Science.gov

Sample records for ctgf factor clave

  1. The Role of Connective Tissue Growth Factor (CTGF/CCN2) in Skeletogenesis

    PubMed Central

    Arnott, John A; Lambi, Alex G; Mundy, Christina M; Hendesi, Honey; Pixley, Robin A; Owen, Thomas A; Safadi, Fayez F; Popoff, Steven N

    2012-01-01

    Connective tissue growth factor (CTGF) is a 38kDa, cysteine rich, extracellular matrix protein composed of four domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells which was dramatically increased during skeletal repair or regeneration. The physiological significance of CTGF in skeletogenesis was confirmed in CTGF-null mice, which exhibited multiple skeletal dysmorphisms as a result of impaired growth plate chondrogenesis, angiogenesis, and bone formation/mineralization. Given the emerging importance of CTGF in osteogenesis and chondrogenesis, this review will focus on its expression in skeletal tissues, its effects on osteoblast and chondrocyte differentiation and function, and the skeletal implications of ablation or over-expression of CTGF in knockout or transgenic mouse models, respectively. In addition, this review will examine the role of integrin-mediated signaling and the regulation of CTGF expression as it relates to skeletogenesis. We will emphasize CTGF studies in bone or bone cells, and will identify opportunities for future investigations concerning CTGF and chondrogenesis/osteogenesis. PMID:21967332

  2. Expression and clinical significance of connective tissue growth factor (CTGF) in Graves' ophthalmopathy.

    PubMed

    Huang, Yi-Ming; Chang, Pei-Chen; Wu, Shi-Bei; Kau, Hui-Chuan; Tsai, Chieh-Chih; Liu, Catherine Jui-Ling; Wei, Yau-Huei

    2017-05-01

    To examine the expression of connective tissue growth factor (CTGF) in human cultured orbital fibroblasts from patients with Graves' ophthalmopathy (GO) and investigate whether a correlation exists between the presence of CTGF protein and clinical parameters of the disease. The protein expression levels of CTGF were analysed by western blots in cultured orbital fibroblasts from 10 patients with GO and 7 age-matched normal controls. Associations between the protein expression of CTGF and the clinical factors of GO, including clinical demographics, thyroid function, clinical activity score (CAS) and ophthalmopathy index (OI), was evaluated. The mean protein expression levels of CTGF in the GO orbital fibroblasts were significantly higher than those of normal controls (p<0.001). Based on further analysis, the protein expression levels of CTGF in the GO orbital fibroblasts had significant correlation with gender (p=0.029), serum levels of thyrotropin receptor antibodies (p=0.029), CAS (p=0.048) and OI (p=0.043). Especially, there was a significant correlation between protein expression levels of CTGF and lid oedema (p=0.037), proptosis (p=0.045) and corneal involvement (p=0.001). Our findings revealed that the protein expression levels of CTGF in the GO orbital fibroblasts were significantly highly expressed than those of normal controls, and the elevated CTGF was associated with clinical characteristics and evolution, indicating CTGF may play a role in the pathogenesis and pathophysiology of GO. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Induction of Ovarian Primordial Follicle Assembly by Connective Tissue Growth Factor CTGF

    PubMed Central

    Schindler, Ryan; Nilsson, Eric; Skinner, Michael K.

    2010-01-01

    Primordial follicle assembly is a process that occurs when oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFβ-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. TGFβ-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFβ-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFβ-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFβ-1 stimulates primordial follicle assembly and TGFβ-1 can decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan. PMID:20886044

  4. Induction of ovarian primordial follicle assembly by connective tissue growth factor CTGF.

    PubMed

    Schindler, Ryan; Nilsson, Eric; Skinner, Michael K

    2010-09-24

    Primordial follicle assembly is a process that occurs when oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFβ-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. TGFβ-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFβ-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFβ-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFβ-1 stimulates primordial follicle assembly and TGFβ-1 can decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan.

  5. [Effect of tetramethylpyrazine and rat CTGF miRNA plasmids on connective tissue growth factor, transforming growth factor-beta in high glucose stimulated hepatic stellate cells].

    PubMed

    Yang, Hong; Li, Jun; Xing, Nini; Xiang, Ying; Shen, Yan; Li, Xiaosheng

    2014-04-01

    The aim of this research is to evaluate the effect of tetramethylpyrazine (TMP) and connective tissue growth factor (CTGF) miRNA plasmids on the expressive levels of CTGF, transforming growth factor-beta (TGFbeta) and type I collagen of rat hepatic stellate cells (HSC) which are stimulated by high glucose. The rat HSCs which were successfully transfected rat CTGF miRNA plasmids and the rat HSCs which were successfully transfected negative plasmids were cultured in vitro. After stimulus of the TMP and the high glucose, the protein levels and gene expressive levels of CTGF, TGF-beta and type I collagen were tested. The results indicated that high glucose increased the expression of CTGF mRNA, CTGF protein, TGF-beta mRNA,TGF-beta protein and type I collagen (P < 0.05). The expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in TMP group were lower than those in high glucose group and showed statistically significant differences (P < 0.05). Compared with high glucose group, the expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in rat CTGF miRNA plasmid interference group were significantly lower (P < 0.05). However, no statistically significant difference was found in CTGF mRNA and CTGF protein levels between TMP group and CTGF miRNA group (P > 0.05), while type I collagen levels showed statistically significant differences (P < 0.05). It is concluded that high glucose could promote the expressions of CTGF, TGF-beta and type I collagen, and TMP and rat CTGF miRNA plasmids could reduce the expressions of CTGF, TGF-beta, type I collagen.

  6. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy.

    PubMed

    Tsai, Chieh-Chih; Wu, Shi-Bei; Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves' ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO.

  7. Connective tissue growth factor (CTGF/CCN2) in haemophilic arthropathy and arthrofibrosis: a histological analysis

    PubMed Central

    Jiang, Jie; Leong, Natalie L.; Khalique, Umara.; Phan, Tien M.; Lyons, Karen M.; Luck, James V.

