CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.
Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G
2018-08-01
In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.
Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.
Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O
2014-11-11
α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization
NASA Astrophysics Data System (ADS)
Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh
2017-08-01
Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.
NASA Astrophysics Data System (ADS)
Saravanakumar, B.; Maruthamuthu, S.; Umadevi, V.; Saravanan, V.
To accomplish superior performance in supercapacitors, a fresh class of electrode materials with advantageous structures is essential. Owing to its rich electrochemical activity, vanadium oxides are considered to be an attractive electrode material for energy storing devices. In this work, vanadium pentoxide (V2O5) nanostructures were prepared using surfactant (CTAB)-assisted hydrothermal route. Stacked V2O5 sheets enable additional channels for electrolyte ion intercalation. These stacked V2O5 nanosheets show highest specific capacitance of 466Fg-1 at 0.5Ag-1. In addition, it exhibits good rate capacity, lower value of charge transfer resistance and good stability when used as an electrode material for supercapacitors. Further, an asymmetric supercapacitor device was assembled utilizing the stacked V2O5 sheets and activated carbon as electrodes. The electrochemical features of the device are also discussed.
The effect of adding CTAB template in ZSM-5 synthesis
NASA Astrophysics Data System (ADS)
Widayat, Widayat; Annisa, Arianti Nuur
2017-11-01
In general, ZSM-5 synthesis is performed using a hydrothermal process that takes place at high temperature and high pressure (> 373 K,> 1 bar). The synthesis of ZSM-5 is influenced by the organic template used. The organic template serves as a determinant of the zeolite crystal structure formation. CTAB is an easily found organic template and the price is cheap so the production cost of ZSM-5 synthesis would be more efficient. In this research, ZSM-5 is synthesized by varying temperature and crystallization time. The result showed the optimal condition of ZSM-5 synthesis was at 363 K for the crystallization temperature with 8 hours of crystallization time. The crystalline product had 60.07% of crystallinity with an aluminosilicate composition of 72% w/w.
NASA Astrophysics Data System (ADS)
Xue, Mingshan; Xu, Tao; Xie, Xiaolin; Ou, Junfei; Wang, Fajun; Li, Wen
2015-11-01
Synthesis and understanding of hierarchically nanostructured materials are significant for exploring peculiar functional properties and underlying applications. In this study, the self-assembly formation and detailed transformation process of ZnO nanoplatelets grown by hydrothermal methods with the addition of compound surfactants (CTAB and Tween-20) have been investigated. The initial growth of ZnO nanoplatelets as well as the subsequent formation of bilayer nanorod arrays and divergent nanocone arrays on the surface and side face of these nanoplatelets were found. Compared with the formation of bulk/block crystals without the case of surfactants, the addition of compound surfactants into zinc nitrate solution is responsible for the self-assembly processes of ZnO because of the effective role of CTAB in decreasing the degree of crystallinity and the positive effect of Tween-20 on decreasing the particle size owing to the space hindered effect. As-formed hierarchically micro-nanostructured ZnO exhibits superhydrophobicity without any chemical modification, which can make water droplets suspend on the air film trapped between the nanoplatelet and nanoplatelet as well as between nanocone and nanocone.
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-01-01
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-09-09
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.
Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite
NASA Astrophysics Data System (ADS)
Boukoussa, Bouhadjar; Aouad, Nafissa; Hamacha, Rachida; Bengueddach, Abdelkader
2015-03-01
ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel-Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.
CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Martínez, D., E-mail: dansanm@gmail.com; Gomez-Solis, C.; Torres-Martinez, Leticia M.
2015-01-15
Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystalmore » structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.« less
Yin, Wenzong; Wang, Wenzhong; Zhou, Lin; Sun, Songmei; Zhang, Ling
2010-01-15
A highly efficient monoclinic BiVO(4) photocatalyst (C-BVO) was synthesized by an aqueous method with the assistance of cetyltrimethylammonium bromide (CTAB). The structure, morphology and photophysical properties of the C-BVO were characterized by XRD, FE-SEM and diffuse reflectance spectroscopy, respectively. The photocatalytic efficiencies were evaluated by the degradation of rhodamine B (RhB) under visible-light irradiation, revealing that the degradation rate over the C-BVO was much higher than that over the reference BiVO(4) prepared by aqueous method and over the one prepared by solid-state reaction. The efficiency of de-ethylation and that of the cleavage of conjugated chromophore structure were investigated, respectively. The chemical oxygen demand (COD) values of the RhB were measured after the photocatalytic degradation over the C-BVO and demonstrated a 53% decrease in COD. The effects of CTAB on the synthesis of C-BVO were investigated, which revealed that CTAB not only changed the reaction process via the formation of BiOBr as an intermediate, but also facilitated the transition from BiOBr to BiVO(4). Comparison experiments were carried out and showed that the existence of impurity level makes significant contribution to the high photocatalytic efficiency of the C-BVO.
Lowering the synthesis temperature of Y3Fe5O12 by surfactant assisted solid state reaction
NASA Astrophysics Data System (ADS)
Xue, Fenghua; Huang, Ju; Li, Tianrui; Wang, Zifan; Zhou, Xiaochao; Wei, Lujun; Gao, Baizhi; Zhai, Ya; Li, Qi; Xu, Qingyu; Du, Jun
2018-01-01
There is an urgent technical requirement of lowering the sintering temperature of Y3Fe5O12 (YIG) for its practical applications. In this paper, a modified solid state reaction method is reported by adding the surfactant of cetyltrimethylammonium bromide (CTAB). A high sintering temperature of 1200 °C is required for the formation of YIG phase without adding CTAB, which is effectively decreased to 1050 °C by adding CTAB. The morphology studies show that the sintering temperature plays the main role in the crystal growth and excludes the possible contribution of CTAB. The prepared YIG ceramic samples show soft ferromagnetic properties, with coercivity of only 21.2 Oe for the sample prepared with CTAB at 1050 °C, which decreases with increasing sintering temperature. The main role of adding CTAB is preventing the agglomeration of ball milled ultrafine source particles, which may facilitate the interdiffusion among them and promote the reaction at lower temperatures. Furthermore, the Gilbert damping constant is significantly reduced for YIG prepared by adding CTAB, which is one order smaller than that without CTAB.
Synthesis and Characterization Hierarchical Three-Dimensional TiO2 Structure via Hydrothermal Method
NASA Astrophysics Data System (ADS)
Syuhada, N.; Yuliarto, B.; Nugraha
2018-05-01
TiO2 is one of the most potential candidates due to its fascinating properties for multi-discipline fields. One dimensional nanostructure TiO2 such as nanotube and nanorods has been widely used for many devices technology. Compare with one-dimensional nanostructure TiO2; the hierarchical TiO2 has not been widely applied. Three dimensional TiO2 play a promising role for application in many different fields such as photovoltaics, photocatalytic and a gas sensor. Herein, we report that the hierarchically structures TiO2 have been successfully obtained by the one-pot Hydrothermal process. The growth mechanism of Titania was controlled by Titanium (IV) isopropoxide (TTIP). Ethylene glycol (EG). Hydrochloric acid (HCl). Hexadecyltrimethylammonium bromide (CTAB) molar ratio. TTIP was used as titanium source and CTAB as a soft template. The molar ratio of TTIP. EG. HCl. CTAB was 0.1:0.2:0.4:0.001. Those samples were synthesized using the hydrothermal method at 180 °C for 20 h. The purpose of this work was focused on investigating morphology, crystallite size, crystalline phase, and particle size. The properties of these materials were characterized by XRay Diffraction, Energy Dispersive Spectroscopy and Scanning Electron Microscope. It was found all particles exhibited unique spherical morphology which arranged by nanorods and good distribution nanoparticle. The Average size of the sphere has range 1 µm to 3 µm with diameter nanorods 60 nm to 100 nm. The TiO2 spheres were constructed of interconnected nanorods and formed a three dimensional (3D) porous framework. XRD analysis confirmed that sample consisted of pure rutile crystal structure with crystallite size was 50 nm, and EDS revealed an elemental content of Ti 61.03 % and O 38.97 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajuria, Heena; Ladol, Jigmet; Khajuria, Sonika
Highlights: • Core shell nanorods were synthesised by surfactant assisted hydrothermal method. • Morphology of core shell nanorods resembles those of core nanorods indicating coating of shell on cores. • More uniform and non-aggregated core shell nanorods were prepared in presence of surfactants. • Surfactant assisted prepared core shell nanorods show intense emission as compared to uncoated core nanorods. - Abstract: Core shell GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} nanorods were synthesized via hydrothermal route in the presence of different surfactants [cetyltrimethyl ammonium bromide (CTAB) and Sodium dodecyl sulphate (SDS)]. The nanorods were characterized by powder X-ray diffractionmore » (PXRD), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and photoluminescence (PL) studies. The X-ray diffraction results indicate good crystallinity and effective doping in core and core shell nanorods. SEM and TEM micrographs show that all of the as prepared gadolinium phosphate products have rod like shape. The compositional analysis of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core was done by EDS. The emission intensity of the GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} core shell increased significantly with respect to those of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core nanorods. The effect of surfactant on the uniformity, thickness and luminescence of the core shell nanorods was investigated.« less
One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.
Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao
2018-05-28
Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vattikuti, S.V. Prabhakar, E-mail: vsvprabu@gmail.com; Byon, Chan, E-mail: cbyon@ynu.ac.kr; Reddy, Ch. Venkata
2016-03-15
Highlights: • One-step method for synthesis of mesoporous WS{sub 2} was proposed. • Role of CTAB surfactant on formation of mesoporous WS{sub 2} was elucidated. • Possible growth mechanism of the mesoporous structure is also reported. • 0.1 wt% mesoporous WS{sub 2} catalyst exhibited high photocatalytic activity under UV light. - Abstract: In this paper, we report mesoporous WS{sub 2} nanosheets with a crystalline network that were synthesized using CTAB as a structure-directing agent via self-assembly induced by hydrothermal and thermal evaporation. Powder X-ray diffraction, Raman spectra, and high-resolution X-ray photoelectron spectroscopy results confirmed the formation of WS{sub 2} structures.more » Scanning electron microscopy and transmission electron microscopy were used to observe the as-prepared mesoporous frameworks. The mesoporous WS{sub 2} nanosheets have a surface area of 197 m{sup 2} g{sup −1}. A possible growth mechanism is reported for these mesoporous WS{sub 2} nanosheets. The mesoporous WS{sub 2} nanosheets demonstrate high photocatalytic activity. Among different concentrations, 0.1 wt% mesoporous WS{sub 2} shows superior catalytic activity compared to pristine WS{sub 2} nanosheets.« less
NASA Astrophysics Data System (ADS)
Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan
2018-05-01
Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.
NASA Astrophysics Data System (ADS)
Yang, Zixin; Shen, Min; Dai, Ke; Zhang, Xuehao; Chen, Hao
2018-02-01
Bi2MoO6 nanosheets with exposed {010} facets were selectively synthesized through hydrothermal method by adjusting the pH value in the presence of cetyltrimethyl ammonium bromide (CTAB) as the templates. The effects of CTAB content and hydrothermal conditions on the morphologies and crystal phases of the products were determined by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectrometry, and Brunauer-Emmett-Teller surface area analyses. It is found that Bi2MoO6 nanosheets with relatively large particle sizes (plate length 0.5-3 μm) and special anisotropic growth along the {010} plane can be obtained from an alkaline hydrothermal environment. The band gap of Bi2MoO6 can be fine-tuned from 2.30 to 2.57 eV by adjusting the pH value of hydrothermal solution. The pH value has a significant effect on the composition of hydrothermal precursors, which results in Bi2MoO6 nanosheets with different ratio of {010} faces, especially the formation of Bi2O3 in the primary stage of the hydrothermal treatment is a key factor for the exposure of {010} facets. The visible-light-driven photocatalytic activities of the Bi2MoO6 products with different ratio of {010} facets exposed are investigated through the degradation of Rhodamine B, oxytetracycline, and tetracycline. Bi2MoO6 nanosheets synthesized at pH 10.0 with highest {010} facet exposed ratio exhibited highly efficient visible light photocatalytic activity for pollutant decomposition, which can be mainly attributed to the flake structures, the crystallinity and most importantly, the exposed {010} facet which generate high concentration of rad O2-.
Surfactant assisted synthesis of aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} hexagonal ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, D., E-mail: dneupane@memphis.edu; Wang, L.; Mishra, S. R.
2015-05-07
M-type aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} were synthesized via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, and 9 wt. %) on the formation, structure, morphology, magnetic, and dielectric properties of the SrFe{sub 10}Al{sub 2}O{sub 19} nanoparticles were investigated. X-ray diffraction results show elimination of α-Fe{sub 2}O{sub 3} phase from samples prepared using CTAB. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in hexagonal plates. A linear increase in saturation magnetization, Ms, with CTABmore » content was observed from 56.5 emu/g at 0% CTAB to 66.4 emu/g at 9% CTAB. This is a net increase of 17.5% in Ms. The coercivity (Hc ∼ 5700 Oe) of sample reached maximum at 1% CTAB and reduced with further CTAB content reaching to a minimum value of 4488 Oe at 9% CTAB. A slight increase in Curie temperature (735 K) was also observed for samples synthesized using CTAB as compared to that of sample prepared in the absence of CTAB (729 K). Samples synthesized with CTAB show higher dielectric constants as compared to samples prepared without CTAB, while dielectric constant for all samples show decrease in value with the increase in frequency. These results imply that CTAB may act as a crystallization master, controlling the nucleation and growth of SrFe{sub 10}Al{sub 2}O{sub 19} crystal. The study delineates the scope of improving magnetic properties of ferrites without substitution of metal ions.« less
Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method.
Jusoh, Norwahyu; Yeong, Yin Fong; Mohamad, Maisarah; Lau, Kok Keong; M Shariff, Azmi
2017-01-01
Sonochemical-assisted method has been identified as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to hydrothermal growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the hydrothermal growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via hydrothermal growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance
NASA Astrophysics Data System (ADS)
Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian
2018-01-01
Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boppana, Venkata Bharat Ram; Hould, Nathan D.; Lobo, Raul F., E-mail: lobo@udel.ed
We report the first instance of a hydrothermal synthesis of zinc germanate (Zn{sub 2}GeO{sub 4}) nano-materials having a variety of morphologies and photochemical properties in surfactant, template and catalyst-free conditions. A systematic variation of synthesis conditions and detailed characterization using X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy and small angle X-ray scattering led to a better understanding of the growth of these particles from solution. At 140 {sup o}C, the zinc germanate particle morphology changes with pH from flower-shaped at pH 6.0, to poly-disperse nano-rods at pH 10 when the Zn to Ge ratiomore » in the synthesis solution is 2. When the Zn to Ge ratio is reduced to 1.25, mono-disperse nano-rods could be prepared at pH 7.5. Nanorod formation is also independent of the addition of cetyltrimethylammonium bromide (CTAB), in contrast to previous reports. Photocatalytic tests show that Zn{sub 2}GeO{sub 4} nano-rods (by weight) and flower shaped (by surface area) are the most active for methylene blue dye degradation among the synthesized zinc germanate materials. -- Graphical abstract: Zinc germanate materials were synthesized possessing unique morphologies dependent on the hydrothermal synthesis conditions in the absence of surfactant, catalyst or template. These novel materials are characterized and evaluated for their photocatalytic activities. Display Omitted highlights: > Zinc germanate synthesized hydrothermally (surfactant free) with unique morphologies. > Flower-shaped, nano-rods, globular particles obtained dependent on synthesis pH. > At 140 {sup o}C, they possess the rhombohedral crystal irrespective of synthesis conditions. > They are photocatalytically active for the degradation of methylene blue. > Potential applications could be photocatalytic water splitting and CO{sub 2} reduction.« less
A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB
Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng
2018-01-01
A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044
Mesoporous TiO2 and copper-modified TiO2 nanoparticles: A case study
NASA Astrophysics Data System (ADS)
Ajay Kumar, R.; Vasavi Dutt, V. G.; Rajesh, Ch.
2018-02-01
In this paper we report the synthesis of mesoporous titanium dioxide (M-TiO2) nanoparticles (NPs) and copper (Cu)-modified M-TiO2 NPs by the hydrothermal method at relatively low temperatures using cetyltrimethylammonium bromide (CTAB) as a template. In order to get ordered spherical particles and better interaction between cationic and anionic precursor, we have used titanium isopropoxide (TTIP) as titanium source and CTAB as surfactant. The process of modification by copper to M-TiO2 follows the impregnation method. The change in structural and optical properties of NPs were estimated using different characterization techniques like X-ray diffraction, field emission scanning electron microscopy, Brunner-Emmett-Teller curve and UV-Vis absorption analysis. M-TiO2 and Cu-modified M-TiO2 exhibit pure anatase crystalline phase and shows no evidence of CuO formation. Nitrogen adsorption-desorption hysteresis reveals that the material is mesoporous. Several samples synthesized at different process temperature were further studied in order to make them suitable for a wide range of applications.
Parsaee, Zohreh
2018-06-01
In this study NiO nanostructures were synthesized via combinational synthetic method (ultrasound-assisted biosynthesis) and immobilized on the glassy carbon electrode (GCE) as a highly sensitive and selective enzyme-less sensor for urea detection. NiO-NPs were fully characterized using SEM, EDX, XRD, BET, TGA, FT-IR, UV-vis and Raman methods which revealed the formation of NiO nanostructures in the form of cotton like porous material and crystalline in nature with the average size of 3.8 nm. GCE was modified with NiO-NPs in aqueous solution of cetrimonium bromide(CTAB). Highly adhesive NiO/CTAB/GO nanocomposite membrane has been formed on GCE by immersing NiO/CTAB modified GCE in GO suspension. CTAB has a major role in the production and immobilization of the nanocomposites on the GCE surface and the binding NiO nanoparticles on GO plates. In addition, CTAB/GO composition made a highly adhesive surface on the GCE. The resulting NiO/CTAB/GO/GCE contains potently sensitive to urea in aqueous environments. The response of as developed amperometric sensor was linear in the range of 100-1200 µM urea with R 2 value of 0.991 and limit of detection (LOD), 8 µM. The sensor responded negligibly to various interfering species like glucose, uric acid and ascorbic acid. This sensor was applied successfully for determining urea in real water samples such as mineral water, tap water and river water with acceptable recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Yongfu; Liu, Yanyan; Yu, Shengxue; Mu, Shichun; Xiao, Shaohua; Zhao, Yufeng; Gao, Faming
2014-06-01
A facile hydrothermal process with hexadecyltrimethyl ammonium bromide (CTAB) as the soft template is proposed to tune the morphology and size of cobalt hydroxide (Co(OH)2). Monodisperse β-phase Co(OH)2 nanowires with uniform size are obtained by controlling the CTAB content and the reaction time. Due to the uniform well-defined morphology and stable structure, the Co(OH)2 nanowires material exhibits high capacitive performance and long cycle life. The specific capacitance of the Co(OH)2 nanowires electrode is 358 F g-1 at 0.5 A g-1, and even 325 F g-1 at 10 A g-1. The specific capacitance retention is 86.3% after 5000 charge-discharge cycles at 2 A g-1. Moreover, the asymmetric supercapacitor is assembled with Co(OH)2 nanowires and nitrite acid treated activated carbon (NTAC), which shows an energy density of 13.6 Wh kg-1 at the power density of 153 W kg-1 under a high voltage of 1.6 V, and 13.1 Wh kg-1 even at the power density of 1.88 kW kg-1.
Zhu, Hongjian; Xu, Jing; Yichuan, Yuge; Wang, Zhongpeng; Gao, Yibo; Liu, Wei; Yin, Henan
2017-12-15
Mesoporous ceria and transition metal-doped ceria (M 0.1 Ce 0.9 O 2 (M=Mn, Fe, Co, Cu)) catalysts were synthesized via CTAB-assisted method. The physicochemical properties of the prepared catalysts were characterized by XRD, DLS analysis, SEM, BET, Raman, H 2 -TPR and in situ DRIFT techniques. The catalytic activity tests for soot oxidation were performed under tight contact of soot/catalyst mixtures in the presence of O 2 and NO+O 2 , respectively. The obtained results show that mesoporous ceria-based solid solutions can be formed with large surface areas and small crystallite size. Transition metals doping enhances the oxygen vacancies and improves redox properties of the solids, resulting in the increased NO oxidation capacity and NO x adsorption capacity. The soot oxidation activity in the presence of O 2 is enhanced by doping transition metal, which may be related to their high surface area, increased oxygen vacancies and improved redox properties. The soot combustion is accelerated by the NO 2 -assisted mechanism under NO+O 2 atmosphere, facilitating an intimate contact between the soot and the catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com; Tripathi, S. K.
2015-06-24
Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.
CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor
NASA Astrophysics Data System (ADS)
Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.
2018-02-01
Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun
2012-02-01
Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Yifan; Kawase, Ayako; Song, Min-Kyu
In this paper, we have investigated the chemical bonding interaction of S in a CTAB (cetyltrimethylammonium bromide, CH 3(CH 2) 15N +(CH 3) 3Br –)-modified sulfur–graphene oxide (S–GO) nanocomposite used as the cathode material for Li/S cells by S K-edge X-ray absorption spectroscopy (XAS). The results show that the introduction of CTAB to the S–GO nanocomposite and changes in the synthesis recipe including alteration of the S precursor ratios and the sequence of mixing ingredients lead to the formation of different S species. CTAB modifies the cathode materials through bonding with Na 2S x in the precursor solution, which ismore » subsequently converted to C–S bonds during the heat treatment at 155 °C. Moreover, GO bonds with CTAB and acts as the nucleation center for S precipitation. Finally, all these interactions among S, CTAB, and GO help to immobilize the sulfur in the cathode and may be responsible for the enhanced cell cycle life of CTAB–S–GO nanocomposite-based Li/S cells.« less
Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; ...
2016-04-22
In this paper, we have investigated the chemical bonding interaction of S in a CTAB (cetyltrimethylammonium bromide, CH 3(CH 2) 15N +(CH 3) 3Br –)-modified sulfur–graphene oxide (S–GO) nanocomposite used as the cathode material for Li/S cells by S K-edge X-ray absorption spectroscopy (XAS). The results show that the introduction of CTAB to the S–GO nanocomposite and changes in the synthesis recipe including alteration of the S precursor ratios and the sequence of mixing ingredients lead to the formation of different S species. CTAB modifies the cathode materials through bonding with Na 2S x in the precursor solution, which ismore » subsequently converted to C–S bonds during the heat treatment at 155 °C. Moreover, GO bonds with CTAB and acts as the nucleation center for S precipitation. Finally, all these interactions among S, CTAB, and GO help to immobilize the sulfur in the cathode and may be responsible for the enhanced cell cycle life of CTAB–S–GO nanocomposite-based Li/S cells.« less
Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhe, E-mail: tangzhe1983@163.com; Liang, Jilei, E-mail: liangjilei_httplan@126.com; Li, Xuehui, E-mail: lxhhmx@163.com
A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) intomore » final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.« less
NASA Astrophysics Data System (ADS)
Lv, Wei; Wei, Bo; Xu, Lingling; Zhao, Yan; Gao, Hong; Liu, Jia
2012-10-01
In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.
Cu2ZnSnS4 Nanoparticles Synthesized by a Novel Diethylenetriamine-Assisted Hydrothermal Method
NASA Astrophysics Data System (ADS)
Liang, Feng; Gao, Juan; Zou, Changwei; Shao, Lexi
2018-05-01
A diethylenetriamine (DETA)-assisted hydrothermal method was explored for the synthesis of kesterite Cu2ZnSnS4 (CZTS) nanoparticles. As complexing agent, DETA was employed to dissolve sulfur and to form complex with metal ions. By introducing DETA to the system, pure CZTS nanoparticles with bandgap of 1.54 eV could be successfully obtained and the agglomeration of samples could be restrained by increasing the concentration of DETA. From the discussion about the experimental results, the formation mechanism of CZTS nanoparticles was proposed. As the reagents used in this experiment is low-toxic and inexpensive, this method was considered as an effective and green route for the synthesis of CZTS nanoparticles.
Solution-phase synthesis of nanomaterials at low temperature
NASA Astrophysics Data System (ADS)
Zhu, Yongchun; Qian, Yitai
2009-01-01
This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.
LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.
Saji, Viswanathan S; Song, Hyun-Kon
2015-01-01
Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.
