, and 0.005 for subjects with both no emphysema and no pulmonary obstruction, moderate emphysema and pulmonary obstruction, and severe emphysema and severe pulmonary obstruction, respectively. The slopes of emphysema fraction versus blob size were 0.008 and 0.006 for low-dose and conventional CT examinations, respectively. The small blobs of pixels removed are most likely CT image artifacts and do not represent actual emphysema. The magnitude of the blob correction was appropriately associated with COPD severity. The blob correction appears to be applicable to QCT analysis in low-dose and conventional CT exams.
Value of a Lower-Limb Immobilization Device for Optimization of SPECT/CT Image Fusion.
Machado, Joana do Mar F; Monteiro, Marina S; Vieira, Victor Fernandes; Collinot, Jean-Aybert; Prior, John O; Vieira, Lina; Pires-Jorge, José A
2015-06-01
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represents a significant diagnostic challenge. By providing information on anatomic and bone structure that cannot be obtained from functional imaging, SPECT/CT image fusion can be particularly useful in increasing diagnostic certainty about bone pathology. However, because of the lengthy duration of a SPECT acquisition, a patient's involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We designed an ankle- and foot-immobilizing device and measured its efficacy at improving image fusion. We enrolled 20 patients who underwent SPECT/CT of the ankle and foot with and without a foot support. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomic landmarks also visible on bone scintigraphy. ANOVA was performed for statistical analysis. The absolute average difference without and with support was 5.1 ± 5.2 mm (mean ± SD) and 3.1 ± 2.7 mm, respectively, which is significant (P < 0.001). The introduction of the foot support significantly decreased misalignment between SPECT and CT images, which may have a positive clinical influence in the precise localization of foot and ankle pathology. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606 μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079
Radiological protection in computed tomography and cone beam computed tomography.
Rehani, M M
2015-06-01
The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Wang, Mao Qiang; Duan, Feng; Yuan, Kai; Zhang, Guo Dong; Yan, Jieyu; Wang, Yan
2017-01-01
Purpose To describe findings in prostatic arteries (PAs) at digital subtraction angiography (DSA) and cone-beam computed tomography (CT) that allow identification of benign prostatic hyperplasia and to determine the value added with the use of cone-beam CT. Materials and Methods This retrospective single-institution study was approved by the institutional review board, and the requirement for written informed consent was waived. From February 2009 to December 2014, a total of 148 patients (mean age ± standard deviation, 70.5 years ± 14.5) underwent DSA of the internal iliac arteries and cone-beam CT with a flat-detector angiographic system before they underwent prostate artery embolization. Both the DSA and cone-beam CT images were evaluated by two interventional radiologists to determine the number of independent PAs and their origins and anastomoses with adjacent arteries. The exact McNemar test was used to compare the detection rate of the PAs and the anastomoses with DSA and with cone-beam CT. Results The PA anatomy was evaluated successfully by means of cone-beam CT in conjunction with DSA in all patients. Of the 296 pelvic sides, 274 (92.6%) had only one PA. The most frequent PA origin was the common gluteal-pudendal trunk with the superior vesicular artery in 118 (37.1%), followed by the anterior division of the internal iliac artery in 99 (31.1%), and the internal pudendal artery in 77 (24.2%) pelvic sides. In 67 (22.6%) pelvic sides, anastomoses to adjacent arteries were documented. The numbers of PA origins and anastomoses, respectively, that could be identified were significantly higher with cone-beam CT (301 of 318 [94.7%] and 65 of 67 [97.0%]) than with DSA (237 [74.5%] and 39 [58.2%], P < .05). Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients. Conclusion Cone-beam CT is a useful adjunctive technique to DSA for identification of the PA anatomy and provides information to help treatment planning during prostatic arterial embolization. © RSNA, 2016.
Bibbo, Giovanni; Brown, Scott; Linke, Rebecca
2016-08-01
Diagnostic Reference Levels (DRL) of procedures involving ionizing radiation are important tools to optimizing radiation doses delivered to patients and in identifying cases where the levels of doses are unusually high. This is particularly important for paediatric patients undergoing computed tomography (CT) examinations as these examinations are associated with relatively high-dose. Paediatric CT studies, performed at our institution from January 2010 to March 2014, have been retrospectively analysed to determine the 75th and 95th percentiles of both the volume computed tomography dose index (CTDIvol ) and dose-length product (DLP) for the most commonly performed studies to: establish local diagnostic reference levels for paediatric computed tomography examinations performed at our institution, benchmark our DRL with national and international published paediatric values, and determine the compliance of CT radiographer with established protocols. The derived local 75th percentile DRL have been found to be acceptable when compared with those published by the Australian National Radiation Dose Register and two national children's hospitals, and at the international level with the National Reference Doses for the UK. The 95th percentiles of CTDIvol for the various CT examinations have been found to be acceptable values for the CT scanner Dose-Check Notification. Benchmarking CT radiographers shows that they follow the set protocols for the various examinations without significant variations in the machine setting factors. The derivation of DRL has given us the tool to evaluate and improve the performance of our CT service by improved compliance and a reduction in radiation dose to our paediatric patients. We have also been able to benchmark our performance with similar national and international institutions. © 2016 The Royal Australian and New Zealand College of Radiologists.
Kockelkoren, Remko; Vos, Annelotte; Van Hecke, Wim; Vink, Aryan; Bleys, Ronald L A W; Verdoorn, Daphne; Mali, Willem P Th M; Hendrikse, Jeroen; Koek, Huiberdina L; de Jong, Pim A; De Vis, Jill B
2017-01-01
Intracranial internal carotid artery (iICA) calcification is associated with stroke and is often seen as a proxy of atherosclerosis of the intima. However, it was recently shown that these calcifications are predominantly located in the tunica media and internal elastic lamina (medial calcification). Intimal and medial calcifications are thought to have a different pathogenesis and clinical consequences and can only be distinguished through ex vivo histological analysis. Therefore, our aim was to develop CT scoring method to distinguish intimal and medial iICA calcification in vivo. First, in both iICAs of 16 cerebral autopsy patients the intimal and/or medial calcification area was histologically assessed (142 slides). Brain CT images of these patients were matched to the corresponding histological slides to develop a CT score that determines intimal or medial calcification dominance. Second, performance of the CT score was assessed in these 16 patients. Third, reproducibility was tested in a separate cohort. First, CT features of the score were circularity (absent, dot(s), <90°, 90-270° or 270-360°), thickness (absent, ≥1.5mm, or <1.5mm), and morphology (indistinguishable, irregular/patchy or continuous). A high sum of features represented medial and a lower sum intimal calcifications. Second, in the 16 patients the concordance between the CT score and the dominant calcification type was reasonable. Third, the score showed good reproducibility (kappa: 0.72 proportion of agreement: 0.82) between the categories intimal, medial or absent/indistinguishable. The developed CT score shows good reproducibility and can differentiate reasonably well between intimal and medial calcification dominance in the iICA, allowing for further (epidemiological) studies on iICA calcification.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
CT Image Sequence Processing For Wood Defect Recognition
Dongping Zhu; R.W. Conners; Philip A. Araman
1991-01-01
The research reported in this paper explores a non-destructive testing application of x-ray computed tomography (CT) in the forest products industry. This application involves a computer vision system that uses CT to locate and identify internal defects in hardwood logs. The knowledge of log defects is critical in deciding whether to veneer or to saw up a log, and how...
Klop, Cornelis; Deden, Laura N; Aarts, Edo O; Janssen, Ignace M C; Pijl, Milan E J; van den Ende, Anneline; Witteman, Bart P L; de Jong, Gabie M; Aufenacker, Theo J; Slump, Cornelis H; Berends, Frits J
2018-02-05
The purposes of the study are to outline the complexity of diagnosing internal herniation after Roux-en-Y gastric bypass (RYGB) surgery and to investigate the added value of computed tomography angiography (CTA) for diagnosing internal herniation. A cadaver study was performed to investigate the manifestations of internal hernias and mesenteric vascularization. Furthermore, a prospective, ethics approved study with retrospective interpretation was conducted. Ten patients, clinically suspected for internal herniation, were prospectively included. After informed consent was obtained, these subjects underwent abdominal CT examination, including additional arterial phase CTA. All subjects underwent diagnostic laparoscopy for suspected internal herniation. The CTA was used to create a 3D reconstruction of the mesenteric arteries and surgical staples (3D CTA). The 3D CTA was interpreted, taking into account the presence and type of internal hernia that was found upon laparoscopy. Cadaveric analysis demonstrated the complexity of internal herniation. It also confirmed the expected changes in vascular structure and surgical staple arrangement in the presence of internal herniation. 3D CTA studies of the subjects with active internal hernias demonstrated remarkable differences when compared to control 3D CTA studies. The blood supply of herniated intestinal limbs in particular showed abnormal trajectories. Additionally, enteroenterostomy staple lines had migrated or altered orientation. 3D CTA is a promising technique for diagnosing active internal hernias. Our findings suggest that for diagnosing internal hernias, focus should probably shift from routine abdominal CT examination towards the 3D assessment of the mesenteric vasculature and surgical staples.
2016-05-01
with U.S. generally accepted accounting principles and establish and maintain effective internal control over financial reporting and compliance with... Accountability Office Highlights of GAO-16-383, a report to congressional committees May 2016 DOD FINANCIAL MANAGEMENT Greater Visibility... Accounting Standards Advisory Board FIAR Financial Improvement and Audit Readiness IUS internal-use software NDAA National Defense Authorization Act
ERIC Educational Resources Information Center
Braden, Roberts A., Ed.; And Others
Presentations at the International Visual Literacy Association conference are grouped under five topics, a prologue, and an epilogue: (1) Prologue--"Writing About Visual Literacy" (Roberts A. Braden); (2) Visible Language--four papers concerning picture books, the Macintosh and Laserwriter, the design of library signs, and visual literacy and…
NASA Astrophysics Data System (ADS)
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-01
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH < 0 and ΔS < 0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.
NASA Astrophysics Data System (ADS)
Miyan, Lal; Zulkarnain; Ahmad, Afaq
2017-04-01
The molecular interaction between 1, 2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) has been investigated in methanol at room temperature. The stoichiometry of the synthesized CT complex was found to be 1:1 using the straight line method of Benesi-Hildebrand equation. The structure of the resulting CT complex was isolating and characterized using X-ray crystallography, FTIR and 1H NMR spectroscopic techniques. The thermal composition and stability of the CT complex were analyzed using thermogravimetric and differential thermal analysis (TGA and DTA). UV-visible spectrophotometric technique was used to the determine the various important physical parameters such as formation constant (KCT), molar extinction coefficient (εCT), energy of interaction (ECT), ionization potential (ID), resonance energy (RN), free energy (ΔG°), oscillator strength (ƒ) and transition dipole moment (μN). The effect of polarity of the solvent and concentration of acceptor on these parameters have been investigated. The results indicate that charge transfer complex (CTC) is more stable in less polar solvent due to the high value of the formation constant. A polymeric network through hydrogen bonding interaction between neighboring moieties was observed. This has also been attributed to the formation of 1:1 type CT complex.
Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study.
Petribu, Natacha Calheiros de Lima; Aragao, Maria de Fatima Vasco; van der Linden, Vanessa; Parizel, Paul; Jungmann, Patricia; Araújo, Luziany; Abath, Marília; Fernandes, Andrezza; Brainer-Lima, Alessandra; Holanda, Arthur; Mello, Roberto; Sarteschi, Camila; Duarte, Maria do Carmo Menezes Bezerra
2017-10-13
Objective To compare initial brain computed tomography (CT) scans with follow-up CT scans at one year in children with congenital Zika syndrome, focusing on cerebral calcifications. Design Case series study. Setting Barão de Lucena Hospital, Pernambuco state, Brazil. Participants 37 children with probable or confirmed congenital Zika syndrome during the microcephaly outbreak in 2015 who underwent brain CT shortly after birth and at one year follow-up. Main outcome measure Differences in cerebral calcification patterns between initial and follow-up scans. Results 37 children were evaluated. All presented cerebral calcifications on the initial scan, predominantly at cortical-white matter junction. At follow-up the calcifications had diminished in number, size, or density, or a combination in 34 of the children (92%, 95% confidence interval 79% to 97%), were no longer visible in one child, and remained unchanged in two children. No child showed an increase in calcifications. The calcifications at the cortical-white matter junction which were no longer visible at follow-up occurred predominately in the parietal and occipital lobes. These imaging changes were not associated with any clear clinical improvements. Conclusion The detection of cerebral calcifications should not be considered a major criterion for late diagnosis of congenital Zika syndrome, nor should the absence of calcifications be used to exclude the diagnosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kumar, Ashish; Schuerings, Christian; Kumar, Suneel; Kumar, Ajay
2018-01-01
A novel graphitic carbon nitride (g-C3N4)–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all of which greatly facilitate the transfer of photogenerated charges across the heterojunction and inhibit their fast recombination. In addition, the two-dimensional (2D) morphology of g-C3N4nanosheets and CT nanoflakes provides enough reaction sites due to their larger surface area and enhances the overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2 −•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic degradation of pollutants has been proposed and discussed. PMID:29527441
Tanaka, Osamu; Komeda, Hisao; Hirose, Shigeki; Taniguchi, Takuya; Ono, Kousei; Matsuo, Masayuki
2017-11-29
Visualization of fiducial gold markers is critical for registration on computed tomography (CT) and magnetic resonance imaging (MRI) for imaging-guided radiotherapy. Although larger markers provide better visualization on MRI, they tend to generate artifacts on CT. MRI is strongly influenced by the presence of metals, such as iron, in the body. Here we compared efficacies of a 0.5% iron-containing gold marker (GM) and a traditional non-iron-containing marker. Twenty-seven patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. Markers were placed by urologists under local anesthesia. Gold Anchor (GA; diameter: 0.28 mm; length: 10 mm), an iron-containing marker, was placed on the right side of the prostate using a 22-G needle and VISICOIL (VIS; diameter: 0.35 mm; length: 10 mm), a non-iron-containing marker, was placed on the left side using a 19-G needle. T2*-weighted images MRI sequences were obtained. Two radiation oncologists and a radiation technologist evaluated and assigned scores for visual quality on a five-point scale (1, poor; 5, best visibility). Artifact generation on CT was slightly greater with GA than with VIS. The mean marker visualization scores on MRI of all three observers were significantly superior for GA than for VIS (3.5 vs 3.2, 3.9 vs 3.2, and 4.0 vs 2.9). The actual size of the spherical GA was about 2 mm in diameter, but the signal void on MRI was approximately 5 mm. Although both markers were well visualized and can be recommended clinically, the results suggest that GA has some subtle advantages for quantitative visualization that could prove useful in certain situations of stereotactic body radiotherapy and intensity-modulated radiotherapy. © 2017 John Wiley & Sons Australia, Ltd.
Magnetic Resonance Imaging (MRI)
... MoreBMI Calculator Complete Blood Count (CBC)Blood Test: Lipid PanelRapid Strep TestPelvic UltrasoundAbdominal UltrasoundCT Head ScanPap Smear ( ... because it can provide images of internal body structures. It is more like a CT scan than ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joon Young, E-mail: pjy1331@hanmail.net; Kim, Shin Jung, E-mail: witdd2@hanmail.net; Kim, Hyoung Ook, E-mail: chaos821209@hanmail.net
This study was designed to evaluate the efficacy and safety of CT-guided embolization of internal iliac artery aneurysm (IIAA) after repair of abdominal aortic aneurysm by transretroperitoneal approach using the lidocaine injection technique to iliacus muscle, making window for safe needle path for three patients for whom CT-guided embolization of IIAA was performed by transretroperitoneal approach with intramuscular lidocaine injection technique. Transretroperitoneal access to the IIAA was successful in all three patients. In all three patients, the IIAA was first embolized using microcoils. The aneurysmal sac was then embolized with glue and coils without complication. With a mean follow-up ofmore » 7 months, the volume of the IIAAs remained stable without residual endoleaks. Transretroperitoneal CT-guided embolization of IIAA using intramuscular lidocaine injection technique is effective, safe, and results in good outcome.« less
7 CFR 51.1584 - Internal discoloration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1584 Internal discoloration..., stem-end browning, internal brown spot, or other similar types of discoloration not visible externally. ...
7 CFR 51.1584 - Internal discoloration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1584 Internal discoloration..., stem-end browning, internal brown spot, or other similar types of discoloration not visible externally. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santvoort, J van; Van der Drift, M; Kuipers, J
2014-06-01
Purpose: To find out whether tantalum surgical clips can be used for online position verification in treatment of the lumpectomy cavity (LC) in breast cancer patients. Tantalum is a high density metal that could be visible on Electronic Portal Images (EPIs) and be an affordable alternative to gold markers. Clips are considered more representative for the LC position than nearby bony structures. Methods: In twelve patients the surgeon had placed 2 to 5 tantalum clips in the LC. The AP and lateral fields used for portal imaging, were adapted. In doing so, both bony structures and tantalum clips were visiblemore » on EPIs. The following analyses were performed:1. Image degradation, with respect to delineating the CTV, of the axial CT slices by artefacts because of the tantalum clips was evaluated by a radiation oncologist;2. The visibility of the tantalum clips on the EPIs was evaluated by four radiation therapists (RTTs);3. Bony anatomy and tantalum clip matches were performed on the same images independently by two observers. Results: 1. Delineation of the CTV by the radiation oncologist was not hampered by CT image artefacts because of the clips.2. The mean score for visibility of the clips on the EPIs, analysed by the four RTTs, was 5.6 on a scale of 10 (range 3.9 – 8.0).3. In total 12 patients with 16 fractions each were analysed. The differences between clip match and bone match are significant with a mean vector length of 5.2 mm (SD 1.9 mm) for the difference. Conclusion: Results of matches on tantalum clips as compared to matches on bony structures differ substantially. Therefore clip matches can result in smaller CTV to PTV margins than bone matches. Visibility of the clips on EPIs is sufficient, so they can be an alternative to gold markers.« less
Grošev, Darko; Gregov, Marin; Wolfl, Miroslava Radić; Krstonošić, Branislav; Debeljuh, Dea Dundara
2018-06-07
To make quantitative methods of nuclear medicine more available, four centres in Croatia participated in the national intercomparison study, following the materials and methods used in the previous international study organized by the International Atomic Energy Agency (IAEA). The study task was to calculate the activities of four Ba sources (T1/2=10.54 years; Eγ=356 keV) using planar and single-photon emission computed tomography (SPECT) or SPECT/CT acquisitions of the sources inside a water-filled cylindrical phantom. The sources were previously calibrated by the US National Institute of Standards and Technology. Triple-energy window was utilized for scatter correction. Planar studies were corrected for attenuation correction (AC) using the conjugate-view method. For SPECT/CT studies, data from X-ray computed tomography were used for attenuation correction (CT-AC), whereas for SPECT-only acquisition, the Chang-AC method was applied. Using the lessons learned from the IAEA study, data were acquired according to the harmonized data acquisition protocol, and the acquired images were then processed using centralized data analysis. The accuracy of the activity quantification was evaluated as the ratio R between the calculated activity and the value obtained from National Institute of Standards and Technology. For planar studies, R=1.06±0.08; for SPECT/CT study using CT-AC, R=1.00±0.08; and for Chang-AC, R=0.89±0.12. The results are in accordance with those obtained within the larger IAEA study and confirm that SPECT/CT method is the most appropriate for accurate activity quantification.
Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busse, Nathan; Erwin, William; Pan, Tinsu
2013-12-15
Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less
A Strategy to Increase the International Visibility and Participation of a State University
ERIC Educational Resources Information Center
Lucas, Stephen R.; Miles, Benton E.
2007-01-01
This paper presents a strategy for expanding a university's international participation. An effort to correct international exchange imbalances evolved into a unique international program and partnership with Walt Disney World.
WFC3 UVIS Pixel-to-Pixel QE Variations via Internal Flats Monitor
NASA Astrophysics Data System (ADS)
Bajaj, Varun
2016-10-01
The UVIS detector has a population of pixels that exhibit anomalous QE variations between anneals, characterized by a sensitivity loss that is greater in the blue than in the red. This population is randomly distributed, with evidence of clustering behavior in the UV, and is seemingly unique for each anneal cycle. This program, a continuation of cycle 23 program 14389, will aim to constrain the maximum low-sensitivity population existing before an anneal in both the UV and Visible filters. To monitor the UV behavior, internal flats with the D2 lamp will be taken through F225W and F336W. To monitor the behavior in the Visible filters, internal flats with the tungsten lamp will be taken a week before the anneal, when the population of anomalous pixels is the greatest. Internal flats with the Tungsten lamp will be taken to monitor the population in the visible filters, with data taken the week before the anneal to sample the maximum population of anomalous pixels.
Sun, Zhipeng; Fu, Kaiyuan; Zhang, Zuyan; Zhao, Yanping; Ma, Xuchen
2012-05-01
The aim of this study was to primarily investigate the usefulness of computerized tomographic (CT) fistulography in the diagnosis and management of branchial cleft fistulae and sinuses. Fifteen patients with confirmed branchial fistulae or sinuses who had undergone CT fistulography were included. The diagnoses were confirmed by clinical, radiologic, or histopathologic examinations. The internal openings, distribution, and neighboring relationship of the lesions presented by CT fistulography were analyzed to evaluate the usefulness in comparison with x-ray fistulography. Nine patients were diagnosed with first branchial fistulae or sinuses, 2 with second branchial fistulae, and 4 with third or fourth branchial fistulae. The presence and location of the lesions could be seen on x-ray fistulography. The distribution of the lesions, internal openings, and neighboring relationship with parotid gland, carotid sheath, and submandibular gland could be clearly demonstrated on CT cross-sectional or volume-rendering images. CT fistulography could provide valuable information and benefit surgical planning by demonstrating the courses of branchial anomalies in detail. Copyright © 2012 Elsevier Inc. All rights reserved.
Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula
2016-05-01
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
ERIC Educational Resources Information Center
National Women's Education Centre, Saitama (Japan).
This document was prepared in Japanese with an English translation for the 1992 International Forum on Intercultural Exchange sponsored by the National Women's Education Centre of Japan. Discussions for 1992 were to center on the theme of development to make women visible. The conference agenda is followed by profiles of the presenters with some…
Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S.; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E.; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P.; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; zu Castell, Wolfgang
2017-01-01
Background Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Methods Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. Results We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Conclusion Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system. PMID:28704452
NASA Astrophysics Data System (ADS)
Mani-Caplazi, Gabriela; Schulz, Georg; Deyhle, Hans; Hotz, Gerhard; Vach, Werner; Wittwer-Backofen, Ursula; Müller, Bert
2017-09-01
Tooth cementum annulation (TCA) is used by anthropologists to decipher age-at-death and stress periods based on yearly deposited incremental lines (ILs). The destructive aspect of the TCA method, which requires cutting the tooth root in sections to display the ILs, using transmission light microscopy, can be problematic for archeological teeth, and so a non-invasive imaging technique is preferred. The purpose of this study is to evaluate conventional micro computed tomography (μCT) and synchrotron radiation-based X-ray micro computed tomography (SRμCT) as a non-destructive technique to explore the tooth cementum ultrastructure and to display ILs. Seven archeological teeth from the Basel- Spitalfriedhof collection (patients died between 1845 and 1868 in the city hospital) were selected for the μCT experiments. This collection is considered a unique worldwide reference series in the anthropological science community, due to the high level of documented life history data in the medical files and the additionally collected and verified birth history by genealogists. The results demonstrate that the conventional μCT is complementary to the SRμCT allowing to prescreen the teeth using conventional μCT to identify the appropriate specimens and areas for the SRμCT measurements. SRμCT displayed cementum ring structure corresponding to the ILs in the microscope view in archeological teeth in a non-invasive fashion with the potential for more accurate assessments of ILs compared to conventional techniques. The ILs were mainly clearly visible, and it was possible to count them for age-at-death assessment and identify qualitatively irregular ILs which could constitute stress markers.