    2016-01-01

    Introduction Joint haemorrhage is the principal clinical manifestation of haemophilia frequently leading to advanced arthropathy and arthrofibrosis, resulting in severe disability. The degree and prevalence of arthrofibrosis in hemophilic arthropathy is more severe than in other forms of arthropathy. Expression of connective tissue growth factor (CTGF) has been linked to many fibrotic diseases, but has not been studied in the context of haemophilic arthropathy. Aim We aim to compare synovial tissues histologically from haemophilia and osteoarthritis patients with advanced arthropathy in order to compare expression of proteins that are possibly aetiologic in the development of arthrofibrosis. Methods Human synovial tissues were obtained from 10 haemophilia and 10 osteoarthritis patients undergoing joint surgery and processed for histology and immunohistochemistry. Results All samples from haemophilia patients had synovitis with hypertrophy and hyperplasia of synovial villi. Histologically, synovial tissues contained hyperplastic villi with increased cellularity and abundant haemosiderin-and ferritin-pigmented macrophage-like cells (HMCs), with a perivascular localization in the sub-surface layer. CTGF staining was observed in the surface layer and sub-surface layer in all haemophilia patients, exclusively co-localizing with HMCs. Quantification showed that the extent of CTGF-positive areas was correlated with the degree of detection of HMCs. CTGF was not observed in any of the samples from osteoarthritis patients. Conclusion Using histological analysis, we showed that CTGF expression is elevated in haemophilia patients with arthrofibrosis and absent in patients with osteoarthritis. Additionally, we found that CTGF is always associated with haemosiderin-pigmented macrophage-like cells, which suggests that CTGF is produced by synovial A cells following the uptake of blood breakdown products. PMID:27704689

  8. Connective tissue growth factor (CTGF/CCN2) in haemophilic arthropathy and arthrofibrosis: a histological analysis.

    PubMed

    Jiang, J; Leong, N L; Khalique, U; Phan, T M; Lyons, K M; Luck, J V

    2016-11-01

    Joint haemorrhage is the principal clinical manifestation of haemophilia frequently leading to advanced arthropathy and arthrofibrosis, resulting in severe disability. The degree and prevalence of arthrofibrosis in hemophilic arthropathy is more severe than in other forms of arthropathy. Expression of connective tissue growth factor (CTGF) has been linked to many fibrotic diseases, but has not been studied in the context of haemophilic arthropathy. We aim to compare synovial tissues histologically from haemophilia and osteoarthritis patients with advanced arthropathy in order to compare expression of proteins that are possibly aetiologic in the development of arthrofibrosis. Human synovial tissues were obtained from 10 haemophilia and 10 osteoarthritis patients undergoing joint surgery and processed for histology and immunohistochemistry. All samples from haemophilia patients had synovitis with hypertrophy and hyperplasia of synovial villi. Histologically, synovial tissues contained hyperplastic villi with increased cellularity and abundant haemosiderin- and ferritin-pigmented macrophage-like cells (HMCs), with a perivascular localization in the sub-surface layer. CTGF staining was observed in the surface layer and sub-surface layer in all haemophilia patients, exclusively co-localizing with HMCs. Quantification showed that the extent of CTGF-positive areas was correlated with the degree of detection of HMCs. CTGF was not observed in any of the samples from osteoarthritis patients. Using histological analysis, we showed that CTGF expression is elevated in haemophilia patients with arthrofibrosis and absent in patients with osteoarthritis. Additionally, we found that CTGF is always associated with haemosiderin-pigmented macrophage-like cells, which suggests that CTGF is produced by synovial A cells following the uptake of blood breakdown products. © 2016 John Wiley & Sons Ltd.

  9. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves’ Ophthalmopathy

    PubMed Central

    Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves’ ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO. PMID:26599235

  10. CTGF Mediates Smad-Dependent Transforming Growth Factor β Signaling To Regulate Mesenchymal Cell Proliferation during Palate Development

    PubMed Central

    Parada, Carolina; Li, Jingyuan; Iwata, Junichi; Suzuki, Akiko

    2013-01-01

    Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2fl/fl and Osr2-Cre; Smad4fl/fl palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4fl/fl mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis. PMID:23816882

  11. Decorin Interacts with Connective Tissue Growth Factor (CTGF)/CCN2 by LRR12 Inhibiting Its Biological Activity*

    PubMed Central

    Vial, Cecilia; Gutiérrez, Jaime; Santander, Cristian; Cabrera, Daniel; Brandan, Enrique

    2011-01-01

    Fibrotic disorders are the end point of many chronic diseases in different tissues, where an accumulation of the extracellular matrix occurs, mainly because of the action of the connective tissue growth factor (CTGF/CCN2). Little is known about how this growth factor activity is regulated. We found that decorin null myoblasts are more sensitive to CTGF than wild type myoblasts, as evaluated by the accumulation of fibronectin or collagen III. Decorin added exogenously negatively regulated CTGF pro-fibrotic activity and the induction of actin stress fibers. Using co-immunoprecipitation and in vitro interaction assays, decorin and CTGF were shown to interact in a saturable manner with a Kd of 4.4 nm. This interaction requires the core protein of decorin. Experiments using the deletion mutant decorin indicated that the leucine-rich repeats (LRR) 10–12 are important for the interaction with CTGF and the negative regulation of the cytokine activity, moreover, a peptide derived from the LRR12 was able to inhibit CTGF-decorin complex formation and CTGF activity. Finally, we showed that CTGF specifically induced the synthesis of decorin, suggesting a mechanism of autoregulation. These results suggest that decorin interacts with CTGF and regulates its biological activity. PMID:21454550

  12. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro

    PubMed Central

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-01-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935

  13. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells

    PubMed Central

    Bagheri, Abouzar; Ahmadieh, Hamid; Samiei, Shahram; Sheibani, Nader; Astaneh, Shamila Darvishalipour; Kanavi, Mozhgan Rezaei; Mohammadian, Azam