Seedless synthesis of gold nanorods using resveratrol as a reductant
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Li, Jing; Lan, Shijie; Rong, Li; Liu, Yi; Sheng, Yu; Zhang, Hao; Yang, Bai
2016-04-01
Gold nanorods (GNRs) attract extensive attention in current diagnostic and therapeutic applications which require the synthesis of GNRs with high yields, adjustable aspect ratio, size monodispersity, and easy surface decoration. In the seed-mediated synthesis of GNRs using cetyl trimethyl ammonium bromide (CTAB) micelles as templates, the additives of aromatic compounds have been found to be important for improving the size monodispersity of the as-synthesized GNRs; this is hopeful in terms of the further optimization of the synthetic methodology of GNRs. In this work, resveratrol, a natural polyphenol in grapes with an anti-oxidization behavior, is employed as the reductant for the seedless synthesis of GNRs with a good size monodispersity and a tunable aspect ratio. Accordingly, the longitudinal localized surface plasmon resonance (LSPR) peak is tunable from 570 to 950 nm. The success of our approach is attributed to the aromatic structure and mild reducibility of resveratrol. The embedment of resveratrol into CTAB micelles strengthens the facet-selective adsorption of CTAB, and therewith facilitates the anisotropic growth of GNRs. In addition, the mild reducibility of resveratrol is capable of supporting GNR growth by avoiding secondary nucleation, thus allowing the seedless synthesis of GNRs with a good size monodispersity. As a chemopreventive agent, the combination of resveratrol in GNR synthesis will consolidate the theranostic applications of GNRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li, E-mail: qqhrll@163.com; Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006; Wang, Lili
CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdSmore » phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of microwave increased. • Compared with TiO{sub 2}, as-samples show strong absorbance in the visible light region. • The CdS/TiO{sub 2} (6 h) exhibits remarkably effects on photodegradation under multi-mode. • A possible growth process of CdS/TiO{sub 2} nanocomposite was illustrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006; Dong, Pei-Pei
2016-02-15
Highlights: • CTAB and SDS alter the formation of SnO{sub 2} from nanosheets to nanocubes during oxalate precipitation. • The CTAB concentration affects the SnO{sub 2} crystal growth direction, morphology and size. • The SnO{sub 2} anode synthesized using CTAB exhibited superior electrochemical performance. • Proposed a mechanism of influence of surfactant on SnO{sub 2} in the precipitation and annealing process. - Abstract: Different SnO{sub 2} micro–nano structures are prepared by precipitation using a surfactant-assisted process. The surfactants, such as cetyltriethylammonium bromide (CTAB) or sodium dodecyl benzene sulfonate (SDBS), can change the crystal growth direction and microstructure of SnO{sub 2}more » primary and secondary particles. Larger SnO{sub 2} nanosheets were synthesized without surfactant, and micro-fragments composed of small nanospheres or nanocubes were synthesized using CTAB and SDBS. The CTAB-assisted process resulted in smaller primary particles and larger specific surface area and larger pore volume, as a lithium-ion-battery anode that exhibits superior electrochemical performance compared to the other two anodes. Further investigation showed that the concentration of CTAB had a substantial influence on the growth of the crystal face, morphology and size of the SnO{sub 2} secondary particles, which influenced the electrochemical performance of the anode. A simple mechanism for the influence of surfactants on SnO{sub 2} morphology and size in the precipitation and annealing process is proposed.« less
Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen
2014-03-01
A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the current approach was applied for analyzing the pathogenic bacteria in biological samples (blood and serum). Ceria assist surfactant (CeO2@CTAB) liquid-liquid microextraction (LLME) offers better extraction efficiency than that of using the surfactant in LLME alone. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Mi; Shanghai Institute of Ceramics; Gao Yanfeng, E-mail: yfgao@mail.sic.ac.cn
2012-05-15
Nanoscaled SnO{sub 2} with different morphologies has been synthesized via a simple hydrothermal process at 180 Degree-Sign C using polyvinylpyrrolidone (PVP), sodium dodecyl sulfonate (SDS), cetyl trimethyl ammonium bromide (CTAB) or tetrapropyl ammonium bromide (TPAB) as surfactant. All the prepared SnO{sub 2} are of a tetragonal crystal structure. Nanocubes, nanorods, nanosheets, nanobelts and nanoparticles were prepared when changing the type and dosage of organic surfactants. It is shown that anionic surfactant (SDS) and cationic surfactant (CTAB or TPAB) at their suitable addition amounts can largely influence the morphologies of SnO{sub 2} nanocrystals. The effect is significantly dependent on the solventmore » types: water or ethanol. The non-ionic surfactant (PVP) can also change the morphologies like SDS but the impacts are less obvious. The effect of surfactants on the shape and size of SnO{sub 2} nanoparticles was discussed in detail. The particle growth mechanism is described based on the electrostatic interactions and Van der Waals' forces. - Graphical abstract: SnO{sub 2} nanocrystals with controllable morphologies were prepared via a hydrothermal method with surfactants. Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanocrystals were prepared via a hydrothermal method with surfactants. Black-Right-Pointing-Pointer SnO{sub 2} morphologies changed with the type and the dosage of surfactants. Black-Right-Pointing-Pointer The effect of surfactants on the growth of crystal planes was studied. Black-Right-Pointing-Pointer The controlling mechanisms of surfactants on SnO{sub 2} morphologies were discussed.« less
Tang, Junqi; Huang, Jiamin; Man, Shi-Qing
2013-02-15
Cetyltrimethyl ammonium bromide (CTAB) has been extensively applied in the solution-phase synthesis of many types of colloidal nanoparticles. However, the uses of CTAB were mainly considered as template or capping agents to form controllable shape and protect the product from agglomeration. Here it was discovered that CATB could serve as a very mild reductant to reduce gold salt precursors preparing gold nanoparticles (GNPs) at base environment. CTAB acted as the reducing agent suffering a partial degradation and forming CTA macro radicals. FTIR proved the formation of CCl and/or CBr bond after CTAB degraded. The characterization of synthesized GNPs was examined by UV-Vis spectra, TEM and XRD. Several factors affecting the process of reaction, such as the amount of NaOH, the molar ratio of CTAB and HAuCl(4), the reaction temperature, the effect of light and oxygen, and stirring were discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.
2018-03-01
Two novel nano-complexes [(Cu)2(L) (NO3)2(OH2)] (CuH) and [Cu(HL) (OH2)2(NO3)] (CuCTH)were synthesized by hydrothermal method at 200 °C for 48 h in absence and presence of surfactant (CTAB), respectively. Introducing surfactant (CTAB) leads to changing stoichiometric metal/ligand ratio from binuclear (CuH) to mononuclear (CuCTH) nano-complexes. CuH shows irregular nano-flake shape while CuCTH have separately uniform nano-spherical morphology. Thermal analysis revealed that CuCTH is thermally stable in comparison with CuH Nano-complex. CuCTH absorption peak shifted to shorter wavelength (blue shift) and sharpness of the peak also decreased in presence of CTAB. The role of CTAB in the crystal growth is discussed. CuH and CuCTH nano-complexes were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (E.A.C.). Both nano-complexes effectively inhibited E.A.C. growth with IC50value of 37 and 25 μM for CuH and CuCTH, respectively. The high antitumor activity of CuCTH was attributed to several factors such as spherical morphology, smaller size, chemical structure, and geometry. The LD50 for high cytotoxic CuCTH nano-complex on mice was found to be 100 mg/kg with strong abscess in abdomen side effect. To overcome this side effect, different molar ratio of CuCTH and previously prepared ZnNano-complexes were tested for their in vitrocytotoxicity and in vivo toxicity. Obtained results show that the 2:8 M ratio between CuCTH and Zn nano-complexes gives very low toxicity without any side effects. Also, geometric optimization and conformational analysis were performed using semi-empirical PM3 method. Energy gap (ΔE), dipole moment, and structure activity relationship were performed and discussed.
Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li
2017-01-01
As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-03-15
A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with l-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L(-1) and 4.0 to 18.0 mg L(-1), with a detection limit (3σ) of 0.0010 mg L(-1). A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kashinath, L.; Namratha, K.; Byrappa, K.
2015-12-01
Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.
NASA Astrophysics Data System (ADS)
Zhao, Qinfu; Wang, Tianyi; Wang, Jing; Zheng, Li; Jiang, Tongying; Cheng, Gang; Wang, Siling
2011-09-01
In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.
Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi
2016-09-27
Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana
2015-11-15
Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less
Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals
NASA Astrophysics Data System (ADS)
Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine
2018-06-01
This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen
Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less
Effect of CTAB concentration on synthesis of nickel doped manganese oxide nanoparticles
NASA Astrophysics Data System (ADS)
Shobana, R.; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.
2018-05-01
In this work the effect of concentration of cetyltrimethylammonium bromide (CTAB) in the synthesis of Nickel doped Manganese oxide (Ni-MnO2) nanoparticles have been carried out by adopting the sol-gel process. The synthesized products were characterized by XRD, Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Ni-MnO2 nanoparticles illustrate peak at 31.4° with lattice plane (-231). The IR spectra correspond to the peak at 592 and 846 cm-1 attributed to the characteristics peak for Ni-MnO2 nanoparticles. The SEM images for all three Ni-MnO2 nanoparticles for different concentration of CTAB allows us to assess the formation route of nano tentacles from 10 mM, 30 mM and 50 mM. The configured nano tentacles of Ni-MnO2 nanoparticles presumably leads to more significantly change its properties, particularly in its electrochemical properties show the ways to be suitable candidates for supercapacitor, battery, photo catalytic and fuel cell applications.
NASA Astrophysics Data System (ADS)
Alzahrani, Salma Ahmed; Malik, Maqsood Ahmad; Al-Thabaiti, Shaeel Ahmed; Khan, Zaheer
2018-03-01
This work demonstrates a competitive reduction method of synthesis of nanomaterials. In this method along cetyltrimethylammonium bromide (CTAB), the reduction of Ag+ and Fe3+ ions is achieved by ascorbic acid-to-bimetallic Ag@Fe yellow-colored nanomaterials. The shape of UV-visible spectra and wavelengths absorbed of Ag@Fe can be tuned from ca. 290-600 nm by controlling [CTAB] and [Ag+]. The apparent first-order rate constants were calculated within the approximation of 6.1 × 10-3 s-1. The as-prepared Ag@Fe NPs have been found to be very important catalyst in terms of depredate methyl orange in vicinity of sodium borohydride (NaBH4), which exhibits excellent efficiency and re-usability in the prototypical reaction. The cmc of cationic surfactant CTAB has been determined by conductivity method under different experimental conditions. In the presence of CTAB, Ag+ and Fe3+ ions reduce to Ag@Fe core/shell nanoparticles, comprehend a change in wavelength and intensity of SRP band. The apparent first-order rate constant, activation energy, and turnover frequency for the methyl orange reduction catalyzed by Ag@Fe NPs were found to be 1.6 × 10-3 s-1, 58.2 kJ mol-1, and 1.1 × 10-3 s-1, respectively.
Synthesis, Characterization and Application of N-Ti/13X/MCM-41 Mesoporous Molecular Sieves.
Tao, Hong; Nguyen, Nhat-Thien; Hei, Xiao-Hui; Nguyen, Cong Nguyen; Tsai, Hsiao-Hsin; Chang, I-Cheng; Chang, Chang-Tang
2016-06-01
Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as the amount of material, reaction time, pH value and initial concentration were tested. The surface areas of N-Ti/13X/MCM-41 were found to be 664 m2g(-1). TEM micrographs revealed N-Ti/13X/MCM-41 is consisting of aggregates of spherical particles, similar with standard synthesized MCM-41 (Mobil Composition of Matter No. 41). Through photocatalytic degradation experiments, the optimum degradation efficiency of DBP was more than 90% at a pH 6.0 with catalyst dosing of 0.15 g L(-1).
Controllable synthesis of Au@SnO2 core-shell nanohybrids with enhanced photocatalytic activities
NASA Astrophysics Data System (ADS)
Zhang, Shaofeng; Hao, Jinggang; Ren, Feng; Wu, Wei; Xiao, Xiangheng
2017-05-01
Combination of semiconductors with plasmonic nanostructures is an effective route to promote the solar light harvesting as well as the efficiency of photocatalysis. In the present work, the Au@SnO2 hybrid nanostructures with Au nanorods as the cores and highly crystallized SnO2 nanoparticles as the shells were fabricated by a facile hydrothermal method. A critical factor, which influences the coating state of the SnO2 shells over Au NRs, was found to be the concentration of CTAB agent in the system and the corresponding mechanism was also proposed. The photocatalytic activities of the Au@SnO2 nanohybrids were examined by degradation of rhodamine B (RhB) dyes at room temperature. The Au@SnO2 nanohybrids exhibited much higher catalytic activities than that of the commercial SnO2 NPs, which could be attributed to the localized electric field enhancement effect of Au nanorods plasmon and charges transfer between the Au nanorods and SnO2.
Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.
Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie
2006-08-01
A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.
Tang, Zheng; Peng, Sha; Hu, Shuya; Hong, Song
2017-06-01
Adsorption removal of bisphenol-AF (BPAF) from aqueous solutions by synthesized activated carbon-alginate beads (AC-AB) with cetyltrimethyl ammonium bromide (CTAB) has been studied using two ways. The traditional method (two-step) first synthesized CTAB-modified AC-AB (AC-AB-CTAB), then used it to remove BPAF by adsorption. And one-step method dispersed AC-AB and CTAB in wastewater, followed by the removal of BPAF accompanied with the synthesis of AC-AB-CTAB. The one-step method showed a better performance than the two-step method, achieving a maximum removal of BPAF with 284.6mg/g. Kinetic studies and adsorption isotherms indicated that adsorption process of BPAF on AC-AB by the one-step method could be expressed by a pseudo-second-order model and a Dubinin-Ashtakhov (D-A) isotherm, respectively. The effects of pH, ionic strength, and inorganic ions on BPAF adsorption were also investigated. Furthermore, hydrophobic interactions, hydrogen bonds, and π-π electron donor-acceptor (EDA) interactions were discussed to explain the enhanced adsorption behavior of BPAF on AC-AB with CTAB. The findings verified the effectiveness of AC-AB for the removal of BPAF from wastewater and its high stability within five regeneration cycles. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, Lakshmi, E-mail: lakshmivijayan@gmail.com; Cheruku, Rajesh; Govindaraj, G.
A dense core rectangular shaped nanocrystalline LiMnPO{sub 4} material was synthesized by template free sucrose assisted hydrothermal synthesis. The material possess orthorhombic crystal structure with Pnma, space group having four formula units. The structural characterization was accomplished through X-ray diffraction, thermo gravimetry/differential thermal analysis. Morphology was identified by the SEM, VSM was used to verify the magnetic behavior of the material and electrical characterization was done through impedance spectroscopy and the results were reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jilin; Shi Jianxin, E-mail: chemshijx@163.co; Gong Menglian
2009-08-15
Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods.more » The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.« less
NASA Astrophysics Data System (ADS)
Liu, Tingzhi; Li, Yangyang; Zhang, Hao; Wang, Min; Fei, Xiaoyan; Duo, Shuwang; Chen, Ying; Pan, Jian; Wang, Wei
2015-12-01
Different flower-like ZnO hierarchical architectures were prepared by tartaric acid assisted hydrothermal synthesis, especially four flower-like ZnO nanostructures were obtained simultaneously under the same reaction condition. The cauliflower-like ZnO is assembled by spherical shaped nanoparticles, and the chrysanthemum-like and other flower-like ZnO nanostructures are assembled by hexagonal rods/prisms with from planar to semi-pyramid, and to pyramid tips. TA acts as a capping agent and structure-directing agent during the synthesis. All ZnO possess the hexagonal wurtzite structure. The PL spectra can be tuned by changing TA concentration. XRD, PL and Raman spectra confirmed that oxygen vacancies mainly come from the ZnO surface. The flower-like samples of 1:4.5 and 1:3 with the largest aspect ratios have highest photocatalytic performance. They decompose 85% MB within 60 min. Combining PL Gaussian fitting with K, the higher content of oxygen vacancy is, the higher photocatalytic activity is. The enhanced photocatalytic performance is mainly induced by oxygen vacancy of ZnO. The possible formation mechanism, growth and change process of flower-like ZnO were proposed.
Novel hybrid materials based on the vanadium oxide nanobelts
NASA Astrophysics Data System (ADS)
Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.
2016-04-01
Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, K.F.; Maul, J.; Albuquerque, A.R.
2014-02-15
In this study, a microwave assisted solvothermal method was used to synthesize TiO{sub 2} with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed aftermore » 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another.« less
2016-01-01
A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933
Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi
2017-11-01
Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and characterization of monodispersed silver nanoparticles
NASA Astrophysics Data System (ADS)
Jegatha Christy, A.; Umadevi, M.
2012-09-01
Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang
Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
NASA Astrophysics Data System (ADS)
Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris
2016-02-01
Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
In this paper, synthesis of the hydrothermal based etching process of niobium oxide (Nb2O5) films and their reflectance properties are presented. The concentration of etching agent, which is ammonium fluoride (NH4F) in the hydrothermal solution as well as the grain size and the annealing condition have significantly affected the reflectance properties of Nb2O5 films. Films that synthesized in 1.65M of NH4F solution showed the lowest percentage of reflectance value of 3.22% at 222 nm. The obtained reflectance results have shown that this kind of Nb2O5 films is very suitable for anti-reflective coating layer and UV sensor application.
NASA Astrophysics Data System (ADS)
Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su
2018-03-01
Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.
Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H
2012-04-27
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.
NASA Astrophysics Data System (ADS)
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-03-01
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h
Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi
2013-04-01
The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods
NASA Astrophysics Data System (ADS)
Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.
2008-02-01
Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.
NASA Astrophysics Data System (ADS)
Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar
2016-05-01
A novel and facile approach for synthesis of spinel nickel ferrites (NiFe2O4) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe2O4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe2O4 and TEM image showed spherical particles of sizes 2-10 nm. These NiFe2O4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.
Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals
Sonal Padalkar; Jeff R. Capadona; Stuart J. Rowan; Christoph Weder; Robert J. Moon; Lia A. Stanciu
2011-01-01
The synthesis of cadmium sulfide (CdS), zinc sulfide (ZnS), and lead sulfide (PbS) nanoparticle chains on cellulose nanocrystal (CNC) templates can be accomplished by the reaction of the precursor salts. The use of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was critical for the synthesis of well-defined semiconductor nanoparticle chains on the...
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong
2016-02-25
Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.
X-ray Absorption Spectroscopy Characterization of a Li/S Cell
Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa
2016-01-01
The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br−) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies. PMID:28344271
X-ray Absorption Spectroscopy Characterization of a Li/S Cell
Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; ...
2016-01-11
The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH 3(CH 2) 15N+(CH 3) 3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na 2S x solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfurmore » reaction products on the cathode surface during the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less
NASA Astrophysics Data System (ADS)
Singh, Iqbal; Kaur, Gursharan; Bedi, R. K.
2011-09-01
An aqueous solution of cupric nitrate trihydrate (Cu(NO 3) 2·3H 2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravishankar, T.N.; Nagaraju, G., E-mail: nagarajugn@rediffmail.com; Department of Chemistry, Siddaganga Institute of Technology, Tumkur, Karnataka
Highlights: • TiO{sub 2}: Li nanoparticles were synthesized via an ionic liquid-assisted hydrothermal method. • The doping of Li to anatase TiO{sub 2} affects the properties of the resultant product. • TiO{sub 2}: Li nanoparticles were used as a photocatalyst for the degradation of dye. • TiO{sub 2}: Li nanoparticles were used as sensor, and antibacterial agent. • TiO{sub 2}: Li were used as reducing agent for the reduction of Cr{sup 6+} to Cr{sup 3+}. - Abstract: We have proposed a simple one pot synthesis of lithium-doped TiO{sub 2} nanoparticles (TiO{sub 2}:Li) via an ionic liquid-assisted hydrothermal method and theirmore » potential use as a photocatalyst for the degradation of organic dye, as well as the reduction of toxic Cr{sup 6+} to non toxic Cr{sup 3+}. The structure of TiO{sub 2}:Li nanoparticles was examined by XRD, FTIR, XPS, Raman, UV–vis, Photoluminescence spectroscopy and morphology by SEM and TEM. The incorporation of Li into anatase-phase TiO{sub 2} affected the optical properties of the resultant TiO{sub 2} nanoparticles. The photocatalytic activity of the TiO{sub 2}:Li nanoparticles was determined by degradation of trypan blue. Degradation studies showed improved photocatalytic activity of TiO{sub 2}:Li nanoparticles compared to TiO{sub 2} nanoparticles and bulk TiO{sub 2}. TiO{sub 2}:Li nanoparticles also functioned as a detoxification agent which was confirmed by the reduction of Cr{sup 6+} to Cr{sup 3+}.« less
Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaowphong, Sulawan, E-mail: sulawank@gmail.com; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200
2012-05-15
Silver bismuth sulfide (AgBiS{sub 2}) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 Degree-Sign C for 12-72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS{sub 2} nanoparticles with a diameter range of about 20-75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupledmore » plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS{sub 2}. The optical band gap of the AgBiS{sub 2} nanoparticles, calculated from UV-vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS{sub 2} nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS{sub 2} nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS{sub 2} caused by the quantum confinement effects. Highlights: Black-Right-Pointing-Pointer A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS{sub 2}. Black-Right-Pointing-Pointer L-Cysteine is served as the sulfide source and a complexing agent. Black-Right-Pointing-Pointer Increase in band gap of the AgBiS{sub 2} nanoparticles attributes to the quantum confinement effects.« less
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid
2015-11-01
The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.
The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Zawadzki, Witold; Słowik, Grzegorz
Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina andmore » zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.« less
Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis
2012-01-01
In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol. PMID:22655978
Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis.
Petkova, Galina A; Záruba, Capital Ka Cyrillicamil; Zvátora, Pavel; Král, Vladimír
2012-06-01
In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
Hydrothermal synthesis of uniform WO{sub 3} submicrospheres using thiourea as an assistant agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, X.T.; Xiao, F.; Lin, J.L.
2010-08-15
Nearly monodisperse tungsten trioxide submicrospheres have been synthesized with tungsten acid and HCl as the starting materials and thiourea as a structure-directing agent through a facile hydrothermal method. The obtained products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray, respectively. The results show that the WO{sub 3} submicrospheres are monodisperse with a diameter of about 800-1000 nm. The morphology of the products gradually evolutes from rods to spheres with increase of the reaction time. The formation mechanism of the WO{sub 3} submicrospheres is primarily discussed.
Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai
2009-01-05
Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.
NASA Astrophysics Data System (ADS)
Mathew, Joissy; Devasia, Sebin; Anila, E. I.
2018-04-01
We report the synthesis of polycrystalline ternary (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition on glass substrates. X-ray diffraction reveals the hexagonal phase of cadmium zinc sulphide (CZS) film with preferred orientation along the (002) plane and the average grain size to be 22.78 nm. SEM image shows clusters of nano fibers grown on the film. The optical band gap obtained from the optical absorption studies using UV-Vis-NIR spectroscopy is 3.4 eV. Broad and asymmetric emission due to the combination of near band edge emission and emission fromintrinsic point defects was observed in the PL spectrum. The filmexhibit photo conductivity under illumination by light from 32 watts halogen bulb. In dark condition, the I-V curve shows non-linear behavior, whereas ohmic behavior under illumination. The Photo response of film was recorded for the light-on and light-off conditions at intervals of 100 seconds when 10V voltage was applied. We observed fast rise and decay of the photocurrent depicting high photosensitivity. This work present a simple way to obtain photo-detectors and will benefit in optical-electron devices manufacture.
Energetics of amino acid synthesis in hydrothermal ecosystems
NASA Technical Reports Server (NTRS)
Amend, J. P.; Shock, E. L.
1998-01-01
Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
The Effect of Silane Addition on Chitosan-Fly Ash/CTAB as Electrolyte Membrane
NASA Astrophysics Data System (ADS)
Kusumastuti, E.; Isnaeni, D.; Sulistyaningsih, T.; Mahatmanti, F. W.; Jumaeri; Atmaja, L.; Widiastuti, N.
2017-02-01
Electrolyte membrane is an important component in fuel cell system, because it may influence fuel cell performance. Many efforts have been done to produce electrolyte membrane to replace comercial membrane. In this research, electrolyte membrane is composed of chitosan as an organic matrix and fly ash modified with CTAB and silane as inorganic filler. Fly ash is modified using silane as coupling agent to improve interfacial morphology between organic matrix and inorganic filler. This research aims to determine the best membrane performance based on its characteristics such as water uptake, mechanical properties, proton conductivity, and methanol permeability. The steps that have been done include silica preparation from fly ash, modification of silica surface with CTAB, silica coupling process with silane, synthesis of membranes with inversion phase method, and membrane characterization. The result shows that membrane C-FA/CTAB-Silane 10% (w/w) has the best performance with proton conductivity 8.00 x 10-4 S.cm-1, methanol permeability 3.37 x 10-7 cm.s-1, and selectivity 2.12 x 103 S.s.cm-3. The result of FTIR analysis on membrane C-FA/CTAB-Silane 10% shows that there is only physical interaction occured between chitosan, fly ash and silane, because there is no peak differences significantly at wave number 1000-1250 cm-1, while morphology analysis on membrane with Scanning Electron Microscopy (SEM) shows good dispersion and there is no agglomeration on chitosan matrix.
Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval
2015-03-05
ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-04-14
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke
2015-04-20
A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.
Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less
NASA Astrophysics Data System (ADS)
Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue
2014-12-01
A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.
Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata
2016-06-07
Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.
Synthesis of ZnO Photocatalysts Using Various Surfactants
NASA Astrophysics Data System (ADS)
Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin
2017-12-01
Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-03-01
A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with L-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L- 1 and 4.0 to 18.0 mg L- 1, with a detection limit (3σ) of 0.0010 mg L- 1. A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Figure S2. Optimization of the CL reaction conditions: (a) effect of KMnO4 concentration. Conditions: the concentrations of H2SO4, CdS QDs and atenolol were 1 mol L-1, 0.35 mol L-1, and 4.0 mg L-1, respectively; (b) effect of acidic media. Conditions: the concentrations of KMnO4 was 0.04 mmol L-1, other conditions were as in (a); (c) effect of CdS QDs concentration. Conditions: H2SO4 concentration was 1.0 mol L-1, other conditions were as in (b), and (d) effect of CTAB concentration. Conditions: CdS QDs concentration was 0.35 mmol L-1, other conditions were as in (c). Figure S3. UV-Vis absorption spectra of KMnO4-CdS QDs-atenolol CL system, recorded at different time intervals after their mixing. Conditions: the concentrations of KMnO4, CdS QDs, H2SO4 and atenolol were 0.04 mmol L-1, 0.35 mmol L-1, 1.0 mol L-1 and 4.0 mg L-1, respectively.