Veladiano, Irene A; Banzato, Tommaso; Bellini, Luca; Montani, Alessandro; Catania, Salvatore; Zotti, Alessandro
2016-12-01
OBJECTIVE To create an atlas of the normal CT anatomy of the head of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus). ANIMALS 3 blue-and-gold macaws, 5 African grey parrots, and 6 monk parakeets and cadavers of 4 adult blue-and-gold macaws, 4 adult African grey parrots, and 7 monk parakeets. PROCEDURES Contrast-enhanced CT imaging of the head of the live birds was performed with a 4-multidetector-row CT scanner. Cadaveric specimens were stored at -20°C until completely frozen, and each head was then sliced at 5-mm intervals to create reference cross sections. Frozen cross sections were cleaned with water and photographed on both sides. Anatomic structures within each head were identified with the aid of the available literature, labeled first on anatomic photographs, and then matched to and labeled on corresponding CT images. The best CT reconstruction filter, window width, and window level for obtaining diagnostic images of each structure were also identified. RESULTS Most of the clinically relevant structures of the head were identified in both the cross-sectional photographs and corresponding CT images. Optimal visibility of the bony structures was achieved via CT with a standard soft tissue filter and pulmonary window. The use of contrast medium allowed a thorough evaluation of the soft tissues. CONCLUSIONS AND CLINICAL RELEVANCE The labeled CT images and photographs of anatomic structures of the heads of common pet parrot species created in this study may be useful as an atlas to aid interpretation of images obtained with any imaging modality.
A comparison of sequential and spiral scanning techniques in brain CT.
Pace, Ivana; Zarb, Francis
2015-01-01
To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).
Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang
2017-01-01
Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.
Hofman, Michael S; Murphy, Declan G; Williams, Scott G; Nzenza, Tatenda; Herschtal, Alan; Lourenco, Richard De Abreu; Bailey, Dale L; Budd, Ray; Hicks, Rodney J; Francis, Roslyn J; Lawrentschuk, Nathan
2018-05-03
Accurate staging of patients with prostate cancer (PCa) is important for therapeutic decision-making. Relapse after surgery or radiotherapy of curative intent is not uncommon and, in part, represents a failure of staging with current diagnostic imaging techniques to detect disease spread. Prostate-specific membrane antigen (PSMA) positron-emission tomography (PET)/computed tomography (CT) is a new whole-body scanning technique that enables visualization of PCa with high contrast. The hypotheses of this study are that: (i) PSMA-PET/CT has improved diagnostic performance compared with conventional imaging; (ii) PSMA-PET/CT should be used as a first-line diagnostic test for staging; (iii) the improved diagnostic performance of PSMA-PET/CT will result in significant management impact; and (iv) there are economic benefits if PSMA-PET/CT is incorporated into the management algorithm. The proPSMA trial is a prospective, multicentre study in which patients with untreated high-risk PCa will be randomized to gallium-68-PSMA-11 PET/CT or conventional imaging, consisting of CT of the abdomen/pelvis and bone scintigraphy with single-photon emission CT/CT. Patients eligible for inclusion are those with newly diagnosed PCa with select high-risk features, defined as International Society of Urological Pathology grade group ≥3 (primary Gleason grade 4, or any Gleason grade 5), prostate-specific antigen level ≥20 ng/mL or clinical stage ≥T3. Patients with negative, equivocal or oligometastatic disease on first line-imaging will cross over to receive the other imaging arm. The primary objective is to compare the accuracy of PSMA-PET/CT with that of conventional imaging for detecting nodal or distant metastatic disease. Histopathological, imaging and clinical follow-up at 6 months will define the primary endpoint according to a predefined scoring system. Secondary objectives include comparing management impact, the number of equivocal studies, the incremental value of second-line imaging in patients who cross over, the cost of each imaging strategy, radiation exposure, inter-observer agreement and safety of PSMA-PET/CT. Longer-term follow-up will also assess the prognostic value of a negative PSMA-PET/CT. This trial will provide data to establish whether PSMA-PET/CT should replace conventional imaging in the primary staging of select high-risk localized PCa, or whether it should be used to provide incremental diagnostic information in selected cases. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Barrington, Sally F.; Mikhaeel, N. George; Kostakoglu, Lale; Meignan, Michel; Hutchings, Martin; Müeller, Stefan P.; Schwartz, Lawrence H.; Zucca, Emanuele; Fisher, Richard I.; Trotman, Judith; Hoekstra, Otto S.; Hicks, Rodney J.; O'Doherty, Michael J.; Hustinx, Roland; Biggi, Alberto; Cheson, Bruce D.
2014-01-01
Purpose Recent advances in imaging, use of prognostic indices, and molecular profiling techniques have the potential to improve disease characterization and outcomes in lymphoma. International trials are under way to test image-based response–adapted treatment guided by early interim positron emission tomography (PET) –computed tomography (CT). Progress in imaging is influencing trial design and affecting clinical practice. In particular, a five-point scale to grade response using PET-CT, which can be adapted to suit requirements for early- and late-response assessment with good interobserver agreement, is becoming widely used both in practice- and response-adapted trials. A workshop held at the 11th International Conference on Malignant Lymphomas (ICML) in 2011 concluded that revision to current staging and response criteria was timely. Methods An imaging working group composed of representatives from major international cooperative groups was asked to review the literature, share knowledge about research in progress, and identify key areas for research pertaining to imaging and lymphoma. Results A working paper was circulated for comment and presented at the Fourth International Workshop on PET in Lymphoma in Menton, France, and the 12th ICML in Lugano, Switzerland, to update the International Harmonisation Project guidance regarding PET. Recommendations were made to optimize the use of PET-CT in staging and response assessment of lymphoma, including qualitative and quantitative methods. Conclusion This article comprises the consensus reached to update guidance on the use of PET-CT for staging and response assessment for [18F]fluorodeoxyglucose-avid lymphomas in clinical practice and late-phase trials. PMID:25113771
Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.
Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia
2017-01-01
Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.
Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.
Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng
2015-01-01
The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.
McLaughlin, Patrick W; Evans, Cheryl; Feng, Mary; Narayana, Vrinda
2010-02-01
Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data. Copyright 2010 Elsevier Inc. All rights reserved.
Prevalence of Imaging Biomarkers to Guide the Planning of Acute Stroke Reperfusion Trials.
Jiang, Bin; Ball, Robyn L; Michel, Patrik; Jovin, Tudor; Desai, Manisha; Eskandari, Ashraf; Naqvi, Zack; Wintermark, Max
2017-06-01
Imaging biomarkers are increasingly used as selection criteria for stroke clinical trials. The goal of our study was to determine the prevalence of commonly studied imaging biomarkers in different time windows after acute ischemic stroke onset to better facilitate the design of stroke clinical trials using such biomarkers for patient selection. This retrospective study included 612 patients admitted with a clinical suspicion of acute ischemic stroke with symptom onset no more than 24 hours before completing baseline imaging. Patients with subacute/chronic/remote infarcts and hemorrhage were excluded from this study. Imaging biomarkers were extracted from baseline imaging, which included a noncontrast head computed tomography (CT), perfusion CT, and CT angiography. The prevalence of dichotomized versions of each of the imaging biomarkers in several time windows (time since symptom onset) was assessed and statistically modeled to assess time dependence (not lack thereof). We created tables showing the prevalence of the imaging biomarkers pertaining to the core, the penumbra and the arterial occlusion for different time windows. All continuous imaging features vary over time. The dichotomized imaging features that vary significantly over time include: noncontrast head computed tomography Alberta Stroke Program Early CT (ASPECT) score and dense artery sign, perfusion CT infarct volume, and CT angiography collateral score and visible clot. The dichotomized imaging features that did not vary significantly over time include the thresholded perfusion CT penumbra volumes. As part of the feasibility analysis in stroke clinical trials, this analysis and the resulting tables can help investigators determine sample size and the number needed to screen. © 2017 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Garcia Marques de Carvalho, Enio
2011-04-15
Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no.more » 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, S; Vrieze, T; Kuhlmann, J
2014-06-15
Purpose: To assess image quality and radiation dose reduction in abdominal CT imaging, physical phantoms having realistic background textures and lesions are highly desirable. The purpose of this work was to construct a liver phantom with realistic background and lesions using patient CT images and a 3D printer. Methods: Patient CT images containing liver lesions were segmented into liver tissue, contrast-enhanced vessels, and liver lesions using commercial software (Mimics, Materialise, Belgium). Stereolithography (STL) files of each segmented object were created and imported to a 3D printer (Object350 Connex, Stratasys, MN). After test scans were performed to map the eight availablemore » printing materials into CT numbers, printing materials were assigned to each object and a physical liver phantom printed. The printed phantom was scanned on a clinical CT scanner and resulting images were compared with the original patient CT images. Results: The eight available materials used to print the liver phantom had CT number ranging from 62 to 117 HU. In scans of the liver phantom, the liver lesions and veins represented in the STL files were all visible. Although the absolute value of the CT number in the background liver material (approx. 85 HU) was higher than in patients (approx. 40 HU), the difference in CT numbers between lesions and background were representative of the low contrast values needed for optimization tasks. Future work will investigate materials with contrast sufficient to emulate contrast-enhanced arteries. Conclusion: Realistic liver phantoms can be constructed from patient CT images using a commercial 3D printer. This technique may provide phantoms able to determine the effect of radiation dose reduction and noise reduction techniques on the ability to detect subtle liver lesions in the context of realistic background textures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eck, Brendan L.; Fahmi, Rachid; Miao, Jun
2015-10-15
Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated usingmore » a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and model complexity according to AIC{sub c}. With parameters fixed, the model reasonably predicted detectability of human observers in blended FBP-IMR images. Semianalytic internal noise computation gave results equivalent to Monte Carlo, greatly speeding parameter estimation. Using Model-k4, the authors found an average detectability improvement of 2.7 ± 0.4 times that of FBP. IMR showed greater improvements in detectability with larger signals and relatively consistent improvements across signal contrast and x-ray dose. In the phantom tested, Model-k4 predicted an 82% dose reduction compared to FBP, verified with physical CT scans at 80% reduced dose. Conclusions: IMR improves detectability over FBP and may enable significant dose reductions. A channelized Hotelling observer with internal noise proportional to channel output standard deviation agreed well with human observers across a wide range of variables, even across reconstructions with drastically different image characteristics. Utility of the model observer was demonstrated by predicting the effect of image processing (blending), analyzing detectability improvements with IMR across dose, size, and contrast, and in guiding real CT scan dose reduction experiments. Such a model observer can be applied in optimizing parameters in advanced iterative reconstruction algorithms as well as guiding dose reduction protocols in physical CT experiments.« less
Chest tomosynthesis: technical principles and clinical update.
Dobbins, James T; McAdams, H Page
2009-11-01
Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the X-ray tube. It utilizes a conventional X-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed.
Managing care pathways combining SNOMED CT, archetypes and an electronic guideline system.
Bernstein, Knut; Andersen, Ulrich
2008-01-01
Today electronic clinical guideline systems exist, but they are not well integrated with electronic health records. This paper thus proposes that the patient's "position" in the pathway during the patient journey should be made visible to all involved healthcare parties and the patient. This requires that the generic knowledge, which is represented in the guidelines, is combined with the patient specific information - and then made accessible for all relevant parties. In addition to the decision support provided by the guideline system documentation support can be provided by templates based on archetypes. This paper provides a proposal for how the guideline system and the EHR can be integrated by the use of archetypes and SNOMED CT. SNOMED CT provides the common reference terminology and the semantic links between the systems. The proposal also includes the use of a National Patient Index for storing data about the patient's position in the pathway and for sharing this information by all involved parties.
NASA Astrophysics Data System (ADS)
Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng
2016-01-01
A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.
Measurements of void fraction distribution in cavitating pipe flow using x-ray CT
NASA Astrophysics Data System (ADS)
Bauer, D.; Chaves, H.; Arcoumanis, C.
2012-05-01
Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.
Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng
2016-01-15
A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Representation of cerebral bridging veins in infants by postmortem computed tomography.
Stein, Kirsten Marion; Ruf, Katharina; Ganten, Maria Katharina; Mattern, Rainer
2006-11-10
The postmortem diagnosis of shaken baby syndrome, a severe form of child abuse, may be difficult, especially when no other visible signs of significant trauma are obvious. An important finding in shaken baby syndrome is subdural haemorrhage, typically originating from ruptured cerebral bridging veins. Since these are difficult to detect at autopsy, we have developed a special postmortem computed tomographic (PMCT) method to demonstrate the intracranial vein system in infants. This method is minimally invasive and can be carried out conveniently and quickly on clinical computed tomography (CT) systems. Firstly, a precontrast CT is made of the infant's head, to document the original state. Secondly, contrast fluid is injected manually via fontanel puncture into the superior sagittal sinus, followed by a repeat CT scan. This allows the depiction of even very small vessels of the deep and superficial cerebral veins, especially the bridging veins, without damaging them. Ruptures appear as extravasation of contrast medium, which helps to locate them at autopsy and examine them histologically, whenever necessary.
Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures
Yuan, Long; Chung, Ting-Fung; Kuc, Agnieszka; Wan, Yan; Xu, Yang; Chen, Yong P.; Heine, Thomas; Huang, Libai
2018-01-01
Efficient interfacial carrier generation in van der Waals heterostructures is critical for their electronic and optoelectronic applications. We demonstrate broadband photocarrier generation in WS2-graphene heterostructures by imaging interlayer coupling–dependent charge generation using ultrafast transient absorption microscopy. Interlayer charge-transfer (CT) transitions and hot carrier injection from graphene allow carrier generation by excitation as low as 0.8 eV below the WS2 bandgap. The experimentally determined interlayer CT transition energies are consistent with those predicted from the first-principles band structure calculation. CT interactions also lead to additional carrier generation in the visible spectral range in the heterostructures compared to that in the single-layer WS2 alone. The lifetime of the charge-separated states is measured to be ~1 ps. These results suggest that interlayer interactions make graphene–two-dimensional semiconductor heterostructures very attractive for photovoltaic and photodetector applications because of the combined benefits of high carrier mobility and enhanced broadband photocarrier generation. PMID:29423439
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Ibrahim, Omar B.; Saad, Hosam A.; Adam, Abdel Majid A.
2014-05-01
Recently, ephedrine (Eph) assessment in food products, pharmaceutical formulations, human fluids of athletes and detection of drug toxicity and abuse, has gained a growing interest. To provide basic data that can be used to assessment of Eph quantitatively based on charge-transfer (CT) complexation, the CT complexes of Eph with 7‧,8,8‧-tetracyanoquinodimethane (TCNQ), dichlorodicyanobenzoquinone (DDQ), 1,3-dinitrobenzene (DNB) or tetrabromothiophene (TBT) were synthesized and spectroscopically investigated. The newly synthesized complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. The formation constant (KCT), molar extinction coefficient (εCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermal decomposition behavior of these complexes was also studied, and their kinetic thermodynamic parameters were calculated with Coats-Redfern and Horowitz-Metzger equations.
Visibility Modeling and Forecasting for Abu Dhabi using Time Series Analysis Method
NASA Astrophysics Data System (ADS)
Eibedingil, I. G.; Abula, B.; Afshari, A.; Temimi, M.
2015-12-01
Land-Atmosphere interactions-their strength, directionality and evolution-are one of the main sources of uncertainty in contemporary climate modeling. A particularly crucial role in sustaining and modulating land-atmosphere interaction is the one of aerosols and dusts. Aerosols are tiny particles suspended in the air ranging from a few nanometers to a few hundred micrometers in diameter. Furthermore, the amount of dust and fog in the atmosphere is an important measure of visibility, which is another dimension of land-atmosphere interactions. Visibility affects all form of traffic, aviation, land and sailing. Being able to predict the change of visibility in the air in advance enables relevant authorities to take necessary actions before the disaster falls. Time Series Analysis (TAS) method is an emerging technique for modeling and forecasting the behavior of land-atmosphere interactions, including visibility. This research assess the dynamics and evolution of visibility around Abu Dhabi International Airport (+24.4320 latitude, +54.6510 longitude, and 27m elevation) using mean daily visibility and mean daily wind speed. TAS has been first used to model and forecast the visibility, and then the Transfer Function Model has been applied, considering the wind speed as an exogenous variable. By considering the Akaike Information Criterion (AIC) and Mean Absolute Percentage Error (MAPE) as a statistical criteria, two forecasting models namely univarite time series model and transfer function model, were developed to forecast the visibility around Abu Dhabi International Airport for three weeks. Transfer function model improved the MAPE of the forecast significantly.
Avramovic, Nemanja; Weckesser, Matthias; Velasco, Aglaé; Stenner, Markus; Noto, Benjamin
2017-02-01
A 60-year-old woman was referred to contrast-enhanced CT for evaluation of jugular vein thrombosis incidentally detected by ultrasound. Contrast-enhanced CT showed an enhanced tumor of the right skull base highly suspicious of jugulotympanic paraganglioma. However, the jugular veins showed a nearly symmetric contrast enhancement without clear evidence of thrombosis. Consecutive Ga-DOTATATE PET/CT depicted high tumor uptake, which comprised the entire internal jugular vein. Endovascular growth of paraganglioma might be missed on contrast-enhanced CT because of high vascularization of the lesion. Ga-DOTATATE PET is suited for accurate determination of tumor extent.
Meza-Sánchez, David; Pérez-Montesinos, Gibrán; Sánchez-García, Javier; Moreno, José; Bonifaz, Laura C
2011-10-01
The nature of CD4(+) T-cell responses after skin immunization and the role of migrating DCs in the presence of adjuvants in the elicited response are interesting issues to be investigated. Here, we evaluated the priming of CD4(+) T cells following ear immunization with low doses of model antigens in combination with either cholera toxin (CT) or the non-toxic β CT subunit (CTB) as an adjuvant. Following immunization with CT, we found efficient antigen presentation that is reflected in the production of IFN-γ and IL-17 by CD4(+) T cells over IL-4 or IL-5 production. The CTB-induced activation of DCs in the ear occurred without visible inflammation, which reflects a similar type of CD4(+) T-cell differentiation. In both cases, the elicited response was dependent on the presence of migrating skin cells. Remarkably, immunization with CT or with CTB led to the induction of a delayed-type hypersensitivity (DTH) response in the ear. The DTH response that was induced by CT immunization was dependent on IL-17 and partially dependent on IFN-γ activity. These results indicate that both CT and CTB induce an efficient CD4(+) T-cell response to a co-administered antigen following ear immunization that is dependent on migrating DCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of CT scanning in formation evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergosh, J.L.; Dibona, B.G.
1988-01-01
The use of the computerized tomographic (CT) scanner in formation evaluation of difficult to analyze core samples has moved from the research and development phase to daily, routine use in the core-analysis laboratory. The role of the CT scanner has become increasingly important as geologists try to obtain more representative core material for accurate formation evaluation. The most common problem facing the core analyst when preparing to measure petrophysical properties is the selection of representative and unaltered core samples for routine and special core testing. Recent data have shown that heterogeneous reservoir rock can be very difficult, if not impossible,more » to assess correctly when using standard core examination procedures, because many features, such as fractures, are not visible on the core surface. Another problem is the invasion of drilling mud into the core sample. Flushing formation oil and water from the core can greatly alter the saturation and distribution of fluids and lead to serious formation evaluation problems. Because the quality and usefulness of the core date are directly tied to proper sample selection, it has become imperative that the CT scanner be used whenever possible.« less
Moche, Jason A; Cohen, Justin C; Pearlman, Steven J
2013-07-01
The objective of this work was to explore the utility of axial computed tomography (CT) imaging to objectively define a narrow internal nasal valve, and compare those findings with clinical examination and patient complaint. Retrospective review from a single facial plastic surgery center. We reviewed 40 consecutive patients evaluated for either sinusitis or nasal airway obstruction for which a CT scan was obtained at a single radiology institution. Thirty-six complete office records were examined for the presence of clinical internal valve narrowing and complaints of nasal obstruction. In total, 72 internal nasal valves were analyzed using axial plane CT and measurements were compared to clinical findings and presence of airway obstruction. Measured valve areas for clinically normal internal nasal valves averaged 0.47 cm(2) vs 0.28 cm(2) for clinically narrow valves, a decrease of 40.4%. In unobstructed nasal airways the valve area averaged 0.51 cm(2) vs 0.38 cm(2) in obstructed airways, a difference of 25.5%. A radiographically measured valve area of <0.30 cm(2) suggests clinical narrowing with a sensitivity of 71.4%, specificity of 88.9%, positive predictive value of 62.5%, and negative predictive value of 92.3%. Using standard axial CT imaging we describe an objective method of radiographically evaluating the nasal valve, demonstrating strong correlation with physical examination and patient complaint. Additionally, radiographic valve areas can be used to screen for clinically narrow nasal valves with good sensitivity and specificity, providing a novel straightforward method for nasal valve assessment. © 2012 ARS-AAOA, LLC.
NASA Astrophysics Data System (ADS)
Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.
2014-10-01
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01405g
Pakistan’s First Military Coup: Why Did the First Pakistani Coup Occur and Why Does it Matter?
2012-03-01
and Politics. New York: St Martin’s Press, 2000. Bruneau, Thomas C., and Scot D. Tollefson. Who Guards the Guardian and How Democratic Civil—Civil...Military: An International Hand Book. West Port, CT: Green Wood Press, 1996. ———. The Decline of Military Regimes: The Civilian Influence. Boulder...West View Press, 1988. ———. The Political Role of the Military: An International Hand Book. West Port, CT: Green Wood Press, 1989. David, Steven R
[Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].
Zelikovich, E I
2005-01-01
Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.