    2015-01-01

    Purpose Retinal pigment epithelial (RPE) cells play key roles in the development of choroidal neovascularization and subsequent fibrosis. We investigated the impact of bevacizumab, antihuman vascular endothelial growth factor (VEGF) antibody, and anticonnective tissue growth factor (anti-CTGF) neutralizing antibody, individually or in combination, on proangiogenic and profibrotic properties of RPE cells. Methods Primary cultures of human RPE cells were incubated with different concentrations of bevacizumab (0.25, 0.5, and 0.8 mg/ml) and/or anti-CTGF (10 μg/ml), and cell proliferation and apoptosis were determined. Expression and activity of proangiogenic and profibrotic genes including matrix metalloproteinases (MMP)-2 and 9, VEGFA, CTGF, vascular endothelial growth factor receptor-1 (VEGFR-1), cathepsin D, tissue inhibitor of metalloproteinases (TIMP) −1 and −2, and alpha smooth muscle actin (α-SMA) were assessed with slot blot, real-time RT–PCR, and zymography. Results Bevacizumab alone inhibited proliferation of RPE cells while anti-CTGF or bevacizumab and anti-CTGF combined had no inhibitory effect in this regard. Bevacizumab increased MMP-2, MMP-9, and cathepsin D but decreased VEGFA and VEGFR-1 expression. The CTGF level was increased by using 0.25 mg/ml bevacizumab but decreased at the 0.8 mg/ml concentration of bevacizumab. Treatment with anti-CTGF antibody decreased MMP-2 expression whereas combined treatment with bevacizumab and anti-CTGF resulted in decreased expression of MMP-2, TIMP-1, cathepsin D, VEGFA, CTGF, and α-SMA in the treated cultures. Conclusions Treatment of RPE cells with the combination of bevacizumab and anti-CTGF could effectively suppress the proangiogenic and profibrotic activity of RPE cells. PMID:25883524

  14. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  15. [Connective tissue growth factors, CTGF and Cyr61 in drug-induced gingival overgrowth--an animal model].

    PubMed

    Ciobanică, Mihaela; Cianga, Corina; Căruntu, Irina-Draga; Grigore, Georgiana; Cianga, P

    2008-01-01

    Human gingival overgrowth may occur as a side effect of chronic administration of some therapeutic agents. The mechanisms responsible for the gingival tissues lesions, fibrosis and inflamation, involve an impaired balance between the production and the degradation of type I collagen. It has been demonstrated that CCN2/CTGF, a connective tissue growth factor, is highly expressed in the gingival tissues and positively correlated with the degree of fibrosis in the drug-induced gingival overgrowth. The aim of this study was to identify the presence and localization of CCN2/CTGF and CCN1/Cyr61, members of the same molecular family, in gingival tissues of cyclosporin A- and nifedipine-treated rats, by immunohistochemistry. Staining was evaluated with light microscope and the results show cellular and extracellular CTGF in nifedipin gingival overgrowth tissues with intensity of labeling higher compared to the CsA gingival overgrowth tissues or the controls. The staining for Cyr61 shows its intracellular localization with no diference of labeling intensity between drug-induced gingival overgrowth and normal tissues. Also, we were interested in the gingival TGF-â expression in those animals. We didn't find any commercial anti-rat TGF antibody and our anti-human antibody shows no cross-reactivity with rat tissues. The data from our study sustain the involvement of CTGF and Cyr61 as growth factors in the gingival tissues and the CTGF association with drug-induced gingival overgrowth.

  16. Growth differentiation factor 8 suppresses cell proliferation by up-regulating CTGF expression in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Pan, Hui-Hui; Cheng, Jung-Chien; Zhu, Yi-Min; Leung, Peter C K

    2016-02-15

    Connective tissue growth factor (CTGF) is a matricellular protein that plays a critical role in the development of ovarian follicles. Growth differentiation factor 8 (GDF8) is mainly, but not exclusively, expressed in the mammalian musculoskeletal system and is a potent negative regulator of skeletal muscle growth. The aim of this study was to investigate the effects of GDF8 and CTGF on the regulation of cell proliferation in human granulosa cells and to examine its underlying molecular determinants. Using dual inhibition approaches (inhibitors and small interfering RNAs), we have demonstrated that GDF8 induces the up-regulation of CTGF expression through the activin receptor-like kinase (ALK)4/5-mediated SMAD2/3-dependent signaling pathways. In addition, the increase in CTGF expression contributes to the GDF8-induced suppressive effect on granulosa cell proliferation. Our findings suggest that GDF8 and CTGF may play critical roles in the regulation of proliferative events in human granulosa cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of Antiproteinuric Intervention on Elevated Connective Tissue Growth Factor (CTGF/CCN-2) Plasma and Urine Levels in Nondiabetic Nephropathy

    PubMed Central

    Slagman, Maartje C.J.; Nguyen, Tri Q.; Waanders, Femke; Vogt, Liffert; Hemmelder, Marc H.; Goldschmeding, Roel; Navis, Gerjan

    2011-01-01

    Summary Background and objectives Connective Tissue Growth Factor (CTGF/CCN-2) is a key player in fibrosis. Plasma CTGF levels predict end-stage renal disease and mortality in diabetic chronic kidney disease (CKD), supporting roles in intra- and extrarenal fibrosis. Few data are available on CTGF in nondiabetic CKD. We investigated CTGF levels and effects of antiproteinuric interventions in nondiabetic proteinuric CKD. Design, setting, participants, & measurements In a crossover randomized controlled trial, 33 nondiabetic CKD patients (3.2 [2.5 to 4.0] g/24 h proteinuria) were treated during 6-week periods with placebo, ARB (100 mg/d losartan), and ARB plus diuretics (100 mg/d losartan plus 25 mg/d hydrochlorothiazide) combined with consecutively regular and low sodium diets (193 ± 62 versus 93 ± 52 mmol Na+/d). Results CTGF was elevated in plasma (464 [387 to 556] pmol/L) and urine (205 [135 to 311] pmol/24 h) of patients compared with healthy controls (n = 21; 96 [86 to 108] pmol/L and 73 [55 to 98] pmol/24 h). Urinary CTGF was lowered by antiproteinuric intervention, in proportion to the reduction of proteinuria, with normalization during triple therapy (CTGF 99 [67 to 146] in CKD versus 73 [55 to 98] pmol/24 h in controls). In contrast, plasma CTGF was not affected. Conclusions Urinary and plasma CTGF are elevated in nondiabetic CKD. Only urinary CTGF is normalized by antiproteinuric intervention, consistent with amelioration of tubular dysfunction. The lack of effect on plasma CTGF suggests that its driving force might be independent of proteinuria and that short-term antiproteinuric interventions are not sufficient to correct the systemic profibrotic state in CKD. PMID:21784839

  18. Inverse expression of cystein-rich 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2) in borderline tumors and carcinomas of the ovary.