Composite-Nanoparticles Thermal History Sensors
2014-05-01
al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes...Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro...R C H A R TIC LE Poudel et al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of
2016-03-28
Synthesis of GNRs ..............................................................................................................3 3.2 PEG...chemistry we can enhance their biocompatibility while maintaining their cellular uptake. 3 3.0 METHODS 3.1 Synthesis of GNRs MTAB GNRs (MTAB-1...chlorauric acid (0.1 M) was combined at room temperature with a growth solution of CTAB (0.1 M), chlorauric acid (0.1 M) silver nitrate (0.1 M) ascorbic
NASA Astrophysics Data System (ADS)
Debnath, Tanumoy; Saha, Papiya; Patra, Nesla; Das, Sukhen; Sutradhar, Soumyaditya
2018-05-01
The influence of the hydrothermal synthesis route on the grain morphology and thereby the modulation of dielectric response of undoped and Cr3+ ion doped semiconducting ZnO nanoparticles is investigated in this report. The X-ray diffraction study reveals that all the samples are in a polycrystalline single phase of a hexagonal wurtzite structure of ZnO. The field emission scanning electron microscopy study reveals the rod like structure of all the samples. The formation of synthesis route dependent morphology and the morphology dependent physical property of all the samples are the characteristic features of the present work and to date it has not been considered as the specific tool of dielectric property modulation by anyone else. The ultraviolet-visible measurement signifies the superior control over the charge density of the host semiconducting material due to the presence of Cr3+ ions in the structure of ZnO. In the photoluminescence measurement, no significant peak has been observed in the visible region. The frequency and temperature dependent dielectric constants of all the samples were investigated. The consequences of the dielectric measurement suggest that the hydrothermal synthesis route influences the growth mechanism of the semiconducting nanoparticles mostly towards the rod like structure and the doping element influences the charge density, nature of defects, and the defect densities inside the structure of ZnO nanomaterials. All these factors together make the semiconducting ZnO nanomaterials more effective for tailor made applications in magneto-dielectric devices.
Composite-Nanoparticles Thermal History Sensors
2014-05-01
Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes obtained at 100 !C (a) and 160 !C (b...Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure was followed with NaTeO3...Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure
1998-04-01
Kido •Solution Flow System for Hydrothermal -Electrochemical Synthesis : New Opportunities for Multilayered Oxide Films 639 VI. Suchanek, T...FLOW SYSTEM FOR HYDROTHERMAL -ELECTROCHEMICAL SYNTHESIS : NEW OPPORTUNITIES FOR MULTTLAYERED OXIDE FILMS W. SUCHANEK, T. WATANABE, B. SAKURAI, M...ABSTRACT A solution flow system for hydrothermal -electrochemical synthesis has been constructed in our laboratory. This equipment can operate at 20
Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods
NASA Astrophysics Data System (ADS)
Morasso, Carlo; Picciolini, Silvia; Schiumarini, Domitilla; Mehn, Dora; Ojea-Jiménez, Isaac; Zanchetta, Giuliano; Vanna, Renzo; Bedoni, Marzia; Prosperi, Davide; Gramatica, Furio
2015-08-01
In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the "seed-growth" solution. Our approach not only allows us to prepare nanorods with a four times increased Au3+ reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50-60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag+ ions in the seed-growth solution and the stability of the obtained particles has also been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaolei; Zhang, Yu; Li, Qiuyu
2014-11-15
Graphical abstract: A facile hydrothermal method for the synthesis of uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors with the assistance of sodium citrate (Na{sub 3}Cit). - Highlights: • Well-crystallized spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been synthesized. • The influence of the reaction temperature and reaction time were clearly shown. • The dosage of Na{sub 3}Cit has a strong effect on the spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors. • The growth mechanism for the formation of final samples was proposed. - Abstract: Highly uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been prepared by a facile hydrothermal method using sodium citrate (Na{sub 3}Cit)more » as the chelating reagent. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform-infrared spectroscopy (FT-IR) and photoluminescence spectra (PL) were used to characterize the resulting samples. The dosage of sodium citrate, reaction temperature and reaction time play key roles in the formation of the final samples. The possible formation mechanism for SrMoO{sub 4}:Eu{sup 3+} phosphors has been proposed. Upon excitation by ultraviolet radiation, the as-synthesized SrMoO{sub 4}:Eu{sup 3+} phosphors show the characteristic {sup 5}D{sub 0}–{sup 7}F{sub J} (J = 1, 2, 3, 4) emission lines with red emission {sup 5}D{sub 0}–{sup 7}F{sub 2} (613 nm) as the most prominent group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuemei, E-mail: qixuemei@shiep.edu.cn; School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090; Zhu, Xinyuan
2014-11-15
Graphical abstract: BiVO{sub 4} samples with various morphologies were synthesized via a simple ethylenediamine (EN) assisted hydrothermal route. One of the mixed crystal phase with spherical and porous morphology showed excellent photocatalytic activity and about 90% Rhodamine B was degraded after 140 min visible light irradiation. - Highlights: • BiVO{sub 4} samples with various morphologies were synthesized by hydrothermal method. • Ethylenediamine mainly acts as alkaline source to adjust pH values of precursor. • BiVO{sub 4} with spherical morphology has excellent photocatalytic activity. - Abstract: In this work, BiVO{sub 4} particles with different crystal structures and morphologies including hexahedral, sphericalmore » porous and hyperbranched ones were fabricated in the presence of ethylenediamine by hydrothermal process. The as-fabricated samples were well characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and ultraviolet–visible absorption spectroscopy. The results showed that the morphology and crystal structure of BiVO{sub 4} particles could be well controlled by only changing the ethylenediamine content in the deionized water solution. Photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B under visible-light irradiation. It was shown that BiVO{sub 4} sample with spherical porous morphology and mixed crystal phase exhibited the best photocatalytic performance after optimizing the ethylenediamine content. The best degradation ratio of Rhodamine B could reach about 87% after 140 min visible-light irradiation.« less
Recent progress in the synthesis of metal–organic frameworks
Sun, Yujia; Zhou, Hong -Cai
2015-09-25
Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to bemore » powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this study, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.« less
NASA Astrophysics Data System (ADS)
Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa
2017-08-01
SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.
Bei, Lei-Lei; Tao, Hong; Ma, Chih-Ming; Shiue, Angus; Chang, Chang-Tang
2014-04-01
This study used spent diatomaceous earth (SDE) from drink processing as source of Si and cationic surfactant (CTAB) as a template for the synthesis of mesoporous silica Materials (MSM) through hydrothermal method. The MSM was characterized by Small-angle X-ray Diffraction (SXRD), Scanning Electron Microscopy (SEM), Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy and N2 adsorption-desorption analyzer. The results showed that the surface area, pore volume and pore size was roughly ranged from 880 to 1060 m2 g(-1), 1.05 cm3 g(-1) and 4.0 nm, respectively. The properties of the synthesized MSM were also compared with those prepared from pure silica sources (MCM-41) and got almost the same characteristics. The synthesized MSM was used as adsorbent at 25 degrees C with carrier gas of air. The adsorption equilibrium revealed that adsorption capacity of MSM was 59.6, 65.7, 69.6, 84.9 mg g(-1) while the acetone concentration was 600, 800, 1000 ppm, 1600 ppm respectively. Results showed that breakthrough curves correlate to the challenge vapor concentration, adsorbent loading, and the flow rate. The results obtained in the present work demonstrated that it was feasibility of using the SDE as a potential source of silica to prepare MSM.
Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition
NASA Astrophysics Data System (ADS)
Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.
2018-04-01
Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.
Silva, M D P; Gonçalves, R F; Nogueira, I C; Longo, V M; Mondoni, L; Moron, M G; Santana, Y V; Longo, E
2016-01-15
Ag2W(1-x)MoxO4 (x=0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W(1-x)MoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W(1-x)MoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W(1-x)MoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W(1-x)MoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.
2017-08-01
Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.
Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less
Peptide synthesis in early earth hydrothermal systems
Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.
2009-01-01
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.
NASA Astrophysics Data System (ADS)
Celis, J. Almazán; Olea Mejía, O. F.; Cabral-Prieto, A.; García-Sosa, I.; Derat-Escudero, R.; Baggio Saitovitch, E. M.; Alzamora Camarena, M.
2017-11-01
Nanometric magnetite ( nm-Fe3O4) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO3)3ṡ9H2O, and ferrous sulfate, FeSO4ṡ7H2O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe3O4 particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of MS ˜ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Atanu; Bhaumik, Asim, E-mail: msab@iacs.res.i; Nandi, Mahasweta
2009-05-15
Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsetsmore » of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.« less
Quesada-Cabrera, Raul; Weng, Xiaole; Hyett, Geoff; Clark, Robin J H; Wang, Xue Z; Darr, Jawwad A
2013-09-09
High-throughput continuous hydrothermal flow synthesis was used to manufacture 66 unique nanostructured oxide samples in the Ce-Zr-Y-O system. This synthesis approach resulted in a significant increase in throughput compared to that of conventional batch or continuous hydrothermal synthesis methods. The as-prepared library samples were placed into a wellplate for both automated high-throughput powder X-ray diffraction and Raman spectroscopy data collection, which allowed comprehensive structural characterization and phase mapping. The data suggested that a continuous cubic-like phase field connects all three Ce-Zr-O, Ce-Y-O, and Y-Zr-O binary systems together with a smooth and steady transition between the structures of neighboring compositions. The continuous hydrothermal process led to as-prepared crystallite sizes in the range of 2-7 nm (as determined by using the Scherrer equation).
Effects for rapid conversion from abalone shell to hydroxyapaptite nanosheets by ionic surfactants.
Zhong, Shengnan; Wen, Zhenliang; Chen, Jingdi; Li, Qian; Shi, Xuetao; Ding, Shinnjyh; Zhang, Qiqing
2017-08-01
Hydroxyapatite (HAP) has been widely used for repairing or substituting human hard tissues. In this paper, two typical ionic surfactants, cation hexadecyltrimethylammonium bromide (CTAB) and anion sodium dodecyl sulfate (SDS), were used for rapid conversion of HAP from abalone shell. From field emission scanning electron microscopy (FESEM), the prepared HAP is flake-like structure. From X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal analysis, these samples contain a small amount of calcium carbonate whose content gradually increases by increasing the surfactants. The results showed that the HAP formed fast on the layer of abalone shell powder with the assistance of CTAB and SDS. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Xiaowei; Liu, Sheng; Li, Chenghui; Huang, Jiahao; Luv, Jixing; Xu, Pan; Liu, Jian; You, Xiao-Zeng
2016-06-01
In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles.In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02912d
Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M
2017-02-10
In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
NASA Astrophysics Data System (ADS)
Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu
2014-04-01
Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.
Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions
NASA Technical Reports Server (NTRS)
McCollom, T. M.; Ritter, G.; Simoneit, B. R.
1999-01-01
Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.
Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions
NASA Astrophysics Data System (ADS)
McCollom, Thomas M.; Ritter, Gilles; Simoneit, Bernd R. T.
1999-03-01
Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2-3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.
Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.
McCollom, T M; Ritter, G; Simoneit, B R
1999-03-01
Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn(3)O(4) nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ∼160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a "dissolution-recrystallization" which is followed by an "Ostwald ripening" mechanism. The Mn(3)O(4) nano-octahedrons exhibited an enhanced specific capacitance of 322 F g(-1) compared with the truncated octahedrons with specific capacitances of 244 F g(-1), making them a promising electrode material for supercapacitors.
Zeolite Coating System for Corrosion Control to Eliminate Hexavalent Chromium from DoD Applications
2009-08-01
Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis and Corrosion Resistance of Vanadium ZSM-5 Films, The American Institute of Chemical...Engineers National Meeting, October 30 - November 4, Cincinnati, Ohio. 8) Mao Y.; Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis of...directly at the solid-liquid interface from a synthesis solution during the coating formation process (Figure 2-4)12. The synthesis solution used is a
Prathap, M U Anu; Kaur, Balwinder; Srivastava, Rajendra
2012-03-15
In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors. Copyright © 2012 Elsevier Inc. All rights reserved.
2013-01-01
Background For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. Results Covellite (CuS) hexagonal plates were formed at copper ion: thiosulphate ion (Cu2+:S2O32−) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When Cu2+:S2O32− mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when Cu2+:S2O32− mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. Conclusions CuS hexagonal plates with a mean edge length of 1 μm, thickness of 100 nm and average crystallite size of approximately (45 ± 2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable Cu2+:S2O32− mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite phase decomposition. It was also identified that Cu2+:S2O32− mole ratio plays a vital role in controlling the amount of cyclooctasulphur (S8) in the final powder obtained. Finally, reaction time was recognized as an important parameter in impurity decomposition as well as increasing the crystallite size and crystallinity of the CuS hexagonal plates formed. PMID:23575312
Interfacial Effects and Organization of Inorganic-Organic Composite Solids.
1998-05-20
SITU NMR STUDY OF THE HYDROTHERMAL SYNTHESIS OF TEMPLATE-MEDIATED MICROPOROUS ALUMINOPHOSPHATE MATERIALS, Conne M Gersrdin, Pnnccton Univ, Dept...quantitatively characterize the hydrothermal medium while the synthesis proceeds can yield to a better description of the different steps of the...Inorganic-Organic Composite Solids," focused on recent applications in materials synthesis that use structure-directing agents and self-assembly
Hydrothermal method of synthesis of rare-earth tantalates and niobates
Nyman, May D; Rohwer, Lauren E.S.; Martin, James E
2012-10-16
A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.
Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.
Maheswari, Nallappan; Muralidharan, Gopalan
2016-09-28
Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.
Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2018-05-01
For the first time, a simple and rapid sonochemical technique for preparing of pure Cd 2 SiO 4 nanostructures has been developed in presence of various surfactants of SDS, CTAB and PVP. Uniform and fine Cd 2 SiO 4 nanoparticle was synthesized using of polymeric PVP surfactant and ultrasonic irradiation. The optimized cadmium silicate nanostructures added to graphene sheets and Cd 2 SiO 4 /Graphene nanocomposite synthesized through pre-graphenization. Hydrogen storage capacity performances of Cd 2 SiO 4 nanoparticle and Cd 2 SiO 4 /Graphene nanocomposite were compared. Obtained results represent that Cd 2 SiO 4 /Graphene nanocomposites have higher hydrogen storage capacity than Cd 2 SiO 4 nanoparticles. Cd 2 SiO 4 /Graphene nanocomposites and Cd 2 SiO 4 nanoparticles show hydrogen storage capacity of 3300 and 1300 mAh/g, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barge, L. M.; Flores, E.; Abedian, Y.; Maltais, T.; Cameron, R.; Hermis, N.; Chin, K.; Russell, M. J.; Baum, M. M.
2017-07-01
Hydrothermal minerals in alkaline vents can promote phosphorus and organic concentration, redox reactions driven by catalytic metal sulfides, and the ambient pH and redox gradients can affect the synthesis of organics.
The energetics of organic synthesis inside and outside the cell
Amend, Jan P.; LaRowe, Douglas E.; McCollom, Thomas M.; Shock, Everett L.
2013-01-01
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids. PMID:23754809
NASA Astrophysics Data System (ADS)
Dodoo-Arhin, D.; Nuamah, R. A.; Jain, P. K.; Obada, D. O.; Yaya, A.
2018-06-01
SnO2 nanoparticles were synthesized using the hydrothermal technique. Well crystalline particles with different morphologies and crystallite size in the range of 2 nm-10 nm were obtained by using Urea and Soduim Borohydride as reducing agents, and deploying Dioctyl Sulfosuccinate Sodium Salt (AOT) and Cetyl Trimethyl ammonium bromide (CTAB) as the surfactants. Samples have been characterised by X-ray diffraction, Scanning Electron microscopy, Energy Dispersive X-ray spectroscopy, specific surface area, porosity, and Fourier Transform Infrared spectroscopy. Preliminary studies on the potential electrochemical properties of the as-produced nanoparticles were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and potentiostatic charge-discharge in aqueous KOH electrolyte. The surfactant and reducing agents used in the synthesis procedure of SnO2 nanoparticles influenced the particle size and the morphology, which in turn influenced the capacitance of the SnO2 nanoparticles. The SnO2 electrode material showed pseudocapacitor properties with a maximum capacitance value of 1.6 Fg-1 at a scan rate of 5 mVs-1, an efficiency of 52% at a current of 1 mA and a maximum capacitance retention of about 40% after 10 cycles at a current of 1 mA. From the Nyquist plot, The ESR for the samples increase accordingly as SCA (31.5 Ω) < SAA (31.85 Ω) < SE (36.3 Ω) < SAT (36.92 Ω) < SCT (40.41 Ω) < SA < SC (53.97 Ω). These values are a confirmation of the low capacitance, efficiencies and capacitance retention recorded. The results obtained demonstrate the potential electrochemical storage applications of SnO2 nanoparticles without the addition of conductive materials.
Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property
Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan
2017-01-01
Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971
Hydrothermal synthesis of ammonium illite
Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.
1998-01-01
Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.
Thermodynamics of Strecker synthesis in hydrothermal systems
NASA Technical Reports Server (NTRS)
Schulte, Mitchell; Shock, Everett
1995-01-01
Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.
NASA Astrophysics Data System (ADS)
Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio
2017-11-01
TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.
Morphological evolution of prussian yellow Fe[Fe(CN){sub 6}] colloidal nanospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianmin, E-mail: jmgu@ysu.edu.cn; Fu, Shaoyan; Jin, Cuihong
2016-07-15
A simple hydrothermal system was developed for controllable morphologies of the Prussian yellow Fe[Fe(CN){sub 6}] nanostructures in the presence of organic additives. Hollow and solid nanospheres of the Prussian yellow materials were successfully synthesized with suitable experimental conditions. It is found that the amounts of organic additives CTAB could result in the formation of the spherical nanocrystals and the hydrolysis of phosphate in the solution could play a role in the final morphology of the products. A possible formation mechanism of the Prussian yellow nanostructures is proposed. - Graphical abstract: A hydrothermal process was developed for controllable fabrication of themore » Prussian yellow hollow and solid nanospheres with the employment of different phosphate. The hydrolysis of phosphate in the solution could play a role in the morphology of the Prussian yellow nanomaterials. The acid phosphate (NaH{sub 2}PO{sub 4}) could result in the formation of the solid nanoparticles. The alkalescent phosphate (Na{sub 2}HPO{sub 4}) could result in the formation of the hollow nanoparticles. Display Omitted.« less
Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.
Ibupoto, Z H; Khun, K; Willander, M
2014-09-01
Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com
2014-08-15
Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less
ERIC Educational Resources Information Center
Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.
2015-01-01
This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…
Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.
Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan
2017-08-24
Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hosseini-Benhangi, Pooya; Kung, Chun Haow; Alfantazi, Akram; Gyenge, Elöd L
2017-08-16
High-performance, nonprecious metal bifunctional electrocatalysts for the oxygen reduction and evolution reactions (ORR and OER, respectively) are of great importance for rechargeable metal-air batteries and regenerative fuel cells. A comprehensive study based on statistical design of experiments is presented to investigate and optimize the surfactant-assisted structure and the resultant bifunctional ORR/OER activity of anodically deposited manganese oxide (MnO x ) catalysts. Three classes of surfactants are studied: anionic (sodium dodecyl sulfate, SDS), non-ionic (t-octylphenoxypolyethoxyethanol, Triton X-100), and cationic (cetyltrimethylammonium bromide, CTAB). The adsorption of surfactants has two main effects: increased deposition current density due to higher Mn 2+ and Mn 3+ concentrations at the outer Helmholtz plane (Frumkin effect on the electrodeposition kinetics) and templating of the MnO x nanostructure. CTAB produces MnO x with nanoneedle (1D) morphology, whereas nanospherical- and nanopetal-like morphologies are obtained with SDS and Triton, respectively. The bifunctional performance is assessed based on three criteria: OER/ORR onset potential window (defined at 2 and -2 mA cm -2 ) and separately the ORR and OER mass activities. The best compromise among these three criteria is obtained either with Triton X-100 deposited catalyst composed of MnOOH and Mn 3 O 4 or SDS deposited catalyst containing a combination of α- and β-MnO 2 , MnOOH, and Mn 3 O 4 .The interaction effects among the deposition variables (surfactant type and concentration, anode potential, Mn 2+ concentration, and temperature) reveal the optimal strategy for high-activity bifunctional MnO x catalyst synthesis. Mass activities for OER and ORR up to 49 A g -1 (at 1556 mV RHE ) and -1.36 A g -1 (at 656 mV RHE ) are obtained, respectively.
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms
NASA Astrophysics Data System (ADS)
Xing, Ruimin; Liu, Shanhu; Tian, Shufang
2011-10-01
In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi
2012-09-15
Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less
Ionic liquid-assisted hydrothermal synthesis of dendrite-like NaY(MoO4)2:Tb3+ phosphor
NASA Astrophysics Data System (ADS)
Tian, Yue; Chen, Baojiu; Tian, Bining; Sun, Jiashi; Li, Xiangping; Zhang, Jinsu; Cheng, Lihong; Zhong, Haiyang; Zhong, Hua; Meng, Qingyu; Hua, Ruinian
2012-07-01
Micro-sized NaY(MoO4)2:Tb3+ phosphors with dendritic morphology was synthesized by a ionic liquid-assisted hydrothermal process. X-ray diffraction (XRD) indicated that the as-prepared product is pure tetragonal phase of NaY(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images showed that the as-prepared NaY(MoO4)2:Tb3+ phosphors have dendritic morphology. The photoluminescent (PL) spectra displayed that the as-prepared NaY(MoO4)2:Tb3+ phosphors show a stronger green emission with main emission wavelength 545 nm corresponding to the 5D4→7F5 transition of Tb3+ ion, and the optimal Tb3+ doping concentration for obtaining maximum emission intensity was confirmed to be 10 mol%. Based on Van Uitert's and Dexter's models the electric dipole-dipole (D-D) interaction was confirmed to be responsible for the concentration quenching of 5D4 fluorescence of Tb3+ in the NaY(MoO4)2:Tb3+ phosphors. The intrinsic radiative transition lifetime of 5D4 level is found to be 0.703 ms.
NASA Astrophysics Data System (ADS)
Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang
2014-07-01
Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingyong; Jin, Guoqiang; Tong, Xili
2011-11-15
Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less
Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana
2016-03-16
A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.
Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao
2009-05-19
Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.
A research on shape-controllable synthesis of Ag3PO4/AgBr and its degradation of ciprofloxacin.
Chen, Jingran; Yang, Xingyu; Zhu, Chenyu; Xie, Xin; Lin, Cuiping; Zhao, Yalei; Yan, Qishe
2018-03-01
Antibiotic ciprofloxacin is one of the commonly used broad spectrum fluoroquinolone human and veterinary drugs. Because of the overuse of human beings, the presence of ciprofloxacin has been detected in a variety of environmental matrices. To solve this problem, a facile, environmentally-friendly Ag 3 PO 4 /AgBr composite photocatalyst was synthesized by a simple precipitation method at room temperature in the presence of cetyltrimethyl ammonium bromide (CTAB). CTAB was served as surfactant and the source of bromide ions. The as-prepared Ag 3 PO 4 /AgBr microspheres were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that the Ag 3 PO 4 /AgBr sample (synthesized with CTAB, 0.8 g) exhibited the highest photocatalytic activity to the photodegradation rate of 96.36%. Moreover, mechanism detection experiment indicated that h + was the major active species in the degradation process. So the enhanced photocatalytic activity of Ag 3 PO 4 /AgBr composites is attributed to its excellent separation of photogenerated electron-hole pairs through Ag 3 PO 4 /AgBr heterojunction. Also, Ag 3 PO 4 /AgBr heterojunction has a lower band gap compared to pure Ag 3 PO 4 and pure AgBr, so higher efficiency of light harvesting is equipped.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Vaishali; Singh, Man
Currently, the development of micelles route is thrust area of research in nanoscience for the control particle size and remarkable properties through chemical co-precipitation method. A 0.9 mM aqueous CTAB micellar solution plays a role as capping agent in the homogeneous solution of 0.5 M ZnSO{sub 4} and 0.5 M Na{sub 2}S for synthesis, further precipitates purified with centrifugation in cold ethanol and millipore water to remove unreacted reagents and ionic salt particles. A resultant, white colored luminescent ZnS nanoparticle out with ∼95% yield is reported. The ZnS nanoparticles have been examined by their luminescence properties, optical properties and crystal structure.more » The mean particle size of ZnS nanoparticles is found to be ∼10 nm in various technical results and UV-absorption was 80 nm blue shifts moved from 345 nm (bulk material) to 265 nm, showing a quantum size impact. The X-ray diffraction (XRD) pattern shows the immaculate cubic phase. Photoluminescence (PL) investigates the recombination mechanism with blue emission from shallow electron traps at 490 nm in ZnS nanoparticles. An FTIR spectrum and Thermal gravimetric analysis (TGA) gives confirmation of CTAB – cationic surfactant on surface of ZnS nanoparticle as capping agent as well thermal stability of CTAB capped ZnS nanoparticles with respect to temperature.« less
Versatile hydrothermal synthesis of one-dimensional composite structures
NASA Astrophysics Data System (ADS)
Luo, Yonglan
2008-12-01
In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.
Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad
2017-03-01
The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.
NASA Astrophysics Data System (ADS)
Togashi, Takanari; Umetsu, Mitsuo; Naka, Takashi; Ohara, Satoshi; Hatakeyama, Yoshiharu; Adschiri, Tadafumi
2011-09-01
The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: 100 nm; width: 10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2-10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.
Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.
Guerrero, A; Goñi, S; Campillo, I; Moragues, A
2004-06-01
The optimization of parameters of synthesis of belite cement clinker from coal fly ash of high Ca content is presented in this paper. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100 degrees C, 150 degrees C, and 200 degrees C. The precursors obtained during the hydrothermal treatmentwere heated at temperatures of 700 degrees C, 800 degrees C, 900 degrees C, and 1000 degrees C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N2), and thermal analyses. From the results obtained we concluded that the optimum temperature of the hydrothermal treatment was 200 degrees C, and the optimum temperature for obtaining the belite cement clinker was 800 degrees C.
Hydrothermal systems as environments for the emergence of life
NASA Technical Reports Server (NTRS)
Shock, E. L.
1996-01-01
Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.
NASA Astrophysics Data System (ADS)
Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.
2018-04-01
In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.
NASA Astrophysics Data System (ADS)
Cheung, Ka Lun; Chen, Huanjun; Chen, Qiulan; Wang, Jianfang; Ho, Ho Pui; Wong, Chun Kwok; Kong, Siu Kai
2012-07-01
The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs.The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30435j
Hydrothermal synthesis and shape-reactivity correlation study of automotive three-way nanocatalysts.