NASA Astrophysics Data System (ADS)
Zwaan, Frank; Schreurs, Guido
2015-04-01
INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift-connecting inherited zones, whose strike is at an angle of >15° with respect to the divergence direction. CT-analysis indicates that faulting initiated shortly after the start of the experiments, while structures become only clearly visible at the surface only after 1:30h (4% extension). Rift boundary fault angles tend to decrease from an initial 70° to ca. 55° after 4:00h (10% extension). Further CT-analysis will reveal the 3D evolution of the transform zones in more detail. REFERENCES Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 1999. Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, Vol. 11, No. 4, pp 149-156 Allken, V., Huismans, R. S., Thieulot, C., 2012. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophys. Geosyst. Vol. 13, Q05010 Schreurs, G., Colletta, B. (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R. E., Strachan R. A., Dewey, J. F., (eds.) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications. No. 135, pp 59-79
Keleş, A; Keskin, C
2018-02-01
To conduct a quantitative and qualitative analysis of the band-shaped isthmus area, the floor of which was in the apical third in the mesial roots of mandibular first molars using micro-computed tomography (micro-CT). Micro-CT images of 269 mesial roots of mandibular first molars were evaluated, and 40 specimens with a band-shaped isthmus, with a floor in the apical third, were selected. The major diameter, minor diameter, roundness, area and perimeter values for the most coronal and apical slices where the isthmus was visible were measured. The distances between these slices were measured as the isthmus length, and the total volume, structure model index and surface area of the isthmus were measured. The distances between the isthmus floor and two apical foramina and the number of root canal orifices were calculated. The dimensions of the isthmus roof and the floor were compared, and the data were analysed using descriptive statistics and Student's t-tests with a significance threshold set at 5%. A total of 15% of the specimens had band-shaped isthmuses with a floor in the apical third. The isthmus roof exhibited significantly greater major and minor diameter values compared to the isthmus floor (P < 0.05). No significant difference was detected between the isthmus roof and the floor with regard to roundness (P > 0.05). Three- and two-dimensional analyses of the mesial roots of mandibular molars revealed that band-shaped isthmuses had complex shapes. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system
NASA Astrophysics Data System (ADS)
Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David
2007-03-01
In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian J.; Mayr, Georg J.; Zeileis, Achim
2018-04-01
Airport operations are sensitive to visibility conditions. Low-visibility events may lead to capacity reduction, delays and economic losses. Different levels of low-visibility procedures (lvp) are enacted to ensure aviation safety. A nowcast of the probabilities for each of the lvp categories helps decision makers to optimally schedule their operations. An ordered logistic regression (OLR) model is used to forecast these probabilities directly. It is applied to cold season forecasts at Vienna International Airport for lead times of 30-min out to 2 h. Model inputs are standard meteorological measurements. The skill of the forecasts is accessed by the ranked probability score. OLR outperforms persistence, which is a strong contender at the shortest lead times. The ranked probability score of the OLR is even better than the one of nowcasts from human forecasters. The OLR-based nowcasting system is computationally fast and can be updated instantaneously when new data become available.
Ferrero, Andrea; Montoya, Juan C; Vaughan, Lisa E; Huang, Alice E; McKeag, Ian O; Enders, Felicity T; Williams, James C; McCollough, Cynthia H
2016-12-01
Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphologic features from dual-energy computed tomography (CT) images and assess their relationship to stone fragility. Thirty-three calcified urinary stones were scanned with micro-CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low- and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. The average stone volume was 300 mm 3 (range: 134-674 mm 3 ). The average comminution time measured ex vivo was 32 seconds (range: 7-115 seconds). Stone volume, dual-energy CT number ratio, and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R 2 = 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R 2 of 0.54. Dual-energy CT number ratios, volume, and morphologic metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Homedes, Núria; Ugalde, Antonio
2015-06-01
To assess the potential role of clinical trial (CT) registries and other resources available to research ethics committees (RECs) in the evaluation of complex CT protocols in low-income and middle-income countries. Using a case study approach, the authors examined the decision-making process of a REC in Argentina and its efforts to use available resources to decide on a complex protocol. We also analysed the information in the USA and other CT registries and consulted 24 CT experts in seven countries. Information requested by the Argentinean REC from other national RECs and ethics' experts was not useful to verify the adequacy of the REC's decision whether or not to approve the CT. The responses from the national regulatory agency and the sponsor were not helpful either. The identification of international resources that could assist was beyond the REC's capability. The information in the USA and other CT registries is limited, and at times misleading; and its accuracy is not verified by register keepers. RECs have limited access to experts and institutions that could assist them in their deliberations. Sponsors do not always answer RECs' request for information to properly conduct the ethical and methodological assessment of CT protocols. The usefulness of the CT registries is curtailed by the lack of appropriate codes and by data errors. Information about reasons for rejection, withdrawal or suspension of the trial should be included in the registries. Establishing formal channels of communication among national and foreign RECs and with independent international reference centres could strengthen the ethical review of CT protocols. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ferrero, Andrea; Montoya, Juan C.; Vaughan, Lisa E.; Huang, Alice E.; McKeag, Ian O.; Enders, Felicity T.; Williams, James C.; McCollough, Cynthia H.
2016-01-01
Rationale and Objectives Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphological features from dual-energy CT images and assess their relationship to stone fragility. Materials and Methods Thirty-three calcified urinary stones were scanned with micro CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low-and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. Results The average stone volume was 300 mm3 (range 134–674 mm3). The average comminution time measured ex vivo was 32 s (range 7–115 s). Stone volume, dual-energy CT number ratio and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R2= 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R2 of 0.54. Conclusion Dual-energy CT number ratios, volume, and morphological metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy. PMID:27717761
CT enterography: Mannitol versus VoLumen.
Wong, Jessica; Moore, Helen; Roger, Mark; McKee, Chris
2016-10-01
Several different neutral oral contrast agents have been trialled in magnetic resonance and CT enterography (CTE). In the Auckland region, Mannitol 2.5% and VoLumen are both used in CTE. This study compares the performance of these two neutral oral contrast agents in CTE. Computed tomography enterography data were collected from 25 consecutive studies that used either Mannitol or VoLumen in 2014. All images were reviewed by three radiologists blinded to the type of oral contrast. Each quadrant was assessed for maximum distension, proportion of bowel loops distended, presence of inhomogeneous content and bowel wall visibility. Assessment also included whether the contrast agent reached the caecum and an overall subjective quality assessment. Patients were invited to answer a questionnaire regarding tolerability of the preparations. Mannitol achieves better wall visibility in the right upper quadrant, left upper quadrant and left lower quadrant (P < 0.01). Overall differences in study quality favours Mannitol (P < 0.01) with 48% of the Mannitol studies being considered excellent compared with 4% of the VoLumen studies. There was no difference in maximal distension or proportion of loops distended. Mannitol in CTE achieves studies of a better quality than and is a viable alternative to VoLumen. © 2016 The Royal Australian and New Zealand College of Radiologists.
Revelli, Matteo; Furnari, Manuele; Bacigalupo, Lorenzo; Paparo, Francesco; Astengo, Davide; Savarino, Edoardo; Rollandi, Gian Andrea
2015-08-01
Hiatal hernia is a well-known factor impacting on most mechanisms underlying gastroesophageal reflux, related with the risk of developing complications such as erosive esophagitis, Barrett's esophagus and ultimately, esophageal adenocarcinoma. It is our firm opinion that an erroneous reporting of hiatal hernia in CT exams performed with colonic distention may trigger a consecutive diagnostic process that is not only unnecessary, inducing a unmotivated anxiety in the patient, but also expensive and time-consuming for both the patient and the healthcare system. The purposes of our study were to determine whether colonic distention at CT with water enema and CT colonography can induce small sliding hiatal hernias and to detect whether hiatal hernias size modifications could be considered significant for both water and gas distention techniques. We retrospectively evaluated 400 consecutive patients, 200 undergoing CT-WE and 200 undergoing CTC, including 59 subjects who also underwent a routine abdominal CT evaluation on a different time, used as internal control, while a separate group of 200 consecutive patients who underwent abdominal CT evaluation was used as external control. Two abdominal radiologists assessed the CT exams for the presence of a sliding hiatal hernia, grading the size as small, moderate, or large; the internal control groups were directly compared with the corresponding CT-WE or CTC study looking for a change in hernia size. We used the Student's t test applying a size-specific correction factor, in order to account for the effect of colonic distention: these "corrected" values were then individually compared with the external control group. A sliding hiatal hernia was present in 51 % (102/200) of the CT-WE patients and in 48.5 % (97/200) of the CTC patients. Internal control CT of the 31 patients with a hernia at CT-WE showed resolution of the hernia in 58.1 % (18/31) of patients, including 76.5 % (13/17) and 45.5 % (5/11) of small and moderate hernias. Comparison CT of the 28 patients with a hiatal hernia at CTC showed the absence of the hernia in 57.1 % (16/28) patients, including 68.8 % (11/16) and 50 % (5/10) of small and moderate hernias. The prevalence of sliding hiatal hernias in the external control group was 22 % (44/200), significantly lower than the CT-WE and CTC cohorts' prevalence of 51 % (p < 0.0001) and 48.5 % (p < 0.0001). After applying the correction factors for the CT-WE and the CTC groups, the estimated residual prevalences (16 and 18.5 %, respectively) were much closer to that of the external control patients (p = 0.160 for CT-WE and p = 0.455 for CTC). We believe that incidental findings at CT-WE and CTC should be considered according to the clinical background, and that small sliding hiatal hernias should not be reported in patients with symptoms not related to reflux disease undergoing CT-WE or CTC: When encountering these findings, accurate anamnesis and review of medical history looking for GERD-related symptoms are essential, in order to address these patients to a correct diagnostic iter, taking advantage from more appropriate techniques such as endoscopy or functional techniques.
Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT
NASA Astrophysics Data System (ADS)
Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna
2008-09-01
Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Reyhan, M; Zhang, M
2015-06-15
Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imagedmore » compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes. This research receives funding support from CURA Medical Technologies.« less
Effect of {sup 18}F-FDG PET/CT Imaging in Patients With Clinical Stage II and III Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groheux, David; Moretti, Jean-Luc; EAD Imagerie Moleculaire Diagnostique et Ciblage Therapeutique, IUH, University of Paris VII, Paris
2008-07-01
Purpose: To investigate the potential effect of using {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) in the initial assessment of patients with clinical Stage II or III breast cancer. Methods and Materials: During 14 consecutive months, 39 patients (40 tumors) who presented with Stage II or III breast cancer on the basis of a routine extension assessment were prospectively included in this study. PET/CT was performed in addition to the initial assessment. Results: In 3 cases, PET/CT showed extra-axillary lymph node involvement that had not been demonstrated with conventional techniques. Two of these patients had hypermetabolic lymph nodes in themore » subpectoral and infraclavicular regions, and the third had a hypermetabolic internal mammary node. PET/CT showed distant uptake in 4 women. Of these 4 women, 1 had pleural involvement and 3 had bone metastasis. Overall, of the 39 women, the PET/CT results modified the initial stage in 7 (18%). The modified staging altered the treatment plan for 5 patients (13%). It led to radiotherapy in 4 patients (bone metastasis, pleural lesion, subpectoral lymph nodes, and internal mammary nodes) and excision of, and radiotherapy to, the infraclavicular lymph nodes in 1 patient. Conclusions: PET/CT can provide information on extra-axillary lymph node involvement and can uncover occult distant metastases in a significant percentage of patients. Therefore, initial PET/CT could enable better treatment planning for patients with Stage II and III breast cancer.« less
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Lee, Eun-Hye; Hong, Soon-Seok; Kim, So Hee; Lee, Mi-Kyung; Lim, Joon Seok; Lim, Soo-Jeong
2014-08-01
In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-05
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (K b ) between TMG and DNA was 2.27×10 4 M -1 , that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH<0 and ΔS<0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Heijst, Tristan C. F.; Eschbach-Zandbergen, Debora; Hoekstra, Nienke; van Asselen, Bram; Lagendijk, Jan J. W.; Verkooijen, Helena M.; Pijnappel, Ruud M.; de Waard, Stephanie N.; Witkamp, Arjen J.; van Dalen, Thijs; Desirée van den Bongard, H. J. G.; Philippens, Marielle E. P.
2017-08-01
Regional radiotherapy (RT) is increasingly used in breast cancer treatment. Conventionally, computed tomography (CT) is performed for RT planning. Lymph node (LN) target levels are delineated according to anatomical boundaries. Magnetic resonance imaging (MRI) could enable individual LN delineation. The purpose was to evaluate the applicability of MRI for LN detection in supine treatment position, before and after sentinel-node biopsy (SNB). Twenty-three female breast cancer patients (cTis-3N0M0) underwent 1.5 T MRI, before and after SNB, in addition to CT. Endurance for MRI was monitored. Axillary levels were delineated. LNs were identified and delineated on MRI from before and after SNB, and on CT, and compared by Wilcoxon signed-rank tests. LN locations and LN-based volumes were related to axillary delineations and associated volumes. Although postoperative effects were visible, LN numbers on postoperative MRI (median 26 LNs) were highly reproducible compared to preoperative MRI when adding excised sentinel nodes, and higher than on CT (median 11, p < 0.001). LN-based volumes were considerably smaller than respective axillary levels. Supine MRI of LNs is feasible and reproducible before and after SNB. This may lead to more accurate RT target definition compared to CT, with potentially lower toxicity. With the MRI techniques described here, initiation of novel MRI-guided RT strategies aiming at individual LNs could be possible.
Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F
2016-05-01
To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Nakashima, Kazuaki; Ashizawa, Kazuto; Ochi, Makoto; Hashmi, Rashid; Hayashi, Kuniaki; Gotoh, Shinichi; Honda, Sumihisa; Igarashi, Akito; Komaki, Takao
2003-01-01
The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen‐film system (S/F). Posteroanterior chest radiographs often patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio‐technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five‐point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung. © 2003 American College of Medical Physics. PACS number(s): 87.57.–s, 87.62.+n PMID:12540822
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
Charbit, Jonathan; Millet, Ingrid; Maury, Camille; Conte, Benjamin; Roustan, Jean-Paul; Taourel, Patrice; Capdevila, Xavier
2015-06-01
Occult pneumothoraces (PTXs), which are not visible on chest x-ray, may progress to tension PTX. The aim of study was to establish the prevalence of large occult PTXs upon admission of patients with severe blunt trauma, according to prehospital mechanical ventilation. Patients with severe trauma consecutively admitted to our institution for 5 years were retrospectively analyzed. All patients with blunt thoracic trauma who had undergone computed tomographic (CT) within the first hour of hospitalization were included. Mechanical ventilation was considered as early if it was introduced in the prehospital period or on arrival at the hospital. Occult PTXs were defined as PTXs not visible on chest x-ray. All PTXs were measured on CT scan (largest thickness and vertical dimension). Large occult PTXs were defined by a largest thickness of 30 mm or more. Of the 526 patients studied, 395 (75%) were male, mean age was 37.9 years, mean Injury Severity Score was 22.2, and 247 (47%) received early mechanical ventilation. Of 429 diagnosed PTXs, 296 (69%) were occult. The proportion of occult PTXs classified as large was 11% (95% confidence interval, 8%-15%). The overall prevalence of large occult PTXs was 6% (95% confidence interval, 4%-8%). Both CT measurements and proportion of large occult PTXs were found statistically comparable in patients with or without mechanical ventilation. Six percent of studied patients with severe trauma had a large and occult PTX as soon as admission despite a normal chest x-ray result. The observed sizes and rates of occult PTX were comparable regardless of the initiation of early mechanical ventilation. Copyright © 2015. Published by Elsevier Inc.
Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT.
Uyeda, Jennifer W; Richardson, Ian J; Sodickson, Aaron D
2017-12-01
To determine whether virtual monochromatic imaging (VMI) increases detectability of noncalcified gallstones on dual-energy CT (DECT) compared with conventional CT imaging. This retrospective IRB-approved, HIPAA-compliant study included consecutive patients who underwent DECT of the abdomen in the Emergency Department during a 30-month period (July 1, 2013-December 31, 2015), with a comparison US or MR within 1-year. 51 patients (36F, 15M; mean age 52 years) fulfilled the inclusion criteria. All DECT were acquired on a dual-source 128 × 2 slice scanner using either 80/Sn140 or 100/Sn140 kVp pairs. Source images at high and low kVp were used for DE post-processing with VMI. Within 3 mm reconstructed images, regions of interest of 0.5 cm 2 were placed on noncalcified gallstones and bile to record hounsfield units (HU) at VMI energy levels ranging between 40 and 190 keV. Noncalcified gallstones uniformly demonstrated lowest HU at 40 keV and increase at higher keV; the HU of bile varied at higher keV. Few of the noncalcified stones are visible at 70 keV (simulating a conventional 120 kVp scan), with measured contrast (bile-stone HU difference) <10 HU in 78%, 10-20 HU in 20%, and >20 HU in 2%. Contrast was maximal at 40 keV, where 100% demonstrated >20 HU difference from surrounding bile, 75% >44 HU difference, and 50% >60 HU difference. A paired t test demonstrated a significant difference (p < 0.0001) between this stone-bile contrast at 40 vs. 70 keV and 70 vs. 190 keV. Low keV virtual monochromatic imaging increased conspicuity of noncalcified gallstones, improving their detectability.
Weum, Sven; Mercer, James B; de Weerd, Louis
2016-07-15
The current gold standard for preoperative perforator mapping in breast reconstruction with a DIEP flap is CT angiography (CTA). Dynamic infrared thermography (DIRT) is an imaging method that does not require ionizing radiation or contrast injection. We evaluated if DIRT could be an alternative to CTA in perforator mapping. Twenty-five patients scheduled for secondary breast reconstruction with a DIEP flap were included. Preoperatively, the lower abdomen was examined with hand-held Doppler, DIRT and CTA. Arterial Doppler sound locations were marked on the skin. DIRT examination involved rewarming of the abdominal skin after a mild cold challenge. The locations of hot spots on DIRT were compared with the arterial Doppler sound locations. The rate and pattern of rewarming of the hot spots were analyzed. Multiplanar CT reconstructions were used to see if hot spots were related to perforators on CTA. All flaps were based on the perforator selected with DIRT and the surgical outcome was analyzed. First appearing hot spots were always associated with arterial Doppler sounds and clearly visible perforators on CTA. The hot spots on DIRT images were always slightly laterally located in relation to the exit points of the associated perforators through the rectus abdominis fascia on CTA. Some periumbilical perforators were not associated with hot spots and showed communication with the superficial inferior epigastric vein on CTA. The selected perforators adequately perfused all flaps. This study confirms that perforators selected with DIRT have arterial Doppler sound, are clearly visible on CTA and provide adequate perfusion for DIEP breast reconstruction. Retrospectively registered at ClinicalTrials.gov with identifier NCT02806518 .
Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C
2018-06-01
Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.
Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying
2015-06-15
Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimatemore » average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern.« less
Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study
Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.
2015-01-01
Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm2 field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern. PMID:26127058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Li, K; Gomez-Cardona, D
Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positionsmore » using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off-centered positions can be achieved using MBIR. This work was partially supported by an NIH grant R01CA169331 and GE Healthcare. K. Li, D. Gomez-Cardona: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX. A. Budde, J. Hsieh: Employee, GE Healthcare.« less
Garcia, Francisco Hita; Fischer, Georg; Liu, Cong; Audisio, Tracy L; Economo, Evan P
2017-01-01
New technologies for imaging and analysis of morphological characters offer opportunities to enhance revisionary taxonomy and better integrate it with the rest of biology. In this study, we revise the Afrotropical fauna of the ant genus Zasphinctus Wheeler, and use high-resolution X-ray microtomography (micro-CT) to analyse a number of morphological characters of taxonomic and biological interest. We recognise and describe three new species: Z. obamai sp. n. , Z. sarowiwai sp. n. , and Z. wilsoni sp. n. The species delimitations are based on the morphological examination of all physical specimens in combination with 3D scans and volume reconstructions. Based on this approach, we present a new taxonomic discrimination system for the regional fauna that consists of a combination of easily observable morphological characters visible at magnifications of around 80-100 ×, less observable characters that require higher magnifications, as well as characters made visible through virtual dissections that would otherwise require destructive treatment. Zasphinctus are rarely collected ants and the material available to us is comparatively scarce. Consequently, we explore the use of micro-CT as a non-invasive tool for the virtual examination, manipulation, and dissection of such rare material. Furthermore, we delineate the treated species by providing a diagnostic character matrix illustrated by numerous images and supplement that with additional evidence in the form of stacked montage images, 3D PDFs and 3D rotation videos of scans of major body parts and full body (in total we provide 16 stacked montage photographs, 116 images of 3D reconstructions, 15 3D rotation videos, and 13 3D PDFs). In addition to the comparative morphology analyses used for species delimitations, we also apply micro-CT data to examine certain traits, such as mouthparts, cuticle thickness, and thoracic and abdominal muscles in order to assess their taxonomic usefulness or gain insights into the natural history of the genus. The complete datasets comprising the raw micro-CT data, 3D PDFs, 3D rotation videos, still images of 3D models, and coloured montage photos have been made available online as cybertypes (Dryad, http://dx.doi.org/10.5061/dryad.4s3v1).
Garcia, Francisco Hita; Fischer, Georg; Liu, Cong; Audisio, Tracy L.; Economo, Evan P.
2017-01-01
Abstract New technologies for imaging and analysis of morphological characters offer opportunities to enhance revisionary taxonomy and better integrate it with the rest of biology. In this study, we revise the Afrotropical fauna of the ant genus Zasphinctus Wheeler, and use high-resolution X-ray microtomography (micro-CT) to analyse a number of morphological characters of taxonomic and biological interest. We recognise and describe three new species: Z. obamai sp. n., Z. sarowiwai sp. n., and Z. wilsoni sp. n. The species delimitations are based on the morphological examination of all physical specimens in combination with 3D scans and volume reconstructions. Based on this approach, we present a new taxonomic discrimination system for the regional fauna that consists of a combination of easily observable morphological characters visible at magnifications of around 80–100 ×, less observable characters that require higher magnifications, as well as characters made visible through virtual dissections that would otherwise require destructive treatment. Zasphinctus are rarely collected ants and the material available to us is comparatively scarce. Consequently, we explore the use of micro-CT as a non-invasive tool for the virtual examination, manipulation, and dissection of such rare material. Furthermore, we delineate the treated species by providing a diagnostic character matrix illustrated by numerous images and supplement that with additional evidence in the form of stacked montage images, 3D PDFs and 3D rotation videos of scans of major body parts and full body (in total we provide 16 stacked montage photographs, 116 images of 3D reconstructions, 15 3D rotation videos, and 13 3D PDFs). In addition to the comparative morphology analyses used for species delimitations, we also apply micro-CT data to examine certain traits, such as mouthparts, cuticle thickness, and thoracic and abdominal muscles in order to assess their taxonomic usefulness or gain insights into the natural history of the genus. The complete datasets comprising the raw micro-CT data, 3D PDFs, 3D rotation videos, still images of 3D models, and coloured montage photos have been made available online as cybertypes (Dryad, http://dx.doi.org/10.5061/dryad.4s3v1). PMID:29362522
Tracy, Saoirse R; Gómez, José Fernández; Sturrock, Craig J; Wilson, Zoe A; Ferguson, Alison C
2017-01-01
Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley ( Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering detailed non-destructive internal 3D phenotypic information. This work represents a novel application of X-ray µCT that could enhance research undertaken in monocot species to enable effective non-destructive staging and developmental analysis for molecular genetic studies and to determine effects of stresses at particular growth stages.