    PubMed

    Bartel, Frank; Balschun, Katharina; Gradhand, Elise; Strauss, Hans G; Dittmer, Jürgen; Hauptmann, Steffen

    2012-09-01

    Members of the CCN [cystein-rich 61 (Cyr61)/connective tissue growth factor (CTGF)/nephroblastoma (NOV)] protein family are involved in the regulation of cellular proliferation, apoptosis, and migration and are also assumed to play a role in carcinogenesis. Therefore, we performed a retrospective study to investigate the immunohistochemical expression of both Cyr61 and CTGF in 92 borderline tumors (BOTs) and 107 invasive carcinomas of the ovary (IOCs). To determine their diagnostic and prognostic value, we correlated protein expression with clinicopathologic factors including overall and disease-free survival. Cyr61 and CTGF were found to be inversely expressed in both BOTs and IOCs, with a stronger expression of Cyr61 in IOCs. Moreover, Cyr61 was found to be preferentially expressed in high-grade serous carcinomas, whereas CTGF was found more frequently in low-grade serous carcinomas. Weak Cyr61 levels correlated with both low estrogen receptor and p53 expression (P=0.038, P=0.04, respectively). However, no association was observed between CTGF, estrogen receptor, and p53 expression levels in IOCs. Regarding prognosis, Cyr61 was found to be of no value, but the loss of CTGF was found to be associated with a poor prognosis in multivariate analysis of overall (relative risk 2.8; P=0.050) and disease-free (relative risk 2.3; P=0.031) survival. Cyr61 and CTGF are inversely expressed in BOTs and IOCs, and loss of CTGF independently indicates poor prognosis in IOCs.

  19. [Influence of ASODN to the human tenon's fibroblasts in expressing CTGF induced by transforming growth factor beta2].

    PubMed

    Hu, Yi-Zhen; Wang, Yu-Hong; Cao, Yang; Zhang, Ming-Chang

    2008-02-01

    To investigate the effect of connective tissue growth factor's antisense oligonucleotides (ASODN) on the growth of human tenon' s capsule fibroblasts (HTF) induced by transforming growth factor beta2 (TGF-beta2) in vitro. It was a experimental study. HTF was collected from glaucoma patients and cultured. The 5-6 passage was used for experiments. The HTF induced by TGF-beta2 was divided into the following groups: N group: normal HTF; T group: HTF induced by TGF-beta2; A group: CTGF ASODN antisense:5'-TACTGGCGGCGGTCAT-3' encapsulated with liposome; S group: sense 5'-ATGACCGCCGCCAGTA-3' encapsulated with liposome; D group: HTF encapsulated with liposome only. The activity of HTF treated by different concentrations of liposome was detected using methylthianolyldiphenyl tetrazolium bromide (MT) colorimetry. The expression of CTGF was detected by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry assays. The expression of fibronectin (Fn) was examined by Western blot and immunocytochemistry assays. Liposome-ASODN (A group) significantly (F=15.25, 204.88, 19.73, 90.00; P <0.05) inhibit the expression of CTGF and Fn in HTF induced by TGF-beta2 compared with S and D group. However, Liposome alone (T group) has no significant impact in HTF growth compared with T group (t = 0.90, 2.32, 0.75, 2.11; P > 0.05). CTGF-ASODN inhibits the CTGF and Fn expression of HTF induced by TGF-beta2, which may delay the formation of scar in glaucoma filtering surgery.

  20. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  1. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-01-01

    Background This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. Material/Methods A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3′UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. Results MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3′UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. Conclusions MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression. PMID:27771733

  2. Increased expression of connective tissue growth factor (CTGF) in multiple organs after exposure of non-human primates (NHP) to lethal doses of radiation

    PubMed Central

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G.; Gibbs, Allison M.; Smith, Cassandra P.; Taylor-Howell, Cheryl; Kearney, Sean R.; MacVittie, Thomas J.

    2015-01-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP, and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition respectively, suggesting possible crosstalk between spleen and other organs. Our data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs. PMID:26425899

  3. Increased Expression of Connective Tissue Growth Factor (CTGF) in Multiple Organs After Exposure of Non-Human Primates (NHP) to Lethal Doses of Radiation.

    PubMed

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G; Gibbs, Allison M; Smith, Cassandra P; Taylor-Howell, Cheryl; Kearney, Sean R; MacVittie, Thomas J

    2015-11-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus, and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition, respectively, suggesting possible crosstalk between spleen and other organs. These data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs.

  4. CTGF — EDRN Public Portal

    Cancer.gov

    CTGF, a major connective tissue mitoattractant secreted by vascular endothelial cells, promotes proliferation and differentiation of chondrocytes. It mediates heparin- and divalent cation-dependent cell adhesion in many cell types including fibroblasts, myofibroblasts, endothelial and epithelial cells. It enhances fibroblast growth factor-induced DNA synthesis. CTGF is expressed in bone marrow and thymic cells. It is also expressed one of two Wilms tumors tested.

  5. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology.

    PubMed

    Zhao, Zhong; Ho, Lap; Wang, Jun; Qin, Weiping; Festa, Eugene D; Mobbs, Charles; Hof, Patrick; Rocher, Anne; Masur, Sandra; Haroutunian, Vahram; Pasinetti, Giulio Maria

    2005-12-01

    The goal of this study was to further explore potential mechanisms through which diabetogenic dietary conditions that result in promotion of insulin resistance (IR), a feature of non-insulin dependant diabetes mellitus (type-2 diabetes), may influence Alzheimer's disease (AD). Using genome-wide array technology, we found that connective tissue growth factor (CTGF), a gene product described previously for its involvement in diabetic fibrosis, is elevated in brain tissue in an established mouse model of diet-induced IR. With this evidence we continued to explore the regulation of CTGF in postmortem AD brain tissue and found that CTGF expression correlated with the progression of AD clinical dementia and amyloid neuritic plaque (NP) neuropathology, but not neurofibrillary tangle (NFT) deposition. Consistent with this evidence, we also found that exposure of Tg2576 mice (a model AD-type amyloid neuropathology) to a diabetogenic diet that promotes IR results in a ~2-fold elevation in CTGF steady-state levels in the brain, coincident with a commensurate promotion of AD-type amyloid plaque burden. Finally, using in vitro cellular models of amyloid precursor protein (APP)-processing and Abeta generation/clearance, we confirmed that human recombinant (hr)CTGF may increase Abeta1-40 and Abeta1-42 peptide steady-state levels, possibly through a mechanism that involves gamma-secretase activation and decreased insulin-degrading enzyme (IDE) steady-state levels in a MAP kinase (MAPK)/ phosphatidylinositol 3-kinase (PI-3K)/protein kinase-B (AKT)1-dependent manner. The findings in this study tentatively suggest that increased CTGF expression in the brain might be a novel biological predicative factor of AD clinical progression and neuropathology in response to dietary regimens promoting IR conditions.