DOT National Transportation Integrated Search
2014-02-01
In this project, we have shown that the hydrothermal method can be used to tune : the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully : prepared at low and high hydrothermal reaction temperature, respectively. The ...
Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard
2002-04-21
Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.
Synthesis of monodisperse MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3 nanoparticles at a water-toluene interface under conventional as well as microwave hydrothermal conditions using readily available nitrate or chloride salts and oleic acid as the dispersing agent is described. The ens...
Synthesis, characterization, and properties of low-dimensional nanostructured materials
NASA Astrophysics Data System (ADS)
Hu, Xianluo
2007-05-01
Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely microwave-assisted hydrothermal reduction/carbonization (MAHRC), is developed to prepare coaxial Ag/amorphous-carbon (a-C) nanocables. The as-grown Ag/C nanocables can self-assemble in an end-to-end fashion. (2) A novel Se/C nanocomposite with core-shell structures is prepared. The new material consists of a trigonal-Se (t-Se) core and an amorphous-C (a-C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. (3) A Fe 3O4/C nanocomposite is synthesized by a green wet-chemical approach. The product possesses porous microstructures and exhibits superparamagnetic behavior. The third major goal of this research is develop facile solution-based methods for preparing carbonaceous nano test tubes, thin films of metal iodides, and spherical selenium spheres: (1) Carbonaceous nano test tubes are fabricated by a facile "decoring" route using a core-sheath Te carbon nanocomposite as the precursor. The as-formed carbonaceous material looks like a "test tube" with an average diameter of about 120 nm and lengths up to 5 mum. (2) Tetrahedral-shaped CuI crystals were formed on a variety of copper substrates (e.g. grids, flat/porous foils, and macro-/nano- wires) via an interfacial reaction between a copper substrate and iodine in water at room temperature. This preparation approach can also be used to grow PbI2 and AgI nano- and micro-crystals with different morphologies on corresponding substrates. (3) Colloidal trigonal selenium (t-Se) microspheres are synthesized through a mild hydrothermal reduction reaction, using glucose as a reducing regent and water as an environmentally friendly solvent. Importantly, the resulting t-Se microspheres inherit functional groups from the starting materials and possess hydrophilic and biocompatible surfaces.
Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H
2014-02-21
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei
2017-03-01
A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.
Aminian, Mahdi; Nabatchian, Fariba; Vaisi-Raygani, Asad; Torabi, Mojgan
2013-03-15
The Bradford protein assay is a popular method because of its rapidity, sensitivity, and relative specificity. This method is subject to some interference by nonprotein compounds. In this study, we describe the interference of cetyltrimethylammonium bromide (CTAB) with the Bradford assay. This interference is based on the interaction of Coomassie Brilliant Blue G-250 (CBB) with this cationic detergent. This study suggests that both electrostatic and hydrophobic interactions are involved in the interaction of CTAB and CBB. The anionic and neutral forms of CBB bind to CTAB by electrostatic attraction, which accelerates hydrophobic interactions of these CBB forms and the hydrophobic tail of CTAB. Consequently, the hydrophobic regions of the dominant free cationic form of CBB dye compete for the tail of CTAB with two other forms of the dye and gradually displace the primary hydrophobic interactions and rearrange the primary CBB-CTAB complex. This interaction of CTAB and CBB dye produces a primary 650-nm-absorbing complex that then gradually rearranges to a complex that shows an absorbance shoulder at 800-950 nm. This study conclusively shows a strong response of CBB to CTAB that causes a time-dependent and nearly additive interference with the Bradford assay. This study also may promote an application of CBB for CTAB quantification. Copyright © 2012 Elsevier Inc. All rights reserved.
Room temperature growth of ZnO nanorods by hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo
2018-05-01
The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.
NASA Astrophysics Data System (ADS)
Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Lim, Hong Ngee; Tahir, Paridah Md; Razalli, Rawaida Liyana; Hoong, Yeoh Beng
2017-12-01
In this research, Tannin (TA) from Acacia mangium tree was used to modify polypyrrole (PPy) composite with enhanced physical and structural properties. Composite nanostructure preparation was done in the presence of cationic surfactant, cetyltrimethylammonium bromide (CTAB) to improve surface area and electron transferring of resulting polymer. The Fourier Transform InfraRed (FT-IR) spectrum showed the characteristics peaks of functional group of PPy, TA, and CTAB in the resulting composite indicating the incorporation of TA and CTAB into PPy structure. The spherical structure was observed for PPy/TA prepared in the presence of CTAB with higher porosity compared with the PPy/TA. Cyclic voltammograms of modified SPE electrode using Ppy/TA/CTAB showed enhanced current response compared with the electrode modified by only PPy or PPy/TA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil
2016-02-15
Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less
Holm, Nils G; Andersson, Eva
2005-08-01
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.
Nickel hydroxides and related materials: a review of their structures, synthesis and properties
Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.
2015-01-01
This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812
NASA Astrophysics Data System (ADS)
Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.
2014-01-01
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f
NASA Astrophysics Data System (ADS)
Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia
2016-03-01
Hierarchically assembled flower-like rutile TiO2 (FLH-R-TiO2) nanostructures were successfully synthesized from TiCl4 at room temperature without the use of surfactants or templates. An initial sol-gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO2 are discussed.
Chen, Weigen; Peng, Shudi; Zeng, Wen
2014-01-01
Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324
Zhang, Zhuomin; Wang, Qian; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen
2015-03-04
Co9S8, Ni3S2, and reduced graphene oxide (RGO) were combined to construct a graphene composite with two mixed metal sulfide components. Co9S8/RGO/Ni3S2 composite films were hydrothermal-assisted synthesized on nickel foam (NF) by using a modified "active metal substrate" route in which nickel foam acted as both a substrate and Ni source for composite films. It is found that the Co9S8/RGO/Ni3S2/NF electrode exhibits superior capacitive performance with high capability (13.53 F cm(-2) at 20 mA cm(-2), i.e., 2611.9 F g(-1) at 3.9 A g(-1)), excellent rate capability, and enhanced electrochemical stability, with 91.7% retention after 1000 continuous charge-discharge cycles even at a high current density of 80 mA cm(-2).
Synthesis and microstructural control of flower-like cadmium germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Yang, Y.; Pei, Y.Q.
Flower-like Cd{sub 2}Ge{sub 2}O{sub 6} have been synthesized using a facile hydrothermal process with ethylenediamine. The roles of hydrothermal conditions on the size and morphology of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} were investigated. The research results show that the obtained Cd{sub 2}Ge{sub 2}O{sub 6} presents a flower-like microstructures composed by radial nanorods with diameter of 50-100 nm and length of 0.5-2 {mu}m, respectively. The formation mechanism of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} is explained according to the ethylenediamine-assisted nucleation-'Ostwald ripening' process. - Highlights: {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures were synthesized using ethylenediamine. {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-likemore » microstructures can be controlled by growth conditions. {yields}Ethylenediamine induces the growth of the Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isley, Sara L.; Jordan, David S.; Penn, R. Lee
2009-01-08
This work investigates the role of ionic strength during synthesis, reflux, and hydrothermal aging of sol-gel synthesized titanium dioxide. Research presented here uses X-ray diffraction data and Rietveld refinements to quantify anatase, brookite, and rutile phases as functions of synthetic and aging variables. In addition, the Scherrer equation is used to obtain average crystallite sizes for each phase quantified. Results presented in this work demonstrate that the most control over the sol-gel products can be obtained by modifying the pH during hydrolysis. In addition, while varying the ionic strength during reflux and hydrothermal aging can result in enhanced control overmore » the crystalline phase and crystallite size, the most control can be achieved by varying the ionic strength during synthesis. Finally, sol-gel synthesis at low pH (-0.6) and high-chloride concentration (3 M NaCl) produced a heterogeneous sample composed of nanocrystalline anatase (3.8 nm) and rutile (2.9 nm)« less
NASA Astrophysics Data System (ADS)
Yasun, Emir; Li, Chunmei; Barut, Inci; Janvier, Denisse; Qiu, Liping; Cui, Cheng; Tan, Weihong
2015-05-01
Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells. Electronic supplementary information (ESI) available: Fig. S-1 to S-6 are included. See DOI: 10.1039/c5nr01704a
Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.
Rushdi, Ahmed I; Simoneit, Bernd R T
2005-12-01
Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.
Wang, Man; Hao, Fang; Li, Gang; Huang, Ji; Bao, Nan; Huang, Lihui
2014-06-01
Activated carbon was prepared from Enteromorpha prolifera (EP) by H3PO4 activation in the presence of doped cetyl trimethyl ammonium bromide (CTAB), producing EPAC-CTAB. The thermal decomposition process of the activated carbon substrate was identified by thermo-gravimetric analysis. Scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the physicochemical properties of native EPAC and EPAC-CTAB. EPAC-CTAB exhibited smaller surface area (689.0m(2)/g) and lower total pore volume (0.361cm(3)/g) than those of EPAC (1045.8m(2)/g and 1.048cm(3)/g), while the number of acidic groups, oxygen and nitrogen groups on the surface of EPAC-CTAB increased through CTAB doping. The batch kinetics and isotherm adsorption studies of nickel(II) onto the adsorbents were examined and agreed well with the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 16.9mg/g for EPAC and 49.8mg/g for EPAC-CTAB. Under acidic condition, the adsorption of nickel(II) onto EPAC and EPAC-CTAB was hindered due to ion competition and electrostatic repulsion. The results indicated that using CTAB as a dopant for EPAC modification could markedly enhance the nickel(II) removal. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting
2017-05-01
Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.
Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB
Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin
2012-01-01
The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515
Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.
1980-09-01
75 4.1 Hydrothermal Synthesis of Boracite Powders..... 75 4.2 Hydrothermal Growth of Boracite Crystals ......... 77...4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...Calculated temperature dependence of p/cc for DSP under biasing fields of 0, 2 and 5 kV/cm... 74 11 LIST OF ILLUSTRATIONS (Cont’d) Page Fig. 44: Hydrothermal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.
In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less
Machine-learning-assisted materials discovery using failed experiments
NASA Astrophysics Data System (ADS)
Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.
2016-05-01
Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.
Wang, Shengnan; Chen, Min; Wu, Limin
2016-12-07
A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)-xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300-460 nm) with large through-holes (10-30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm 3 ) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.
Musyoka, Nicholas M; Petrik, Leslie F; Gitari, Wilson M; Balfour, Gillian; Hums, Eric
2012-01-01
This study was aimed at optimizing the synthesis conditions for pure phase zeolite Na-P1 from three coal fly ashes obtained from power stations in the Mpumalanga province of South Africa. Synthesis variables evaluated were: hydrothermal treatment time (12-48 hours), temperature (100-160°C) and varying molar quantities of water during the hydrothermal treatment step (H(2)O:SiO(2) molar ratio ranged between 0-0.49). The optimum synthesis conditions for preparing pure phase zeolite Na-P1 were achieved when the molar regime was 1 SiO(2): 0.36 Al(2)O(3): 0.59 NaOH: 0.49 H(2)O and ageing was done at 47°C for 48 hours. The optimum hydrothermal treatment time and temperature was 48 hours and 140°C, respectively. Fly ashes sourced from two coal-fired power plants (A, B) were found to produce nearly same high purity zeolite Na-P1 under identical conditions whereas the third fly ash (C) lead to a low quality zeolite Na-P1 under these conditions. The cation exchange capacity for the high pure phase was found to be 4.11 meq/g. These results highlight the fact that adjustment of reactant composition and presynthesis or synthesis parameters, improved quality of zeolite Na-P1 can be achieved and hence an improved potential for application of zeolites prepared from coal fly ash.
Synthesis and characterization of graphene quantum dots-silver nanocomposites
NASA Astrophysics Data System (ADS)
Vandana, M.; Ashokkumar, S. P.; Vijeth, H.; Niranjana, M.; Yesappa, L.; Devendrappa, H.
2018-04-01
A facile microwave assisted hydrothermal method is used to synthesise glucose derived water soluble crystalline graphene quantum dots (GQDs) andcitrate reduction method was used to synthesized silver nanoparticles (SNPs). The formation of graphene quantum dots-silver nanocomposites (GSC) was synthesized through a simple refluxing process and characterised using Fourier Transform Infrared (FT-IR) to study the chemical interaction, Surface morphology using FESEM, Optical properties were studied using UV-Visible spectroscopy. The absorption band shows at 249, 306 and 447 nm confirms the formation of GQDs and GSC. The electrochemical performance of GSC tested to determine the oxidation/reduction processes by cyclic voltammetry and linear sweep voltammetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan
2015-02-15
Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less
Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang
2017-06-01
High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.
Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot
2012-10-31
In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.
NASA Astrophysics Data System (ADS)
Chung, Youngmin
Transition metal phosphate materials have been researched as candidates for lithium-ion battery cathodes for about two decades. Among them, vanadium phosphate compounds are attractive due to their higher free energy of reaction than the corresponding iron compounds, and the greater possible change of oxidation state from V5+ to V3+. This thesis work firstly focuses on the chemical and electrochemical lithiation of epsilon--VOPO4 investigating the possibility of multi-electron intercalation. The second focus is on hydrothermal synthesis and characterization of epsilon--LiVOPO4. The hydrothermal synthesis method developed in this work produces pure epsilon-LiVOPO 4 at high temperature hydrothermal reaction and pure LiVOPO4˙2H 2O at low temperature. The first charge capacity of hydrothermal epsilon-LiVOPO 4 is around 308 mAh/g, which is almost 97% of the theoretical capacity. It also shows good reversibility in the first five cycles after which capacity fading occurs. For more detailed structural analysis of hydrothermal epsilon-LiVOPO 4, we used in-situ synchrotron XRD and EXAFS upon heating combined with TGA-MS. These techniques have revealed intercalated protons that are removed at about 350 °C, and a reversible symmetry change from triclinic to monoclinic at high temperature. Furthermore, we have used chemical lithiation with BuLi to produce and characterize epsilon-Li2VOPO 4 phase. Finally, we have modified the hydrothermal method to produce Cr-substituted epsilon--LiVOPO4 by changing the amount LiOH and adding Cr precursor. Cr substitution is found to modify the stoichiometry of the compound and to improve its cyclability at both high and low current densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less
Demeke, Tigst; Ratnayaka, Indira; Phan, Anh
2009-01-01
The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.
Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V
2016-07-01
Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances
NASA Astrophysics Data System (ADS)
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g
NASA Astrophysics Data System (ADS)
Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan
2018-02-01
A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.
Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H
2010-02-01
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.
Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property
NASA Astrophysics Data System (ADS)
Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen
2016-03-01
A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.
NASA Astrophysics Data System (ADS)
Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela
2018-03-01
We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.
Sustainable synthesis of monodispersed spinel nano-ferrites
A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...
Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate
NASA Astrophysics Data System (ADS)
Widjonarko, D. M.; Mayasari, O. D.; Wahyuningsih, S.; Nugrahaningtyas, K. D.
2018-03-01
Modification of montmorillonite (MMt) with cetyltrimethylammonium bromide (CTAB) and tetraethyl ortosilicate (TEOS) has been done. The aim of the research is to study the effect of TEOS and CTAB into MMt. This research is a preliminary step to invent material that can be modified with other functional materials. The study was conducted by recting TEOS with MMt and varying CTAB concentration on MMt previously modified with TEOS. The TEOS concentration was 4.72 M while CTAB concentration was 0.25; 0.5; 2; 3.5; and 5 mmol/g in MMt which has been reacted with TEOS. Material characterization was done by X-Ray Diffraction (XRD), Fourrier Transform Infra-Red Spectrophotometer (FTIR) and Scanning Electron Microscope (SEM). Cation exchange capacity (CEC) of materials was analyzed by titration method. The results show that TEOS and CTAB successfully modified. TEOS adsorbed onto MMt. It was identified from increased basal spacing, specific group and also by its elemental composition, originally having basal spacing 16 Å. After modification with CTAB, basal spacing increased to 28.45 Å or 77.64%. This indicates that CTAB is intercalated within the MMt layers. The CEC of new material is 0.93 meq/g, increase from 0.83 meq/g.
NASA Astrophysics Data System (ADS)
Mishra, Smruti; Meher, Geetanjali; Chakraborty, Hirak
2017-11-01
Intrinsically disordered proteins (IDPs) are under intense analysis due to their structural flexibility and importance in biological functions. Minuscule modulation in the microenvironment induces significant conformational changes in IDPs, and these non-native conformations of the IDPs often induce aggregation and cause cell death. Changes in the membrane composition often change the microenvironment, which promote conformational change and aggregation of IDPs. κ-Casein, an important milk protein, belongs to the class of IDPs containing net negative charges. In this present work, we have studied the interaction of κ-casein with cetyltrimethyl ammonium bromide (CTAB), a positively charged surfactant, utilizing various steady state fluorescence, time-resolved fluorescence and circular dichroism spectroscopy. Our results clearly indicate that κ-casein undergoes at least two conformational transitions in presence of various concentrations of CTAB. The intrinsically disordered κ-casein assumes a partially folded conformation at lower concentration of CTAB, which adopts an unstructured conformation at higher concentration of CTAB. The partially folded conformation of κ-casein at a lower CTAB concentration might be induced by the favorable electrostatic interaction between the positively charged surfactant headgroup and net negative charges of the protein, whereas surfactant nature of CTAB is being pronounced at higher concentration of CTAB.
Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima
2006-01-01
Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.
Cao, Jinxu; Yang, Baixue; Wang, Yumei; Wei, Chen; Wang, Hongyu; Li, Sanming
2017-11-01
The feasibility of polymer brush as drug delivery vehicle was demonstrated with the goal of improving the dissolution and physical stability of poorly water-soluble drugs. Polymer brush CTAB/ZB-1 was synthesized by electrostatic interaction using a physical modification method with anionic poly (propylene-g-styrene sulphonic acid) fiber (ZB-1) as the substrate and cationic hexadecyltrimethylammonium bromide (CTAB) as the modifier. The polymer brush structure of CTAB/ZB-1 was validated by atomic force microscopy (AFM) and the channels of brush provided the drug loading sites. Flurbiprofen (FP), a BCS class II representative drug, was selected as the model poorly water-soluble drug to be loaded into this polymer brush. Then the drug loading and release were systematically investigated. Besides, the transformation from crystalline FP to amorphous state was observed by differential scanning calorimeter (DSC). In vitro dissolution in pure water and pH1.2 HCl media with/without 0.1% sodium dodecyl sulfate (SDS) was tested. Moreover, the optimal formulations (namely carrier/drug ratios) were determined. The results demonstrated prominent improvement of dissolution when FP was released from CTAB/ZB-1. After a long time storage, FP remained amorphous in CTAB/ZB-1 according to DSC determinations and performed an approximately equivalent dissolution compared with fresh samples, suggesting the advantage of CTAB/ZB-1 as carrier in enhancing the physical stability of drugs. The study introduced the versatile easily formulated polymer brush CTAB/ZB-1 and demonstrated the potential of polymer brush as an alternative approach for improving the dissolution and physical stability of poorly water-soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytogenetic evaluation of gold nanorods using Allium cepa test.
Rajeshwari, A; Roy, Barsha; Chandrasekaran, Natarajan; Mukherjee, Amitava
2016-12-01
The current study reveals the impact of gold nanorods (NRs) capped with CTAB (cetyltrimethylammonium bromide) or PEG (polyethylene glycol) on Allium cepa. The morphology and surface charge of CTAB- and PEG-capped gold NRs were characterized by electron microscopic and zeta potential analyses. The chromosomal aberrations like clumped chromosome, chromosomal break, chromosomal bridge, diagonal anaphase, disturbed metaphase, laggard chromosome, and sticky chromosome were observed in the root tip cells exposed to different concentrations (0.1, 1, and 10 μg/mL) of CTAB- and PEG-capped gold NRs. We found that both CTAB- and PEG-capped gold NRs were able to induce toxicity in the plant system after 4-h interaction. At a maximum concentration of 10 μg/mL, the mitotic index reduction induced by CTAB-capped gold NRs was 40-fold higher than that induced by PEG-capped gold NRs. The toxicity of gold NRs was further confirmed by lipid peroxidation and oxidative stress analyses. The unbound CTAB also contributed to the toxicity in root tip cells, while PEG alone shows less toxicity to the cells. The vehicle control CTAB contributed to the toxic effects in root tip cells, while PEG alone did not show any toxicity to the cells. The results revealed that even though both the particles have adverse effects on A. cepa, there was a significant difference in the mitotic index and oxidative stress generation in root cells exposed to CTAB-capped gold NRs. Thus, this study concludes that the surface polymerization of gold NRs by PEG can reduce the toxicity of CTAB-capped gold NRs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming
Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.
Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water
Hayashi, Hiromichi; Hakuta, Yukiya
2010-01-01
This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; Keum, Jong K; Naskar, Amit K
2018-05-29
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m 2 /g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.
Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.
Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen
2018-01-10
Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.
Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin.
Zainuddin, Norhidayu; Ahmad, Ishak; Kargarzadeh, Hanieh; Ramli, Suria
2017-05-01
Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bi, Shuyun; Wang, Yu; Pang, Bo; Yan, Lili; Wang, Tianjiao
2012-05-01
Two new systems for measuring DNA at nanogram levels by a resonance Rayleigh light scattering (RLS) technique with a common spectrofluorometer were proposed. In the presence of cetyltrimethylammonium bromide (CTAB), the interaction of DNA with hesperetin and apigenin (two effective components of Chinese herbal medicine) could enhance RLS signals with the maximum peak at 363 and 433 nm respectively. The enhanced intensity of RLS was directly proportional to the concentration of DNA in the range of 0.022-4.4 μg mL-1 for DNA-CTAB-hesperetin system and 0.013-4.4 μg mL-1 for DNA-CTAB-apigenin system. The detection limit was 2.34 ng mL-1 and 2.97 ng mL-1 respectively. Synthetic samples were measured satisfactorily. The recovery of DNA-CTAB-hesperetin system was 97.3-101.9% and that of DNA-CTAB-apigenin system was 101.2-109.5%.
The use of CTAB as an addition of DAP for improvement resisting acid rain on limestone
NASA Astrophysics Data System (ADS)
Xu, Feigao; Li, Dan
2017-11-01
The effect of hydroxyapatite (HA) formed by reacting limestone with mixture of diammonium hydrogen phosphate (DAP) and cetyltrimethylammonium bromide (CTAB) in the consolidation and protection of carbonate stones was investigated. Different concentration of CTAB was used in the experiments with mild condition in order to study how the CTAB affect the structure of HA. Moreover, the strengthening effect was evaluated with artificially limestone samples. The result of BET and XRD both showed that the structure of HA remained almost unchanged except its crystallinity was affected and specific surface area was decreased as the consequence of the addition of CTAB. A double application (as both coupling agent and consolidant) was also investigated, in which the samples were coated with DAP then followed by self-made product. The Scotch Tape test and hardness test both proved the cohesion between consolidant and limestone powder as well as its ability against acid rain were increased, which were ascribed to HA and CTAB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang
2015-08-15
Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.
2017-07-01
Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.
Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery
NASA Astrophysics Data System (ADS)
Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley
2018-08-01
A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.
Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin
2015-05-05
The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.
NASA Astrophysics Data System (ADS)
Saxena, Monika; Okram, Gunadhor Singh
2018-05-01
In the present work, we report the successful synthesis of stibnite Sb2S3 nanoparticles (NPs) by a facile polyol method using various surfactant. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy and Zeta potential. Rietveld refinement of XRD data confirms the single phase orthorhombic crystal structure of stibnite Sb2S3. Presence of six obvious Raman modes further confirmed their stoichiometric formation. Effect of different surfactants on the surface charge of Sb2S3 NPs was studied using Zeta potential measurement in deionized water at different pH values. They reveal that these NPs are more stable when it was synthesized in presence of EDTA than that of CTAB or without surfactant samples with high zeta potential. The isoelectronic point was found at pH = 6.4 for pure sample, 3.5 and 7.2 for CTAB and not found for EDTA Sb2S3 samples. This information can be useful for many industrial applications like pharmaceuticals, ceramics, waste water treatment and medicines.
The Preparation and Characterization of Natrolite Synthetized by Purified Attapulgite
NASA Astrophysics Data System (ADS)
Li, H. J.; Zhou, X. D.; Zhang, J. M.; Wu, X. Y.; Gao, H. B.
2017-06-01
This paper mainly researched the hydrothermal synthesis of Natrolite, using amorphous silicon source from the purified attapulgite. The effects of silicon source, silicon aluminum ratio, crystallization time and crystallization temperature on the synthesis of natrolite were investigated. The results showed that the optimal synthesis condition of natrolite was: Hydrothermal activated ATP with NaOH was silicon source, silicon aluminum ratio was 10:1, crystallization time lasted to 72h and crystallization temperature was 150°C, the template was removed by calcining 8 hours at 550°C. The structural formula of obtained natrolite is Na2Al2Si3O10•2H2O.
Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong
2015-01-01
Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption. PMID:28347064
Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong
2015-07-31
Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn
2015-07-15
Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. -more » Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.« less
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors
NASA Astrophysics Data System (ADS)
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-01
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-18
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng
2006-09-06
This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.
NASA Astrophysics Data System (ADS)
Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.
2010-05-01
Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin
2015-08-15
A variety of morphologically different α-MoO{sub 3} samples were prepared by hydrothermal synthesis and applied in the selective oxidation of propylene. Their catalytic performance was compared to α-MoO{sub 3} prepared by flame spray pyrolysis (FSP) and a classical synthesis route. Hydrothermal synthesis from ammonium heptamolybdate (AHM) and nitric acid at pH 1–2 led to ammonium containing molybdenum oxide phases that were completely transformed into α-MoO{sub 3} after calcination at 550 °C. A one-step synthesis of α-MoO{sub 3} rods was possible starting from MoO{sub 3}·2H{sub 2}O with acetic acid or nitric acid and from AHM with nitric acid at 180 °C.more » Particularly, if nitric acid was used during synthesis, the rod-like morphology of the samples could be stabilized during calcination at 550 °C and the following catalytic activity tests, which was beneficial for the catalytic performance in propylene oxidation. Characterization studies using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy showed that those samples, which retained their rod-like morphology during the activity tests, yielded the highest propylene conversion. - Graphical abstract: Hydrothermal synthesis from MoO{sub 3}·2H{sub 2}O in the presence of HNO{sub 3} led to rod-shaped particles which mainly expose (1 0 0) facets which are the most active surfaces. - Highlights: • Hydrothermal synthesis of MoO3 resulted in either rod or slab shaped particles depending on pH. • At pH<0 rods stable towards calcination and catalytic activity testing were formed. • Rod shaped particles had significantly higher activity than slab shaped ones. • The rod shaped particles mainly expose the (1 0 0) facets which are the most active surfaces. • Total surface area is not main determining factor for catalytic activity.« less
Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan
2010-07-20
The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.