Different methods for anatomical targeting.
Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F
2003-03-01
Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... safety, Navigation (water), and Vessels. For the reasons set forth in the preamble, amend part 706 of... forward Vessel No. visibility; visibility; visibility; ship's sides stern in above hull in light in meters 2(k) Annex rule 21(a) rule 21(b) rule 21(c) in meters 3(b) meters; rule meters; 2(k) 1 Annex 1 21(c...
Das, Anupam; Yadav, C S; Gamanagatti, Shivanand; Pandey, R M; Mittal, Ravi
2018-06-13
The outcome of single-bundle anterior cruciate ligament (ACL) reconstruction depends largely on the anatomic placement of bone tunnel. The lateral intercondylar ridge (LIR) and bifurcate ridge (BR) are useful bony landmarks for femoral tunnel placement. The purpose of our study was to compare the bony landmarks of ACL footprint on femur by three-dimensional computed tomography (3D CT) scan and arthroscopy in chronic ACL-deficient knees. Fifty patients above 18 years of age who were diagnosed of having ACL tear were selected for the study. All the cases were more than 6 months old since the injury. Preoperative 3D CT scan of the affected knee was obtained for each of them. They underwent single-bundle anatomic ACL reconstruction. Measurements were done on the preoperative 3D CT and arthroscopy to quantify the position of the LIR and BR. The proximodistal distance of lateral femoral condyle was 21.41+/-2.5 mm on CT scan and 22.02+/-2.02 mm on arthroscopy. On preoperative 3D CT scan, the midpoint of the LIR was found to be located at a mean distance of 11.17±2.11 mm from the proximal margin of the lateral femoral condyle. On arthroscopy, it was at 10.18+/-1.52 mm from the proximal margin the lateral femoral condyle. The "bifurcate ridge"(BR) was not visible in any of the cases during arthroscopy or CT scan. We concluded that LIR is an easily identifiable bony landmark on arthroscopy in all cases. It can also be identified on CT scans. BR is not identified both on arthroscopy and CT scans in chronic ACL tears. The arthroscopic measurements of bony landmarks are quite close to those of CT scan. Midpoint of LIR is at 52.185% of the proximodistal distance on CT scan evaluation and it is at 46.21% on arthroscopic evaluation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Zirnsak, Mariana; Bärwolf, Robert; Freesmeyer, Martin
2016-11-08
Respiratory motion during PET/CT acquisition generates artifacts in the form of breath-related blurring, which influences the lesion detectability and diagnostic accuracy. The goal of this study was to verify whether breath-hold [68Ga]DOTA-TOC PET/CT (bhPET) allows detection of additional foci compared to free-breathing PET/CT (fbPET), and to assess the impact of breath-holding on standard uptake values (SUV) and isocontoured volume (Vic40) in patients with neuroendocrine tumors (NET). Patients with NET (n=39) were included in this study. BhPET and fbPET characteristics of 96 lesions were compared, and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters SUV (max and mean) and Vic40 were assessed for both methods and evaluated by linear regression and Spearman's correlation. The impact of lesion size, localization and time interval between investigations was also analyzed. bhPET identified one additional metastasis not seen at fbPET but visible at ceMRI. Another additional bhPET focus did not have a morphological correlate. At bhPET, the SUVmax and SUVmean proved significantly higher and the Vic40 significantly lower than at fbPET. Lesion size, localization and time intervals did not impact significantly on SUV or Vic40. Currently, routine use of breath-hold [68Ga]DOTA-TOC PET/CT cannot be recommended as only one additional lesion was identified. Therefore, bhPET has currently no indication in patients with NET. If technical improvements regarding PET/CT scanner sensitivity are available, bhPET should be reevaluated in the future.
Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; Delaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas
2007-01-01
Purpose To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8–3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1–2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800–1,150 s. Conclusions This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application. PMID:17544003
Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R
2015-01-01
Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.
Investigation of pathogen infiltration into produce using Xradia Bio MicroCT
USDA-ARS?s Scientific Manuscript database
The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...
... people who may have internal injuries from car accidents or other types of trauma. A CT scan can be used to visualize nearly all parts of the body and is used to diagnose disease or injury as well as to plan medical, surgical or radiation treatment. Why it's done Your doctor may recommend ...
Cremer, Thomas; Cremer, Marion
2010-01-01
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them. PMID:20300217
Qureshi, N R; Rintoul, R C; Miles, K A; George, S; Harris, S; Madden, J; Cozens, K; Little, L A; Eichhorst, K; Jones, J; Moate, P; McClement, C; Pike, L; Sinclair, D; Wong, W L; Shekhdar, J; Eaton, R; Shah, A; Brindle, L; Peebles, C; Banerjee, A; Dizdarevic, S; Han, S; Poon, F W; Groves, A M; Kurban, L; Frew, A J; Callister, M E; Crosbie, P; Gleeson, F V; Karunasaagarar, K; Kankam, O; Gilbert, F J
2016-01-01
Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrast-enhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) ( 18 FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18 FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals. ISRCTN30784948; Pre-results.
WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Parach, A
Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less
Computed Tomography Aortic Valve Calcium Scoring in Patients With Aortic Stenosis.
Pawade, Tania; Clavel, Marie-Annick; Tribouilloy, Christophe; Dreyfus, Julien; Mathieu, Tiffany; Tastet, Lionel; Renard, Cedric; Gun, Mesut; Jenkins, William Steven Arthur; Macron, Laurent; Sechrist, Jacob W; Lacomis, Joan M; Nguyen, Virginia; Galian Gay, Laura; Cuéllar Calabria, Hug; Ntalas, Ioannis; Cartlidge, Timothy Robert Graham; Prendergast, Bernard; Rajani, Ronak; Evangelista, Arturo; Cavalcante, João L; Newby, David E; Pibarot, Philippe; Messika Zeitoun, David; Dweck, Marc R
2018-03-01
Computed tomography aortic valve calcium scoring (CT-AVC) holds promise for the assessment of patients with aortic stenosis (AS). We sought to establish the clinical utility of CT-AVC in an international multicenter cohort of patients. Patients with AS who underwent ECG-gated CT-AVC within 3 months of echocardiography were entered into an international, multicenter, observational registry. Optimal CT-AVC thresholds for diagnosing severe AS were determined in patients with concordant echocardiographic assessments, before being used to arbitrate disease severity in those with discordant measurements. In patients with long-term follow-up, we assessed whether CT-AVC thresholds predicted aortic valve replacement and death. In 918 patients from 8 centers (age, 77±10 years; 60% men; peak velocity, 3.88±0.90 m/s), 708 (77%) patients had concordant echocardiographic assessments, in whom CT-AVC provided excellent discrimination for severe AS (C statistic: women 0.92, men 0.89). Our optimal sex-specific CT-AVC thresholds (women 1377 Agatston unit and men 2062 Agatston unit) were nearly identical to those previously reported (women 1274 Agatston unit and men 2065 Agatston unit). Clinical outcomes were available in 215 patients (follow-up 1029 [126-2251] days). Sex-specific CT-AVC thresholds independently predicted aortic valve replacement and death (hazard ratio, 3.90 [95% confidence interval, 2.19-6.78]; P <0.001) after adjustment for age, sex, peak velocity, and aortic valve area. Among 210 (23%) patients with discordant echocardiographic assessments, there was considerable heterogeneity in CT-AVC scores, which again were an independent predictor of clinical outcomes (hazard ratio, 3.67 [95% confidence interval, 1.39-9.73]; P =0.010). Sex-specific CT-AVC thresholds accurately identify severe AS and provide powerful prognostic information. These findings support their integration into routine clinical practice. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01358513, NCT02132026, NCT00338676, NCT00647088, NCT01679431. © 2018 American Heart Association, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...EPA is proposing approval of a revision to the Connecticut State Implementation Plan (SIP) that addresses regional haze for the first planning period from 2008 through 2018. It was submitted by the Connecticut Department of Environmental Protection (now known as Connecticut Department of Energy and Environmental Protection, CT DEEP) on November 18, 2009, February, 24, 2012 and March 12, 2012. This revision addresses the requirements of the Clean Air Act (CAA) and EPA's rules that require States to prevent any future, and remedy any existing, manmade impairment of visibility in mandatory Class I areas (also referred to as the ``regional haze program''). States are required to assure reasonable progress toward the national goal of achieving natural visibility conditions in Class I areas.
Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.
Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D
2009-01-01
Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.
Murakami, Keiko; Rancilio, Nicholas J; Plantenga, Jeannie Poulson; Moore, George E; Heng, Hock Gan; Lim, Chee Kin
2018-05-01
In radiation therapy (RT) treatment planning for canine head and neck cancer, the tonsils may be included as part of the treated volume. Delineation of tonsils on computed tomography (CT) scans is difficult. Error or uncertainty in the volume and location of contoured structures may result in treatment failure. The purpose of this prospective, observer agreement study was to assess the interobserver agreement of tonsillar contouring by two groups of trained observers. Thirty dogs undergoing pre- and post-contrast CT studies of the head were included. After the pre- and postcontrast CT scans, the tonsils were identified via direct visualization, barium paste was applied bilaterally to the visible tonsils, and a third CT scan was acquired. Data from each of the three CT scans were registered in an RT treatment planning system. Two groups of observers (one veterinary radiologist and one veterinary radiation oncologist in each group) contoured bilateral tonsils by consensus, obtaining three sets of contours. Tonsil volume and location data were obtained from both groups. The contour volumes and locations were compared between groups using mixed (fixed and random effect) linear models. There was no significant difference between each group's contours in terms of three-dimensional coordinates. However there was a significant difference between each group's contours in terms of the tonsillar volume (P < 0.0001). Pre- and postcontrast CT can be used to identify the location of canine tonsils with reasonable agreement between trained observers. Discrepancy in tonsillar volume between groups of trained observers may affect RT treatment outcome. © 2017 American College of Veterinary Radiology.
Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru
2013-03-10
Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Haobo; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Jiang, Yuchen; Zhang, Yijie; Jia, Xiaoyang
2017-06-14
The objective of this study is to evaluate the value of computed tomography (CT) post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs. A total of 79 cases with closed Lisfranc injuries that were treated with conventional open reduction and internal fixation from January 2010 to June 2016 were analyzed. Postoperative assessment was performed by two independent orthopedic surgeons with both plain radiographs and CT post-processing images. Inter- and intra-observer agreement were analyzed by kappa statistics while the differences between the two postoperative imaging assessments were assessed using the χ 2 test (McNemar's test). Significance was assumed when p < 0.05. Inter- and intra-observer agreement of CT post-processing images was much higher than that of plain radiographs. Non-anatomic reduction was more easily identified in patients with injuries of Myerson classifications A, B1, B2, and C1 using CT post-processing images with overall groups (p < 0.05), and poor internal fixation was also more easily detected in patients with injuries of Myerson classifications A, B1, B2, and C2 using CT post-processing images with overall groups (p < 0.05). CT post-processing images can be more reliable than plain radiographs in the postoperative assessment of reduction and implant placement for Lisfranc injuries.
Gee, Carole T
2013-11-01
As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.
Pollard, R E; Fuller, M C; Steffey, M A
2017-06-01
In this prospective study, we hypothesized that computed tomography (CT) would identify more normal and abnormal iliosacral lymph nodes (LNs) than abdominal ultrasound in dogs with anal sac gland carcinoma (ASGC). Twelve client-owned dogs with ASGC but without distant metastasis were enrolled. Abdominal ultrasound and contrast-enhanced CT scans of the abdomen were obtained. Iliosacral LNs were counted and assessed for location, laterality and size. Significantly (P < 0.00001) more iliosacral LNs were identified with CT (61) than ultrasound (30), including significantly (P = 0.00012) more medial iliac LNs with CT (33) than ultrasound (19). There was no difference in number of internal iliac LNs identified with CT versus ultrasound. Significantly (P = 0.000061) more sacral LNs were identified with CT (15) than ultrasound (0). Ultrasound identified slightly more (7) abnormal iliosacral LNs than CT (5). Contrast CT was able to identify more normal but not more abnormal LNs than ultrasound. © 2015 John Wiley & Sons Ltd.
In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent
NASA Astrophysics Data System (ADS)
Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho
2015-04-01
In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.
Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook
2015-06-01
⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.
Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook
2015-01-01
Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323
Ahmadzadehfar, Hojjat; Sabet, Amir; Biermann, Kim; Muckle, Marianne; Brockmann, Holger; Kuhl, Christiane; Wilhelm, Kai; Biersack, Hans-Jürgen; Ezziddin, Samer
2010-08-01
Selective internal radiation therapy (SIRT), a catheter-based liver-directed modality for treating primary and metastatic liver cancer, requires appropriate planning to maximize its therapeutic response and minimize its side effects. (99m)Tc-macroaggregated albumin (MAA) scanning should precede the therapy to detect any extrahepatic shunting to the lung or gastrointestinal tract. Our aim was to compare the ability of SPECT/CT with that of planar imaging and SPECT in the detection and localization of extrahepatic (99m)Tc-MAA accumulation and to evaluate the impact of SPECT/CT on SIRT treatment planning and its added value to angiography in this setting. Ninety diagnostic hepatic angiograms with (99m)Tc-MAA were obtained for 76 patients with different types of cancer. All images were reviewed retrospectively for extrahepatic MAA deposition in the following order: planar, non-attenuation-corrected SPECT, and SPECT/CT. Review of angiograms and follow-up of patients with abdominal shunting served as reference standards. Extrahepatic accumulation was detected by planar imaging, SPECT, and SPECT/CT in 12%, 17%, and 42% of examinations, respectively. The sensitivity for detecting extrahepatic shunting with planar imaging, SPECT, and SPECT/CT was 32%, 41%, and 100%, respectively; specificity was 98%, 98%, and 93%, respectively. The respective positive predictive values were 92%, 93%, and 89%, and the respective negative predictive values were 71%, 73%, and 100%. The therapy plan was changed according to the results of planar imaging, SPECT, and SPECT/CT in 7.8%, 8.9%, and 29% of patients, respectively. In pre-SIRT planning, (99m)Tc-MAA SPECT/CT is valuable for identifying extrahepatic visceral sites at risk for postradioembolization complications.
Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J
2017-07-01
Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.
Kumar, Rahi; Hawkins, Randall A; Yeh, Benjamin M; Wang, Zhen Jane
2011-09-01
To retrospectively evaluate the rate of malignancy of focal fluorine-18 fluorodeoxyglucose (18F-FDG)-avid lesions without computed tomography (CT) correlate at whole-body positron emission tomography (PET)-CT in oncology patients, because better defining these abnormalities could potentially lead to improved patient management algorithms that rely on PET-CT for detection, staging, and treatment monitoring of malignancies. We performed a computer search of all PET-CT studies performed at our institution from 2006 to 2009, and identified 87 studies with findings of focal 18F-FDG-avid lesions without correlate at CT. The rate of malignancy of such lesions was determined by reviewing findings at follow-up imaging or by clinical or histopathological follow-up. Rates of malignancy were categorized and compared by lesion location and by the type of primary malignancy. The most common locations for focal 18F-FDG-avid lesions without CT correlate were: lymph node location (without visible lymph nodes; 27/87), bone (21/87), soft tissue (17/87), liver (9/87), and gastrointestinal tract (8/87). Forty-one percent (36/87) of the focal FDG-avid lesions without CT correlate were malignant (either metastatic disease or a second malignancy) at follow-up (mean follow-up: 5 months, range: 1-25 months). Focal FDG-avid lesions in lymph node location and in bone without CT correlate had higher rates of malignancy (56%, 15/27 and 52%, 11/21, respectively) than lesions in all other locations (26%, 10/39, P=0.028). In 15 of 87 cases, the only significant finding at PET-CT was an FDG-avid lesion without CT correlate. Of those, 53% (8/15) was positive for malignancy. There were no significant differences in the rates of malignancy for the focal FDG-avid lesions without CT correlate when stratified by the type of primary malignancy in this series. Focal FDG avid lesions without CT correlate were malignant in 41% of cases in our series of oncology patients. Lesions in lymph node location and in bones had the highest rates of malignancy. Knowledge of the patterns and risk of malignancy of focal FDG-avid lesions without CT correlate in oncology patients may facilitate the management of oncology patients with such lesions on PET-CT, and could lead to an improved interpretation of PET-CT scans by imaging specialists.
NASA Astrophysics Data System (ADS)
Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.
2017-03-01
The interaction of macromolecules with gold nanoparticles (GNPs) is of interest in the emerging field of biomedical and environmental detection devices. However, the physicochemical properties, including spectra, of GNPs in aqueous solution in the absence of metal-macromolecular interactions must first be considered before their activity in biological and environmental systems can be understood. The specific objective of this research was to experimentally illuminate the role of nanoparticle core size on the spectral (simultaneous consideration of extinction, emission, and scattering) versus aggregation behaviors of citrate-coated GNPs (CT-GNPs). It is difficult to find in the literature systematic simultaneous presentation of scattering, emission, and extinction spectra, including the UV range, and thus the present work will aid those who would use such particles for spectroscopic related separations or sensors. The spectroscopic behavior of CT-GNPs with different core sizes (5, 10, 30, and 50 nm) was studied in ultra-pure water at pH 6.0-6.5 employing UV-visible extinction, excitation-emission matrix (EEM), resonance Rayleigh scattering, and dynamic light scattering (DLS) spectroscopies. The CT-GNP-5 and CT-GNP-10 samples aggregated, absorbed light, and emitted light. In contrast, the CT-GNP-30 and CT-GNP-50 samples did not aggregate and did not emit light, but scattered light intensely. Multimodal peaks were observed in the intensity-based DLS spectra of CT-GNP-5 and CT-GNP-10 samples. Monomodal peaks in the volume-based DLS spectra overestimated particle diameters by 60% and 30% for the CT-GNP-5 and CT-GNP-10 samples, respectively, but underestimated diameters by 10% and 4% for the CT-GNP-30 and CT-GNP-50 samples. The volume-based DLS spectra indicated that dimer and trimer aggregates contributed most to the overall volume of particles in the 5- and 10-nm CT-GNPs, whereas the CT-GNP-30 and CT-GNP-50 samples did not aggregate. Here, we discuss the potential influence that differences in preparation, ionic strength, zeta potential, and conformation of adsorbed citrate anions (due to surface curvature of corona) may exert on the aggregation and spectral observations in these data. In particular, the severe surface curvature of the 5- and 10-nm GNP corona may affect the efficiency of the di-/tribasic citrate compatiblizer molecule to shield the core from interactions with light and from GNP-GNP homoaggregation.
A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).
Wang, Qi; Wang, Huaxiang
2011-04-01
During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.
Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.
Lande, Rachel; Reese, Shona L; Cuddy, Laura C; Berry, Clifford R; Pozzi, Antonio
2014-01-01
Osteochondrosis is a common developmental abnormality affecting the subchondral bone of immature, large breed dogs. The purpose of this retrospective study was to describe CT lesions detected in scapulohumeral joints of 32 immature dogs undergoing CT for thoracic limb lameness. Eight dogs (14 scapulohumeral joints) had arthroscopy following imaging. Thirteen dogs (19 scapulohumeral joints) were found to have CT lesions, including 10 dogs (16 scapulohumeral joints) with subchondral bone lesions and 3 dogs with enthesopathy of the supraspinatus tendon. In one dog, subchondral bone lesions appeared as large oval defects within the mid-aspect of the glenoid cavities, bilaterally. These lesions resembled osseous cyst-like lesions commonly identified in the horse. This is the first report of such a presentation of a subchondral bone lesion in the glenoid cavity of a dog. In all dogs, small, focal, round or linear lucent defects were visible within the cortical bone at the junction of the greater tubercle and intertubercular groove. These structures were thought to represent vascular channels. Findings from this study support the use of CT as an adjunct modality for the identification and characterization of scapulohumeral subchondral bone lesions in immature dogs with thoracic limb lameness. © 2013 American College of Veterinary Radiology.
NASA Astrophysics Data System (ADS)
McClatchy, D. M.; Rizzo, E. J.; Krishnaswamy, V.; Kanick, S. C.; Wells, W. A.; Paulsen, K. D.; Pogue, B. W.
2017-02-01
There is a dire clinical need for surgical margin guidance in breast conserving therapy (BCT). We present a multispectral spatial frequency domain imaging (SFDI) system, spanning the visible and near-infrared (NIR) wavelengths, combined with a shielded X-ray computed tomography (CT) system, designed for intraoperative breast tumor margin assessment. While the CT can provide a volumetric visualization of the tumor core and its spiculations, the co-registered SFDI can provide superficial and quantitative information about localized changes tissue morphology from light scattering parameters. These light scattering parameters include both model-based parameters of sub-diffusive light scattering related to the particle size scale distribution and also textural information of the high spatial frequency reflectance. Because the SFDI and CT components are rigidly fixed, a simple transformation can be used to simultaneously display the SFDI and CT data in the same coordinate system. This is achieved through the Visualization Toolkit (vtk) file format in the open-source Slicer medical imaging software package. In this manuscript, the instrumentation, data processing, and preliminary human specimen data will be presented. The ultimate goal of this work is to evaluate this technology in a prospective clinical trial, and the current limitations and engineering solutions to meet this goal will also be discussed.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Falsafi, Monireh
The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.
Patient specific computerized phantoms to estimate dose in pediatric CT
NASA Astrophysics Data System (ADS)
Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.
2009-02-01
We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.
Robot-assisted partial nephrectomy for large renal masses: a multi-institutional series.
Delto, Joan C; Paulucci, David; Helbig, Michael W; Badani, Ketan K; Eun, Daniel; Porter, James; Abaza, Ronney; Hemal, Ashok K; Bhandari, Akshay
2018-06-01
To compare peri-operative outcomes after robot-assisted partial nephrectomy (RAPN) for cT2a (7 to <10 cm) to cT1 tumours. Patients with a cT1a (n = 1 358, 76.4%), cT1b (n = 379, 21.3%) or cT2a (n = 41, 2.3%) renal mass were identified from a multi-institutional RAPN database. Intra- and postoperative outcomes were compared for cT2a masses vs cT1a and cT1b masses using multivariable regression models (linear, logistic, Poisson etc.), adjusting for operating surgeon and a modified R.E.N.A.L. nephrometry score that excluded the radius component. The median sizes for cT1a, cT1b and cT2a tumours were 2.5, 5.0 and 8.0 cm, respectively (P < 0.001) with modified R.E.N.A.L. nephrometry scores being 6.0, 6.5 and 7.0, respectively (cT1a, P < 0.001; cT1b, P = 0.105). RAPN for cT2a vs cT1a masses was associated with a 12% increase in operating time (P < 0.001), a 32% increase in estimated blood loss (P < 0.001), a 7% increase in ischaemia time (P = 0.008), a 3.93 higher odds of acute kidney injury at discharge (95% confidence interval [CI] 1.33, 8.76; P = 0.009) and a higher risk of recurrence (hazard ratio [HR] 10.9, 95% CI 1.31, 92.2; P = 0.027). RAPN for cT2a vs cT1b masses was associated with a 12% increase in blood loss (P = 0.036), a 5% increase in operating time (P = 0.062) and a marginally higher risk of recurrence (HR 11.2, 95% CI 0.77, 11.5; P = 0.059). RAPN for cT2a tumours was not associated with differences in complications (cT1a, P = 0.535; cT1b, P = 0.382), positive margins (cT1a, P = 0.972; cT1b, P = 0.681), length of stay (cT1a, P = 0.507; cT1b, P = 0.513) or renal function decline up to 24 months post-RAPN (cT1a, P = 0.124; cT1b, P = 0.467). For T2a tumours RAPN is a feasible treatment option in a select patient population when performed by experienced surgeons in institutions equipped to manage postoperative complications. Although RAPN was associated with greater blood loss and longer operating and ischaemia time in T2a tumours, it was not associated with greater complication or positive surgical margin rates compared with T1 tumours. Renal function preservation rates were equivalent for up to 24 months postoperatively; however, 12-month recurrence-free survival was significantly lower in the T2a group. Extended follow-up is required to further evaluate long-term survival. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...