  6. Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells.

    PubMed

    Kondo, Seiji; Tanaka, Noriko; Kubota, Satoshi; Mukudai, Yoshiki; Yosimichi, Gen; Sugahara, Toshio; Takigawa, Masaharu

    2006-01-01

    Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

  7. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    PubMed

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  8. Simvastatin inhibits transforming growth factor-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts.

    PubMed

    Mun, Je-Ho; Kim, Young-Mi; Kim, Byung-Soo; Kim, Jae-Ho; Kim, Moon-Bum; Ko, Hyun-Chang

    2014-01-01

    Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is used to reduce cholesterol levels. Accumulating evidence has revealed the immunomodulatory and anti-inflammatory effects of simvastatin that prevent cardiovascular diseases. In addition, the beneficial effects of statins on fibrosis of various organs have been reported. However, the functional effect of statins on dermal fibrosis of keloids has not yet been explored. The objective of this study was to determine whether simvastatin could affect dermal fibrosis associated with keloids. We examined the effect of simvastatin on transforming growth factor (TGF)-β1-induced production of type I collagen, connective tissue growth factor (CTGF or CCN2), and α-smooth muscle actin (α-SMA). Keloid fibroblasts were cultured and exposed to different concentrations of simvastatin in the presence of TGF-β1, and the effects of simvastatin on TGF-β1-induced collagen and CTGF production in keloid fibroblasts were determined. The type I collagen, CTGF, and α-SMA expression levels and the Smad2 and Smad3 phosphorylation levels were assessed by Western blotting. The effect of simvastatin on cell viability was evaluated by assessing the colorimetric conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Simvastatin suppressed TGF-β1-induced type I collagen, CTGF, and α-SMA production in a concentration-dependent manner. The TGF-β1-induced Smad2 and Smad3 phosphorylation levels were abrogated by simvastatin pretreatment. The inhibition of type I collagen, CTGF, and α-SMA expression by simvastatin was reversed by geranylgeranyl pyrophosphate, suggesting that the simvastatin-induced cellular responses were due to inhibition of small GTPase Rho involvement. A RhoA activation assay showed that preincubation with simvastatin significantly blocked TGF-β1-induced RhoA activation. The Rho-associated coiled kinase inhibitor Y27632 abrogated TGF-β1-induced production of type I collagen

  9. Immunohistochemical Detection of CTGF in the Human Eye.

    PubMed

    van Setten, Gysbert B; Trost, Andrea; Schrödl, Falk; Kaser-Eichberger, Alexandra; Bogner, Barbara; van Setten, Mercedes; Heindl, Ludwig M; Grabner, Günther; Reitsamer, Herbert A

    2016-12-01

    Purpose/Aim of the study: Connective tissue growth factor (CTGF) is a key player in the control of extracellular matrix remodeling, fibrosis, and angiogenesis. It is also involved in the modification of the trabecular meshwork, thus potentially modulating outflow facility and intraocular pressure (IOP). As a consequence, CTGF might be relevant for the development of elevated IOP, a major risk factor in glaucoma-pathogenesis. While comprehensive information on the origins of CTGF in the human eye is not available, the goal of this study is to identify ocular sources of CTGF using morphological methods.

  10. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  11. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis

    PubMed Central

    CHIEN, WENWEN; O’KELLY, JAMES; LU, DANING; LEITER, AMANDA; SOHN, JULIA; YIN, DONG; KARLAN, BETH; VADGAMA, JAY; LYONS, KAREN M.; KOEFFLER, H. PHILLIP

    2013-01-01

    Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis. PMID:21455569

  12. A Polymorphism Within the Connective Tissue Growth Factor (CTGF) Gene has No Effect on Non-Invasive Markers of Beta-Cell Area and Risk of Type 2 Diabetes

    PubMed Central

    Pivovarova, Olga; Fisher, Eva; Dudziak, Katarzyna; Ilkavets, Iryna; Dooley, Steven; Slominsky, Petr; Limborska, Svetlana; Weickert, Martin O.; Spranger, Joachim; Fritsche, Andreas; Boeing, Heiner; Pfeiffer, Andreas F. H.; Rudovich, Natalia

    2011-01-01

    Chromosomal locus 6q23 is strongly linked to type 2 diabetes (T2DM) and related features including insulin secretion in various ethnic populations. Connective tissue growth factor (CTGF) gene is an interesting T2DM candidate gene in this chromosome region. CTGF is a key mediator of progressive pancreatic fibrosis up-regulated in type 2 diabetes. In contrast, CTGF inactivation in mice compromises islet cell proliferation during embryogenesis. The aim of our study was to investigate an impact of CTGF genetic variation on pancreatic beta-cell function and T2DM pathogenesis. We studied the effect of a common CTGF polymorphism rs9493150 on the risk of the T2DM development in three independent German cohorts. Specifically, the association between CTGF polymorphism and non-invasive markers of beta-cell area derived from oral glucose tolerance test was studied in subjects without diabetes. Neither in the Metabolic Syndrome Berlin Potsdam (MESYBEPO) study (n = 1026) (OR = 0.637, CI (0.387–1.050); p = 0.077) nor in the European Prospective Investigation into Cancer and Nutrition-Potsdam (EPIC-Potsdam) (n = 3049) cohort (RR = 0.77 CI (0.49–1.20), p = 0.249 for the recessive homozygote in general model), a significant association with increased diabetes risk was observed. The risk allele of rs9493150 had also no effect on markers of beta-cell area in the combined analysis of the MESYBEPO and Tübingen Family Study (n = 1826). In conclusion, the polymorphism rs9493150 in the 5’-untranslated region of the CTGF gene has no association with T2DM risk and surrogate markers of beta-cell area. PMID:22045431

  13. A polymorphism within the connective tissue growth factor (CTGF) gene has no effect on non-invasive markers of beta-cell area and risk of type 2 diabetes.