NASA Astrophysics Data System (ADS)
Rani, Barkha; Jadhao, Charushila Vasant; Sahu, Niroj Kumar
2018-04-01
Defect-rich pristine tin oxide nanoparticles (SnO2 NPs) with high colloidal stability have been synthesized by tetramethylene glycol (TMG) mediated hydrothermal process and characterized by XRD, TEM, Zeta Potential, PL spectroscopy and porosity measurement techniques. XRD result suggests the formation of rutile phase of SnO2 with average crystallite size of 2.65 nm. TMG act as a structure directing agent assist in the formation of network like structure of SnO2 NPs as confirmed from TEM. Significant blue shifts in the UV absorption spectrum as that of the bulk and defect bands in the PL spectrum are observed. The nanomaterial possesses very high surface area of 263.102 m2/g and large pore volume. The above properties strongly influence the photocatalytic degradation of methylene blue dye. Very fast adsorption and 96% degradation (under UV irradiation) has been achieved when 10 ppm methylene blue solutions is catalysed by 20 mg SnO2 NPs which pave the way for potential environmental application.
Zhao, Weirong; Yang, Yong; Hao, Rui; Liu, Feifei; Wang, Yan; Tan, Min; Tang, Jing; Ren, Daqing; Zhao, Dongye
2011-09-15
Mesoporous wide bandgap semiconductors offer high photocatalytic oxidation and mineralization activities. In this study, mesoporous β-Ga(2)O(3) diamond nanorods with 200-300 nm in diameter and 1.0-1.2 μm in length were synthesized via a urea-based hydrothermal method using polyethylene glycol (PEG) as template agent. The UV photocatalytic oxidation activity of β-Ga(2)O(3) for gaseous toluene was evaluated, and 7 kinds of intermediates were monitored online by a proton transfer reaction mass spectrometry. Photoluminescence spectra manifested that the dosage and molecular weight of PEG are crucial for formation of vacancies and photocatalytic oxidation activities. A PEG-assisted hydrothermal formation mechanism of mesoporous β-Ga(2)O(3) diamond nanorods was proposed. Based on the health risk influence index (η) of the intermediates, the calculated health risks revealed that the β-Ga(2)O(3) nanorods with a η value of 9.6 are much safer than TiO(2) (η = 17.6). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Suyue; Wang, Yunlong; Wang, Cuiping; Zhang, Hui; Shen, Yuhua; Xie, Anjian
2016-02-01
Core/porous-shell olive-like crystalline BaWO4 is synthesized by a combined simple hydrothermal method and soft template approach. The prepared product shows an olive-like shape with diameter of ˜2 μm, length of ˜4 μm, and the thickness of the shell of about 65 nm, which are orderly assembled by many nanoparticles. A possible formation mechanism of olive-like BaWO4 microstructure involving interfacial recognization of ions, nucleation, aggregation, in situ growth and Ostwald ripening process is proposed. Polyacrylic acid sodium (PAAS) as a template plays an important role in inducing the nucleation and growth of olive-like BaWO4 microcrystalline. Other shapes of BaWO4 microcrystalline are also fabricated by varying the concentration of PAAS and Ba2+. The olive-like product with a core-shell structure which exists a large number of pores on crystal surface shows excellent photoluminescence property, which have potentially applied prospects in fields such as light display systems etc.
2013-01-01
Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176
NASA Astrophysics Data System (ADS)
Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang
2018-02-01
Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.
NASA Astrophysics Data System (ADS)
Drmosh, Qasem Ahmed Qasem
Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. Both FTIR and UV-Vis spectra showed a red shift in the presence of SDS and blue shift in presence of CTAB and OGM. The effect of post annealing temperature on dry ZnO2 nanoparticles prepared by PLA technique of solid zinc target in 3% H2O2 was studied by variation of the annealing temperatures from 100 to 600 °C for 8 hours under 1 atmospheric pressure. The XRD showed the phase transition from ZnO2 to ZnO at 200 °C. Based on XRD data, both the average grain size and lattice parameters of ZnO increased by post annealing of ZnO2 higher than 200 °C. In contrast, the band gap of ZnO nanoparticles decreased when the annealing temperature increased. The average sizes were 5, 6, 9, 15 and 19 nm at 200, 300, 400, 500 and 600 °C respectively. The PL emission spectra for ZnO showed strong UV emission peaks in all samples. In addition, the UV emission peaks were shifted to longer wavelength (red shifting) as the annealing temperature increase from 200 to 600 °C. From the above findings, we concluded that the grain size, lattice parameters, PL and band gap were size dependent as predicted by theoretical studies. (Abstract shortened by UMI.).
One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongjiang; School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001; Xu Yao
2008-09-15
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOSmore » have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.« less
Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P.; Zhang, Jiujun
2016-01-01
A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst. PMID:26860889
NASA Astrophysics Data System (ADS)
Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin
2018-02-01
Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.
Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite
NASA Astrophysics Data System (ADS)
Jeeva, Mark; Wan Zuhairi, W. Y.
2018-04-01
Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.
Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang
2017-03-01
The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.
Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin
2017-01-01
Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, J.; Zhu, L.; Qian, W.; Chen, H.; Feng, C.; Han, S.; Lin, H.; Ye, F. Y.
Glassy carbon electrodes (GCE) were modified by carboxylated graphene oxide/lanthanum with various concentrations of hexadecyl trimethyl ammonium bromide (CTAB), and the treated electrodes, called CTAB/GO-COOLa/GCE, were prepared for the detection of uric acid (UA) and dopamine (DA) by using the differential pulse voltammetry (DPV) and the cyclic voltammetry (CV). The results show that the modified electrode’s electrocatalytic activity could be affected by several factors in the examination, they are the pH value of the system, the main content of CTAB, various concentrations and rates of scan. With a combination of carboxylated graphene oxide/lanthanum and CTAB, the resulted CTAB/GO-COOLa/GCE sensors showed preeminent selectivity and obvious catalytic property toward the electro-oxidation of UA and DA. In optimized conditions, the response of the CTAB/GO-COOLa/GCE electrode for DA was linear in the region of 0.03-500.0μM with detection limits of 0.036μM (S/N=3). Two linear response ranges for the determination UA were obtained from ranges of 1 to 200μM and 200 to 1300μM with a detection limit of 0.42μM (S/N=3). Moreover, the refined electrode was used in the inspection of DA and UA in real samples of serum and urine successfully, displaying its potential application of real samples involved in electroanalysis.
Interference Lithography for Optical Devices and Coatings
2010-01-01
semiconductor quantum dots. J. Chem. Phys. 2004, 121, 7421. 100. Jeon, S.; Braun, P. V., Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles ...Silica Nanoparticle Synthesis .....................................................................23 2.2.2 Polymer Matrix Formulation...41 CHAPTER 3: NANOPARTICLE SYNTHESIS , FUNCTIONALIZATION, AND INCORPORATION INTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; ...
2018-05-29
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less
Peng, Mingming; Jiang, Jingang; Liu, Xue; Ma, Yue; Jiao, Meichen; Xu, Hao; Wu, Haihong; He, Mingyuan; Wu, Peng
2018-06-11
Zeolites, a class of crystalline microporous materials, have a wide range of practical applications, in particular serving as key catalysts in petrochemical and finechemical processes. Millions of zeolite topologies are theoretically possible. However, to date, only 235 frameworks with various tetrahedral element compositions have been discovered in nature or artificially synthesized, among which approximately 50 topologies are available in pure silica forms. Germanosilicates are becoming an important zeolite family, with a rapidly increasing number of topological structures with unusual double four-membered-ring (D4R) building units and large-pore or extra large-pore systems. The synthesis of their high-silica analogues with higher (hydro)thermal stability remains a great challenge because the formation of siliceous D4R units is kinetically and thermodynamically unfavorable in hydrothermal systems. Herein, we demonstrate that such D4R-containing high-silica zeolites with unexpected crystalline topologies (ECNU-24-RC and IM-20-RC) are readily constructed through a versatile route. This strategy provides new opportunities for the synthesis of high-silica zeolite catalysts that are hardly obtained by conventional hydrothermal synthesis and it would also facilitate a break-through in increasing the number and types of zeolite materials with practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jinxue; Zhou, Xiaoyu; Lu, Yibin
2012-12-15
Monodisperse FeWO{sub 4} nanoparticles with specific spindle-like morphology have been synthesized in the presence of citric acid through hydrothermal process. In the synthesis route, citric acid played four roles such as the reducing agent, chelating regents, structure-directing agent and stabilizing agents. In addition, the morphology of FeWO{sub 4} was dramatically tuned by the pH value of the precursor medium. The optical properties of FeWO{sub 4} were investigated with UV-Vis spectra and photoluminescence spectroscopy. The photocatalytic experiments demonstrated that the decomposition efficiency of the monodisperse spindle-like FeWO{sub 4} nanoparticles is 74% after 30 min of UV irradiation, which displayed remarkable enhancedmore » photodegradation activity compared with ordinary FeWO{sub 4} sample (57%) and normal TiO{sub 2} photocatalysts P-25 (56%). - Monodisperse spindle-like FeWO{sub 4} nanoparticles with enhanced photocatalytic activities. Highlights: Black-Right-Pointing-Pointer Monodisperse spindle-like FeWO{sub 4} were synthesized with hydrothermal method. Black-Right-Pointing-Pointer Citric acid plays key roles in the hydrothermal synthesis. Black-Right-Pointing-Pointer Their morphology can be tuned with pH value of the precursor medium. Black-Right-Pointing-Pointer They show enhanced photocatalytic activities with irradiation of UV light.« less
Eco-friendly Synthesis of Organics and Nanomaterials ...
The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m
Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3.
1986-03-27
oxalate , citrate) salt solutions, from mixed alkoxide precursors or from hydrothermal solutions. Typical starting materials and reaction sequences...decomposition and calcination reactions to form the BaTiO compound. Both the oxalate and 3 hydrothermal processes show commnercial promise and are briefly...thermal decomposition of oxalates and by hydrothermal synthesis. As-received lots of mixed oxide and oxalate -derived powders had Ba:TI ratios of 0.997 and
Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang
2007-03-01
A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.
Zhou, Li-Mei; Guo, Cai-Hong; Fu, Hai-Yan; Jiang, Xiao-Hui; Chen, Hua; Li, Rui-Xiang; Li, Xian-Jun
2012-07-01
The interactions of rhodium complex RhCl(CO)(TPPTS)(2) [TPPTS=P(m-C(6)H(4)SO(3)Na)(3)] with cationic, nonionic, and anionic surfactants have been investigated by UV-vis, fluorescence and (1)H NMR measurements. The presence of four different species of RhCl(CO)(TPPTS)(2) in cationic cetyltrimethylammonium (CTAB) solution has been demonstrated: free rhodium complex, rhodium complex bound to CTAB monomer, rhodium complex bound to CTAB premicelles, rhodium complex bound to CTAB micelles. The spectroscopy data show that RhCl(CO)(TPPTS)(2) can adsorb on the interface of cationic CTAB micelles by strong electrostatic attraction, weakly bind to the nonionic polyoxyethylene (20) sorbitan monolaurate (Tween 20) micelles by hydrophobic interaction, and does not interact with anion sodium dodecyl sulfate (SDS) micelles due to the strong electrostatic repulsion. Copyright © 2012 Elsevier B.V. All rights reserved.
Hydrothermal synthesis of bismuth germanium oxide
Boyle, Timothy J.
2016-12-13
A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.
Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...
2015-04-24
Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less
NASA Astrophysics Data System (ADS)
Varghese, Donna; Tom, Catherine; Krishna Chandar, N.
2017-11-01
CuO (Copper Oxide) nanoparticles were synthesized by a simple coprecipitation route by using copper acetate, sodium hydroxide as precursors and cetyltrimethyl ammonium bromide (CTAB) as surfactant. For the purpose of the study, the surfactant-CTAB treated and non-treated samples were synthesized separately. Both the synthesized samples were studied to understand their structural and optical properties. The formation of CuO and its crystallinity was confirmed by XRD. Further, the optical studies showed a defined blue shift in CTAB treated sample which is clear evidence that the particles undergo confinement when they are nano-regime.
Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H
2009-06-01
The adsorption of congo red (CR) onto chitosan (CS) beads impregnated by a cationic surfactant (CTAB, cetyl trimethyl ammonium bromide) was investigated. Chitosan beads impregnated at a ratio of 1/20 of CTAB to CS (0.05% of CTAB and 1% of CS) increased the CR adsorption capacity by 2.2 times from 162.3 mg/g (0% CTAB) to 352.5 mg/g (0.05% CTAB). The CR adsorption decreased with an increase in pH of the CR solution from 4.0 to 9.0. The Sips isotherm model showed a good fit with the equilibrium experimental data and the values of the heterogeneity factor (n) indicated heterogeneous adsorption of CR onto CS/CTAB beads, as well as CS beads. The kinetic data showed better fit to the pseudo second-order rate model than to the pseudo first-order rate model. The impregnation of CS beads by cationic surfactants showed the highest adsorption capacities of CR compared to any other adsorbents and would be a good method to increase adsorption efficiency for the removal of anionic dyes in a wastewater treatment process.
Mills, Amanda J; Wilkie, John; Britton, Melanie M
2014-09-11
The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.
NASA Astrophysics Data System (ADS)
Liu, Dianxin; Ning, Ping; Qu, Guangfei; Huang, Xi; Liu, Yuhuan; Zhang, Jian
2017-05-01
The methane fermentation study assisted with cathodic micro-voltage was carried out to investigate the electric field effects on the fermentation of hydrothermally pretreated lignocellulose substrate. It was illustrated that a 0.25V cathode voltage and hydrothermal pretreatment could improve the biogas production, biogas quality and lignocellulose degradation ratio significantly. The cumulative biogas productions in the fermentation of hydrothermally pretreated cow dungs at 50°C, 150°C and 200°C with a 0.25V cathode voltage were observed in a total of 6640mL, 9218mL and 9456mL respectively over a detention time of 33 days. In comparison with the fermentation pretreated at 200°C without any voltage, nearly doubled of cumulative biogas production was obtained in the process of cathode-assisted fermentation. It was also observed that the daily methane content greater than or equal to 70% in the biogas generated with cathode voltage were clearly greater than that without voltages. Furthermore, the fermentation applied with a 0.25V cathode voltage had resulted into significant increases of 12.64% and 9.44% in lignin and cellulose degradation ratio relative to voltage free fermentation. And in the process of fermentation applied with cathode voltage, the final lignocellulose degradation ratio increased with the hydrothermal pretreatment temperature. Thus, the hydrothermal pretreatment and assisting fermentation with low cathode voltage can effectively promote the lignocellulose degradation. All results revealed that cathodic micro-voltage combined with hydrothermal pretreatment can remarkably improve the fermentation of lignocellulosic materials, indicating that a more effective fermentation technology can be developed by applying with cathodic micro-voltage.
Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Thamarai Selvi, E.; Meenakshi Sundar, S.
2017-07-01
Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.
NASA Astrophysics Data System (ADS)
Wu, Pei-Rong; Cheng, Zhi-Lin; Kong, Ying-Chao; Ma, Zhan-Sheng; Liu, Zan
2018-05-01
Two-dimensional MoS2 nanosheets were synthesized by using halloysite nanotubes (HNTs) as template under the hydrothermal synthesis. The structure and morphology of the as-synthesized MoS2 nanosheets were determined by a series of characterizations. The results showed that the as-synthesized MoS2 nanosheets were of the plate-like structure with about five layers, and the basal spacing was about 0.63 nm. It was demonstrated that HNTs played a crucial template role in the formation of the plate-like MoS2 nanosheets. The formation mechanism was proposed. Furthermore, the tribological performance of the as-prepared MoS2 nanosheets in oil was intensively examined on the ball-on-ball wear tester. The testing results verified that the as-prepared MoS2 nanosheets as additive could significantly improve the friction performance of oil, which exhibited the good antifriction, antiwear, and load-carrying properties.
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
Prebiotic organic synthesis under hydrothermal conditions: an overview
NASA Astrophysics Data System (ADS)
Simoneit, Bernd R. T.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150 °C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100 to 400 °C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250 °C. The compounds range from C6 to >C33, including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Prebiotic Organic Synthesis under Hydrothermal Conditions - An Overview
NASA Astrophysics Data System (ADS)
Simoneit, B.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150°C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100- 400°C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250°C. The compounds range from C6 to >C3 3 , including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Synthesis of kalsilite from microcline powder by an alkali-hydrothermal process
NASA Astrophysics Data System (ADS)
Su, Shuang-qing; Ma, Hong-wen; Yang, Jing; Zhang, Pan; Luo, Zheng
2014-08-01
The properties of aluminosilicate kalsilite have attracted the interest of researchers in chemical synthesis, ceramic industry, biofuels, etc. In this study, kalsilite was hydrothermally synthesized from microcline powder in a KOH solution. The microcline powder, rich in potassium, aluminum, and silicon, was collected from Mountain Changling in Northwestern China. The effects of temperature, time, and KOH concentration on the decomposition of microcline were investigated. The kalsilite and intermediate products were characterized by means of wet chemistry analysis, X-ray Diffraction (XRD), infrared spectrometry (IR), 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR), 27Al MAS NMR, and scanning electron microscope (SEM). With increasing temperature, the microcline powder transforms into a metastable KAlSiO4 polymorph before transforming further into pure kalsilite. A mixture of both kalsilite and metastable KAlSiO4 polymorph is obtained when the hydrothermal reaction is carried out within 2 h; but after 2 h, kalsilite is the predominant product. The concentration of KOH, which needs to be larger than 4.3 M, is an important parameter influencing the synthesis of kalsilite.
Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Mukesh; Bhatnagar, Mukesh Chander
2018-05-01
In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.
Bakhtiari, L; Rezaie, H R; Javadpour, J; Erfan, M; Shokrgozar, M A
2015-08-01
Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer-Emmett-Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huff, Terry B.; Hansen, Matthew N.; Tong, Ling; Zhao, Yan; Wang, Haifeng; Zweifel, Daniel A.; Cheng, Ji-Xin; Wei, Alexander
2007-02-01
Plasmon-resonant gold nanorods have outstanding potential as multifunctional agents for image-guided therapies. Nanorods have large absorption cross sections at near-infrared (NIR) frequencies, and produce two-photon luminescence (TPL) when excited by fs-pulsed laser irradiation. The TPL signals can be detected with single-particle sensitivity, enabling nanorods to be imaged in vivo while passing through blood vessels at subpicomolar concentrations. Furthermore, cells labeled with nanorods become highly susceptible to photothermal damage when irradiated at plasmon resonance, often resulting in a dramatic blebbing of the cell membrane. However, the straightforward application of gold nanorods for cell-specific labeling is obstructed by the presence of CTAB, a cationic surfactant carried over from nanorod synthesis which also promotes their nonspecific uptake into cells. Careful exchange and replacement of CTAB can be achieved by introducing oligoethyleneglycol (OEG) units capable of chemisorption onto nanorod surfaces by in situ dithiocarbamate formation, a novel method of surface functionalization. Nanorods with a dense coating of methyl-terminated OEG chains are shielded from nonspecific cell uptake, whereas nanorods functionalized with folate-terminated OEG chains accumulate on the surface of tumor cells overexpressing their cognate receptor, with subsequent delivery of photoinduced cell damage at low laser fluence.
NASA Astrophysics Data System (ADS)
Wu, Jing; Fang, Jinghuai; Cheng, Mingfei; Gong, Xiao
2016-09-01
In this work, we aim to prepare effective and long-term stable hierarchical silver nanostructures serving as surface-enhanced Raman scattering (SERS) substrates simply via displacement reaction on Aluminum foils. In our experiments, Hexadecyltrimethylammonium bromide (CTAB) is used as cationic surfactant to control the velocity of displacement reaction as well as the hierarchical morphology of the resultant. We find that the volume ratio of CTAB to AgNO3 plays a dominant role in regulating the hierarchical structures besides the influence of displacement reaction time. These as-prepared hierarchical morphologies demonstrate excellent SERS sensitivity, structural stability and reproducibility with low values of relative standard deviation less than 20 %. The high SERS analytical enhancement factor of ~6.7 × 108 is achieved even at the concentration of Crystal Violet (CV) as low as 10-7 M, which is sufficient for single-molecule detection. The detection limit of CV is 10-9 M in this study. We believe that this simple and rapid approach integrating advantages of low-cost production and high reproducibility would be a promising way to facilitate routine SERS detection and will get wide applications in chemical synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Hui; He Xiaoyan; Cao Minhua
2009-03-05
Novel rose-like three-dimensional Sn(HPO{sub 4}){sub 2}.H{sub 2}O nanostructures self-assembled by tightly stacked nanopetals were successfully synthesized by a simple cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion system under solvothermal conditions for the first time. A series of compared experiments were carried out to investigate the factors that influence the morphology and size of the products. It was found that the molar ratio of water to CTAB and the concentration of SnCl{sub 4} aqueous solution play important roles in the formation of the rose-like nanostructures. A possible formation mechanism of rose-like nanostructures was proposed, which may be related to the crystal structure of Sn(HPO{submore » 4}){sub 2}.H{sub 2}O and the spherical micelles formed by the microemulsion. The electrochemical properties of Sn(HPO{sub 4}){sub 2}.H{sub 2}O were investigated through cyclic voltammetry (CV) measurements. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.« less
Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua
2010-04-01
A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.
Wu, C D; Wang, L; Hu, C X; He, M H
2013-01-01
The single-solute and bisolute sorption behaviour of phenol and trichloroethylene, two organic compounds with different structures, onto cetyltrimethylammonium bromide (CTAB)-montmorillonite was studied. The monolayer Langmuir model (MLM) and empirical Freundlich model (EFM) were applied to the single-solute sorption of phenol or trichloroethylene from water onto monolayer or multilayer CTAB-montmorillonite. The parameters contained in the MLM and EFM were determined for each solute by fitting to the single-solute isotherm data, and subsequently utilized in binary sorption. The extended Langmuir model (ELM) coupled with the single-solute MLM and the ideal adsorbed solution theory (IAST) coupled with the single-solute EFM were used to predict the binary sorption of phenol and trichloroethylene onto CTAB-montmorillonite. It was found that the EFM was better than the MLM at describing single-solute sorption from water onto CTAB-montmorillonite, and the IAST was better than the ELM at describing the binary sorption from water onto CTAB-montmorillonite.
Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite
NASA Astrophysics Data System (ADS)
Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu
2017-12-01
A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.
Adsorption behavior of bisphenol A on CTAB-modified graphite
NASA Astrophysics Data System (ADS)
Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun
2018-01-01
In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.
[Treatment of cetyltrimethyl ammonium bromide wastewater by potassium ferrate].
Yang, Wei-hua; Wang, Hong-hui; Zeng, Xiao-xu; Huang, Ting-ting
2009-08-15
A novel oxidant potassium ferrate (K2FeO4) was used to remove cetyltrimethyl ammonium bromide (CTAB) at room temperature. The effects of various conditions on the removal ratio, such as reaction time, dosing quantity of K2FeO4 and initial pH, were investigated. The experiments results show that the removal ratio reaches 79.4% when the reaction time is 30 min, the dosing quantity of K2FeO4 to CTAB is 1:1, the initial pH of the solution is 7. In the reaction progress, the oxidation of K2FeO4 and the flocculation of the reduction product have synergistic effect on the removal of CTAB. In addition, infrared spectra of CTAB before and after being treated with K2FeO4 were further studied. The results indicate that the degradation process involves the interruption of chain and the subsequent mineralization to inorganic molecules. Furthermore, the reaction of K2FeO4 and CTAB follows second order kinetics law.
Controlled synthesis and luminescence properties of β-NaGdF4: Yb3+, Er3+ upconversion nanoparticles
NASA Astrophysics Data System (ADS)
Zhang, Yueli; Yao, Lu; Xu, Dekang; Lin, Hao; Yang, Shenghong
2018-06-01
β-NaGdF4:Yb3+,Er3+ upconversion (UC) nanoparticles (UCNPs) were prepared by a facile hydrothermal process with the assistance of sodium ethylene diaminetetraacetate salt (EDTA-2Na). The morphologies of the β-NaGdF4 UCNPs were controlled by changing the doses of EDTA-2Na and NaOH in precursor. With increasing concentration of EDTA-2Na in precursor, the size of crystals decreased, resulting in the decreasing of luminescence intensity. With increasing concentration of NaOH in precursor, the morphology became more homogeneous. However, due to the reduction of grain size and crystal quality, the luminescence intensity decreased. Nevertheless, the above results demonstrated a simple route to fabricate homogeneous UCNPs.