2017-03-14
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
Component extraction on CT volumes of assembled products using geometric template matching
NASA Astrophysics Data System (ADS)
Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie
2017-03-01
As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.
International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Havenhill, Maria T.; Zampino, Edward J.; Kiefer, Dwayne E.
2013-01-01
Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned.
NASA Astrophysics Data System (ADS)
Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Soares, J.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Barroso, R. C.
2015-10-01
The recent years advancements in microtomography have increased the achievable resolution and contrast, making this relatively inexpensive and a widely available technology, potentially useful for studies of insect's internal morphology. Phase Contrast X-Ray Synchrotron Microtomography (SR-PhC-μCT) is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi, the etiologic agent of Chagas' disease. In Latin America, vector control is the most useful method to prevent Chagas' disease, and a detailed knowledge of R. prolixus' interior structures is crucial for a better understanding of their function and evolution. Traditionally, in both biological morphology and anatomy, the internal structures of whole organisms or parts of them are accessed by dissecting or histological serial sectioning; so studying the internal structures of R. prolixus' head using SR-PhC-μCT is of great importance in researches on vector control. In this work, volume-rendered SR-PhC-μCT images of the heads of selected R. prolixus were obtained using the new set-up available at the SYRMEP beamline of ELETTRA (Trieste, Italy). In this new set-up, the outcoming beam from the ring is restrained before the monochromator and in a devoted end-station, absorption and phase contrast radiography and tomography set-up are available. The images obtained with polychromatic X-ray beam in phase contrast regimen and 2 μm resolution, showed details and organs of R. prolixus never seen before with SR-PhC-μCT.
The Role of International Research Collaboration in Enhancing Global Presence of an Institution
ERIC Educational Resources Information Center
Ao, Fiona Ka Wa
2012-01-01
In recent decades, higher education institutions have steadily increased their international involvement in response to globalization. High-level research is generally a key component in efforts to increase international visibility (Armstrong, 2007). International research collaborations are perceived to be an important way to enhance global…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
...(a)(i), pertaining to the height placement of the masthead light above the hull; Annex I, paragraph 2...) visibility; rule 21(b) visibility; ship's sides stern in above hull in light to forward light rule 21(c) in...
Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nattenmüller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de
2013-06-19
PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % inmore » drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Yang, X; Rosenfield, J
Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, M; Yuan, Y; Lo, Y
Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered withmore » the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.« less
Goo, Hyun Woo
2018-02-01
Considering inherent limitations of transthoracic echocardiography, the diagnostic accuracy of cardiac CT in identifying coronary artery anatomy before arterial switch operation needs to be investigated with recently improved coronary artery visibility using electrocardiogram (ECG)-synchronized dual-source CT. To compare diagnostic accuracy between cardiac CT using a dual-source scanner and transthoracic echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. The study included 101 infants (median age 4 days, range 0 days to 10 months; M:F=78:23) who underwent ECG-synchronized cardiac dual-source CT and transthoracic echocardiography before arterial switch operation between July 2011 and December 2016. We evaluated and classified coronary artery anatomy on cardiac CT and transthoracic echocardiography. With the surgical findings as the reference standard, we compared the diagnostic accuracy for identifying coronary artery anatomy between cardiac CT and transthoracic echocardiography. The most common coronary artery pattern was the usual pattern (left coronary artery from sinus 1 and right coronary artery from sinus 2; 64.4%, 65/101), followed by a single coronary artery from sinus 2 and a conal branch from sinus 1 (7.9%, 8/101), the inverted pattern (5.9%, 6/101), the right coronary artery and left anterior descending artery from sinus 1 and the left circumflex artery from sinus 2 (5.9%, 6/101), and others. In 96 infants with surgically proven coronary artery anatomy, the diagnostic accuracy of cardiac CT was significantly higher than that of transthoracic echocardiography (91.7%, 88/96 vs. 54.2%, 52/96; P<0.0001). Diagnostic accuracy of cardiac CT is significantly higher than that of echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants.
Armato, Samuel G; Labby, Zacariah E; Coolen, Johan; Klabatsa, Astero; Feigen, Malcolm; Persigehl, Thorsten; Gill, Ritu R
2013-11-01
Imaging of malignant pleural mesothelioma (MPM) is essential to the diagnosis, assessment, and monitoring of this disease. The complex morphology and growth pattern of MPM, however, create unique challenges for image acquisition and interpretation. These challenges have captured the attention of investigators around the world, some of whom presented their work at the 2012 International Conference of the International Mesothelioma Interest Group (iMig 2012) in Boston, Massachusetts, USA, September 2012. The measurement of tumor thickness on computed tomography (CT) scans is the current standard of care in the assessment of MPM tumor response to therapy; in this context, variability among observers in the measurement task and in the tumor response classification categories derived from such measurements was reported. Alternate CT-based tumor response criteria, specifically direct measurement of tumor volume change and change in lung volume as a surrogate for tumor response, were presented. Dynamic contrast-enhanced CT has a role in other settings, but investigation into its potential use for imaging mesothelioma tumor perfusion only recently has been initiated. Magnetic resonance imaging (MRI) and positron-emission tomography (PET) are important imaging modalities in MPM and complement the information provided by CT. The pointillism sign in diffusion-weighted MRI was reported as a potential parameter for the classification of pleural lesions as benign or malignant, and PET parameters that measure tumor activity and functional tumor volume were presented as indicators of patient prognosis. Also reported was the use of PET/CT in the management of patients who undergo high-dose radiation therapy. Imaging for MPM impacts everything from initial patient diagnosis to the outcomes of clinical trials; iMig 2012 captured this broad range of imaging applications as investigators exploit technology and implement multidisciplinary approaches toward the benefit of MPM patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hemsley, S; Palmer, H; Canfield, R B; Stewart, M E B; Krockenberger, M B; Malik, R
2013-09-01
To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species. © 2013 Australian Veterinary Association.
Pulmonary Artery Aneurysm/Pseudoaneurysm, a Delayed Complication of Lung Abscess: A Case Report.
Oguma, Tsuyoshi; Morise, Masahiro; Harada, Kazuki; Tanaka, Jun; Sato, Masako; Horio, Yukihiro; Takiguchi, Hiroto; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Takihara, Takahisa; Niimi, Kyoko; Hayama, Naoki; Aoki, Takuya; Urano, Tetsuya; Ito, Chihiro; Koizumi, Jun; Asano, Koichiro
2015-09-20
Massive hemoptysis mostly arises from the bronchial arteries; however, bleeding can also occur from a lesion in injured pulmonary arteries, such as pulmonary artery aneurysm/pseudoaneurysm (PAA/PAP), during pulmonary infection. A 66-year-old man was admitted with a diagnosis of lung abscess in the right lower lobe that was complicated with pyothorax. Intravenous administration of antibiotics and thoracic drainage successfully controlled the infection and inflammation until day 16, when the patient began to exhibit hemoptysis and bloody pleural effusion. Enhanced computed tomography (CT) with multi-planer reconstruction (MPR) images showed a highly enhanced mass inside the abscess fed by the pulmonary artery, suggesting PAA/PAP. Pulmonary angiography confirmed PAA/PAP, and embolization with coils successfully stopped both the bleeding into the sputum and pleural effusion, with a collapsed aneurysm visible on chest CT scan. Clinicians should consider the possibility of PAA/PAP in the differential diagnosis of hemoptysis during the treatment of patients with lung abscess. MPR CT is helpful for the diagnosis of PAA/PAP and its feeding vessels.
[Imaging of pleural diseases: evaluation of imaging methods based on chest radiography].
Poyraz, Necdet; Kalkan, Havva; Ödev, Kemal; Ceran, Sami
2017-03-01
The most commonly employed radiologic method in diagnosis of pleural diseases is conventional chest radiograph. The commonest chest- X-Ray findings are the presence of pleural effusion and thickening. Small pleural effusions are not readily identified on posteroanterior chest radiograph. However, lateral decubitus chest radiograph and chest ultrasonography may show small pleural effusions. These are more efficient methods than posteroanterior chest radiograph in the erect position for demonstrating small amounts of free pleural effusions. Chest ultrasonograph may be able to help in distinguishing the pleural pathologies from parenchymal lesions. On chest radiograph pleural effusions or pleural thickening may obscure the visibility of the underlying disease or parenchymal abnormality. Thus, computed tomography (CT) may provide additional information of determining the extent and severity of pleural disease and may help to differentiate malign pleural lesions from the benign ones. Moreover, CT may provide the differentiation of parenchmal abnormalities from pleural pathologies. CT (coronal and sagittal reformatted images) that also show invasion of chest wall, mediastinum and diaphragm, as well as enlarged hilar or mediastinal lymph nodes. Standart non-invasive imaging techniques may be supplemented with magnetic resonans imaging (MRI).
Sci—Thur PM: Imaging — 06: Canada's National Computed Tomography (CT) Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardlaw, GM; Martel, N; Blackler, W
2014-08-15
The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered goodmore » practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.« less
Quantum mechanical which-way experiment with an internal degree of freedom
Banaszek, Konrad; Horodecki, Paweł; Karpiński, Michał; Radzewicz, Czesław
2013-01-01
For a particle travelling through an interferometer, the trade-off between the available which-way information and the interference visibility provides a lucid manifestation of the quantum mechanical wave–particle duality. Here we analyse this relation for a particle possessing an internal degree of freedom such as spin. We quantify the trade-off with a general inequality that paints an unexpectedly intricate picture of wave–particle duality when internal states are involved. Strikingly, in some instances which-way information becomes erased by introducing classical uncertainty in the internal degree of freedom. Furthermore, even imperfect interference visibility measured for a suitable set of spin preparations can be sufficient to infer absence of which-way information. General results are illustrated with a proof-of-principle single-photon experiment. PMID:24161992
Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne
2013-07-15
Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV when compared with 4D PET/CT for a lesion affected by respiration.« less
Cheng, Ta-Chun; Roffler, Steve R; Tzou, Shey-Cherng; Chuang, Kuo-Hsiang; Su, Yu-Cheng; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Chien-Shu; Harn, I-Hong; Liu, Kuan-Yi; Cheng, Tian-Lu; Leu, Yu-Ling
2012-02-15
β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.
Shinohara, Yuki; Sakamoto, Makoto; Iwata, Naoki; Kishimoto, Junichi; Kuya, Keita; Fujii, Shinya; Kaminou, Toshio; Watanabe, Takashi; Ogawa, Toshihide
2014-10-01
Recently, a newly developed fast-kV switching dual energy CT scanner with a gemstone detector generates virtual high keV images as monochromatic imaging (MI). Each MI can be reconstructed by metal artifact reduction software (MARS) to reduce metal artifact. To evaluate the degree of metal artifacts reduction and vessel visualization around the platinum coils using dual energy CT with MARS. Dual energy CT was performed using a Discovery CT750 HD scanner (GE Healthcare, Milwaukee, WI, USA). In a phantom study, we measured the mean standard deviation within regions of interest around a 10-mm-diameter platinum coil mass on MI with and without MARS. Thirteen patients who underwent CTA after endovascular embolization for cerebral aneurysm with platinum coils were included in a clinical study. We visually assessed the arteries around the platinum coil mass on MI with and without MARS. Each standard deviation near the coil mass on MI with MARS was significantly lower than that without MARS in a phantom study. On CTA of a clinical study, better visibility of neighboring arteries was obtained in 11 of 13 patients on MI with MARS compared to without MARS due to metal artifact reduction. Dual energy CT with MARS reduces metal artifact of platinum coils, resulting in favorable vessel visualization around the coil mass on CTA after embolization. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao
2004-05-01
The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.
Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja
2017-07-01
To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Wei; Low, Daniel A.; Parikh, Parag J.
2005-07-15
An important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung. The abdominal height was known to be affected by sensor placement and patient positioning while the spirometer exhibited signal drift. By combining these two, a normalization of the drift-free metric tomore » tidal volume may be generated and the overall metric precision may be improved.« less
CT Imaging of Hardwood Logs for Lumber Production
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1996-01-01
Hardwood sawmill operators need to improve the conversion of raw material (logs) into lumber. Internal log scanning provides detailed information that can aid log processors in improving lumber recovery. However, scanner data (i.e. tomographic images) need to be analyzed prior to presentation to saw operators. Automatic labeling of computer tomography (CT) images is...
Robust Spatial Autoregressive Modeling for Hardwood Log Inspection
Dongping Zhu; A.A. Beex
1994-01-01
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...
Log Defect Recognition Using CT-images and Neural Net Classifiers
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1995-01-01
Although several approaches have been introduced to automatically identify internal log defects using computed tomography (CT) imagery, most of these have been feasibility efforts and consequently have had several limitations: (1) reports of classification accuracy are largely subjective, not statistical, (2) there has been no attempt to achieve real-time operation,...
Volvulus of the ascending colon in a non-rotated midgut: Plain film and MDCT findings.
Camera, Luigi; Calabrese, Milena; Mainenti, Pier Paolo; Masone, Stefania; Vecchio, Walter Del; Persico, Giovanni; Salvatore, Marco
2012-10-28
Colonic volvulus is a relatively uncommon cause of large bowel obstruction usually involving mobile, intra-peritoneal, colonic segments. Congenital or acquired anatomic variation may be associated with an increased risk of colonic volvulus which can occasionally involve retro-peritoneal segments. We report a case of 54-year-old female who presented to our Institution to perform a plain abdominal film series for acute onset of cramping abdominal pain. Both the upright and supine films showed signs of acute colonic obstruction which was thought to be due to an internal hernia of the transverse colon into the lesser sac. The patient was therefore submitted to a multi-detector contrast-enhanced computed tomography (CT). CT findings were initially thought to be consistent with the presumed diagnosis of internal hernia but further evaluation and coronal reformatting clearly depicted the presence of a colonic volvulus possibly resulting from a retro-gastric colon. At surgery, a volvulus of the ascending colon was found and a right hemi-colectomy had to be performed. However, a non rotated midgut with a right-sided duodeno-jejunal flexure and a left sided colon was also found at laparotomy and overlooked in the pre-operative CT. Retrospective evaluation of CT images was therefore performed and a number of CT signs of intestinal malrotation could be identified.
Kuttner, Samuel; Bujila, Robert; Kortesniemi, Mika; Andersson, Henrik; Kull, Love; Østerås, Bjørn Helge; Thygesen, Jesper; Tarp, Ivanka Sojat
2013-03-01
Quality assurance (QA) of computed tomography (CT) systems is one of the routine tasks for medical physicists in the Nordic countries. However, standardized QA protocols do not yet exist and the QA methods, as well as the applied tolerance levels, vary in scope and extent at different hospitals. To propose a standardized protocol for acceptance and constancy testing of CT scanners in the Nordic Region. Following a Nordic Association for Clinical Physics (NACP) initiative, a group of medical physicists, with representatives from four Nordic countries, was formed. Based on international literature and practical experience within the group, a comprehensive standardized test protocol was developed. The proposed protocol includes tests related to the mechanical functionality, X-ray tube, detector, and image quality for CT scanners. For each test, recommendations regarding the purpose, equipment needed, an outline of the test method, the measured parameter, tolerance levels, and the testing frequency are stated. In addition, a number of optional tests are briefly discussed that may provide further information about the CT system. Based on international references and medical physicists' practical experiences, a comprehensive QA protocol for CT systems is proposed, including both acceptance and constancy tests. The protocol may serve as a reference for medical physicists in the Nordic countries.
Intraoperative CT in the assessment of posterior wall acetabular fracture stability.
Cunningham, Brian; Jackson, Kelly; Ortega, Gil
2014-04-01
Posterior wall acetabular fractures that involve 10% to 40% of the posterior wall may or may not require an open reduction and internal fixation. Dynamic stress examination of the acetabular fracture under fluoroscopy has been used as an intraoperative method to assess joint stability. The aim of this study was to demonstrate the value of intraoperative ISO computed tomography (CT) examination using the Siemens ISO-C imaging system (Siemens Corp, Malvern, Pennsylvania) in the assessment of posterior wall acetabular fracture stability during stress examination under anesthesia. In 5 posterior wall acetabular fractures, standard fluoroscopic images (including anteroposterior pelvis and Judet radiographs) with dynamic stress examinations were compared with the ISO-C CT imaging system to assess posterior wall fracture stability during stress examination. After review of standard intraoperative fluoroscopic images under dynamic stress examination, all 5 cases appeared to demonstrate posterior wall stability; however, when the intraoperative images from the ISO-C CT imaging system demonstrated that 1 case showed fracture instability of the posterior wall segment during stress examination, open reduction and internal fixation was performed. The use of intraoperative ISO CT imaging has shown an initial improvement in the surgeon's ability to assess the intraoperative stability of posterior wall acetabular fractures during stress examination when compared with standard fluoroscopic images. Copyright 2014, SLACK Incorporated.
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Qureshi, N R; Rintoul, R C; Miles, K A; George, S; Harris, S; Madden, J; Cozens, K; Little, L A; Eichhorst, K; Jones, J; Moate, P; McClement, C; Pike, L; Sinclair, D; Wong, W L; Shekhdar, J; Eaton, R; Shah, A; Brindle, L; Peebles, C; Banerjee, A; Dizdarevic, S; Han, S; Poon, F W; Groves, A M; Kurban, L; Frew, A J; Callister, M E; Crosbie, P; Gleeson, F V; Karunasaagarar, K; Kankam, O; Gilbert, F J
2016-01-01
Introduction Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrast-enhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals. Trial registration number ISRCTN30784948; Pre-results. PMID:27843550
Direct endoscopic video registration for sinus surgery
NASA Astrophysics Data System (ADS)
Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.
2009-02-01
Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Wu, Li-Na; Zhang, Li-Juan
2018-05-01
This work presents a systematic density functional theory (DFT) study for geometrical and electronic structures, g factors and UV-vis spectra of three Cu(II) coordination polymers (CPs) [Cu(XL)(NO3)2]n (1), {[Cu(XL)(4,4‧-bpy)(NO3)2]•CH3CN}n (2) and {[Cu(XL)3](NO3)2·3.5H2O}n (3) based on the ligand N,N‧-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide bi(1,2,4-triazole) (XL) with the linker triazole coordinated with copper to construct the CPs. For three CPs with distinct ligands, the optimized molecular structures with PBE0 hybrid functional and the 6-311g basis set agree well with the corresponding XRD data. Meanwhile, the electronic properties are also analyzed for all the systems. The calculated g factors are found sensitive to the (Hartree-Fock) HF character due to the significant hybridization between copper and ligand orbitals. The calculated UV-visible spectra reveal that the main electronic transitions for CP 1 contain d-d and CT transitions, while those for CPs 2 and 3 largely belong to CT ones. The present CPs seem difficult to adsorb small molecules, e.g., CP 1 with H2O and NO2 exhibit unfavorable adsorption and deformation structures near the Cu2+ site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soultan, D; Murphy, J; James, C
2015-06-15
Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guckenberger, Matthias; Wilbert, Juergen; Krieger, Thomas
2009-06-01
Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P{sub mean}), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performedmore » for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 {+-} 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P{sub mean} and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 {+-} 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 {+-} 1.1 mm distant from P{sub mean}. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.« less
Segmentation of the heart and major vascular structures in cardiovascular CT images
NASA Astrophysics Data System (ADS)
Peters, J.; Ecabert, O.; Lorenz, C.; von Berg, J.; Walker, M. J.; Ivanc, T. B.; Vembar, M.; Olszewski, M. E.; Weese, J.
2008-03-01
Segmentation of organs in medical images can be successfully performed with shape-constrained deformable models. A surface mesh is attracted to detected image boundaries by an external energy, while an internal energy keeps the mesh similar to expected shapes. Complex organs like the heart with its four chambers can be automatically segmented using a suitable shape variablility model based on piecewise affine degrees of freedom. In this paper, we extend the approach to also segment highly variable vascular structures. We introduce a dedicated framework to adapt an extended mesh model to freely bending vessels. This is achieved by subdividing each vessel into (short) tube-shaped segments ("tubelets"). These are assigned to individual similarity transformations for local orientation and scaling. Proper adaptation is achieved by progressively adapting distal vessel parts to the image only after proximal neighbor tubelets have already converged. In addition, each newly activated tubelet inherits the local orientation and scale of the preceeding one. To arrive at a joint segmentation of chambers and vasculature, we extended a previous model comprising endocardial surfaces of the four chambers, the left ventricular epicardium, and a pulmonary artery trunk. Newly added are the aorta (ascending and descending plus arch), superior and inferior vena cava, coronary sinus, and four pulmonary veins. These vessels are organized as stacks of triangulated rings. This mesh configuration is most suitable to define tubelet segments. On 36 CT data sets reconstructed at several cardiac phases from 17 patients, segmentation accuracies of 0.61-0.80mm are obtained for the cardiac chambers. For the visible parts of the newly added great vessels, surface accuracies of 0.47-1.17mm are obtained (larger errors are asscociated with faintly contrasted venous structures).
In-line phase contrast micro-CT reconstruction for biomedical specimens.
Fu, Jian; Tan, Renbo
2014-01-01
X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlsson, Per, E-mail: per.karlsson@oncology.gu.se; Cole, Bernard F.; Price, Karen N.