    PubMed

    Pivovarova, Olga; Fisher, Eva; Dudziak, Katarzyna; Ilkavets, Iryna; Dooley, Steven; Slominsky, Petr; Limborska, Svetlana; Weickert, Martin O; Spranger, Joachim; Fritsche, Andreas; Boeing, Heiner; Pfeiffer, Andreas F H; Rudovich, Natalia

    2011-01-01

    Chromosomal locus 6q23 is strongly linked to type 2 diabetes (T2DM) and related features including insulin secretion in various ethnic populations. Connective tissue growth factor (CTGF) gene is an interesting T2DM candidate gene in this chromosome region. CTGF is a key mediator of progressive pancreatic fibrosis up-regulated in type 2 diabetes. In contrast, CTGF inactivation in mice compromises islet cell proliferation during embryogenesis. The aim of our study was to investigate an impact of CTGF genetic variation on pancreatic beta-cell function and T2DM pathogenesis. We studied the effect of a common CTGF polymorphism rs9493150 on the risk of the T2DM development in three independent German cohorts. Specifically, the association between CTGF polymorphism and non-invasive markers of beta-cell area derived from oral glucose tolerance test was studied in subjects without diabetes. Neither in the Metabolic Syndrome Berlin Potsdam (MESYBEPO) study (n=1026) (OR=0.637, CI (0.387-1.050); p=0.077) nor in the European Prospective Investigation into Cancer and Nutrition-Potsdam (EPIC-Potsdam) (n=3049) cohort (RR=0.77 CI (0.49-1.20), p=0.249 for the recessive homozygote in general model), a significant association with increased diabetes risk was observed. The risk allele of rs9493150 had also no effect on markers of beta-cell area in the combined analysis of the MESYBEPO and Tübingen Family Study (n=1826). In conclusion, the polymorphism rs9493150 in the 5'-untranslated region of the CTGF gene has no association with T2DM risk and surrogate markers of beta-cell area.

  14. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    PubMed Central

    Henshaw, F. R.; Boughton, P.; Lo, L.; McLennan, S. V.; Twigg, S. M.

    2015-01-01

    Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. Results. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P < 0.001). Conclusions/Interpretation. These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers. PMID:25789327

  15. Microrna-199a-5p Functions as a Tumor Suppressor via Suppressing Connective Tissue Growth Factor (CTGF) in Follicular Thyroid Carcinoma.

    PubMed

    Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun

    2016-04-11

    BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.

  16. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2).

    PubMed

    Morales, María Gabriela; Cabrera, Daniel; Céspedes, Carlos; Vio, Carlos P; Vazquez, Yaneisi; Brandan, Enrique; Cabello-Verrugio, Claudio

    2013-07-01

    The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-β), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-β1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-β1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.

  17. CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-κB

    PubMed Central

    Sánchez-López, Elsa; Rayego, Sandra; Rodrigues-Díez, Raquel; Rodriguez, Javier Sánchez; Rodrigues-Díez, Raúl; Rodríguez-Vita, Juan; Carvajal, Gisselle; Aroeira, Luiz Stark; Selgas, Rafael; Mezzano, Sergio A.; Ortiz, Alberto; Egido, Jesús; Ruiz-Ortega, Marta

    2009-01-01

    Connective tissue growth factor (CTGF) is an important profibrotic factor in kidney diseases. Blockade of endogenous CTGF ameliorates experimental renal damage and inhibits synthesis of extracellular matrix in cultured renal cells. CTGF regulates several cellular responses, including adhesion, migration, proliferation, and synthesis of proinflammatory factors. Here, we investigated whether CTGF participates in the inflammatory process in the kidney by evaluating the nuclear factor-kappa B (NF-κB) pathway, a key signaling system that controls inflammation and immune responses. Systemic administration of CTGF to mice for 24 h induced marked infiltration of inflammatory cells in the renal interstitium (T lymphocytes and monocytes/macrophages) and led to elevated renal NF-κB activity. Administration of CTGF increased renal expression of chemokines (MCP-1 and RANTES) and cytokines (INF-γ, IL-6, and IL-4) that recruit immune cells and promote inflammation. Treatment with a NF-κB inhibitor, parthenolide, inhibited CTGF-induced renal inflammatory responses, including the up-regulation of chemokines and cytokines. In cultured murine tubuloepithelial cells, CTGF rapidly activated the NF-κB pathway and the cascade of mitogen-activated protein kinases, demonstrating crosstalk between these signaling pathways. CTGF, via mitogen-activated protein kinase and NF-κB activation, increased proinflammatory gene expression. These data show that in addition to its profibrotic properties, CTGF contributes to the recruitment of inflammatory cells in the kidney by activating the NF-κB pathway. PMID:19423687

  18. Role of CTGF gene promoter methylation in the development of hepatic fibrosis

    PubMed Central

    Shi, Cuicui; Li, Guangming; Tong, Yanyan; Deng, Yilin; Fan, Jiangao

    2016-01-01

    Connective tissue growth factor (CTGF) plays a critical role in the hepatic stellate cells (HSCs)-mediated development of hepatic fibrosis. Nevertheless, the effects of CTGF gene promoter methylation in the pathogenesis of hepatic fibrosis remain largely unknown. In the current study, we isolated and overexpressed CTGF in primary HSCs. We analyzed the CTGF gene promoter methylation inHSCs that undergo a phenotypic change into myofibroblast-like cellsthat express α-smooth muscle actin (α-SMA) in vitro and in vivo in a CCl4-induced rat hepatic fibrosis model. We found that CTGF promoted the phenotypic changes of HSCs into myofibroblasts in vitro, while inhibition of CTGF promoter methylation augmented the process, suggesting that CTGF gene promoter methylation may negatively regulate hepatic fibrosis. In vivo, CCl4 induced hepatic fibrosis in rats, and the severity of hepatic fibrosis inversely correlated with the levels of CTGF gene promoter methylation in HSCs. Together, our data demonstrate that CTGF gene promoter methylation may prevent the development of hepatic fibrosis, and low level of CTGF gene promoter methylation in HSCs may be a predisposing factor for developing liver fibrotic disease. PMID:27069546

  19. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy.