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation
2015-01-01
This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232
Sung, Qing; Liu, Caiyun; Zhang, Guanyun; Zhang, Jian; Tung, Chen-Ho; Wang, Yifeng
2018-06-21
Novel 17-nuclear Zr-/Hf- oxide clusters ({Zr17} and {Hf17}) are isolated from aqueous systems. In the clusters, Zr/Hf ions are connected via μ3-O, μ3-OH and μ2-OH linkages into a pinwheel core which is wrapped with SO42-, HCOO- and aqua ligands. Octahedral hexanuclear Zr-/Hf- oxide clusters ({Zr6}oct and {Hf6}oct) are also isolated from the same hydrothermal system by decreasing the synthesis temperature. Structural analysis, synthetic conditions, vibrational spectra and ionic conductivity of the clusters are studied. Structural studies and synthesis inspection suggest that formation of {Zr6}oct and {Zr17} involves assembly of the same transferable building blocks, but the condensation degree and thermodynamic stability of the products increase with hydrothermal temperature. The role of {Zr6}oct and {Zr17} in the formation of ZrO2 nanocrystals are then discussed in the scenario of nonclassical nucleation theory. Besides, the Zr-oxide clusters exhibit ionic conductivity due to the mobility of protons. This study not only adds new members to the Zr-/Hf- oxide cluster family, but also establishes a connection from Zr4+ ions to ZrO2 in the hydrothermal preparation of zirconium oxide nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiangu Yan; Rui Li; Hossein Toghiani; Zhiyong Cai; Jilei Zhang
2015-01-01
Carbon nanospheres were synthesized by hydrothermal carbonization (HTC) of four different carbon sources: xylose, glucose, sucrose, and pine wood derived saccharides. The obtained carbon nanospheres were characterized for particle morphology and size, and surface functional groups. Morphological and structural differences among these saccharides derived HTC carbons...
Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis
NASA Technical Reports Server (NTRS)
Leif, Roald N.; Simoneit, Bernd R. T.
1995-01-01
A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.
Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone
NASA Astrophysics Data System (ADS)
Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong
2015-04-01
In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Chu, Deqing; Wang, Limin; Hu, Wenhui; Yang, Huifang; Sun, Jingjing; Zhu, Shaopeng; Wang, Guowei; Tao, Jian; Zhang, Songsong
2018-04-01
Novel three-dimensional octagonal-like CuO micro-/nanostructures with diameters ranging from 10 to 15 μm have been successfully prepared by hydrogen peroxide-assisted hydrothermal method and subsequent calcination. The product morphology can be changed by simply ordering the amount of hydrogen peroxide (H2O2). When the amounts of H2O2 is increased, the length of the corner portion is increased and the width is narrower. The obtained octagonal CuO nanostructures were evaluated for their ability for the degradation of hazardous organic contaminants in water under visible-light irradiation. Comparing with commercial CuO and other CuO products, the CuO octagonal nanostructures exhibit excellent performance for photocatalytic decomposition of RhB (Rhodamine B). It is well established that effective photocatalytic performance results from its unique 3D octagonal nanostructures. We believe that the present work will provide some ideas for further fabrication of other novel nanostructures and exploration of their applications.
Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng
2013-02-25
In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V
2010-11-01
Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.
NASA Astrophysics Data System (ADS)
Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.
2016-10-01
Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.
Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts
Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher
2010-01-01
Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.
Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.
2015-06-01
We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growthmore » in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.« less
Subramanian, Vaidyanathan; Murugesan, Sankaran
2014-04-29
The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa
2012-05-29
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
NASA Astrophysics Data System (ADS)
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa
2012-05-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
NASA Astrophysics Data System (ADS)
Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.
2017-07-01
Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
A review of nanostructured lithium ion battery materials via low temperature synthesis.
Chen, Jiajun
2013-01-01
Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing
2014-04-21
In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.
Szczeszak, Agata; Grzyb, Tomasz; Śniadecki, Zbigniew; Andrzejewska, Nina; Lis, Stefan; Matczak, Michał; Nowaczyk, Grzegorz; Jurga, Stefan; Idzikowski, Bogdan
2014-12-01
New interesting aspects of the spectroscopic properties, magnetism, and method of synthesis of gadolinium orthovanadates doped with Eu(3+) ions are discussed. Gd(1-x)Eu(x)VO4 (x = 0, 0.05, 0.2) bifunctional luminescent materials with complex magnetic properties were synthesized by a microwave-assisted hydrothermal method. Products were formed in situ without previous precipitation. The crystal structures and morphologies of the obtained nanomaterials were analyzed by X-ray diffraction and transmission and scanning electron microscopy. Crystallographic data were analyzed using Rietveld refinement. The products obtained were nanocrystalline with average grain sizes of 70-80 nm. The qualitative and quantitative elemental composition as well as mapping of the nanocrystals was proved using energy-dispersive X-ray spectroscopy. The spectroscopic properties of red-emitting nanophosphors were characterized by their excitation and emission spectra and luminescence decays. Magnetic measurements were performed by means of vibrating sample magnetometry. GdVO4 and Gd0.8Eu0.2VO4 exhibited paramagnetic behavior with a weak influence of antiferromagnetic couplings between rare-earth ions. In the substituted sample, an additional magnetic contribution connected with the population of low-lying excited states of europium was observed.
NASA Astrophysics Data System (ADS)
Niu, Jinfen; Dai, Peixuan; Zhang, Qian; Yao, Binghua; Yu, Xiaojiao
2018-02-01
In the present paper, a novel composite of BiOI/rGO with excellent visible-light photocatalytic activity was successfully fabricated via very different simple, fast and mild rapid microwave hydrothermal method. The BiOI/rGO -1(BG-1) was donated as a simple chemical mechanical and the BiOI/rGO -2(BG-2) was donated as one-step rapid microwave hydrothermal method. The BG-1 were composed of the BiOI microspheres with a diameter of about 1 μm and mixed heterogeneously with graphene. While, the BG-2 were consist of the BiOI nanoplates with the thickness of approximately 20 nm dispersed heterogeneously on the surface of rGO. The degradation of 40 mg/L methylene blue (MB) and 20 mg/L levofloxacin (LEV) under visible light irradiation can reach about 11 and 3 times than that of P25, respectively. Furthermore, the reactive species of hole was determined to dominant the photodegradation process. The intensive photocatlytic could ascribe to more effective electron transportation and separations, this conclusion was different with other studies. A possible photocatalytic mechanism of BG-2 was also proposed.
NASA Astrophysics Data System (ADS)
Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie
2017-03-01
Well-defined Fe3O4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe3O4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe3O4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature.
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
Spectral studies of N-nonyl acridine orange in anionic, cationic and neutral surfactants
NASA Astrophysics Data System (ADS)
Wiosetek-Reske, Agnieszka M.; Wysocki, Stanisław
2006-08-01
The spectroscopic and photophysical properties of N-nonyl acridine orange - a metachromatic dye useful as a mitochondrial probe in living cells - are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye-surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values Kb and f in the following order: Kb TX-100 > Kb CTAB > Kb SDS and fTX-100 > fCTAB > fSDS. NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye-surfactant complex τSDS > τTX-100 > τCTAB > τwater, the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.
Nanoscopic dynamics in hybrid hydroxyapatite-CTAB composite
NASA Astrophysics Data System (ADS)
Dubey, P. S.; Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Dutta, B.; Johnson, M.; Mukhopadhyay, R.
2017-06-01
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. HAp nanoparticles were synthesized by the co-precipitation method using cetyltrimethylammonium bromide (CTAB) micelles as a template and are characterized using x-ray diffraction, electron microscopy, and thermal gravimetric measurements. Transmission electron microscope (TEM) demonstrates the formation of rod-shaped HAp. Dynamics of CTAB in HAp-CTAB composite as studied by using quasielastic neutron scattering (QENS) technique is reported here. HAp-CTAB composite provides an ideal system for studying the dynamics of CTAB micelles without any aqueous media. QENS data indicate that the observed dynamics are reminiscent of localized motions in ionic micellar systems, consisting of segmental and fast torsional motions. Segmental dynamics has been described with a model, in which hydrogen atoms in the alkyl chain undergoes localized translation diffusion and the CH3 unit associated with the head group undergo 3-fold jump rotation. Within this model, the hydrogen atoms in the alkyl chain undergo diffusion within spherical domains having different radii and diffusivities. A simple linear distribution of the radius and diffusivity has been assumed, in which the CH2 unit nearest to the head group has the least value and the ones furthest from the head group, that is, at the end of the alkyl chain has the largest value. The fast torsional motion is described by a 2-fold jump rotation model. Quantitative estimate of the different parameters characterizing various dynamical motions active within the time scale of the instrument is also presented. We have provided a detailed description of the observed dynamical features in hybrid HAp-CTAB composite, a potential candidate for biomedical applications.
NASA Astrophysics Data System (ADS)
Chamakh, Mariem Mohamed; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali
Titania nanotubes (TiO2 nanotubes or TNT) are grown hydrothermally on cellulose nanocrystals (CNC) synthesized from microcrystalline cellulose. It is observed that the CNC are lost during synthesis due to its low thermal stability. This negative result of metal growth on CNC and its influence on thermal degradation are reported here.
2015-01-01
Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291
NASA Astrophysics Data System (ADS)
Wulan, Praswati PDK.; Wulandari, Hanifia; Ulwan, Sekar H.; Purwanto, Widodo W.; Mulia, Kamarza
2018-02-01
Cancer is a disease that causes many deaths globally. Cancer treatments have side effects that can danger the human body. Carbon nanotube (CNT) becomes drug (anti-cancer) delivery towards cancer cells that have been targeted. Yet, CNT tends to aggregate. It could be overcome by functionalization (modification) of CNT using Cetyltrimethyl Ammonium Bromide (CTAB). The variations we use were CNT-CTAB with a dose of CNT 100 mg and CTAB varied between 80, 90, 100, 110, and 120 mg. There were several stages of CNT modification process: dispersion, filtration, washing, and drying. The optimum condition obtained was on CNT-110 mg CTAB because it could be dispersed up to 70 hours better than pure CNT, Zeta Potential (ZP) ≥16 mV, and absorbance Uv-vis 1.05. Both the ZP value and the absorbance of Uv-vis showed the CNT dispersion modified to be better than the pure CNT. Furthermore, SEM-EDX did not produce structural damage to CNT modified surfaces, the percentage of the mass of Oxygen (O) elements as characteristic of increased hydrophilic properties, and Ni elements as toxic impurities become reduced. FTIR spectrum results showed the highest intensity occurred at CTAB CNT-110mg at 1221 m-1. This strong C-N vibration interaction suggests that CNTs CNT modification become readily dispersed in water.
Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing
2015-11-25
Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.
NASA Astrophysics Data System (ADS)
Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei
2013-02-01
A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.
NASA Astrophysics Data System (ADS)
Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang
2013-07-01
Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00951c
Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei
2016-01-01
Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim
Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less
Lu, Diannan; Liu, Zheng; Wu, Jianzhong
2006-01-01
Proteins fold in a confined space not only in vivo, i.e., folding assisted by molecular chaperons and chaperonins in a crowded cellular medium, but also in vitro as in production of recombinant proteins. Despite extensive work on protein folding in bulk, little is known about how and to what extent the thermodynamics and kinetics of protein folding are altered by confinement. In this work, we use a Gō-like off-lattice model to investigate the folding and stability of an all β-sheet protein in spherical cages of different sizes and surface hydrophobicity. We find whereas extreme confinement inhibits correct folding, a hydrophilic cage stabilizes the protein due to restriction of the unfolded configurations. In a hydrophobic cage, however, strong attraction from the cage surface destabilizes the confined protein because of competition between self-aggregation and adsorption of hydrophobic residues. We show that the kinetics of protein collapse and folding is strongly correlated with both the cage size and the surface hydrophobicity. It is demonstrated that a cage of moderate size and hydrophobicity optimizes both the folding yield and kinetics of structural transitions. To support the simulation results, we have also investigated the refolding of hen-egg lysozyme in the presence of cetyltrimethylammoniumbromide (CTAB) surfactants that provide an effective confinement of the proteins by micellization. The influence of the surfactant hydrophobicity on the structural and biological activity of the protein is determined with circular dichroism spectrum, fluorescence emission spectrum, and biological activity assay. It is shown that, as predicted by coarse-grained simulations, CTAB micelles facilitate the collapse of denatured lysozyme, whereas the addition of β-cyclodextrin-grafted-PNIPAAm, a weakly hydrophobic stripper, dissociates CTAB micelles and promotes the conformational rearrangement and thereby gives an improved recovery of lysozyme activity. PMID:16461405
Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.
We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less
Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang
2018-04-01
In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for FTS reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong
Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less
Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A
2016-09-01
Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical environments of submarine hydrothermal systems
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.
Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S
2009-12-01
A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).
Hydrothermal Synthesis of Nanostructured Vanadium Oxides
Livage, Jacques
2010-01-01
A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325
Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A
2017-04-10
High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.
Frabicating hydroxyapatite nanorods using a biomacromolecule template
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng
2011-02-01
Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.
NASA Astrophysics Data System (ADS)
Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai
2014-06-01
PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.
NASA Technical Reports Server (NTRS)
Fu, Qi; Socki, R. A.; Niles, Paul B.
2011-01-01
Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.
Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song
2016-01-01
Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967
Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide
NASA Astrophysics Data System (ADS)
Maulida, Iffana Dani; Sriatun, Taslimah
2015-09-01
Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.
Surfactant-assisted synthesis and electrochemical performances of Cu{sub 3}P dendrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuling, E-mail: liusl8888@yahoo.com.cn; Li, Shu; Wang, Jingping
2012-11-15
Highlights: ► Dendrite-like Cu{sub 3}P microstructures have been synthesized by a low-temperature method. ► The surfactant SDS was used as template. ► The as-obtained Cu{sub 3}P dendrites exhibit a high first discharge capacity. -- Abstract: Well-defined Cu{sub 3}P hierarchical dendrites were successfully synthesized by a facile and effective surfactant-assisted hydrothermal approach. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) indicated that the as-obtained Cu{sub 3}P had a well-crystallized hexagonal phase and consisted of a wealth of Cu{sub 3}P dendritic microstructures. A surfactant-assisted growth accompanied by the Ostwald ripening process was proposed for the formation. As anode materials for lithiummore » ion batteries, the electrochemical property of the Cu{sub 3}P dendrites was also examined. The results showed that the initial discharge capacity of the Cu{sub 3}P dendrites exceeded 1300 mA h/g and it still kept at 291 mA h/g after 20 cycles, which might be related to the size of Cu{sub 3}P particles and their assembly structure.« less
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
Lee, Kuan-Yi
2017-01-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
NBIT Program Phase I (2007-2010). Part 1, Chapters 1 Through 4
2009-08-27
2 schematically shows the sample prepared before hydrothermal synthesis . The thin layer of Zn was convered to ZnO nanowires during hydrothermal ... Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques; Jinwoo Cheon (Yonsei University, Korea) and A. Paul...Ion; Chapter 3 ? Ultra-Sensitive Biological Detection via Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques
The potential for prebiotic synthesis in hydrothermal systems. [Abstract only
NASA Technical Reports Server (NTRS)
Ferris, James P.
1994-01-01
Contemporary hydrothermal systems provide a reducing environment where organic compounds are formed and may react to generate the molecules used in the first living systems. The organic compounds percolate through mineral assemblages at a variety of temperatures so the proposed synthetic reactions are driven by heat and catalyzed by minerals (Ferris, 1992). Some examples of potential prebiotic reactions are discussed.
Mechanochemical approach for synthesis of layered double hydroxides
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Li, Shuping
2013-06-01
In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.
Detection of genetically modified soybean in crude soybean oil.
Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana
2014-02-15
In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ropers, M H; Novales, B; Boué, F; Axelos, M A V
2008-11-18
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.
Maximiano, Flavio A; Chaimovich, Hernan; Cuccovia, Iolanda M
2006-09-12
The rate of decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, NBOC, was determined in micelles of N-hexadecyl-N,N,N-trimethylammonium bromide or chloride (CTAB or CTAC), N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (DPS), N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), hexadecylphosphocholine (HPC), and their mixtures. Quantitative analysis of the effect on micelles on the velocity of NBOC decarboxylation allowed the estimation of the rate constants in the micellar pseudophase, k(m), for the pure surfactants and their mixtures. The extent of micellar catalysis for NBOC decarboxylation, expressed as the ratio k(m)/k(w), where k(w) is the rate constant in water, varied from 240 for HPS to 62 for HPC. With HPS or DPS, k(m) decreased linearly with CTAB(C) mole fraction, suggesting ideal mixing. With HPC, k(m) increased to a maximum at a CTAB(C) mole fraction of ca. 0.5 and then decreased at higher CTAB(C). Addition of CTAB(C) to HPC, where the negative charge of the surfactant is close to the hydrophobic core, produces tight ion pairs at the interface and, consequently, decreases interfacial water contents. Interfacial dehydration at the surface in equimolar HPC/CTAB(C) mixtures, and interfacial solubilization site of the substrate, can explain the observed catalytic synergy, since the rate of NBOC decarboxylation increases markedly with the decrease in hydrogen bonding to the carboxylate group.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments
NASA Astrophysics Data System (ADS)
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
NASA Astrophysics Data System (ADS)
Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.
2016-09-01
High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.
Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.
2017-12-01
Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.
NASA Technical Reports Server (NTRS)
Fu, Qi; Socki, Richard A.; Niles, Paul B.
2010-01-01
Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.
Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.
Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling
2015-01-01
The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (<2) was found to be much more favourable for the removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.
Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles
NASA Astrophysics Data System (ADS)
Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo
2011-03-01
Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.
NASA Astrophysics Data System (ADS)
Boca, Sanda C.; Astilean, Simion
2010-06-01
We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 °C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.
Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu
2017-01-01
To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814
Su, Yang; Wang, Yingqing; Owoseni, Olasehinde; Zhang, Yueheng; Gamliel, David Pierce; Valla, Julia A; McPherson, Gary L; John, Vijay T
2018-04-25
Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl 3 , to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304
Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals
2009-06-30
Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of
Enhancement of the inverted polymer solar cells via ZnO doped with CTAB
NASA Astrophysics Data System (ADS)
Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin
2018-02-01
A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.
Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors
NASA Astrophysics Data System (ADS)
Mančić, Lidija; Lojpur, Vesna; Marinković, Bojan A.; Dramićanin, Miroslav D.; Milošević, Olivera
2013-08-01
Examples of (Y2O3-Gd2O3):Eu3+ and Y2O3:(Yb3+/Er3+) rare earth oxide-based phosphors are presented to highlight the controlled synthesis of 1D and 2D nanostructures through simple hydrothermal method. Conversion of the starting nitrates mixture into carbonate hydrate phase is performed with the help of ammonium hydrogen carbonate solution during hydrothermal treatment at 200 °C/3 h. Morphological architectures of rare earth oxides obtained after subsequent powders thermal treatment at 600 and 1100 °C for 3 and 12 h and their correlation with the optical characteristics are discussed based on X-ray powder diffractometry, field emission scanning electron microscopy, infrared spectroscopy and photoluminescence measurements. Strong red and green emission followed by the superior decay times are attributed to the high powders purity and homogeneous dopants distribution over the host lattice matrix.
Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.
2017-01-01
Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504
Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae
2015-01-01
Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612
Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).
Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim
2016-04-13
Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.
NASA Astrophysics Data System (ADS)
Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming
2017-05-01
Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
2012-01-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113
Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen
2015-12-01
In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).
NASA Astrophysics Data System (ADS)
Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim
2018-03-01
Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis
).
Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li
2008-05-01
CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.
Roy, Priyanka; Das, Nandini
2017-05-01
Li containing Bikitaite zeolite has been synthesized by an ultrasound-assisted method and used as a potential material for hydrogen storage application. The Sonication energy was varied from 150W to 250W and irradiation time from 3h to 6h. The Bikitaite nanoparticles were characterized by X-ray diffraction (XRD), infrared (IR) spectral analysis, and field-emission scanning electron microscopy (FESEM) thermo-gravimetrical analysis and differential thermal analysis (TGA, DTA). XRD and IR results showed that phase pure, nano crystalline Bikitaite zeolites were started forming after 3h irradiation and 72h of aging with a sonication energy of 150W and nano crystalline Bikitaite zeolite with prominent peaks were obtained after 6h irradiation of 250W sonic energy. The Brunauer-Emmett-Teller (BET) surface area of the powder by N 2 adsorption-desorption measurements was found to be 209m 2 /g. The TEM micrograph and elemental analysis showed that desired atomic ratio of the zeolite was obtained after 6h irradiation. For comparison, sonochemical method, followed by the hydrothermal method, with same initial sol composition was studied. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, and sonication time phase formation was almost completed. The FESEM images revealed that 50nm zeolite crystals were formed at room temperature. However, agglomerated particles having woollen ball like structure was obtained by sonochemical method followed by hydrothermal treatment at 100°C for 24h. The hydrogen adsorption capacity of Bikitaite zeolite with different Li content, has been investigated. Experimental results indicated that the hydrogen adsorption capacities were dominantly related to their surface areas as well as total pore volume of the zeolite. The hydrogen adsorption capacity of 143.2c.c/g was obtained at 77K and ambient pressure of (0.11MPa) for the Bikitaite zeolite with 100% Li, which was higher than the reported values for other zeolites. To the best of our knowledge, there is no report on the synthesis of a Bikitaite zeolite by sonochemical method for H 2 storage. Copyright © 2016. Published by Elsevier B.V.
Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.
2015-11-15
Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less
Abiotic Organic Chemistry in Hydrothermal Systems.
NASA Astrophysics Data System (ADS)
Simoneit, B. R.; Rushdi, A. I.
2004-12-01
Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.
Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong
2014-10-28
Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.
NASA Astrophysics Data System (ADS)
Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed
2018-01-01
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.
Hydrothermal Synthesis of Dicalcium Silicate Based Cement
NASA Astrophysics Data System (ADS)
Dutta, N.; Chatterjee, A.
2017-06-01
It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.
Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion
NASA Astrophysics Data System (ADS)
Singh, Pinki; Upadhyay, Chandan
2018-05-01
The synthesis parameters crucially affect the physical and chemical parameters of nanoparticles. Magnetite (Fe3O4) nanoparticles were synthesized using microemulsion method. This method does not require high temperature synthesis, nitrogen environment and/or pH regulation during synthesis process. We are presenting here a systematic study on role of different associated parameters of microemulsion synthesis method on the formation of Fe3O4 nanoparticles. From X-ray Diffraction and Transmission Electron Micoscopy data analysis the size of synthesized particles were observed to be <10 nm. The critical concentration of ferrous-ferric solution to obtain particles in single phase has been found to be ≤0.09 M and ≤0.184 M, respectively. The variation of molar concentration (0.01 M ≤x≤ 0.1 M) of CTAB leads to formation of Fe3O4 nano-scale particles of distinct morphologies e.g. nano-cubes, pentagons and spheres. The number of ferrous and ferric ions involved in the formation decides the size of the nanoparticles. The single crystallographic phase is obtained in reaction temperature range of 65° C
Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A
2013-01-01
A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Thu; Striolo, Alberto; Turner, C. Heath
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
Le, Thu; Striolo, Alberto; Turner, C. Heath; ...
2017-08-21
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less
Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime
Tantawy, M. A.; Shatat, M. R.; El-Roudi, A. M.; Taher, M. A.; Abd-El-Hamed, M.
2014-01-01
This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110–150°C for 2–5 hours, calcined at 600–700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α′-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba2+ ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours. PMID:27437495
Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime.
Tantawy, M A; Shatat, M R; El-Roudi, A M; Taher, M A; Abd-El-Hamed, M
2014-01-01
This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110-150°C for 2-5 hours, calcined at 600-700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α'-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba(2+) ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours.
Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom
2018-06-01
We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.
NASA Astrophysics Data System (ADS)
Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen
2018-01-01
Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-12-15
Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less
Microwave-assisted synthesis and humidity sensing of nanostructured {alpha}-Fe{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Rupali G.; Badadhe, Satish S.; Mulla, Imtiaz S.
2009-05-06
Nanocrystalline {alpha}-Fe{sub 2}O{sub 3} has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO{sub 3}){sub 3}.9H{sub 2}O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured {alpha}-Fe{sub 2}O{sub 3} comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and {approx}50 nm length. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fastmore » linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} appears to be a promising humidity sensing material with the potential for commercialization.« less
NASA Astrophysics Data System (ADS)
Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang
2017-11-01
Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.
NASA Astrophysics Data System (ADS)
Chen, Jinsuo; Xia, Yunfei; Yang, Jin; Chen, Beibei
2018-06-01
The extremely low friction between incommensurate two-dimensional (2D) atomic layers has recently attracted a great interest. Here, we demonstrated a promising surfactant-assisted strategy for the synthesis of MoS2/reduced graphene oxide (MoS2/rGO) hybrid materials with monolayer MoS2 and rGO, which exhibited excellent tribological metrics with a friction coefficient of ˜ 0.09 and a wear rate of ˜ 2.08 × 10-5 mm3/Nm in the ethanol dispersion. The incommensurate 2D atomic layer interface formed due to intrinsic lattice mismatch between MoS2 and graphene was thought to be responsible for the excellent lubricating performances. In addition to the benefits of unique hybrid structure, MoS2/rGO hybrids could also adsorb on metal surfaces and screen the metal-metal interaction to passivate the metal surfaces with a consequent reduction of corrosion wear during sliding. This work could pave a new pathway to design novel materials for pursuing excellent tribological properties by hybridizing different 2D atomic-layered materials.
NASA Astrophysics Data System (ADS)
Chen, I.-Li; Wei, Yu-Chen; Chen, Tsan-Yao; Hu, Chi-Chang; Lin, Tsang-Lang
2014-12-01
Thermally stable and porous RuO2·xH2O with superior rate-retention capability is prepared by the H2O2-oxidative precipitation method modified with the cetyltrimethylammonium bromide (CTAB) template. The specific capacitance and rate-retention of RuO2·xH2O are considerably enhanced by the CTAB modification and annealing at 200 °C because of extremely localized crystallization and pore opening of slightly sintered RuO2·xH2O nanoparticles trapped with CTAB. This unique structure, confirmed by the X-ray absorption spectroscopic (XAS), Raman spectroscopic, and transmission electron microscopic (TEM) analyses, favors the utilization of RuO2·xH2O nanocrystals and increases the electrolyte accessibility in comparing with RuO2·xH2O without CTAB modification. The preferential orientation growth along the {101} facet of RuO2 nanocrystals in some local regions is acquired by the CTAB modification and annealing in air at temperatures ≥350 °C. Such preferential orientation growth of RuO2 crystallites is attributable to the oxidation of trapped surfactants during the thermal annealing process, which adsorb on the high surface energy planes of RuO2.