Purpose: To update the previous report from 2 randomized clinical trials, now with a median follow-up of 16 years, to analyze the effect of radiation therapy timing on local failure and disease-free survival. Patients and Methods: From July 1986 to April 1993, International Breast Cancer Study Group trial VI randomly assigned 1475 pre-/perimenopausal women with node-positive breast cancer to receive 3 or 6 cycles of initial chemotherapy (CT). International Breast Cancer Study Group trial VII randomly assigned 1212 postmenopausal women with node-positive breast cancer to receive tamoxifen for 5 years, or tamoxifen for 5 years with 3 early cycles of initial CT. Formore » patients who received breast-conserving surgery (BCS), radiation therapy (RT) was delayed until initial CT was completed; 4 or 7 months after BCS for trial VI and 2 or 4 months for trial VII. We compared RT timing groups among 433 patients on trial VI and 285 patients on trial VII who received BCS plus RT. Endpoints were local failure, regional/distant failure, and disease-free survival (DFS). Results: Among pre-/perimenopausal patients there were no significant differences in disease-related outcomes. The 15-year DFS was 48.2% in the group allocated 3 months initial CT and 44.9% in the group allocated 6 months initial CT (hazard ratio [HR] 1.12; 95% confidence interval [CI] 0.87-1.45). Among postmenopausal patients, the 15-year DFS was 46.1% in the no-initial-CT group and 43.3% in the group allocated 3 months initial CT (HR 1.11; 95% CI 0.82-1.51). Corresponding HRs for local failures were 0.94 (95% CI 0.61-1.46) in trial VI and 1.51 (95% CI 0.77-2.97) in trial VII. For regional/distant failures, the respective HRs were 1.15 (95% CI 0.80-1.63) and 1.08 (95% CI 0.69-1.68). Conclusions: This study confirms that, after more than 15 years of follow-up, it is reasonable to delay radiation therapy until after the completion of standard CT.« less
CT imaging of the internal human ear: Test of a high resolution scanner
NASA Astrophysics Data System (ADS)
Bettuzzi, M.; Brancaccio, R.; Morigi, M. P.; Gallo, A.; Strolin, S.; Casali, F.; Lamanna, Ernesto; Ariù, Marilù
2011-08-01
During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local “S. Orsola” Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120×120 mm2, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a virtual endoscopy and judged particularly useful for clinical pre-surgery diagnostics. The experimentation proceeds with a faster scanner now under development in our laboratories. We believe this work could be of a certain interest for the medical imaging world.
NASA Technical Reports Server (NTRS)
2003-01-01
Emergency exit signs can be lifesavers, but only if they remain visible when people need them. All too often, power losses or poor visibility can render the signs ineffective. Luna Technologies International, Inc., of Kent, Washington, is shining new light on this safety issue. The company s LUNAplast(trademark) product line illuminates without the need for electricity, maintenance, or a power connection. LUNAplast, which benefited from tests conducted at Johnson Space Center, is so successful that NASA engineers selected it for the emergency exit pathway indicators on the International Space Station (ISS).
Gee, Carole T.
2013-01-01
• Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495
De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M
2017-02-01
To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan
The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less
NASA Astrophysics Data System (ADS)
Makama, A. B.; Salmiaton, A.; Saion, E. B.; Choong, T. S. Y.; Abdullah, N.
2016-07-01
Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl2 and Na2S) in the presence of fixed amount of ZnCO3 nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-Ct/C0) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.
Arjmand, Farukh; Sharma, Girish Chandra; Sayeed, Fatima; Muddassir, Mohd; Tabassum, Sartaj
2011-12-02
N,N-bis[(R-/S-)-1-benzyl-2-ethoxyethane] tin (IV) complexes were synthesized by applying de novo design strategy by the condensation reaction of (R-/S-)2-amino-2-phenylethanol and dibromoethane in presence of dimethyltin dichloride and thoroughly characterized by elemental analysis, conductivity measurements, IR, ESI-MS, (1)H, (13)C and (119)Sn, multinuclear NMR spectroscopy and XRD study. Enantioselective and specific binding profile of R-enantiomer 1 in comparison to S-enantiomer 2 with ultimate molecular target CT-DNA was validated by UV-visible, fluorescence, circular dichroism, (1)H and (31)P NMR techniques. This was further corroborated well by interaction of 1 and 2 with 5'-GMP. Copyright © 2011 Elsevier B.V. All rights reserved.
Internal vs. external on-premise sign lighting : visibility and safety in the real world.
DOT National Transportation Integrated Search
2009-02-01
Poorly visible on-premise commercial signs have been associated with reduced safety, as drivers trying to locate : and make sense of these signs may drive slower than the rest of traffic and perform erratic, last-second maneuvers. One of the : main r...
Stereoscopic augmented reality for laparoscopic surgery.
Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj
2014-07-01
Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.
IOTA interferometer observations of the B[e] star/X-ray transient object CI Cam.
NASA Astrophysics Data System (ADS)
Thureau, N. D.; Traub, W.; Millan-Gabet, R.; Monnier, J. D.; Pedretti, E.; Berger, J.-P.; Schloerb, P.
2005-12-01
We present the results from an observing campaign on the star CI Cam carried out at the IOTA interferometer in November-December 2004 using the IONIC 3 telescope beam combiner in the H spectral band with projected baselines in the range 10-36m. CI Cam is a known B[e] star and X-ray transient source and has been intensively observed since its powerful X-ray, radio and optical outburst occurred in April 1998. Our visibility measurements put strong constraints on the nature of the source and we can rule out all existing SED models available in the literature. Our new results are in agreement with previous observations of CI Cam obtained with IOTA2 in the H and K' spectral bands in September-November 1998, indicating the infrared excess is long-lived and not directly associated with the outburst. We have explored new models that can better fit our observations. Additionally, we have measured small non-zero closure phases which are the signature of asymmetries in the brightness distribution function. Financial support for NDT is provided by the European Commission through a Marie Curie Outgoing International Fellowships MOIF-CT-2004-002990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheville, Andrea L., E-mail: Cheville.andrea@mayo.edu; Brinkmann, Debra H.; Ward, Shelly B.
2013-03-15
Background: This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. Methods: SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the secondmore » (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Results: Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. Conclusions: The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema.« less
Cheville, Andrea L; Brinkmann, Debra H; Ward, Shelly B; Durski, Jolanta; Laack, Nadia N; Yan, Elizabeth; Schomberg, Paula J; Garces, Yolanda I; Suman, Vera J; Petersen, Ivy A
2013-03-15
This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the second (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema. Copyright © 2013 Elsevier Inc. All rights reserved.
Morphometric anatomical and CT study of the human adult sacroiliac region.
Postacchini, Roberto; Trasimeni, Guido; Ripani, Francesca; Sessa, Pasquale; Perotti, Stefano; Postacchini, Franco
2017-01-01
To identify and describe the morphometry and CT features of the articular and extra-articular portions of the sacroiliac region. The resulting knowledge might help to avoid complications in sacroiliac joint (SIJ) fusion. We analyzed 102 dry hemi-sacra, 80 ilia, and 10 intact pelves and assessed the pelvic computerized tomography (CT) scans of 90 patients, who underwent the examination for conditions not involving the pelvis. We assessed both the posterior aspect of sacrum with regard to the depressions located externally to the lateral sacral crest at the level of the proximal three sacral vertebrae and the posteroinferior aspect of ilium. Coronal and axial CT scans of the SIJ of patients were obtained and the joint space was measured. On each side, the sacrum exhibits three bone depressions, not described in anatomic textbooks or studies, facing the medial aspect of the posteroinferior ilium, not yet described in detail. Both structures are extra-articular portions situated posteriorly to the SIJ. Coronal CT scans of patients showing the first three sacral foramens and the interval between sacrum and ilium as a continuous space display only the S1 and S3 portions of SIJ, the intermediate portion being extra-articular. The S2 portion is visible on the most anterior coronal scan. Axial scans show articular and extra-articular portions and features improperly described as anatomic variations. Extra-articular portions of the sacroiliac region, not yet described exhaustively, have often been confused with SIJ. Coronal CT scans through the middle part of sacrum, the most used to evaluate degenerative and inflammatory conditions of SIJ, show articular and extra-articular portions of the region.
Ascani, Daniele; Mazzà, Claudia; De Lollis, Angelo; Bernardoni, Massimiliano; Viceconti, Marco
2015-01-21
The estimation of the origin and insertion of the four knee ligaments is crucial for individualised dynamic modelling of the knee. Commonly this information is obtained ex vivo or from high resolution MRI, which is not always available. Aim of this work is to devise a method to estimate the origins and insertions from computed tomography (CT) images. A reference registration atlas was created using a set of 16 bone landmarks visible in CT and eight origins and insertions estimated from MRI and in vitro data available in the literature for three knees. This atlas can be registered to the set of bone landmarks palpated on any given CT using an affine transformation. The resulting orientation and translation matrices and scaling factors can be used to find also the ligament origin and insertions. This procedure was validated on seven pathological knees for which both CT and MRI of the knee region were available, using a proprietary software tool (NMSBuilder, SCS srl, Italy). To assess the procedure reproducibility and repeatability, four different operators performed the landmarks palpation on all seven patients. The average difference between the values predicted by registration on the CT scan and those estimated on the MRI was 2.1±1.2 mm for the femur and 2.7±1.0 mm for the tibia, respectively. The procedure is highly repeatable, with no significant differences observed within or between the operators (p>0.1) and allows to estimate origins and insertions of the knee ligaments from a CT scan with the same level of accuracy obtainable with MRI. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of operating parameters of an in vivo micro CT system
NASA Astrophysics Data System (ADS)
Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong
2016-03-01
The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.
Measurement of small lesions near metallic implants with mega-voltage cone beam CT
NASA Astrophysics Data System (ADS)
Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean
2008-03-01
Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.
Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.
2001-05-01
The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.
Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M
2016-06-01
Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Algorithm for lung cancer detection based on PET/CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki
2009-02-01
The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.
4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan
NASA Astrophysics Data System (ADS)
Kruis, Matthijs F.; van de Kamer, Jeroen B.; Belderbos, José S. A.; Sonke, Jan-Jakob; van Herk, Marcel
2014-09-01
The purpose of this study was to develop a method to use amplitude binned 4D-CT (A-4D-CT) data for the construction of mid-position CT data and to compare the results with data created from phase-binned 4D-CT (P-4D-CT) data. For the latter purpose we have developed two measures which describe the regularity of the 4D data and we have tried to correlate these measures with the regularity of the external respiration signal. 4D-CT data was acquired for 27 patients on a combined PET-CT scanner. The 4D data were reconstructed twice, using phase and amplitude binning. The 4D frames of each dataset were registered using a quadrature-based optical flow method. After registration the deformation vector field was repositioned to the mid-position. Since amplitude-binned 4D data does not provide temporal information, we corrected the mid-position for the occupancy of the bins. We quantified the differences between the two mid-position datasets in terms of tumour offset and amplitude differences. Furthermore, we measured the standard deviation of the image intensity over the respiration after registration (σregistration) and the regularity of the deformation vector field (\\overline{\\Delta |J|} ) to quantify the quality of the 4D-CT data. These measures were correlated to the regularity of the external respiration signal (σsignal). The two irregularity measures, \\overline{\\Delta |J|} and σregistration, were dependent on each other (p < 0.0001, R2 = 0.80 for P-4D-CT, R2 = 0.74 for A-4D-CT). For all datasets amplitude binning resulted in lower \\overline{\\Delta |J|} and σregistration and large decreases led to visible quality improvements in the mid-position data. The quantity of artefact decrease was correlated to the irregularity of the external respiratory signal. The average tumour offset between the phase and amplitude binned mid-position without occupancy correction was 0.42 mm in the caudal direction (10.6% of the amplitude). After correction this was reduced to 0.16 mm in caudal direction (4.1% of the amplitude). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal.
Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F
2008-09-01
lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.
Hanley, Daniel; Prichep, Leslie S; Bazarian, Jeffrey; Huff, J Stephen; Naunheim, Rosanne; Garrett, John; Jones, Elizabeth B; Wright, David W; O'Neill, John; Badjatia, Neeraj; Gandhi, Dheeraj; Curley, Kenneth C; Chiacchierini, Richard; O'Neil, Brian; Hack, Dallas C
2017-05-01
A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study. A total of 720 patients (18-85 years) meeting inclusion/exclusion criteria were enrolled in this observational, prospective validation trial, at 11 U.S. EDs. GCS was 15 in 97%, with the first and third quartiles being 15 (interquartile range = 0) in the study population at the time of the evaluation. Standard clinical evaluations were conducted and 5 to 10 minutes of electroencephalogram (EEG) was acquired from frontal and frontal-temporal scalp locations. Using an a priori derived EEG-based classification algorithm developed on an independent population and applied to this validation population prospectively, the likelihood of each subject being CT+ was determined, and performance metrics were computed relative to adjudicated CT findings. Sensitivity of the binary classifier (likely CT+ or CT-) was 92.3% (95% confidence interval [CI] = 87.8%-95.5%) for detection of any intracranial injury visible on CT (CT+), with specificity of 51.6% (95% CI = 48.1%-55.1%) and negative predictive value (NPV) of 96.0% (95% CI = 93.2%-97.9%). Using ternary classification (likely CT+, equivocal, likely CT-) demonstrated enhanced sensitivity to traumatic hematomas (≥1 mL of blood), 98.6% (95% CI = 92.6%-100.0%), and NPV of 98.2% (95% CI = 95.5%-99.5%). Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients. © 2017 by the Society for Academic Emergency Medicine.
FDG-Avid Portal Vein Tumor Thrombosis from Hepatocellular Carcinoma in Contrast-Enhanced FDG PET/CT
Nguyen, Xuan Canh; Nguyen, Dinh Song Huy; Ngo, Van Tan; Maurea, Simone
2015-01-01
Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a combination of dynamic liver CT scan, multiphase imaging, and whole-body PET scan. PET and CT DICOM images of patients were imported into the PET/CT imaging system for the re-analysis of contrast enhancement and FDG uptake in thrombus, the diameter of the involved portal vein, and characteristics of liver tumors and metastasis. Results: Two patients with previously untreated HCC and 7 cases with previously treated HCC had FDG-avid PVTT in contrast-enhanced FDG PET/CT scan. During the arterial phase of CT scan, portal vein thrombus showed contrast enhancement in 8 out of 9 patients (88.9%). PET scan showed an increased linear FDG uptake along the thrombosed portal vein in all patients. The mean greatest diameter of thrombosed portal veins was 1.8 ± 0.2 cm, which was significantly greater than that observed in normal portal veins (P<0.001). FDG uptake level in portal vein thrombus was significantly higher than that of blood pool in the reference normal portal vein (P=0.001). PVTT was caused by the direct extension of liver tumors. All patients had visible FDG-avid liver tumors in contrast-enhanced images. Five out of 9 patients (55.6%) had no extrahepatic metastasis, 3 cases (33.3%) had metastasis of regional lymph nodes, and 1 case (11.1%) presented with distant metastasis. The median estimated survival time of patients was 5 months. Conclusion: The intraluminal filling defect consistent with thrombous within the portal vein, expansion of the involved portal vein, contrast enhancement, and linear increased FDG uptake of the thrombus extended from liver tumor are findings of FDG-avid PVTT from HCC in contrast-enhanced FDG PET/CT. PMID:27408876
A Comparison of Several Artificial Neural Network Classifiers for CT Images of Hardwood Logs
Daniel L. Schmoldt; Jing He; A. Lynn Abbott
1998-01-01
Knowledge of internal log defects, obtained by scanning, is critical to efficiency improvements for future hardwood sawmills. Nevertheless, before computed tomography (CT) scanning can be applied in industrial operations, we need to automatically interpret scan information so that it can provide the saw operator with the information necessary to make proper sawing...
Rule-driven defect detection in CT images of hardwood logs
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
2000-01-01
This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (...
van Liere, Geneviève A. F. S.; Cals, Jochen W. L.; Dukers-Muijrers, Nicole H. T. M.
2018-01-01
Background For Chlamydia trachomatis (CT), a test of cure (TOC) within 3–5 weeks is not recommended. International guidelines differ in advising a Neisseria gonorrhoeae (NG) TOC. Retesting CT and NG positives within 3–12 months is recommended in international guidelines. We assessed TOC and retesting practices including extragenital testing in general practitioner (GP) practices located in different socioeconomic status (SES) areas to inform and optimize local test practices. Methods Laboratory data of 48 Dutch GP practices between January 2011 and July 2016 were used. Based on a patient’s first positive CT or NG test, the proportion of TOC (<3 months) and retests (3–12 months) were calculated. Patient- and GP-related factors were assessed using multivariate logistic regression analyses. Results For CT (n = 622), 20% had a TOC and 24% had a retest at the GP practice. GP practices in low SES areas were more likely to perform a CT TOC (OR:1.8;95%CI:1.1–3.1). Younger patients (<25 years) were more likely to have a CT TOC (OR:1.6;95%CI:1.0–2.4). For CT (n = 622), 2.4% had a TOC and 6.1% had a retest at another STI care provider. For NG (n = 73), 25% had a TOC and 15% had a retest at the GP practice. For NG (n = 73), 2.7% had a TOC and 12.3% had a retest at another STI care provider. In only 0.3% of the consultations patients were tested on extragenital sites. Conclusion Almost 20% of the patients returned for a CT TOC, especially at GP practices in low SES areas. For NG, 1 out of 4 patients returned for a TOC. Retesting rates were low for both CT (24%) and NG (15%), (re)infections including extragenital infections may be missed. Efforts are required to focus TOC and increase retesting practices of GPs in order to improve CT/NG control. PMID:29538469
Lorenzoni, Fabio Cesar; Bonfante, Estevam A; Bonfante, Gerson; Martins, Leandro M; Witek, Lukasz; Silva, Nelson R F A
2013-08-01
This evaluation aimed to (1) validate micro-computed tomography (microCT) findings using scanning electron microscopy (SEM) imaging, and (2) quantify the volume of voids and the bonded surface area resulting from fiber-reinforced composite (FRC) dowel cementation technique using microCT scanning technology/3D reconstructing software. A fiberglass dowel was cemented in a condemned maxillary lateral incisor prior to its extraction. A microCT scan was performed of the extracted tooth creating a large volume of data in DICOM format. This set of images was imported to image-processing software to inspect the internal architecture of structures. The outer surface and the spatial relationship of dentin, FRC dowel, cement layer, and voids were reconstructed. Three-dimensional spatial architecture of structures and volumetric analysis revealed that 9.89% of the resin cement was composed of voids and that the bonded area between root dentin and cement was 60.63% larger than that between cement and FRC dowel. SEM imaging demonstrated the presence of voids similarly observed using microCT technology (aim 1). MicroCT technology was able to nondestructively measure the volume of voids within the cement layer and the bonded surface area at the root/cement/FRC interfaces (aim 2). The interfaces at the root dentin/cement/dowel represent a timely and relevant topic where several efforts have been conducted in the past few years to understand their inherent features. MicroCT technology combined with 3D reconstruction allows for not only inspecting the internal arrangement rendered by fiberglass adhesively bonded to root dentin, but also estimating the volume of voids and contacted bond area between the dentin and cement layer. © 2013 by the American College of Prosthodontists.
McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A
2007-05-01
To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.
Wirth, K; Zielinski, P; Trinter, T; Stahl, R; Mück, F; Reiser, M; Wirth, S
2016-08-01
In hospitals, the radiological services provided to non-privately insured in-house patients are mostly distributed to requesting disciplines through internal cost allocation (ICA). In many institutions, computed tomography (CT) is the modality with the largest amount of allocation credits. The aim of this work is to compare the ICA to respective DRG (Diagnosis Related Groups) shares for diagnostic CT services in a university hospital setting. The data from four CT scanners in a large university hospital were processed for the 2012 fiscal year. For each of the 50 DRG groups with the most case-mix points, all diagnostic CT services were documented including their respective amount of GOÄ allocation credits and invoiced ICA value. As the German Institute for Reimbursement of Hospitals (InEK) database groups the radiation disciplines (radiology, nuclear medicine and radiation therapy) together and also lacks any modality differentiation, the determination of the diagnostic CT component was based on the existing institutional distribution of ICA allocations. Within the included 24,854 cases, 63,062,060 GOÄ-based performance credits were counted. The ICA relieved these diagnostic CT services by € 819,029 (single credit value of 1.30 Eurocent), whereas accounting by using DRG shares would have resulted in € 1,127,591 (single credit value of 1.79 Eurocent). The GOÄ single credit value is 5.62 Eurocent. The diagnostic CT service was basically rendered as relatively inexpensive. In addition to a better financial result, changing the current ICA to DRG shares might also mean a chance for real revenues. However, the attractiveness considerably depends on how the DRG shares are distributed to the different radiation disciplines of one institution.
Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M
2014-11-07
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.
Computed Tomography (CT) Imaging of Injuries from Blunt Abdominal Trauma: A Pictorial Essay.
Hassan, Radhiana; Abd Aziz, Azian
2010-04-01
Blunt abdominal trauma can cause multiple internal injuries. However, these injuries are often difficult to accurately evaluate, particularly in the presence of more obvious external injuries. Computed tomography (CT) imaging is currently used to assess clinically stable patients with blunt abdominal trauma. CT can provide a rapid and accurate appraisal of the abdominal viscera, retroperitoneum and abdominal wall, as well as a limited assessment of the lower thoracic region and bony pelvis. This paper presents examples of various injuries in trauma patients depicted in abdominal CT images. We hope these images provide a resource for radiologists, surgeons and medical officers, as well as a learning tool for medical students.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S; Zhu, X; Zhang, M
Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less
Superior Volumetic Modulated Arc Therapy Planning Solution for Prostate Patients
2014-07-01
narrow; it was selected to enhance the visibility of the small low-contrast tumors. The width of this window corresponds to about 13.5 Hounsfield units ...1R01EB013118-01 from the National Institute of Health. In order to obtain relative stopping power (RSP), Hounsfield units (i.e. units of x-ray...attenuation used in x-ray CT) are trans- formed using a calibration curve. However, there is no unique relationship between Hounsfield units and RSP, especially
Chest CT scan findings in World Trade Center workers.
de la Hoz, Rafael E; Weber, Jonathan; Xu, Dongming; Doucette, John T; Liu, Xiaoyu; Carson, Deborah A; Celedón, Juan C
2018-03-15
We examined the chest CT scans of 1,453 WTC responders using the International Classification of High-resolution CT for Occupational and Environmental Respiratory Diseases. Univariate and bivariate analyses of potential work-related pleural abnormalities were performed with pre-WTC and WTC-related occupational exposure data, spirometry, demographics and quantitative CT measurements. Logistic regression was used to evaluate occupational predictors of those abnormalities. Chest CT scans were performed first at a median of 6.8 years after 9/11/2001. Pleural abnormalities were the most frequent (21.1%) across all occupational groups In multivariable analyses, significant pre-WTC occupational asbestos exposure, and work as laborer/cleaner were predictive of pleural abnormalities, with prevalence being highest for the Polish subgroup (n = 237) of our population. Continued occupational lung disease surveillance is warranted in this cohort.