    PubMed

    Zhang, Hao; Cai, Xu; Yi, Bin; Huang, Jing; Wang, Jianwen; Sun, Jian

    2014-06-01

    Increasing evidence shows that DNA methylation is involved in the development and progression of diabetes mellitus (DM) and its complications. Previous studies conducted by our group have indicated that high glucose levels may induce the demethylation process of the connective tissue growth factor (CTGF) gene promoter and increase the expression of CTGF in human glomerular mesangial cells. Based on these findings, the aim of the present study was to investigate the methylation level of genomic DNA and the CTGF promoter in patients with type 2 DM and to analyze its possible correlation with CTGF expression. Methylation levels of the whole genomic DNA were detected by high-performance liquid chromatography in a non-diabetes control (NDM) group (n=29), a diabetes without nephropathy (NDN) group (n=37) and a diabetes with nephropathy (DN) group (n=38). CTGF promoter methylation levels were detected by methylation-specific polymerase chain reaction and bisulfite sequencing. The levels of serum CTGF were assessed using the enzyme-linked immunosorbent assay. The methylation levels of the whole genomic DNA were not significantly different among the three groups. However, the CTGF methylation levels in the two diabetes groups were significantly lower than those in the NDM group (P<0.05), with the lowest methylation level in the DN group (P<0.05). The CTGF protein levels in the DN group were significantly higher than those in the NDM and NDN groups (P<0.05). Levels of CTGF were negatively correlated with the estimated glomerular filtration rate (eGFR) and the methylation level of the promoter, while they were positively correlated with age, urinary albumin-to-creatinine ratio (UACR), blood urea nitrogen, creatinine, fasting blood sugar and postprandial blood glucose. Multiple stepwise regression analysis showed that CTGF expression was associated with the UACR, CTGF methylation level and eGFR. DNA methylation is a regulatory mechanism of CTGF expression, which is decreased

  20. CTGF is a therapeutic target for metastatic melanoma

    PubMed Central

    Finger, EC; Cheng, C-F; Williams, TR; Rankin, EB; Bedogni, B; Tachiki, L; Spong, S; Giaccia, AJ; Powell, MB

    2014-01-01

    Metastatic melanoma remains a devastating disease with a 5-year survival rate of less than five percent. Despite recent advances in targeted therapies for melanoma, only a small percentage of melanoma patients experience durable remissions. Therefore, it is critical to identify new therapies for the treatment of advanced melanoma. Here, we define connective tissue growth factor (CTGF) as a therapeutic target for metastatic melanoma. Clinically, CTGF expression correlates with tumor progression and is strongly induced by hypoxia through HIF-1 and HIF-2-dependent mechanisms. Genetic inhibition of CTGF in human melanoma cells is sufficient to significantly reduce orthotopic tumor growth, as well as metastatic tumor growth in the lung of severe combined immunodeficient (SCID) mice. Mechanistically, inhibition of CTGF decreased invasion and migration associated with reduced matrix metalloproteinase-9 expression. Most importantly, the anti-CTGF antibody, FG-3019, had a profound inhibitory effect on the progression of established metastatic melanoma. These results offer the first preclinical validation of anti-CTGF therapy for the treatment of advanced melanoma and underscore the importance of tumor hypoxia in melanoma progression. PMID:23435419

  1. Modulation of the TGF{beta}/Smad signaling pathway in mesangial cells by CTGF/CCN2

    SciTech Connect

    Abdel Wahab, Nadia . E-mail: nadia.wahab@imperial.ac.uk; Weston, Benjamin S.; Mason, Roger M.

    2005-07-15

    Transforming growth factor-beta (TGF{beta}) drives fibrosis in diseases such as diabetic nephropathy (DN). Connective tissue growth factor (CTGF; CCN2) has also been implicated in this, but the molecular mechanism is unknown. We show that CTGF enhances the TGF{beta}/Smad signaling pathway by transcriptional suppression of Smad 7 following rapid and sustained induction of the transcription factor TIEG-1. Smad 7 is a known antagonist of TGF{beta} signaling and TIEG-1 is a known repressor of Smad 7 transcription. CTGF enhanced TGF{beta}-induced phosphorylation and nuclear translocation of Smad 2 and Smad 3 in mesangial cells. Antisense oligonucleotides directed against TIEG-1 prevented CTGF-induced downregulation of Smad 7. CTGF enhanced TGF{beta}-stimulated transcription of the SBE4-Luc reporter gene and this was markedly reduced by TIEG-1 antisense oligonucleotides. Expression of the TGF{beta}-responsive genes PAI-1 and Col III over 48 h was maximally stimulated by TGF{beta} + CTGF compared to TGF{beta} alone, while CTGF alone had no significant effect. TGF{beta}-stimulated expression of these genes was markedly reduced by both CTGF and TIEG-1 antisense oligonucleotides, consistent with the endogenous induction of CTGF by TGF{beta}. We propose that under pathological conditions, where CTGF expression is elevated, CTGF blocks the negative feedback loop provided by Smad 7, allowing continued activation of the TGF{beta} signaling pathway.

  2. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy.

    PubMed

    Morales, Maria Gabriela; Gutierrez, Jaime; Cabello-Verrugio, Claudio; Cabrera, Daniel; Lipson, Kenneth E; Goldschmeding, Roel; Brandan, Enrique

    2013-12-15

    In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.

  3. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling.

    PubMed

    Chang, Chun-Hua; Ou, Ting-Tsz; Yang, Mon-Yuan; Huang, Chi-Chou; Wang, Chau-Jong

    2016-07-21

    Nelumbo nucifera Gaertn (Nymphaeaceae) has been recognized as a medicinal plant, which was distributed throughout the Asia. The aqueous extract of Nelumbo nucifera leaves extract (NLE) has various biologically active components such as polyphenols, flavonoids, oligomeric procyanidines. However, the role of NLE in breast cancer therapy is poorly understood. The purpose of this study was to identify the hypothesis that NLE can suppress tumor angiogenesis and metastasis through CTGF (connective tissue growth factor), which has been implicated in tumor angiogenesis and progression in breast cancer MDA-MB-231 cells. We examined the effects of NLE on angiogenesis in the chicken chorioallantoic membrane (CAM) model. The data showed that NLE could reduce the chorionic plexus at day 17 in CAM and the duration of this inhibition was dose-dependent. In Xenograft model, NLE treatment significantly reduced tumor weight and CD31 (capillary density) over control, respectively. We examined the role of angiogenesis involved restructuring of endothelium using human umbilical vein endothelial cell (HUVEC) in Matrigel angiogenesis model. The results indicated that vascular-like structure formation was further blocked by NLE treatment. Moreover, knockdown of CTGF expression markedly reduced the expression of MMP2 as well as VEGF, and attenuated PI3K-AKT-ERK activation, indication that these signaling pathways are crucial in mediating CTGF function. The present results suggest that NLE might be useful for treatment in therapy-resistance triple negative breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle.