Langmuir-Gibbs Surface Phases and Transitions
NASA Astrophysics Data System (ADS)
Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin
2007-03-01
Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).
Date, Abhijit A; Srivastava, Deepika; Nagarsenker, Mangal S; Mulherkar, Rita; Panicker, Lata; Aswal, Vinod; Hassan, Puthusserickal A; Steiniger, Frank; Thamm, Jana; Fahr, Alfred
2011-10-01
In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established. The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB-LeciPlex or DDAB-LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB-LeciPlex and DDAB-LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB-LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery.
Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You
2014-02-01
Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Likun; Zhao, Kongshuang
2007-08-14
Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.
Surface-modified gold nanorods for specific cell targeting
NASA Astrophysics Data System (ADS)
Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun
2012-05-01
Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.
NASA Astrophysics Data System (ADS)
Chen, Linfeng; Xie, Jining; Aatre, Kiran R.; Yancey, Justin; Chetan, Sahitya; Srivatsan, Malathi; Varadan, Vijay K.
2011-04-01
This report discusses our work on synthesis of hematite and maghemite nanotubes, analysis of their biocompatibility with pheochromocytoma cells (PC12 cells), and study of their applications in the culture of dorsal root ganglion (DRG) neurons and the delivery of ibuprofen sodium salt (ISS) drug model. Two methods, template-assisted thermal decomposition method and hydrothermal method, were used for synthesizing hematite nanotubes, and maghemite nanotubes were obtained from the synthesized hematite nanotubes by thermal treatment. The crystalline, morphology and magnetic properties of the hematite and maghemite nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The biocompatibility of the synthesized hematite nanotubes was confirmed by the survival and differentiation of PC12 cells in the presence of the hematite nanotubes coupled to nerve growth factor (NGF). To study the combined effects of the presence of magnetic nanotubes and external magnetic fields on neurite growth, laminin was coupled to hematite and maghemite nanotubes, and DRG neurons were cultured in the presence of the treated nanotubes with the application of external magnetic fields. It was found that neurons can better tolerate external magnetic fields when magnetic nanotubes were present. Close contacts between nanotubes and filopodia that were observed under SEM showed that the nanotubes and the growing neurites interacted readily. The drug loading and release capabilities of hematite nanotubes synthesized by hydrothermal method were tested by using ibuprofen sodium salt (ISS) as a drug model. Our experimental results indicate that hematite and maghemite nanotubes have good biocompatibility with neurons, could be used in regulating neurite growth, and are promising vehicles for drug delivery.
NASA Astrophysics Data System (ADS)
Shkir, Mohd; AlFaify, S.; Yahia, I. S.; Hamdy, Mohamed S.; Ganesh, V.; Algarni, H.
2017-10-01
Low-temperature hydrothermal-assisted synthesis of pure and cesium (Cs) (1, 3, 5, 7 and 10 wt%) doped lead iodide (PbI2) nanorods and nanosheets have been achieved successfully for the first time. The structural and vibrational studies confirm the formation of a 2H-polytypic PbI2 predominantly. Scanning electron microscope analysis confirms the formation of well-aligned nanorods of average size 100 nm at low concentration and nanosheets of average thicknesses in the range of 20-40 nm at higher concentrations of Cs doping. The presence of Cs doping was confirmed by energy dispersive X-ray study. Ultra-violet-visible absorbance spectra were recorded, and energy gap was calculated in the range of 3.33 to 3.45 eV for pure and Cs-doped PbI2 nanostructures which is higher than the bulk value (i.e., 2.27 eV) due to quantum confinement effect. Dielectric constant, loss, and AC conductivity studies have been done. Enhancement in Gamma linear absorption coefficient due to Cs doping confirms the suitability of prepared nanostructures for radiation detection applications. Furthermore, the photocatalytic performance of the synthesized nanostructures was evaluated in the decolorization of methyl green (MG) and methyl orange (MO) under the illumination of visible light (λ > 420 nm). The observed photocatalytic activity for 5 and 7 wt% Cs-doped PbI2 was observed to be more than pure PbI2 and also > 10 times higher than the commercially available photocatalysts. The results suggest that the prepared nanostructures are highly applicable in optoelectronic, radiation detection and many other applications. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Agusu, La; Ode Ahmad, La; Anggara, Desna; Alimin; Mitsudo, Seitaro; Fujii, Yutaka; Kikuchi, Hiromitsu
2018-04-01
Reduced graphene oxide has been synthesihzed by one-pot microwave assisted hydrothermal method. Effects of microwave power and irradiation time to its crystal structure and electrical conductivity were investigated. Here, graphene oxide, firstly, were synthesized by modified hummers method and subsequently mixed with Zn as a reducing agent. Then it was transferred to modified domestic microwave oven (800 watts) with glass distiller equipment for completely reduction process. Three different power levels (240, 400, 630 watts) and two cases of irradiation times (20 and 40 minutes) were treated. XRD study shows that irradiation time variation is more effective than the variation of power level. Power level of 270 watts and for 40 minutes microwave irradiation are enough for producing estimated bilayer rGO with graphene interlayer of ~0.4 nm. Bilayer graphene and water molecule (~0.3 nm) may vibrate the same manner and perhaps they are accepting the same temperature. Graphene seems to be re-arranged in unspecified way among the thermal pressure, temperature gradient and/or water surface tension between graphene and water induced by microwave, in order to achieve thermal equilibrium through out the system The electrical conductivity rGO/PVA (60/40 %w) paper are ranging from 15.6 to 43.4 mS/cm.
Rapid Synthesis of Carbon Dots by Hydrothermal Treatment of Lignin
Chen, Wenxin; Hu, Chaofan; Yang, Yunhua; Cui, Jianghu; Liu, Yingliang
2016-01-01
A rapid approach has been developed for the fluorescent carbon dots (CDs) by the hydrothermal treatment of lignin in the presence of H2O2. The as-synthesized CDs were found to emit blue photoluminescence with excellent photostability. Moreover, the CDs displayed biocompatibility, low cytotoxicity, and high water solubility properties. Finally, the as-resulted CDs were demonstrated to be excellent probes for bioimaging and biosensing applications. PMID:28773309
Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes
2015-05-12
hierarchical structures comprising nitrogen- doped reduced GO (rGO) and acid- oxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber...structures comprising nitrogen- doped reduced GO (rGO) and acidoxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber micro... doped into Co/SiO2 catalysts to change their chirality selectivity. Further, enrichment of (9,8) nanotubes was carried out by extraction using fluorene
Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres
NASA Astrophysics Data System (ADS)
Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui
2017-05-01
Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.
Saat, Gülbahar; Balci, Fadime Mert; Alsaç, Elif Pınar; Karadas, Ferdi; Dag, Ömer
2018-01-01
Mesoporous thin films of transition metal lithiates (TML) belong to an important group of materials for the advancement of electrochemical systems. This study demonstrates a simple one pot method to synthesize the first examples of mesoporous LiCoO 2 and LiMn 2 O 4 thin films. Molten salt assisted self-assembly can be used to establish an easy route to produce mesoporous TML thin films. The salts (LiNO 3 and [Co(H 2 O) 6 ](NO 3 ) 2 or [Mn(H 2 O) 4 ](NO 3 ) 2 ) and two surfactants (10-lauryl ether and cethyltrimethylammonium bromide (CTAB) or cethyltrimethylammonium nitrate (CTAN)) form stable liquid crystalline mesophases. The charged surfactant is needed for the assembly of the necessary amount of salt in the hydrophilic domains of the mesophase, which produces stable metal lithiate pore-walls upon calcination. The films have a large pore size with a high surface area that can be increased up to 82 m 2 g -1 . The method described can be adopted to synthesize other metal oxides and metal lithiates. The mesoporous thin films of LiCoO 2 show promising performance as water oxidation catalysts under pH 7 and 14 conditions. The electrodes, prepared using CTAN as the cosurfactant, display the lowest overpotentials in the literature among other LiCoO 2 systems, as low as 376 mV at 10 mA cm -2 and 282 mV at 1 mA cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Junqiu; Yan, Juping; Wang, Yingte; Zhang, Yong
2018-07-01
A facile and economic approach to synthesis highly fluorescence carbon dots (CDs) via one-step hydrothermal treatment of D-sorbitol was presented. The as-synthesized CDs were characterized by good water solubility, well monodispersion, and excellent biocompatibility. Spherical CDs had a particle size about 5 nm and exhibited a quantum yield of 8.85% at excitation wavelength of 360 nm. In addition, the CDs can serve as fluorescent probe for sensitive and selective detection of Fe3+ ions with the detection limit of 1.16 μM. Moreover, the potential of the as-prepared carbon dots for biological application was confirmed by employing it for fluorescence imaging in MCF-7 cells.
Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
NASA Astrophysics Data System (ADS)
Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.
2012-07-01
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.
Hydrothermal synthesis of TiO2/WO3 compositions and their photocatalytic activity
NASA Astrophysics Data System (ADS)
Pyachin, Sergey A.; Karpovich, Natalia F.; Zaitsev, Alexey V.; Makarevich, Konstantin S.; Burkov, Alexander A.; Ustinov, Alexander Yu.
2016-11-01
Photocatalytic activity, optical properties, thermal stability, phase patterns and morphology of nano-size TiO2/WO3 compositions obtained from organic precursors through hydrothermal synthesis have been studied. It has been shown that doping of anatase nanoparticles with tungsten W+6 results in particle diameter reduction from 35 to 10 nm; decrease in width of the band gap from 3.15 eV to 2.91 eV and increase in temperature of phase transition of anatase to rutile up to 980oC. Catalytic activity of TiO2/WO3 (4 mol.%) composition under photochemical methylene blue (MB) oxidation by simulated solar light exceeds that of undoped anatase (obtained in the same way) 6-fold.
NASA Astrophysics Data System (ADS)
Ma, Lina; Zhu, Xiashi
2012-09-01
The fluorescence quenching effect of emodin (EMO) on the derivatives of p-tert-butyl-calix[4]arene with o-phenanthroline (TBCP) in 1.0% hexadecyl trimethyl ammonium bromide (CTAB) medium was investigated. The fluorescence of TBCP was quenched by EMO due to the formation of the weak fluorescent inclusion complex (EOM-TBCP), and the fluorescence quenching (ΔF = FTBCP-FEMO-TBCP) was sensitized in CTAB. Under the optimal conditions, the linear range of calibration curve for the determination of EMO was 1.17-23.40 μg/mL. The detection limit estimated and RSD was 0.34 μg/mL, 3.63% (n = 3, c = 4.74 μg/mL). The quantum yield Yu of TBCP was approximately 2.0 times higher in the presence of CTAB than that in the absence of CTAB. The method has been applied for the determination of EMO in samples with satisfactory results.
Worm-like micelles of CTAB and sodium salicylate under turbulent flow.
Rodrigues, Roberta K; da Silva, Marcelo A; Sabadini, Edvaldo
2008-12-16
Polymers with high molecular weight and worm-like micelles are drag-reducing agents under turbulent flow. However, in contrast to the polymeric systems, the worm-like micelles do not undergo mechanical degradation due to the turbulence, because their macromolecular structure can be spontaneously restored. This very favorable property, together with their drag-reduction capability, offer the possibility to use such worm-like micelles in heating and cooling systems to recirculate water while expending less energy. The formation, growth, and stability of worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were investigated using the self-fluorescence of salicylate ions and the ability of the giant micelles to promote hydrodynamic drag reduction under turbulent flow. The turbulence in solutions of CTAB-Sal was produced within the double-gap cell of a rotational rheometer. Detailed diagrams were obtained for different ratios of Sal and CTAB, which revealed transitions associated with the thermal stability of giant micelles under turbulent flow.
NASA Astrophysics Data System (ADS)
Cao, Huiying; Chen, Jiayi; Cai, Jie; Li, Yapin
2017-12-01
Colloidal particles can influence the foamability and stabilization of aqueous foam by addition of surfactant at the air-water interface. This occurs because particles are activated via the interaction with surfactant and are adsorbed onto the surfaces of foams. This phenomenon has been applied extensively to the development of new materials and techniques. Whether particle surface can be activated or not is decided by the interaction between the surfactant and the particle. In this work, we studied the effects of cationic surfactant CTAB (cetyltrimethylammonium bromide) on PS (polystyrene), SiO2, and TiO2 particles in aqueous solution, and compared the difference in their surface activation according to foam volume of the particles/CTAB/water system, and the degrees of foamability and foam stabilization. In addition, the influence of anionic surfactant SDS (sodium dodecyl sulfate) on the surface activation of PS in aqueous solution was also analyzed and compared with that of CTAB.
Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin.
Deng, Lingli; Kang, Xuefan; Liu, Yuyu; Feng, Fengqin; Zhang, Hui
2017-09-15
This work studied the effects of non-ionic Tween 80, anionic sodium dodecyl sulfonate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) surfactants on the morphology of electrospun gelatin nanofibres, and on the release behaviour, antioxidant activity and antimicrobial activity of encapsulated curcumin. Scanning electron micrographs showed that addition of SDS significantly increased the nanofibre diameter. Fourier transform infrared and differential scanning calorimetry analysis indicated that gelatin and SDS intimately interacted via electrostatic and hydrophobic interactions. However, these interactions inhibited the release of curcumin from the nanofibres with SDS, while CTAB and Tween 80 both facilitated the release. SDS and Tween 80 showed protective effects on curcumin from the attack of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radicals, and the increased release of curcumin from nanofibres with CTAB or Tween 80 resulted in a higher reducing power. The antimicrobial activity results suggested that the curcumin encapsulated gelatin nanofibres with CTAB exhibited effective inhibition against Staphylococcus aureus. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anbia, Mansoor; Khosravi, Faezeh
Hydrothermal and non-hydrothermal nanoporous TiO2 materials were synthesized via a doubly surfactant route by using cationic cetyltrimethylammonium bromide and anionic sodium dodecyl sulfate surfactants as the molecular template/structure directing agent. Hydrothermal treatment was performed for comparison. The bulk chemical and phase compositions, crystalline structures, particle morphologies, thermal stabilities and surface texturing were determined by means of X-ray powder analysis, SEM and N2 sorptiometry. The nanoporous TiO2 materials were found to have a spherical morphology with a diameter range of 50-200 nm and a high surface area (390 m2 g-1). Hydrothermal and non-hydrothermal nanoporous TiO2 materials were applied for adsorption of heavy metal cations and the toxic organic compound, copper phthalocyanine, from water for evaluation of their adsorption properties. Both nanoporous TiO2 materials were found to have similar adsorption capacities toward heavy metal cations and CuPc. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential for application as a new adsorbent especially for adsorbing heavy metal cations from wastewaters.
Hydrothermal Growth of Polyscale Crystals
NASA Astrophysics Data System (ADS)
Byrappa, Kullaiah
In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.
NASA Astrophysics Data System (ADS)
Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun
2002-10-01
By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.
Longuespée, Rémi; Tastet, Christophe; Desmons, Annie; Kerdraon, Olivier; Day, Robert
2014-01-01
Abstract Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and profiling technology have become the easiest methods for quickly accessing the protein composition of a tissue area. Unfortunately, the demand for the identification of these proteins remains unmet. To overcome this bottleneck, we combined several strategies to identify the proteins detected via MALDI profiling including on-tissue protein extraction using hexafluoroIsopropanol (1,1,1,3,3,3-hexafluoro-2-propanol, HFIP) coupled with two-dimensional cetyl trimethylammonium bromide/sodium dodecyl sulfate–polyacrylamide gel electrophoresis (2D CTAB/SDS-PAGE) for separation followed by trypsin digestion and MALDI-MS analyses for identification. This strategy was compared with an on-tissue bottom-up strategy that we previously developed. The data reflect the complementarity of the approaches. An increase in the number of specific proteins identified has been established. This approach demonstrates the potential of adapted extraction procedures and the combination of parallel identification approaches for personalized medicine applications. The anatomical context provides important insight into identifying biomarkers and may be considered a first step for tissue-based biomarker research, as well as the extemporaneous examination of biopsies during surgery. PMID:24841221
Romeika, Jennifer M; Spurgeon, Charina L; Yan, Fei
2014-01-03
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of gallium (III) with 4-(2-pyridylazo) resorcinol (PAR) under varying conditions has been studied spectrophotometrically. At pH 6.0, CTAB (0.05% w/v) markedly enhanced the absorption intensity of gallium (III)-PAR complex. Furthermore, the introduction of CTAB provided unique selectivity for the ligand exchange of Ga(III)-PAR by calf thymus dsDNA over calf thymus ssDNA. This phenomenon offers a novel spectrophotometric sensing strategy for direct detection of dsDNA. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria
2017-12-01
Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.
A Comparison of DNA Extraction Methods using Petunia hybrida Tissues
Tamari, Farshad; Hinkley, Craig S.; Ramprashad, Naderia
2013-01-01
Extraction of DNA from plant tissue is often problematic, as many plants contain high levels of secondary metabolites that can interfere with downstream applications, such as the PCR. Removal of these secondary metabolites usually requires further purification of the DNA using organic solvents or other toxic substances. In this study, we have compared two methods of DNA purification: the cetyltrimethylammonium bromide (CTAB) method that uses the ionic detergent hexadecyltrimethylammonium bromide and chloroform-isoamyl alcohol and the Edwards method that uses the anionic detergent SDS and isopropyl alcohol. Our results show that the Edwards method works better than the CTAB method for extracting DNA from tissues of Petunia hybrida. For six of the eight tissues, the Edwards method yielded more DNA than the CTAB method. In four of the tissues, this difference was statistically significant, and the Edwards method yielded 27–80% more DNA than the CTAB method. Among the different tissues tested, we found that buds, 4 days before anthesis, had the highest DNA concentrations and that buds and reproductive tissue, in general, yielded higher DNA concentrations than other tissues. In addition, DNA extracted using the Edwards method was more consistently PCR-amplified than that of CTAB-extracted DNA. Based on these results, we recommend using the Edwards method to extract DNA from plant tissues and to use buds and reproductive structures for highest DNA yields. PMID:23997658
Sauerová, Pavla; Pilgrová, Tereza; Pekař, Miloslav; Hubálek Kalbáčová, Marie
2017-10-01
The cationic surfactants carbethoxypendecinium bromide (Septonex) and cetyltrimethylammonium bromide (CTAB) are known to be harmful for certain cell types (bacteria, fungi, mammal cells, etc.). Colloidal complexes of these surfactants with negatively-charged hyaluronic acid (HyA) were prepared for potential drug and/or universal delivery applications. The complexes were tested for their cytotoxic effect on different human cell types - osteoblasts, keratinocytes and fibroblasts. Both the CTAB-HyA and Septonex-HyA complexes were found to reduce the cytotoxicity induced by surfactants alone concerning all the tested concentrations. Moreover, we suggested the limits of HyA protection provided by the surfactant-HyA complexes, e.g. the importance of the amount of HyA applied. We also determined the specific sensitivity of different cell types to surfactant treatment. Keratinocytes were more sensitive to CTAB, while osteoblasts and fibroblasts were more sensitive to Septonex. Moreover, it was indirectly shown that CTAB combines lethal toxicity with cell metabolism induction, while Septonex predominantly causes lethal toxicity concerning fibroblasts. This comprehensive study of the effect of surfactant-HyA complexes on various human cell types revealed that HyA represents a useful CTAB or Septonex cytotoxic effect modulator at diverse levels. Potential applications for these complexes include drug and/or nucleic acid delivery systems, diagnostic dye carriers and cosmetics production. Copyright © 2017 Elsevier B.V. All rights reserved.
Volli, Vikranth; Purkait, M K
2015-10-30
This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis
NASA Astrophysics Data System (ADS)
Dharmadhikari, Dipti V.; Athawale, Anjali A.
2013-06-01
The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006; Li, Li, E-mail: qqhrll@163.com
2015-09-15
The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly.more » Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.« less
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-09-01
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g
NASA Astrophysics Data System (ADS)
Qureshi, Nilam; Arbuj, Sudhir; Shinde, Manish; Rane, Sunit; Kulkarni, Milind; Amalnerkar, Dinesh; Lee, Haiwon
2017-09-01
Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-like MoS2 nanostructures are few layers thick with poor crystallinity while spherical ball-like molybdenum microspheres exhibit better crystalline nature. This is the first report pertaining to the synthesis of Mo microspheres and MoS2 nanoflowers without using any surfactant, template or substrate in hydro/solvothermal regime. It is opined that such nanoarchitectures of MoS2 are useful candidates for energy related applications such as hydrogen evolution reaction, Li ion battery and pseudocapacitors. Inquisitively, metallic Mo can potentially act as catalyst as well as fairly economical Surface Enhanced Raman Spectroscopy (SERS) substrate in biosensor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-Garcia, M.E., E-mail: eucontre@zeus.umich.mx
2009-12-15
Macro-mesoporous powders of titania, alumina, and mixed titania-20%alumina systems were obtained by hydrothermal synthesis employing surfactant Tween-20 as structural directing agent in order to promote the textural properties of titania. The effect of the alumina in the titania phase and on textural properties was analyzed. The obtained powders presented a macroporous channel structure that was characterized by X-ray diffractometry, scanning and transmission electron microscopy, N{sub 2} adsorption-desorption analysis, pore size distribution, Fourier transform infrared spectrometry, and thermogravimetric analysis. It was found that alumina content retarded the anatase phase crystallization and increased the Brunauer-Emmet-Teller surface area from 136 to 210 m{supmore » 2}/g. The powders calcined at 400 deg. C are thermally stable and possess an interconnected macro-mesoporous hierarchical structure; the results indicate that this synthesis can be employed to prepare mixed titania-alumina with good textural properties.« less
Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck
2015-01-01
To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420
A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng
2017-07-01
Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.
[Hydrothermal synthesis and luminescence of one-dimensional Mn(2+)-doped CdS nanocrystals].
Yuan, Qiu-Li; Zhao, Jin-Tao; Nie, Qiu-Lin
2007-06-01
One-dimensional Mn(2+)-doped CdS nanocrystals were synthesized by the hydrothermal route. The products were characterized by SEM, EDS, XRD, TEM, HRTEM and PL, respectively. The results revealed that dopant Mn2+ completely substitutes Cd2+ in CdS nanocrystals, and the product was of good crystallite. Further more, a complete suppression of the emission from surface states at room temperature when doping with ions Mn2+ has been observed.
Evaluating Experimental Artifacts in Hydrothermal Prebiotic Synthesis Experiments
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Schoonen, Martin A. A.
2003-04-01
Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.
NASA Astrophysics Data System (ADS)
Khatamian, M.; Khandar, A. A.; Haghighi, M.; Ghadiri, M.
2011-11-01
Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne
Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahata, S.; Mahato, S. S.; Nandi, M. M.
2012-07-23
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less
Synthesis of noble metal nanoparticles
NASA Astrophysics Data System (ADS)
Bahadory, Mozhgan
Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.
[Synthesis of vitamin K2 by isopentenyl transferase NovA in Pichia pastoris Gpn12].
Wu, Xihua; Li, Zhemin; Liu, Hui; Wang, Peng; Wang, Li; Fang, Xue; Sun, Xiaowen; Ni, Wenfeng; Yang, Qiang; Zheng, Zhiming; Zhao, Genhai
2018-01-25
The effect of methanol addition on the heterologous expression of isoprenyl transferase NovQ was studied in Pichia pastoris Gpn12, with menadione and isopentenol as precursors to catalyze vitamin K2 (MK-3) synthesis. The expression of NovQ increased by 36% when 2% methanol was added every 24 h. The influence of initial pH, temperature, methanol addition, precursors (menadione, isopentenol) addition, catalytic time and cetyltrimethyl-ammonium bromide (CTAB) addition were explored in the P. pastoris whole-cell catalytic synthesis process of MK-3 in shaking flask. Three significant factors were then studied by response surface method. The optimal catalytic conditions obtained were as follows: catalytic temperature 31.56 ℃, menadione 295.54 mg/L, catalytic time 15.87 h. Consistent with the response surface prediction results, the optimized yield of MK-3 reached 98.47 mg/L in shaking flask, 35% higher than that of the control group. On this basis, the production in a 30-L fermenter reached 189.67 mg/L when the cell catalyst of 220 g/L (dry weight) was used to catalyze the synthesis for 24 h. This method laid the foundation for the large-scale production of MK-3 by P. pastoris Gpn12.
Synthesis of high luminescent carbon nanoparticles
NASA Astrophysics Data System (ADS)
Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.
2017-03-01
In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.
Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies
Mokhonoana, Malose P.; Coville, Neil J.
2009-01-01
Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt%) with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i) by delaying the addition of Fe3+(aq) to the stirred synthesis gel by 2 h, (ii) by addition of Fe3+ precursor as a freshly-precipitated aqueous slurry, (iii) by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI). Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperature-programmed reduction (TPR) studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies). The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.
Imtiaz, Ayesha; Khaleeq-ur-rahman, Muhammad; Adnan, Rohana
2013-01-01
Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3 ·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3 ·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3 ·CaO nanocatalyst was found as 3.3 eV. PMID:24311980
NASA Astrophysics Data System (ADS)
Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan
2018-07-01
Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.
Kim, Soochan; Lee, Sang Ha; Cho, Misuk; Lee, Youngkwan
2016-11-15
Morphology-controlled synthesis of nickel sulfide (Ni3S2) was performed directly on Ni foam using thioacetamide as a sulfur ion source. Various morphologies of nickel sulfide were fabricated using a hydrothermal process by adjusting the solvent composition of ethanol and water. In the water-dominant condition, a dendrite structure was obtained; otherwise, a flaky structure was achieved. A hierarchical cauliflower-like structure was obtained at a solvent mixture composition of 1:1 and was used as non-enzymatic glucose sensor. The hierarchical Ni3S2 electrode showed a high level of electro-catalytic activity toward the oxidation of glucose (16,460μAmM(-1)cm(-2)) over a wide range of detection (0.0005-3mM) and a low detection limit (0.82μM) with excellent selectivity in the presence of several electroactive species. Copyright © 2016 Elsevier B.V. All rights reserved.