Akgöz, Ayça; Akata, Deniz; Hazırolan, Tuncay; Karçaaltıncaba, Muşturay
2014-01-01
PURPOSE We aimed to evaluate the visibility of coronary arteries and bypass-grafts in patients who underwent dual source computed tomography (DSCT) angiography without heart rate (HR) control and to determine optimal intervals for image reconstruction. MATERIALS AND METHODS A total of 285 consecutive cases who underwent coronary (n=255) and bypass-graft (n=30) DSCT angiography at our institution were identified retrospectively. Patients with atrial fibrillation were excluded. Ten datasets in 10% increments were reconstructed in all patients. On each dataset, the visibility of coronary arteries was evaluated using the 15-segment American Heart Association classification by two radiologists in consensus. RESULTS Mean HR was 76±16.3 bpm, (range, 46–127 bpm). All coronary segments could be visualized in 277 patients (97.19%). On a segment-basis, 4265 of 4275 (99.77%) coronary artery segments were visible. All segments of 56 bypass-grafts in 30 patients were visible (100%). Total mean segment visibility scores of all coronary arteries were highest at 70%, 40%, and 30% intervals for all HRs. The optimal reconstruction intervals to visualize the segments of all three coronary arteries in descending order were 70%, 60%, 80%, and 30% intervals in patients with a mean HR <70 bpm; 40%, 70%, and 30% intervals in patients with a mean HR 70–100 bpm; and 40%, 50%, and 30% in patients with a mean HR >100 bpm. CONCLUSION Without beta-blocker administration, DSCT coronary angiography offers excellent visibility of vascular segments using both end-systolic and mid-late diastolic reconstructions at HRs up to 100 bpm, and only end-systolic reconstructions at HRs over 100 bpm. PMID:24834490
Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Ueda, Kazuhiko; Florian, Beuer; Stimmelmayr, Michael
2016-12-01
CAD/CAM-fabricated long-term temporary restorations from high-density polymers can be applied for a wide range of indications. Milled from monolithic, mono-colored polymer blocks, the translucency of the material plays an important role for an esthetically acceptable result. The aim of this study was to compare the transmittance through visible light and blue light of CAD CAM polymers to a glass-ceramic material of the same color. Ambarino High-Class (AM), Telio-CAD (TC), Zenotec PMMA (ZT), Cercon base PMMA (CB), CAD Temp (CT), Artbloc Temp (AT), Polycon ae (PS), New Outline CAD (NC), QUATTRO DISK Eco PMMA (GQ), Lava Ultimate (LU), and Paradigm MZ 100 (PA) were employed in this study using the feldspathic glass-ceramic Vita Mark II (MK) as control group. Using a spectrophotometer, the overall light transmittance was measured for each material (n = 40) and was calculated as the integration (t c (λ) dλ [10 -5 ]) of all t c values for the wavelengths of blue light (360-540 nm). Results were compared to previous data of the authors for visible light (400 to 700 nm). Wilcoxon test showed significant differences between the light transmittance of visible and blue light for all materials. CAD/CAM polymers showed different translucency for blue and visible light. This means clinicians may not conclude from the visible translucency of a material to its permeability for blue light. This influences considerations regarding light curing. CAD/CAM polymers need to be luted adhesively; therefore, clinicians should be aware about the amount of blue light passing through a restoration.
Veldkamp, Wouter J H; Joemai, Raoul M S; van der Molen, Aart J; Geleijns, Jacob
2010-02-01
Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses. The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images. Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found. The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully reduced artifacts in CT images of five patients and in phantom images. Sophisticated interpolation methods are needed to obtain reliable HU values close to the prosthesis.
Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.
Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R
2016-07-01
The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.
Correction for human head motion in helical x-ray CT
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.
2016-02-01
Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can be accurately determined.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi
2004-02-01
In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n = 15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 degrees for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9 +/- 3.1 mm vs 19.0 +/- 9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases.
Stanzel, Susanne; Pernthaler, Birgit; Schwarz, Thomas; Bjelic-Radisic, Vesna; Kerschbaumer, Stefan; Aigner, Reingard M
2018-06-01
of the study was to demonstrate the diagnostic and prognostic value of SPECT/CT in sentinel lymph node mapping (SLNM) in patients with invasive breast cancer. 114 patients with invasive breast cancer with clinically negative lymph nodes were included in this retrospective study as they were referred for SLNM with 99m Tc-nanocolloid. Planar image acquisition was accomplished in a one-day or two-day protocol depending on the schedule of the surgical procedure. Low dose SPECT/CT was performed after the planar images. The sentinel lymph node biopsy (SLNB) was considered false negative if a primary recurrence developed within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed. Between December 2009 and December 2011, 114 patients (pts.) underwent SLNM with additional SPECT/CT. Planar imaging identified in 109 pts. 139 SLNs, which were tumor-positive in 42 nodes (n = 41 pts.). SPECT/CT identified in 81 pts. 151 additional SLNs, of which 19 were tumor-positive and led to therapy change (axillary lymph node dissection) in 11 pts. (9.6 %). Of overall 61 tumor-positive SLNs (n = 52 pts.) SPECT/CT detected all, whereas planar imaging detected only 42 of 61 ( P < 0.0001). No patient had lymph node metastasis within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed resulting in a false-negative rate of 0 %. The local relapse rate was 1.8 % leading to a 4-year disease-free survival rate of 90 %. Among patients with breast cancer, the use of SPECT/CT-aided SLNM correlated due to a better anatomical localization and identification of planar not visible SLNs with a higher detection rate of SLNs. This led to therapeutic consequences and an excellent false-negative and 4-year disease-free survival rate. Schattauer GmbH.
Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W
2017-08-01
Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.
Radiopaque biodegradable stent for duct-to-duct biliary reconstruction in pigs.
Tanimoto, Yoshisato; Tashiro, Hirotaka; Mikuriya, Yoshihiro; Kuroda, Shintaro; Hashimoto, Masakazu; Kobayashi, Tsuyoshi; Taniura, Tokunori; Ohdan, Hideki
2016-06-01
Biliary stricture is a common cause of morbidity after liver transplantation. We previously developed a duct-to-duct biliary anastomosis technique using a biodegradable stent tube and confirmed the feasibility and safety of biliary stent use. However, the duration and mechanism of biliary stent absorption in the common bile duct remain unclear. Radiopaque biodegradable biliary stents were created using a copolymer of L-lactide and ε-caprolactone (70: 30) and coated with barium sulfate. Stents were surgically implanted in the common bile duct of 11 pigs. Liver function tests and computed tomography (CT) scans were performed postoperatively, and autopsies were conducted 6 months after biliary stent implantation. After the surgery, all 11 pigs had normal liver function and survived without any significant complications such as biliary leakage. A CT scan at 2 months post-procedure showed that the biliary stents were located in the hilum of the liver. The stents were not visible by CT scan at the 6-month follow-up examination. The surgical implantation of radiopaque biodegradable biliary stents in biliary surgery represents a new option for duct-to-duct biliary reconstruction. This technique appears to be feasible and safe and is not associated with any significant biliary complications. The advantage of coated biliary stent use is that it may be visualized using abdominal radiography such as CT.
Shahabadi, Nahid; Falsafi, Monireh
2014-05-05
The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33±0.2×10(4) L mol(-1)and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH=34.4 kJ mol(-1); ΔS=184.32 J mol(-1) K(-1)). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Digimouse: a 3D whole body mouse atlas from CT and cryosection data
Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M
2010-01-01
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106
Vlot, John; Wijnen, Rene; Stolker, Robert Jan; Bax, Klaas
2013-05-01
Several factors may affect volume and dimensions of the working space in laparoscopic surgery. The precise impact of these factors has not been well studied. In a porcine model, we used computed tomographic (CT) scanning for measuring working space volume and distances. In a first series of experiments, we studied the relationship between intra-abdominal pressure (IAP) and working space. Eleven 20 kg pigs were studied under standardized anesthesia and volume-controlled ventilation. Cardiorespiratory parameters were monitored continuously, and blood gas samples were taken at different IAP levels. Respiratory rate was increased when ETCO₂ exceeded 7 kPa. Breath-hold CT scans were made at IAP levels of 0, 5, 10, and 15 mmHg. Insufflator volumes were compared to CT-measured volumes. Maximum dimensions of pneumoperitoneum were measured on reconstructed CT images. Respiratory rate had to be increased in three animals. Mild hypercapnia and acidosis occurred at 15 mmHg IAP. Peak inspiratory pressure rose significantly at 10 and 15 mmHg. CT-measured volume increased relatively by 93 % from 5 to 10 mmHg IAP and by 19 % from 10 to 15 mmHg IAP. Comparing CT volumes to insufflator volumes gave a bias of 76 mL. The limits of agreement were -0.31 to +0.47, a range of 790 mL. The internal anteroposterior diameter increased by 18 % by increasing IAP from 5 to 10 mmHg and by 5 % by increasing IAP from 10 to 15 mmHg. At 15 mmHg, the total relative increase of the pubis-diaphragm distance was only 6 %. Abdominal width did not increase. CT allows for precise calculation of the actual CO₂ pneumoperitoneum volume, whereas the volume of CO₂ released by the insufflator does not. Increasing IAP up to 10 mmHg achieved most gain in volume and in internal anteroposterior diameter. At an IAP of 10 mmHg, higher peak inspiratory pressure was significantly elevated.
NASA Astrophysics Data System (ADS)
Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.
2016-08-01
Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.
Asha, Stephen Edward; Cooke, Andrew
2015-09-01
Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Active investigation of material damage under load using micro-CT
NASA Astrophysics Data System (ADS)
Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.
2015-03-01
Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.
Patel, Bhavik N; Morgan, Madeline; Tyler, Douglas; Paulson, Erik; Jaffe, Tracy A
2015-10-01
The purpose of this study is to describe our experience with the role of CT-guided percutaneous drainage of loculated intra-abdominal collections consisting entirely of gas. An IRB-approved retrospective study analyzing patients with air-only intra-abdominal collections over an 8-year period was undertaken. Seven patients referred for percutaneous drainage were included. Size of collections, subsequent development of fluid, and microbiological yield were determined. Clinical outcome was also analyzed. Out of 2835 patients referred for percutaneous drainage between 2004 and 2012, seven patients (5M, 2F; average age 63, range 54-85) met criteria for inclusion with CT showing air-only collections. Percutaneous drain placement (five 8 Fr, one 10 Fr, and one 12 Fr) using Seldinger technique was performed. Four patients (57%) had recently undergone surgery (2 Whipple, 1 colectomy, 1 hepatic resection) while two (29%) had a remote surgery (1 abdominoperineal resection, 1 sigmoidectomy). Despite the lack of detectable fluid on the original CT, 6 patients (86%) had air and fluid aspirated at drainage, 5 (83%) of the aspirates developed positive microbacterial cultures. Four patients (57%) presented with fever at the time of the initial scan, all of whom had positive cultures from aspirated fluid. Four patients (57%) had leukocytosis, all of whom had positive cultures from aspirated fluid. Although relatively rare in occurrence, patients with air-only intra-abdominal collections with signs of infection should be considered for percutaneous management similar to that of conventional infected fluid collections. Although fluid is not visible on CT, these collections can produce fluid that contains organisms.
Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies.
Applegate, K E; Dardinger, J T; Lieber, M L; Herts, B R; Davros, W J; Obuchowski, N A; Maneker, A
2001-12-01
Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity < 35 %). The optimal technique for visualizing the LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized.
Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
2003-01-01
This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make...
Pei Li; Jing He; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize...
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
Getting in touch--3D printing in forensic imaging.
Ebert, Lars Chr; Thali, Michael J; Ross, Steffen
2011-09-10
With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Report on the development and application of PET/CT in mainland China.
Chen, Yumei; Chen, Ruohua; Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-09-08
To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose ( 18 F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11 C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China.
NASA Astrophysics Data System (ADS)
Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng
2007-03-01
Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.
Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.
Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J
2014-09-01
The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.
Soccorso, Giampiero; Anbarasan, Ravindar; Singh, Michael; Lindley, Richard M; Marven, Sean S; Parikh, Dakshesh H
2015-12-01
Primary spontaneous pneumothorax (PSP) is managed in accordance with the adult British Thoracic Society (BTS) guidelines due to lack of paediatric evidence and consensus. We aim to highlight the differences and provide a best practice surgical management strategy for PSP based on experience of two major paediatric surgical centres. Retrospective review of PSP management and outcomes from two UK Tertiary Paediatric hospitals between 2004 and 2015. Fifty children with 55 PSP (5 bilateral) were referred to our Thoracic Surgical Services after initial management: 53% of the needle aspirations failed. Nine children (20%) were associated with visible bullae on the initial chest X-ray. Forty-nine children were assessed with computed tomography scan (CT). Apical emphysematous-like changes (ELC) were identified in 37 children (75%). Ten children had also bullae in the asymptomatic contralateral lungs (20%). In two children (4%), CT demonstrated other lung lesions: a tumour of the left main bronchus in one child; a multi-cystic lesion of the right middle lobe in keeping with a congenital lung malformation in another child. Contralateral asymptomatic ELC were detected in 20% of the children: of those 40% developed pneumothorax within 6 months. Best surgical management was thoracoscopic staple bullectomy and pleurectomy with 11% risk of recurrence. Histology confirmed ELC in 100% of the apical lung wedge resections even in those apexes apparently normal at the time of thoracoscopy. Our experience suggests that adult BTS guidelines are not applicable to children with large PSP. Needle aspiration is ineffective. We advocate early referral to a Paediatric Thoracic Service. We suggest early chest CT scan to identify ELC, for counselling regarding contralateral asymptomatic ELC and to rule out secondary pathological conditions causing pneumothorax. In rare instance if bulla is visible on presenting chest X-ray, thoracoscopy could be offered as primary option.
Solar Eclipses and the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2009-05-01
Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.
Fiorella, David; Arthur, Adam; Schafer, Sebastian
2015-08-01
The Apollo system (Penumbra Inc, Alameda, California, USA) is a low profile irrigation-aspiration system designed for the evacuation of intracranial hemorrhage. To demonstrate the feasibility of using Apollo in combination with cone beam CT guidance. Parenchymal (n=1) and mixed parenchymal-intraventricular hematomas (n=1) were created in cadaver heads using a transvascular (n=1) or transcranial (n=1) approach. Hematomas were then imaged with cone beam CT (CB-CT), and the long axis of the hematoma defined. The CB-CT data were then used to guide transcranial access to the hematoma-defining the location of the burr hole and the path to the leading edge of the hematoma. An 8F vascular sheath was then placed under live fluoroscopic guidance into the hematoma. A second CB-CT was performed to confirm localization of the sheath. The hematoma was then demarcated on the CB-CT and the Apollo wand was introduced through the 8F sheath and irrigation-aspiration was performed under (periodic) live fluoroscopic guidance. The operators manipulated the wand within the visible boundaries of the hematoma. After irrigation-aspiration, a control CB-CT was performed to document reduction in hematoma volume. Transvascular and transcranial techniques were both successful in creating intracranial hematomas. Hematomas could be defined with conspicuity sufficient for localization and volumetric measurement using CB-CT. Live fluoroscopic guidance was effective in navigating a sheath into the leading aspect of a parenchymal hematoma and guiding irrigation-aspiration with the Apollo system. Irrigation-aspiration reduced the parenchymal hemorrhage volume from 14.8 to 1.7 cc in 189 s in the first case (parenchymal hemorrhage) and from 26.4 to 4.1 cc in 300 s in the second case (parenchymal and intraventricular hemorrhage). The cadaver model described is a useful means of studying interventional techniques for intracranial hemorrhage. It seems feasible to use CB-CT to guide the evacuation of intraparenchymal and intraventricular hemorrhage using the Apollo system through a minimally invasive transcranial access. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.
Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan
2017-12-01
To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.
Boughner, Julia C; Buchtová, Marcela; Fu, Katherine; Diewert, Virginia; Hallgrímsson, Benedikt; Richman, Joy M
2007-01-01
This study explores the post-ovipositional craniofacial development of the African Rock Python (Python sebae). We first describe a staging system based on external characteristics and next use whole-mount skeletal staining supplemented with Computed tomography (CT) scanning to examine skeletal development. Our results show that python embryos are in early stages of organogenesis at the time of laying, with separate facial prominences and pharyngeal clefts still visible. Limb buds are also visible. By 11 days (stage 3), the chondrocranium is nearly fully formed; however, few intramembranous bones can be detected. One week later (stage 4), many of the intramembranous upper and lower jaw bones are visible but the calvaria are not present. Skeletal elements in the limbs also begin to form. Between stages 4 (day 18) and 7 (day 44), the complete set of intramembranous bones in the jaws and calvaria develops. Hindlimb development does not progress beyond stage 6 (33 days) and remains rudimentary throughout adult life. In contrast to other reptiles, there are two rows of teeth in the upper jaw. The outer tooth row is attached to the maxillary and premaxillary bones, whereas the inner row is attached to the pterygoid and palatine bones. Erupted teeth can be seen in whole-mount stage 10 specimens and are present in an unerupted, mineralized state at stage 7. Micro-CT analysis reveals that all the young membranous bones can be recognized even out of the context of the skull. These data demonstrate intrinsic patterning of the intramembranous bones, even though they form without a cartilaginous template. In addition, intramembranous bone morphology is established prior to muscle function, which can influence bone shape through differential force application. After careful staging, we conclude that python skeletal development occurs slowly enough to observe in good detail the early stages of craniofacial skeletogenesis. Thus, reptilian animal models will offer unique opportunities for understanding the early influences that contribute to perinatal bone shape.
Visualization of Middle Ear Ossicles in Elder Subjects with Ultra-short Echo Time MR Imaging.
Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki; Suzuki, Kojiro; Iwano, Shingo; Satake, Hiroko; Grodzki, David
2017-04-10
To evaluate the visualization of middle ear ossicles by ultra-short echo time magnetic resonance (MR) imaging at 3T in subjects over 50 years old. Sixty ears from 30 elder patients that underwent surgical or interventional treatment for neurovascular diseases were included (ages: 50-82, median age: 65; 10 men, 20 women). Patients received follow-up MR imaging including routine T 1 - and T 2 -weighted images, time-of-flight MR angiography, and ultra-short echo time imaging (PETRA, pointwise encoding time reduction with radial acquisition). All patients underwent computed tomography (CT) angiography before treatment. Thin-section source CT images were correlated with PETRA images. Scan parameters for PETRA were: TR 3.13, TE 0.07, flip angle 6 degrees, 0.83 × 0.83 × 0.83 mm resolution, 3 min 43 s scan time. Two radiologists retrospectively evaluated the visibility of each ossicular structure as positive or negative using PETRA images. The structures evaluated included the head of the malleus, manubrium of the malleus, body of the incus, long process of the incus, and the stapes. Signal intensity of the ossicles was classified as: between labyrinthine fluid and air, similar to labyrinthine fluid, between labyrinthine fluid and cerebellar parenchyma, or higher than cerebellar parenchyma. In all ears, the body of the incus was visible. The head of the malleus was visualized in 36/60 ears. The manubrium of the malleus and long process of the incus was visualized in 1/60 and 4/60 ears, respectively. The stapes were not visualized in any ear. Signal intensity of the visible structures was between labyrinthine fluid and air in all ears. The body of the incus was consistently visualized with intensity between air and labyrinthine fluid on PETRA images in aged subjects. Poor visualization of the manubrium of the malleus, long process of the incus, and the stapes limits clinical significance of middle ear imaging with current PETRA methods.
Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Sugo, Nobuo; Terazono, Sayaka; Okonogi, Shinichi; Sakaeyama, Yuki; Fuchinoue, Yutaka; Ando, Syunpei; Fukushima, Daisuke; Nomoto, Jun; Nemoto, Masaaki
2016-06-01
Deep regions are not visible in three-dimensional (3D) printed rapid prototyping (RP) models prepared from opaque materials, which is not the case with translucent images. The objectives of this study were to develop an RP model in which a skull base tumor was simulated using mesh, and to investigate its usefulness for surgical simulations by evaluating the visibility of its deep regions. A 3D printer that employs binder jetting and is mainly used to prepare plaster models was used. RP models containing a solid tumor, no tumor, and a mesh tumor were prepared based on computed tomography, magnetic resonance imaging, and angiographic data for four cases of petroclival tumor. Twelve neurosurgeons graded the three types of RP model into the following four categories: 'clearly visible,' 'visible,' 'difficult to see,' and 'invisible,' based on the visibility of the internal carotid artery, basilar artery, and brain stem through a craniotomy performed via the combined transpetrosal approach. In addition, the 3D positional relationships between these structures and the tumor were assessed. The internal carotid artery, basilar artery, and brain stem and the positional relationships of these structures with the tumor were significantly more visible in the RP models with mesh tumors than in the RP models with solid or no tumors. The deep regions of PR models containing mesh skull base tumors were easy to visualize. This 3D printing-based method might be applicable to various surgical simulations.
Sugawara, Chieko; Takahashi, Akira; Kubo, Michiko; Otsuka, Hideki; Ishimaru, Naozumi; Miyamoto, Youji; Honda, Eiichi
2012-10-01
The purpose of this retrospective study was to compare fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and ultrasonography (US) in the staging of patients with squamous cell carcinoma of the oral cavity. We compared preoperative evaluations regarding lymph nodes using PET/CT, US, and both methods. The cutoff for the maximum standardized uptake value (SUV(max)) in PET/CT was set at 2.7 by a receiver operating characteristic analysis that was based on the histopathological diagnosis. US was used to examine internal structural changes on B-mode and hilar vascularity on power Doppler. The performance of PET/CT and US in combination was better than that of each modality separately. However, there were histopathological changes that could not be detected on PET/CT or US. PET/CT could not detect nodes with necrotic or cystic changes. US could not detect lymph nodes that did not have abnormal structures. PET/CT and US are complementary tools to evaluate preoperative patients. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki
2007-03-01
We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.
Binding and thermodynamics of REV peptide-ctDNA interaction.
Upadhyay, Santosh Kumar
2017-03-01
The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.
Definitions in use by the visible and near-infrared, and thermal working groups
NASA Technical Reports Server (NTRS)
Bruegge, Carol J.; Miller, ED; Martin, Bob; Kieffer, Hugh H.; Palmer, James M.
1992-01-01
The Calibration Advisory Panel (CAP) is composed of calibration experts from each of the Earth Observing System (EOS) instruments, science investigation, and cross-calibration teams. These members come from a variety of institutions and backgrounds. In order to facilitate an exchange of ideas, and assure a common basis for communication, it was desirable to assemble this list of definitions. These definitions were developed for use by the visible and near-infrared working group, and the thermal infrared working group. Where necessary or appropriate, deviations from these for specific instruments or other sensor types are given in the individual calibration plans. The definitions contained in this document are derived, wherever possible, from definitions accepted by international and national metrological commissions including the United States National Institute of Standards and Technology (NIST), the International Bureau of Weights and Measures (BIPM), the International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and the International Organization of Legal Metrology (OIML).
A Survey of Direct Users and Uses of SNOMED CT: 2010 Status
Elhanan, Gai; Perl, Yehoshua; Geller, James
2010-01-01
SNOMED CT is gaining momentum and endorsements as an international clinical terminology. However, many vendors await a clearer business case and clients’ demand. We conducted a survey of direct users of SNOMED CT to determine the current profile of users, modes of use, and attitudes towards different aspects of the terminology. A web-base survey, consisting of 43 questions was distributed in January 2010, and 215 responses were elicited. This paper summarizes findings regarding profiles of users and their SNOMED CT use. The results indicate significant use by non-researchers and by industry and government sectors. Many users are relative newcomers with less than 3 years experience with SNOMED CT, and production-related use was reported by 39% of respondents. Most users are satisfied with the level of content coverage. The results indicate that SNOMED CT has a solid footing in production systems, and that SCT is mostly used for concept searches and clinical coding. PMID:21346970
Internal log scanning: Research to reality
Daniel L. Schmoldt
2000-01-01
Improved log breakdown into lumber has been an active research topic since the 1960's. Demonstrated economic gains have driven the search for a cost-effective method to scan logs internally, from which it is assumed one can chose a better breakdown strategy. X-ray computed tomography (CT) has been widely accepted as the most promising internal imaging technique....
Small bowel injury after suprapubic catheter insertion presenting 3 years after initial insertion
Gallagher, Kevin M; Good, Daniel W; Brush, John P; Al-hasso, Ammar; Stewart, Grant D
2013-01-01
A 77-year-old woman was referred to urology with blockages of her suprapubic catheter (SPC). The catheter was replaced easily in the emergency department, however, no urine was draining, only a cloudy green fluid was visible. On cystoscopy bilious material was identified in the bladder. There was no catheter visible. There seemed to be a fistulous tract entering the bladder at the left dome. The urethra was dilated, a urethral catheter was placed and the SPC was removed. A CT demonstrated that the SPC tract transfixed a loop of pelvic small bowel and entered the bladder with no intraperitoneal contrast leak. The patient recovered well and did not require laparotomy. This case emphasises that bowel perforation, although rare, must be considered as a complication of SPC placement even years after initial insertion when catheter problems arise. Unusually, we learn that this complication may not present with abdominal pain or peritonism. PMID:24326435
U(1) mediation of flux supersymmetry breaking
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Klemm, Albrecht
2008-10-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
Bowel obstruction complicated by ischemia: analysis of CT findings.
Cox, Veronica L; Tahvildari, Ali M; Johnson, Benjamin; Wei, Wei; Jeffrey, R Brooke
2018-06-01
To analyze CT signs of bowel ischemia in patients with surgical bowel obstruction, and thereby improve CT diagnosis in this common clinical scenario. Surgical and histopathological findings were used as the reference standard. We retrospectively analyzed CT findings in patients brought to surgery for bowel obstruction over 13 years. Etiology of obstruction (adhesion, hernia, etc.) was recorded. Specific CT features of acute mesenteric ischemia (AMI) were analyzed, including bowel wall thickening, mucosal hypoenhancement, and others. 173 cases were eligible for analysis. 21% of cases were positive for bowel ischemia. Volvulus, internal hernia, and closed-loop obstructions showed ischemia rates of 60%, 43%, and 43%; ischemia rate in obstruction from simple adhesion was 21%. Patients with bowel obstruction related to malignancy were never ischemic. Sensitivities and specificities for CT features predicting ischemia were calculated, with wall thickening, hypoenhancement, and pneumatosis showing high specificity for ischemia (86%-100%). Wall thickening, hypoenhancement, and pneumatosis are highly specific CT signs of ischemia in the setting of obstruction. None of the evaluated CT signs were found to be highly sensitive. Overall frequency of ischemia in surgical bowel obstruction is 21%, and 2-3 times that for complex obstructions (volvulus, closed loop, etc.). Obstructions related to malignancy virtually never become ischemic.
NASA Astrophysics Data System (ADS)
Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.
2014-11-01
This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.
Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro
2014-11-01
The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.
Recurrent pulmonary embolism due to echinococcosis secondary to hepatic surgery for hydatid cysts.
Damiani, Mario Francesco; Carratù, Pierluigi; Tatò, Ilaria; Vizzino, Heleanna; Florio, Carlo; Resta, Onofrio
2012-01-01
We describe the case of a 53-year-old man with recurrent pulmonary embolism due to intra-arterial cysts from Echinococcus. Both the patient's medical history and the computed tomographic (CT) scan abnormalities led to the diagnosis. The CT scan, performed during hospitalization in our ward, showed cystic masses in the left main pulmonary artery and in the descending branch of the right pulmonary artery. Within cystic masses, thin septa were visible, giving a chambered appearance, which was suggestive of a group of daughter cysts. In the past, our patient underwent multiple operations for recurring echinococcal cysts of the liver. After the last intervention, 4 years earlier, his postoperative course was complicated by pulmonary embolism: a CT scan showed a filling defect in the descending branch of the right pulmonary artery, which was caused by the same cystic mass as 4 years later, although smaller. This mass, not properly treated, increased in diameter. Moreover, after 4 years, there has been a new episode of embolism, which involved the left main pulmonary artery. This is the first case in which there are repeated episodes of pulmonary embolism echinococcosis after hepatic surgery for removal of hydatid cysts.
Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.
The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes
NASA Astrophysics Data System (ADS)
Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.
2014-04-01
In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.
Kahrs, Lüder Alexander; Labadie, Robert Frederick
2013-01-01
Cadaveric dissection of temporal bone anatomy is not always possible or feasible in certain educational environments. Volume rendering using CT and/or MRI helps understanding spatial relationships, but they suffer in nonrealistic depictions especially regarding color of anatomical structures. Freely available, nonstained histological data sets and software which are able to render such data sets in realistic color could overcome this limitation and be a very effective teaching tool. With recent availability of specialized public-domain software, volume rendering of true-color, histological data sets is now possible. We present both feasibility as well as step-by-step instructions to allow processing of publicly available data sets (Visible Female Human and Visible Ear) into easily navigable 3-dimensional models using free software. Example renderings are shown to demonstrate the utility of these free methods in virtual exploration of the complex anatomy of the temporal bone. After exploring the data sets, the Visible Ear appears more natural than the Visible Human. We provide directions for an easy-to-use, open-source software in conjunction with freely available histological data sets. This work facilitates self-education of spatial relationships of anatomical structures inside the human temporal bone as well as it allows exploration of surgical approaches prior to cadaveric testing and/or clinical implementation. Copyright © 2013 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei
2018-01-01
We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J; Huang, J; Szczykutowicz, T
2016-06-15
Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less
Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys
2013-03-01
right panel). ............17 Figure 10. DWR-G external sensor configuration (left panel). GT-31 GPS receiver is visible on the bottom left. Two GoPro ...receiver is visible on the bottom left. Two GoPro cameras are attached to the top of the buoy. DWR-G internal sensor configuration (right panel
ISERV Pathfinder. The ISS SERVIR Environmental Research and Visualization System
NASA Technical Reports Server (NTRS)
Howell, Burgess
2011-01-01
SERVIR integrates Earth observations (e.g., space imagery), predictive models, and in situ data to provide timely information products to support environmental decision makers. ISERV propoesed development -- ISERV-W: Internal Visible/Near-Infrared (VNIR), attached to ISS via Window Observational Research Facility (WORF), ISERV-E: External Visible/Broad-Infrared (V/IR) and ISERV-PM: External Passive Microwave.
What PISA Knows and Can Do: Studying the Role of National Actors in the Making of PISA
ERIC Educational Resources Information Center
Grek, Sotiria
2012-01-01
This article builds on previous research which has emphasised the role of comparisons of educational performance in creating visibility and borderlessness, and moves the argument a point further. The article claims that apart from increased visibility, what the Programme for International Student Assessment (PISA) has brought to education systems…
Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula
2015-06-01
Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Improving the consistency in cervical esophageal target volume definition by special training.
Tai, Patricia; Van Dyk, Jake; Battista, Jerry; Yu, Edward; Stitt, Larry; Tonita, Jon; Agboola, Olusegun; Brierley, James; Dar, Rashid; Leighton, Christopher; Malone, Shawn; Strang, Barbara; Truong, Pauline; Videtic, Gregory; Wong, C Shun; Wong, Rebecca; Youssef, Youssef
2002-07-01
Three-dimensional conformal radiation therapy requires the precise definition of the target volume. Its potential benefits could be offset by the inconsistency in target definition by radiation oncologists. In a previous survey of radiation oncologists, a large degree of variation in target volume definition of cervical esophageal cancer was noted for the boost phase of radiotherapy. The present study evaluated whether special training could improve the consistency in target volume definitions. A pre-training survey was performed to establish baseline values. This was followed by a special one-on-one training session on treatment planning based on the RTOG 94-05 protocol to 12 radiation oncologists. Target volumes were redrawn immediately and at 1-2 months later. Post-training vs. pre-training target volumes were compared. There was less variability in the longitudinal positions of the target volumes post-training compared to pre-training (p < 0.05 in 5 of 6 comparisons). One case had more variability due to the lack of a visible gross tumor on CT scans. Transverse contours of target volumes did not show any significant difference pre- or post-training. For cervical esophageal cancer, this study suggests that special training on protocol guidelines may improve consistency in target volume definition. Explicit protocol directions are required for situations where the gross tumor is not easily visible on CT scans. This may be particularly important for multicenter clinical trials, to reduce the occurrences of protocol violations.
ERIC Educational Resources Information Center
Crockett, Stephanie A.; Hays, Danica G.
2011-01-01
The authors believe that international students, increasingly visible on U.S. campuses, tend to confront unique career development challenges and often experience heightened vocational difficulty. In this article, the authors present 3 themes regarding international students' career needs derived from the current literature: career placement…
International Programs of U.S. Colleges and Universities: Priorities for the Seventies.
ERIC Educational Resources Information Center
Perkins, James A.
The thaw in the cold war, financial crisis, and rising visibility of serious domestic problems have combined to reduce support for international programs of US colleges and universities. This monograph examines circumstances behind the present crisis, reassesses the goals and structure of international programs, and suggests new directions such…
ERIC Educational Resources Information Center
Doyle, Stephanie; Loveridge, Judith; Faamanatu-Eteuati, Niusila
2016-01-01
This article focuses on a significant group of postgraduate international students overlooked by institutions and policymakers, namely those with accompanying partners and children. The economic importance of international students to Australia, Canada, New Zealand, the United Kingdom, and the United States of America is highlighted. It is argued…
SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.
Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh
2012-09-01
To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.
Improving Visibility of Stereo-Radiographic Spine Reconstruction with Geometric Inferences.
Kumar, Sampath; Nayak, K Prabhakar; Hareesha, K S
2016-04-01
Complex deformities of the spine, like scoliosis, are evaluated more precisely using stereo-radiographic 3D reconstruction techniques. Primarily, it uses six stereo-corresponding points available on the vertebral body for the 3D reconstruction of each vertebra. The wireframe structure obtained in this process has poor visualization, hence difficult to diagnose. In this paper, a novel method is proposed to improve the visibility of this wireframe structure using a deformation of a generic spine model in accordance with the 3D-reconstructed corresponding points. Then, the geometric inferences like vertebral orientations are automatically extracted from the radiographs to improve the visibility of the 3D model. Biplanar radiographs are acquired from five scoliotic subjects on a specifically designed calibration bench. The stereo-corresponding point reconstruction method is used to build six-point wireframe vertebral structures and thus the entire spine model. Using the 3D spine midline and automatically extracted vertebral orientation features, a more realistic 3D spine model is generated. To validate the method, the 3D spine model is back-projected on biplanar radiographs and the error difference is computed. Though, this difference is within the error limits available in the literature, the proposed work is simple and economical. The proposed method does not require more corresponding points and image features to improve the visibility of the model. Hence, it reduces the computational complexity. Expensive 3D digitizer and vertebral CT scan models are also excluded from this study. Thus, the visibility of stereo-corresponding point reconstruction is improved to obtain a low-cost spine model for a better diagnosis of spinal deformities.
Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels
NASA Astrophysics Data System (ADS)
Chan, Monica Kar
There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.
Lumber value differences from reduced CT spatial resolution and simulated log sawing
Suraphan Thawornwong; Luis G. Occena; Daniel L. Schmoldt
2003-01-01
In the past few years, computed tomography (CT) scanning technology has been applied to the detection of internal defects in hardwood logs for the purpose of obtaining a priori information that can be used to arrive at better log sawing decisions. Because sawyers currently cannot even see the inside of a log until the log faces are revealed by sawing, there is little...
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman
2005-01-01
This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...
The effective dose result of 18F-FDG PET-CT paediatric patients
NASA Astrophysics Data System (ADS)
Hussin, D.; Said, M. A.; Ali, N. S.; Tajuddin, A. A.; Zainon, R.
2017-05-01
Paediatric patient received high exposure from both CT and PET examination. Automatic Exposure Control (AEC) is important in CT dose reduction. This study aimed to compare the effective dose obtained from PET-CT scanner with and without the use of AEC function. In this study, 68 patients underwent PET-CT examination without the use of AEC function, while 25 patients used the AEC function during the examination. Patients involved in this study were between 2 to 15 years old with varies of malignancies and epilepsy diseases. The effective dose obtained from PET and CT examinations was calculated based on recommendation from International Commission on Radiological Protection (ICRP) Publication 106 and ICRP publication 102. The outcome of this study shows that the radiation dose was reduced up to 20% with the use of AEC function. The mean average of effective dose result obtained from PET and CT examinations without the use of AEC and AEC function were found to be as 6.67 mSv, 6.77 mSv, 6.03mSv and 4.96 mSv respectively. Where total effective dose result of PET-CT with non-AEC and AEC were found to be 13.44 mSv and 10.99 mSv respectively. Conclusion of this study is, the installation of AEC function in PET-CT machine does play important role in CT dose reduction especially for paediatric patient.
Image-guided decision support system for pulmonary nodule classification in 3D thoracic CT images
NASA Astrophysics Data System (ADS)
Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kakinuma, Ryutaro; Mori, Kiyoshi; Yamada, Kozo; Nishiyama, Hiroyuki; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki
2004-05-01
The purpose of this study is to develop an image-guided decision support system that assists decision-making in clinical differential diagnosis of pulmonary nodules. This approach retrieves and displays nodules that exhibit morphological and internal profiles consistent to the nodule in question. It uses a three-dimensional (3-D) CT image database of pulmonary nodules for which diagnosis is known. In order to build the system, there are following issues that should be solved: 1) to categorize the nodule database with respect to morphological and internal features, 2) to quickly search nodule images similar to an indeterminate nodule from a large database, and 3) to reveal malignancy likelihood computed by using similar nodule images. Especially, the first problem influences the design of other issues. The successful categorization of nodule pattern might lead physicians to find important cues that characterize benign and malignant nodules. This paper focuses on an approach to categorize the nodule database with respect to nodule shape and CT density patterns inside nodule.
TH-C-18A-08: A Management Tool for CT Dose Monitoring, Analysis, and Protocol Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Chan, F; Newman, B
2014-06-15
Purpose: To develop a customizable tool for enterprise-wide managing of CT protocols and analyzing radiation dose information of CT exams for a variety of quality control applications Methods: All clinical CT protocols implemented on the 11 CT scanners at our institution were extracted in digital format. The original protocols had been preset by our CT management team. A commercial CT dose tracking software (DoseWatch,GE healthcare,WI) was used to collect exam information (exam date, patient age etc.), scanning parameters, and radiation doses for all CT exams. We developed a Matlab-based program (MathWorks,MA) with graphic user interface which allows to analyze themore » scanning protocols with the actual dose estimates, and compare the data to national (ACR,AAPM) and internal reference values for CT quality control. Results: The CT protocol review portion of our tool allows the user to look up the scanning and image reconstruction parameters of any protocol on any of the installed CT systems among about 120 protocols per scanner. In the dose analysis tool, dose information of all CT exams (from 05/2013 to 02/2014) was stratified on a protocol level, and within a protocol down to series level, i.e. each individual exposure event. This allows numerical and graphical review of dose information of any combination of scanner models, protocols and series. The key functions of the tool include: statistics of CTDI, DLP and SSDE, dose monitoring using user-set CTDI/DLP/SSDE thresholds, look-up of any CT exam dose data, and CT protocol review. Conclusion: our inhouse CT management tool provides radiologists, technologists and administration a first-hand near real-time enterprise-wide knowledge on CT dose levels of different exam types. Medical physicists use this tool to manage CT protocols, compare and optimize dose levels across different scanner models. It provides technologists feedback on CT scanning operation, and knowledge on important dose baselines and thresholds.« less
Reddy, Samala Murali Mohan; Dorishetty, Pramod; Augustine, George; Deshpande, Abhijit P; Ayyadurai, Niraikulam; Shanmugam, Ganesh
2017-11-28
Charge-transfer (CT) gel materials obtained from low-molecular-weight (LMW) compounds through a supramolecular self-assembly approach have received fascinating attention by many researchers because of their interesting material property and potential applications. However, most of the CT gel materials constructed were of organogels while the construction of CT gels in the form of a hydrogel is a challenge because of the solubility issue in water, which considerably limits the use of CT hydrogels. Herein, for the first time, we report a new LMW gelator [N α -(fluorenylmethoxycarbonyl)-N ε -(δ-butyric-1-pyrenyl)-l-lysine, (FmKPy)], composed of two functional moieties such as fluorenylmethoxycarbonyl and pyrene, which not only parade both hydro and organo (ambidextrous) supramolecular gel formation but also exhibit CT ambidextrous gels when mixed with an electron acceptor such as 2,4,7-trinitro-9-fluorenone (TNF). This finding is significant as the established CT organogelator in the literature did not form an organogel in the absence of an electron acceptor or lose their gelation property upon the addition of the acceptor. CT between pyrene and TNF was confirmed by the color change as well as the appearance of the CT band in the visible region of the absorption spectrum. CT between FmKPy and TNF was supported by the solvent dilution method using tetrahydrofuran as the gel breaker and pyrene fluorescence quenching in the case compound containing pyrene and TNF. The morphology of FmKPy ambidextrous gels indicates the fibrous nature while the self-assembled structure is primarily stabilized by π-π stacking among fluorenyl and pyrenyl moieties and hydrogen bonding between amide groups. The FmKPy-TNF CT ambidextrous gel retains the fibrous nature; however, the size of the fibers changed. In FmKPy-TNF CT gels, TNF is intercalated between pyrene moieties in the self-assembled structure as confirmed by fluorescence quenching and powder X-ray diffraction. The FmKPy ambidextrous gel exhibits significant properties such as low minimum gelation concentration (MGC), thixotropic nature, pH stimuli response, and high thermal stability. Upon the addition of TNF, the FmKPy-TNF CT ambidextrous gel maintains all these properties except MGC which increased for FmKPy-TNF. Because pyrene-based LMW organogels have been developed widely for many applications while their hydrogels were limited, the current finding of the pyrene-based ambidextrous fluorescent gel with the CT property provides a wide opportunity to use FmKPy as a soft material maker and also for potential applications in fields like surface coating, three-dimensional printing, and so forth.
The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants.
Barry, T N; McNabb, W C
1999-04-01
New methodology for measuring forage condensed tannin (CT) content is described and the effects of CT upon forage feeding and nutritive value for ruminant animals are reviewed. CT react with forage proteins in a pH-reversible manner, with reactivity determined by the concentration, structure and molecular mass of the CT. Increasing concentrations of CT in Lotus corniculatus and Lotus pedunculatus reduce the rates of solubilization and degradation of fraction 1 leaf protein in the rumen and increase duodenal non-NH3 N flow. Action of medium concentrations of total CT in Lotus corniculatus (30-40 g/kg DM) increased the absorption of essential amino acids from the small intestine and increased wool growth, milk secretion and reproductive rate in grazing sheep without affecting voluntary feed intake, thus improving the efficiency of food conversion. High concentrations of CT in Lotus pedunculatus (75-100 g/kg DM) depressed voluntary feed intake and rumen carbohydrate digestion and depressed rates of body and wool growth in grazing sheep. The minimum concentration of CT to prevent rumen frothy bloat in cattle is defined as 5 g/kg DM and sheep grazing CT-containing legumes were shown to better tolerate internal parasite infections than sheep grazing non CT-containing forages. It was concluded that defined concentrations of forage CT can be used to increase the efficiencies of protein digestion and animal productivity in forage-fed ruminants and to develop more ecologically sustainable systems of controlling some diseases under grazing.
CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination
NASA Astrophysics Data System (ADS)
Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.
2014-03-01
Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.
Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti
Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.
2003-01-01
Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.
NASA Astrophysics Data System (ADS)
Chiong, W. L.; Omar, A. F.
2017-07-01
Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.
Report on the development and application of PET/CT in mainland China
Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-01-01
Purpose To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Methods Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. Results At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose (18F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. Conclusions This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China. PMID:28969081
Cavo, Michele; Terpos, Evangelos; Nanni, Cristina; Moreau, Philippe; Lentzsch, Suzanne; Zweegman, Sonja; Hillengass, Jens; Engelhardt, Monika; Usmani, Saad Z; Vesole, David H; San-Miguel, Jesus; Kumar, Shaji K; Richardson, Paul G; Mikhael, Joseph R; da Costa, Fernando Leal; Dimopoulos, Meletios-Athanassios; Zingaretti, Chiara; Abildgaard, Niels; Goldschmidt, Hartmut; Orlowski, Robert Z; Chng, Wee Joo; Einsele, Hermann; Lonial, Sagar; Barlogie, Bart; Anderson, Kenneth C; Rajkumar, S Vincent; Durie, Brian G M; Zamagni, Elena
2017-04-01
The International Myeloma Working Group consensus aimed to provide recommendations for the optimal use of 18 fluorodeoxyglucose ( 18 F-FDG) PET/CT in patients with multiple myeloma and other plasma cell disorders, including smouldering multiple myeloma and solitary plasmacytoma. 18 F-FDG PET/CT can be considered a valuable tool for the work-up of patients with both newly diagnosed and relapsed or refractory multiple myeloma because it assesses bone damage with relatively high sensitivity and specificity, and detects extramedullary sites of proliferating clonal plasma cells while providing important prognostic information. The use of 18 F-FDG PET/CT is mandatory to confirm a suspected diagnosis of solitary plasmacytoma, provided that whole-body MRI is unable to be performed, and to distinguish between smouldering and active multiple myeloma, if whole-body X-ray (WBXR) is negative and whole-body MRI is unavailable. Based on the ability of 18 F-FDG PET/CT to distinguish between metabolically active and inactive disease, this technique is now the preferred functional imaging modality to evaluate and to monitor the effect of therapy on myeloma-cell metabolism. Changes in FDG avidity can provide an earlier evaluation of response to therapy compared to MRI scans, and can predict outcomes, particularly for patients who are eligible to receive autologous stem-cell transplantation. 18 F-FDG PET/CT can be coupled with sensitive bone marrow-based techniques to detect minimal residual disease (MRD) inside and outside the bone marrow, helping to identify those patients who are defined as having imaging MRD negativity. Copyright © 2017 Elsevier Ltd. All rights reserved.
View of the Docked STS-132 Atlantis
2010-05-16
ISS023-E-047286 (16 May 2010) --- The aft section of space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member shortly after Atlantis docked with the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1), named Rassvet, is visible in the cargo bay. The planet Venus and the moon are visible at top center.