One-pot synthesis of active copper-containing carbon dots with laccase-like activities.
Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei
2015-12-14
Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.
Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan
2018-07-27
Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.
Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuila, Debasish; Ilias, Shamsuddin
2013-02-13
In steam reforming reactions (SRRs) of alkanes and alcohols to produce H 2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N 2 adsorption, and Transmission electronmore » microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m 2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels”; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)« less
Preparation and characterization of polystyrene/neodymium hydroxide (PS/Nd(OH)3) nano-composites
NASA Astrophysics Data System (ADS)
Alsewailem, Fares D.; Bagabas, Abdulaziz A.; Binkhodor, Yazeed A.
2018-03-01
Composites of polystyrene and Neodymium hydroxide nanrods (PS/Nd(OH)3) were formulated and characterized in this study. Cetyl (1-hexadccyl) trimethyl ammonium bromide (CTAB) was used as dispersion agent for the Nd(OH)3 rods in the PS matrix. PS/Nd(OH)3 composites were prepared by solution and melt compounding. Morphological, thermal, and mechanical properties of the prepared composites were investigated. CTAB was found to be more effective as dispersion agent in composites prepared by solution compounding in comparison with those prepared by melt compounding, and that was due to the mild conditions used in solution compounding. Nonetheless, impact strength of the composite at 0.5 wt% Nd(OH)3 was drastically reduced in the absence of CTAB. Both tensile and impact strengths were found to greatly decreased at higher loading of Nd(OH)3, e.g. 5 wt%, even with the use of CTAB. Thermal stability of the PS/Nd(OH)3 composites was noticeably increased at relatively low loading of Nd(OH)3, e.g. 0.5 wt%.
Effective harvesting of microalgae by coagulation–flotation
Xia, Ling; Li, Yinta; Huang, Rong
2017-01-01
This study developed a coagulation–flotation process for microalgae Chlorella sp. XJ-445 harvesting, which was composed of algal surface modification by combined use of Al3+ and cetyltrimethylammonium bromide (CTAB) and followed dispersed bubble flotation. Dissolved organic matter (DOM) in the medium was firstly characterized and mainly consisted of hydrophilic low molecular weight molecules. The dosage of collector (CTAB) and coagulant (Al3+) were optimized, and with the pretreatment of 40 mg Al3+ and 60 mg CTAB per 1 g dry biomass without pH adjustment, a maximum flotation recovery efficiency of 98.73% can be achieved with the presence of DOM. Algal cells characterization results showed that the combined use of CTAB and Al3+ largely enhanced the algal floc size, and exhibited higher degree of hydrophobicity, which favoured the flotation, and can be interpreted by DLVO (Derjaguin, Landau, Verwey and Overbeek) modelling. A benefit in fatty acid conversion was further found with the optimized coagulation–flotation process. It was suggested that this coagulation based flotation is a promising strategy for high-efficiency harvesting of microalgae. PMID:29291079
Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants
Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong
2014-01-01
The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam
2015-02-01
In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62 × 105 M-1 and 1.38 × 105; respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa = 0.422). The developed method is linear over the range 0.5-28 μg mL-1. The accuracy was evaluated and was found to be 99.79 ± 0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations.
Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.
Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen
2016-01-01
Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.
Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam
2015-02-05
In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62×10(5) M(-1) and 1.38×10(5); respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa=0.422). The developed method is linear over the range 0.5-28 μg mL(-1). The accuracy was evaluated and was found to be 99.79±0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.
2014-12-15
Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less
Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa.
Siegel, Chloe S; Stevenson, Florence O; Zimmer, Elizabeth A
2017-02-01
An efficient, effective DNA extraction method is necessary for comprehensive analysis of plant genomes. This study analyzed the quality of DNA obtained using paper FTA cards prepared directly in the field when compared to the more traditional cetyltrimethylammonium bromide (CTAB)-based extraction methods from silica-dried samples. DNA was extracted using FTA cards according to the manufacturer's protocol. In parallel, CTAB-based extractions were done using the automated AutoGen DNA isolation system. DNA quality for both methods was determined for 15 non-agricultural species collected in situ, by gel separation, spectrophotometry, fluorometry, and successful amplification and sequencing of nuclear and chloroplast gene markers. The FTA card extraction method yielded less concentrated, but also less fragmented samples than the CTAB-based technique. The card-extracted samples provided DNA that could be successfully amplified and sequenced. The FTA cards are also useful because the collected samples do not require refrigeration, extensive laboratory expertise, or as many hazardous chemicals as extractions using the CTAB-based technique. The relative success of the FTA card method in our study suggested that this method could be a valuable tool for studies in plant population genetics and conservation biology that may involve screening of hundreds of individual plants. The FTA cards, like the silica gel samples, do not contain plant material capable of propagation, and therefore do not require permits from the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) for transportation.
Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.
Tian, Huifang; Liang, Ying; Zhu, Tianle; Zeng, Xiaolan; Sun, Yifei
2018-03-01
In this study a NZVI was prepared by the liquid phase reduction method. The modified NZVI obtained was characterized by BET, TEM and XRD. The results showed that the iron in the PEG-4000 modified material is mainly zero-valent iron with a stable crystal structure. It has a uniform particle size, ranging from 20 to 80 nm, and a larger specific surface area than CTAB modified NZVI, SDS modified NZVI and commercial zero-valent iron. The two surfactants CTAB and SDS are also selected as solubilizers, the results showed that the two selected surfactants obviously solubilize trichloroethylene in soil. Compared with commercial zero-valent iron, PEG-4000 modified NZVI is better removed trichloroethylene from soil; Also, the optimal operational parameters were obtained. When the experimental conditions were: PEG-4000 modified NZVI dosage 1.0 g/L, CTAB/SDS concentration equal to the CMC, SDS concentration was 2.0 × CMC, CTAB was concentration 1.0 × CMC and the vibration speed 150 r/min, the removal efficiency of trichloroethylene in a soil-water system reached 100% after 4 h. Both NZVI combined with CTAB and NZVI combined with SDS followed fitted first order reaction kinetics during the removal of trichloroethylene and their reaction rate constant k was 0.6869 mg/(L·h) and 0.5659 mg/(L·h), respectively. According to the chloride ion detection test, the trichloroethylene degradation is mainly due to reductive dechlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Du, Gaoshang; Wang, Lumei; Zhang, Dongwei; Ni, Xuan; Zhou, Xiaotong; Xu, Hanyi; Xu, Lurong; Wu, Shijian; Zhang, Tong; Wang, Wenhao
2016-12-01
This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids. Copyright © 2016 Elsevier Inc. All rights reserved.
das Neves, José; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2013-11-18
Nanocarriers may provide interesting delivery platforms for microbicide drugs and their characterization should be addressed early in development. Differently surface-engineered dapivirine-loaded, poly(epsilon-caprolactone) (PCL)-based nanoparticles (NPs) were obtained by nanoprecipitation using polyethylene oxide (PEO), sodium lauryl sulfate (SLS), or cetyltrimethylammonium bromide (CTAB) as surface modifiers. Physical-chemical properties of NP aqueous dispersions were evaluated upon storage at -20-40 °C for one year. NPs presented 170-200 nm in diameter, roundish-shape, low polydispersity index (≤0.18), and high drug association efficiency (≥97%) and loading (≥12.7%). NPs differed in zeta potential, depending on surface modifier (PEO: -27.9 mV; SLS: -54.7 mV; CTAB: +42.4 mV). No interactions among formulation components were detected by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), except for SLS-PCL NPs. Colloidal properties of NPs were lost at -20 °C storage. Negatively charged NPs were stable up to one year at 5-40°C; as for CTAB-PCL NPs, particle aggregation was observed from 30 to 90 days of storage depending on temperature. Colloidal instability affected the in vitro drug release of CTAB-PCL NPs after 360 days. In any case, no degradation of dapivirine was apparent. Overall, PEO-PCL and SLS-PCL NPs presented suitable properties as nanocarriers for dapivirine. Conversely, CTAB-PCL NPs require additional strategies in order to increase stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of cetyltriethylammonium bromide on the replication of Bombyx mori nucleopolyhedrovirus.
Zhou, Yajing; Zhang, Zhifang; He, Jialu; Zhang, Yuanxing
2002-05-01
An experimental study was undertaken to quantify the effects of cetyltriethylammonium bromide (CTAB) on the replication of Bombyx mori nucleopolyhedrovirus (BmNPV) and the transcriptionalactivity of BmNPV ie-1 promoter. The results demonstrated that the budded virus (BV) titer rose about 3.7-fold by adding CTAB to the culture media up to 0.1 mu g ml(-1) in infected Bm-N cells with a wild-type BmNPV. The transient expression level of luciferase driven by BmNPV ie-1 promoter was enhanced by more than 3-fold in the presence of 0.1 mu g ml(-1) of CTAB in uninfected insect cells via a transient expression system. Contrary to the rise in BV titer, the polyhedra inside the nucleus of infected cells dropped linearly from 4.0 x 10(6) ml(-1) down to 2.1 x 10(6) ml(-1) with in a range of CTAB concentrations from 0 to 0.25 mu g ml(-1). The same trend in expression level of beta -galactosidase or phytase was given when the Bm-N cells or fifth-instar silkworm larvae infected with a recombinant BmNPV containing the beta -galactosidase or phytase reporter gene driven by the polyhedrin promoter. We deduced that CTAB appeared to affect the virus bi-phasic life cycle stages and production pathways, resulting in an enhancement in BV production and a suppression of occluded virus (OV) production and expression of foreign genes controlled by the polyhedrin promoter.
Yang, Chao; Xiao, Feng; Wang, Jide; Su, Xintai
2014-12-01
CuO nanoparticles with different morphologies were synthesized by chemical precipitation and subsequently modified by microwave hydrothermal processing. The nanoparticles were precipitated by the introduction of a strong base to an aqueous solution of copper cations in the presence/absence of the polyethylene glycol and urea additives. The modification of the nanoparticles was subsequently carried out by a microwave hydrothermal treatment of suspensions of the precipitates, precipitated with and without the additives. X-ray powder diffraction analysis indicated that the crystallinity and crystallite size of the CuO nanoparticles increased after the microwave hydrothermal modification. Microscopy observations revealed the morphology changes induced by microwave hydrothermal processing. The thermal decomposition of ammonium perchlorate and the detection of volatile gases were performed to evaluate the catalytic and gas sensing properties of the synthesized CuO nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.
In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P
2014-02-26
The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361
Hydrothermally processed 1D hydroxyapatite: mechanism of formation and biocompatibility studies
Stojanović, Zoran S.; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan
2016-01-01
Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials. PMID:27524076
A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3–β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing th...
Magnetic Nanostructures Patterned by Self-Organized Materials
2016-01-05
solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis Microfluid...techniques such as chemical synthesis , self-organized methods, sputtering, lithography and atomic layer deposition (ALD). We also performed micromagnetic...range of temperatures (1.8 to 300 K) and at high fields (up to 5 T). The low temperature measurements of magnetic nanoparticles allowed us to
Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083
2011-01-15
Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less
Hydrothermal synthesis of free-template zeolite T from kaolin
NASA Astrophysics Data System (ADS)
Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.
2017-12-01
Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.
Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds
NASA Astrophysics Data System (ADS)
Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik
2016-10-01
Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51, 35: 7501-7504.
Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua
2010-08-01
An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.
Recycling of surfactant template in mesoporous MCM-41 synthesis
NASA Astrophysics Data System (ADS)
Lai, J. Y.; Twaiq, F.; Ngu, L. H.
2017-06-01
The recycling of surfactant template is investigated through the reuse of the surfactant template in the mesoporous MCM-41 synthesis process. In the synthesis of MCM-41, tetraethylorthosilicate (TEOS) solution in water was utilized as the silica source while hexadecyltrimethylammonium bromide (CTAB) solution in ethyl alcohol was used as a surfactant template. The synthesized gel is formed thoroughly by mixing the two solutions under acid conditions with a pH value of 0.5 for 1 hour and kept for crystallization for 48 hours. The as-synthesized MCM-41 powder is recovered by filtration while the filtrate (mother liquor) was then reused for the second synthesis cycle. The synthesis procedure was repeated till no further solid product was formed. The synthesized gel was not produced in the unifying solution in the fifth cycle of MCM-41 synthesis. The quality of the calcined MCM-41 powder produced in each synthesis cycle was evaluated by calculating the amount of MCM-41 produced and the surface area of the powder product. The result showed that 1.28, 0.37, 1.64, 1.90 and 0.037 g were obtained in the 1st, 2nd, 3rd, 4th and 5th synthesis cycle, respectively. The surface area of the powder produced was found to be 1170, 916, 728, and 508 m2/g for 1st, 2nd, 3rd and 4th respectively. The concentration of the surfactant template has reached value lower than the critical micelle concentration (CMC) and remained constant after the 4th cycle. There was no further formation of gel due to low availability in the interaction between silicate anions and surfactant cations when the amount of TEOS was fixed for every synthesis cycle.
Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles
NASA Astrophysics Data System (ADS)
Beygi, H.; Babakhani, A.
2017-01-01
This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.
Hydrothermal exploration and astrobiology: oases for life in distant oceans?
NASA Astrophysics Data System (ADS)
German, Christopher R.
2004-04-01
High-temperature submarine hydrothermal fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these systems draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such systems could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to identify previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature hydrothermal fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the hydrothermal cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of hydrothermal venting at the bottom of this, and other, ice-covered oceans.
Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z
2018-04-01
(NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Kun; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn; Da, Min
Highlights: Black-Right-Pointing-Pointer Highly oriented and well-defined ZnO urchin-like crystals were successfully fabricated by a facile and effective hydrotherm method. Black-Right-Pointing-Pointer Polyvinylpyrrolidone- and hydrogen peroxide-assisted synthesis of ZnO could optimize its crystalline quality and the obtained ZnO have smooth surface, radial growth of morphology, obvious crystal edges and decreased defects. Black-Right-Pointing-Pointer The physicochemical properties of samples were studied by analysis of its structure, morphology, surface and optical properties. Black-Right-Pointing-Pointer This study represented a multistep mechanism based on [Zn(OH){sub 4}]{sup 2-} growth units about formation such urchin-like structure. -- Abstract: The urchin-like ZnO microcrystals with high crystallinity decomposed from [Zn(OH){sub 4}]{sup 2-}more » directly were obtained via a hydrothermal method. The morphology, particle size, crystalline structure and fluorescence of the as-prepared ZnO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) analyses. The results demonstrated that the urchin-like ZnO crystals with wurtzite structure had a narrow distribution in size, which could be adjusted in the range of 30-80 {mu}m by varying reaction time. Broad visible light emission peak was also observed in the PL spectra of the synthesized ZnO products. A multistep growth process about how to form such a structure was proposed.« less
Chen, Kunyang; Zhu, Lizhong; Yang, Kun
2015-01-01
In order to efficiently remove volatile organic compounds (VOCs) from indoor air, one-dimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25. Copyright © 2014. Published by Elsevier B.V.
Cetyltrimethyl Ammonium Bromide as Corrosion Inhibitor for Zinc Used in Hydrochloric Acid
NASA Astrophysics Data System (ADS)
Sun, C. X.; Du, J. J.; Ma, Z. W.; Huang, C. S.; Wu, J. Y.
2018-05-01
A compound inhibitor composed of cetyltrimethyl ammonium bromide (CTAB) and bromohexadecyl pyridine was tested as corrosion inhibitor for zinc in hydrochloric acid. The results of static coupon test show that the compound inhibitor can effectively protect zinc from corrosion and the best concentration ratio is CTAB 50 mg/L and bromohexadecyl pyridine 200 mg/L. The polarization results show that the compound inhibitor will cause a negative shift of E0 of zinc in hydrochloric acid. The EIS (electrchemical impedance spectra) results show that the inhibitor leads to a bigger radius and has one time constant. SEM results show that the CTAB and bromohexadecyl pyridine form a uniform and compact membrane on the surface of zinc that can protect zinc from corroding effectively.
NASA Astrophysics Data System (ADS)
Yang, Wanliang; Li, Baoshan
2014-01-01
A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods.A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04733d
Zou, Fang; Yu, Runhan; Li, Rongguan; Li, Wei
2013-08-26
A simple, rapid and efficient synthesis of the metal-organic framework (MOF) HKUST-1 [Cu3(1,3,5-benzene-tri-carboxilic-acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST-1-MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST-1-MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg(2+) under the same experimental conditions. Of particular importance is the preservation of the structure after metal-ion adsorption, which remained virtually intact, with only a few changes in X-ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate-containing HKUST-1-MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin-type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10-20 μm and their structures were determined using synchrotron-based X-ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi
2017-04-01
Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.
Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication
NASA Astrophysics Data System (ADS)
Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2015-12-01
Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.
NASA Astrophysics Data System (ADS)
Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.
2017-07-01
First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.
NASA Astrophysics Data System (ADS)
Pîslaru-Dănescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela
2018-05-01
The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
Spectroscopic observations of nanosized TiO2 by the hydrothermal method
NASA Astrophysics Data System (ADS)
Zikriya, Mohamed; Nadaf, Y. F.; Bharathy, P. Vijai; Renuka, C. G.
2018-05-01
Metal oxides are useful materials that have various applications in advanced field such as, in view of their different properties, hardness, thermal dependability and compound resistance. Novel utilizations of the nanostructures of these oxides are drawing in critical enthusiasm as new preparation process are created and new structures are described. Hydrothermal synthesis is a fruitful procedure to prepare different sensitive structures of metal oxides on the scales from a couple to several nanometres, particularly, the hugely scattered middle structures which are hardly through pyro-preparation. Titanium dioxide nanocrystals are synthesis by a hydrolysis procedure of metatitanic acid. Nano precious crystal of different sizes is procure in the after calcinations from 150 to 225°C. Raman scattering was utilized to examine the advancement of the anatase stage in the nano crystal during calcinations.
NASA Astrophysics Data System (ADS)
Deburgomaster, Paul
The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.
Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta
2015-06-01
Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2011-08-15
Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.
NASA Astrophysics Data System (ADS)
Liu, Shiyuan; Wang, Lijun; Chou, Kuochih
2018-03-01
Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua
Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less
Wang, Yanfeng; Chen, Wei; Chen, Xiao; Feng, Huajun; Shen, Dongsheng; Huang, Bin; Jia, Yufeng; Zhou, Yuyang; Liang, Yuxiang
2018-03-01
CdS/MoS 2 , an extremely efficient photocatalyst, has been extensively used in hydrogen photoproduction and pollutant degradation. CdS/MoS 2 can be synthesized by a facile one-step hydrothermal process. However, the effect of the sulfur source on the synthesis of CdS/MoS 2 via one-step hydrothermal methods has seldom been investigated. We report herein a series of one-step hydrothermal preparations of CdS/MoS 2 using three different sulfur sources: thioacetamide, l-cysteine, and thiourea. The results revealed that the sulfur source strongly affected the crystallization, morphology, elemental composition and ultraviolet (UV)-visible-light-absorption ability of the CdS/MoS 2 . Among the investigated sulfur sources, thioacetamide provided the highest visible-light absorption ability for CdS/MoS 2 , with the smallest average particle size and largest surface area, resulting in the highest efficiency in Methylene Blue (MB) degradation. The photocatalytic activity of CdS/MoS 2 synthesized from the three sulfur sources can be arranged in the following order: thioacetamide>l-cysteine>thiourea. The reaction rate constants (k) for thioacetamide, l-cysteine, and thiourea were estimated to be 0.0197, 0.0140, and 0.0084min -1 , respectively. However, thioacetamide may be limited in practical application in terms of its price and toxicity, while l-cysteine is relatively economical, less toxic and exhibited good photocatalytic degradation performance toward MB. Copyright © 2017. Published by Elsevier B.V.
Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa1
Siegel, Chloe S.; Stevenson, Florence O.; Zimmer, Elizabeth A.
2017-01-01
Premise of the study: An efficient, effective DNA extraction method is necessary for comprehensive analysis of plant genomes. This study analyzed the quality of DNA obtained using paper FTA cards prepared directly in the field when compared to the more traditional cetyltrimethylammonium bromide (CTAB)–based extraction methods from silica-dried samples. Methods: DNA was extracted using FTA cards according to the manufacturer’s protocol. In parallel, CTAB-based extractions were done using the automated AutoGen DNA isolation system. DNA quality for both methods was determined for 15 non-agricultural species collected in situ, by gel separation, spectrophotometry, fluorometry, and successful amplification and sequencing of nuclear and chloroplast gene markers. Results: The FTA card extraction method yielded less concentrated, but also less fragmented samples than the CTAB-based technique. The card-extracted samples provided DNA that could be successfully amplified and sequenced. The FTA cards are also useful because the collected samples do not require refrigeration, extensive laboratory expertise, or as many hazardous chemicals as extractions using the CTAB-based technique. Discussion: The relative success of the FTA card method in our study suggested that this method could be a valuable tool for studies in plant population genetics and conservation biology that may involve screening of hundreds of individual plants. The FTA cards, like the silica gel samples, do not contain plant material capable of propagation, and therefore do not require permits from the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) for transportation. PMID:28224056
Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi
2012-01-01
To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260
Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi
2012-01-01
To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.
Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping
2015-02-21
Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).
Luo, Jianmin; Zhang, Wenkui; Yuan, Huadong; Jin, Chengbin; Zhang, Liyuan; Huang, Hui; Liang, Chu; Xia, Yang; Zhang, Jun; Gan, Yongping; Tao, Xinyong
2017-03-28
Two-dimensional transition-metal carbide materials (termed MXene) have attracted huge attention in the field of electrochemical energy storage due to their excellent electrical conductivity, high volumetric capacity, etc. Herein, with inspiration from the interesting structure of pillared interlayered clays, we attempt to fabricate pillared Ti 3 C 2 MXene (CTAB-Sn(IV)@Ti 3 C 2 ) via a facile liquid-phase cetyltrimethylammonium bromide (CTAB) prepillaring and Sn 4+ pillaring method. The interlayer spacing of Ti 3 C 2 MXene can be controlled according to the size of the intercalated prepillaring agent (cationic surfactant) and can reach 2.708 nm with 177% increase compared with the original spacing of 0.977 nm, which is currently the maximum value according to our knowledge. Because of the pillar effect, the assembled LIC exhibits a superior energy density of 239.50 Wh kg -1 based on the weight of CTAB-Sn(IV)@Ti 3 C 2 even under higher power density of 10.8 kW kg -1 . When CTAB-Sn(IV)@Ti 3 C 2 anode couples with commercial AC cathode, LIC reveals higher energy density and power density compared with conventional MXene materials.
Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence
NASA Astrophysics Data System (ADS)
Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.
2017-05-01
Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.
NASA Astrophysics Data System (ADS)
Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric
2017-09-01
The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Darab, John G.; Hoffmann, Markus M.
2001-04-01
Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less
One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology.
Liu, Bingping; Yan, Shihai; Song, Zhongqian; Liu, Mengli; Ji, Xuqiang; Yang, Wenrong; Liu, Jingquan
2016-12-23
Herein, a conceptually new and straightforward aqueous route is described for the synthesis of hydroxyl- and amino-functionalized boron nitride quantum dots (BNQDs) with quantum yields (QY) as high as 18.3 % by using a facile bottom-up approach, in which a mixture of boric acid and ammonia solution was hydrothermally treated in one pot at 200 °C for 12 h. The functionalized BNQDs, with excellent photoluminescence properties, could be easily dispersed in an aqueous medium and applied as fluorescent probes for the detection of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ions with excellent selectivity and low detection limits. The mechanisms for the hydrothermal reaction and fluorescence quenching were also simulated by using density functional theory (DFT), which confirmed the feasibility and advantages of this strategy. It provides a scalable and eco-friendly method for preparation of BNQDs with good dispersability and could also be generalized to the synthesis of other 2D quantum dots and nanoplates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold
2016-01-01
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
NASA Astrophysics Data System (ADS)
Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.
2018-04-01
Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, P., E-mail: purushd@barc.gov.in; Sharma, V. K.; Mitra, S.
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. Here we report dynamics of cetyltrimethylammonium bromide (CTAB) in HAp composite, prepared by co-precipitation method, as studied by quasielastic neutron scattering (QENS) technique. It is found that the observed dynamics involved two time scales associated with fast torsional motion and segmental motion of the CTAB monomers. In addition to segmental motion of the hydrogen atoms, few undergo torsional motion as well. Torsional dynamics was described by a 2-fold jump diffusion model. The segmental dynamics of CTAB has been described assumimg the hydrogen atomsmore » undergoing diffusion inside a sphere of confined volume. While the diffusivity is found to increase with temperature, the spherical volumes within which the hydrogen atoms are undergoing diffusion remain almost unchanged.« less
Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications
NASA Astrophysics Data System (ADS)
Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.
2017-05-01
White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.
Zou, Yajun; Gao, Ge; Wang, Zhenyu; Shi, Jian-Wen; Wang, Hongkang; Ma, Dandan; Fan, Zhaoyang; Chen, Xin; Wang, Zeyan; Niu, Chunming
2018-06-13
A novel rectangular-ambulatory-plane TiO2 plate with exposed {001} facets was developed for the first time via a facile microwave-assisted hydrothermal approach in the presence of HF solution. Solid evidence demonstrated that HF plays dual roles in the hydrothermal process, both as a stabilizer for the {001} facet growth and as an etching reagent selectively destroying the {001} facets.
Bimetallic iron and cobalt incorporated MFI/MCM-41 composite and its catalytic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baoshan, E-mail: bsli@mail.buct.edu.cn; Xu, Junqing; Li, Xiao
2012-05-15
Graphical abstract: The formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure. Highlights: Black-Right-Pointing-Pointer Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. Black-Right-Pointing-Pointer FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. Black-Right-Pointing-Pointer Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination. -- Abstract: The MFI/MCM-41 composite material with bimetallic Fe andmore » Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N{sub 2} sorption, transmission electron microscopy, scanning electron microscope, H{sub 2} temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H{sub 2} temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.« less
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
NASA Astrophysics Data System (ADS)
Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe
2012-12-01
Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.