    PubMed

    Morales, María Gabriela; Acuña, María José; Cabrera, Daniel; Goldschmeding, Roel; Brandan, Enrique

    2017-09-08

    Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.

  5. MicroRNA-26b inhibits metastasis of osteosarcoma via targeting CTGF and Smad1.

    PubMed

    Duan, Guoqing; Ren, Chunfeng; Zhang, Yuanmin; Feng, Shiqing

    2015-08-01

    Downregulation of miR-26b has been found in various cancers, but it has never been investigated in osteosarcoma. In this study, we demonstrated downregulation of miR-26b in osteosarcoma tissues, negatively correlated with the expression of connective tissue growth factor (CTGF) and Smad1. Luciferase reporter assay confirmed the interaction of miR-26b with the 3' untranslated regions (UTRs) of CTGF and Smad1. Transfection of miR-26b in osteosarcoma cells suppressed the expression of CTGF and Smad1, suggesting CTGF and Smad1 as direct targets of miR-26b. Overexpression of miR-26b inhibited the migration of osteosarcoma cells, which was reversed by overexpression of CTGF or Smad1. Knockdown of CTGF by small interfering RNA (siRNA) interference blocked the activation of Smad1, ERK1/2, and MMP2, which was opposite to the overexpression of CTGF. Differently, Smad1 did not significantly affect CTGF level, but mediated ERK1/2 phosphorylation and MMP2 activation. Furthermore, miR-26b inhibited lung metastasis of osteosarcoma in vivo. Our data indicated that downregulation of miR-26b in osteosarcoma elevated the levels of CTGF and Smad1, facilitating osteosarcoma metastasis.

  6. BMP Signaling and Podocyte Markers Are Decreased in Human Diabetic Nephropathy in Association With CTGF Overexpression

    PubMed Central

    Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V.; Lyons, Karen M.; Nguyen, Tri Q.; Goldschmeding, Roel

    2009-01-01

    Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009) PMID:19255250

  7. The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes

    PubMed Central

    2011-01-01

    The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes. The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes. In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome. PMID:21548990

  8. The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes.

    PubMed

    Dendooven, Amélie; Nguyen, Tri Q; Brosens, Lodewijk; Li, Dongxia; Tarnow, Lise; Parving, Hans-Henrik; Rossing, Peter; Goldschmeding, Roel

    2011-05-08

    The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes. The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes. In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome.

  9. CCN Family 2/Connective Tissue Growth Factor (CCN2/CTGF) Promotes Osteoclastogenesis via Induction of and Interaction with Dendritic Cell–Specific Transmembrane Protein (DC-STAMP)

    PubMed Central

    Nishida, Takashi; Emura, Kenji; Kubota, Satoshi; Lyons, Karen M; Takigawa, Masaharu

    2013-01-01

    CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes endochondral ossification. However, the role of CCN2 in the replacement of hypertrophic cartilage with bone is still unclear. The phenotype of Ccn2 null mice, having an expanded hypertrophic zone, indicates that the resorption of the cartilage extracellular matrix is impaired therein. Therefore, we analyzed the role of CCN2 in osteoclastogenesis because cartilage extracellular matrix is resorbed mainly by osteoclasts during endochondral ossification. Expression of the Ccn2 gene was upregulated in mouse macrophage cell line RAW264.7 on day 6 after treatment of glutathione S transferase (GST) fusion mouse receptor activator of NF-κB ligand (GST-RANKL), and a combination of recombinant CCN2 (rCCN2) and GST-RANKL significantly enhanced tartrate-resistant acid phosphatase (TRACP)–positive multinucleated cell formation compared with GST-RANKL alone. Therefore, we suspected the involvement of CCN2 in cell-cell fusion during osteoclastogenesis. To clarify the mechanism, we performed real-time PCR analysis of gene expression, coimmunoprecipitation analysis, and solid-phase binding assay of CCN2 and dendritic cell–specific transmembrane protein (DC-STAMP), which is involved in cell-cell fusion. The results showed that CCN2 induced and interacted with DC-STAMP. Furthermore, GST-RANKL–induced osteoclastogenesis was impaired in fetal liver cells from Ccn2 null mice, and the impaired osteoclast formation was rescued by the addition of exogenous rCCN2 or the forced expression of DC-STAMP by a retroviral vector. These results suggest that CCN2 expressed during osteoclastogenesis promotes osteoclast formation via induction of and interaction with DC-STAMP. PMID:20721934

  10. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d

    PubMed Central

    Tsai, Hsiao-Chi; Su, Hong-Lin; Huang, Chun-Yin; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2014-01-01

    Osteosarcoma, the most common primary malignant bone tumor, shows potent capacity for local invasion and distant metastasis. Connective tissue growth factor (CTGF/CCN2), a secreted protein, binds to integrins, modulates invasive behavior of certain human cancer cells. Effect of CTGF in metastasis of human osteosarcoma is unknown. We found overexpression of CTGF increasing matrix metalloproteinases (MMPs)-2 and MMP-3 expression as well as promoting cell migration. MicroRNA (miRNA) analysis of CTGF-overexpressed osteosarcoma versus control cells probed mechanisms of CTGF-mediated promotion of migration. Among miRNAs regulated by CTGF, miR-519d was most downregulated after CTGF treatment. Co-transfection with miR-519d mimic reversed CTGF-mediated MMPs expression and cell migration. Also, MEK and ERK inhibitors or mutants reduced CTGF-increased cell migration and miR-519d suppression. By contrast, knockdown of CTGF diminished lung metastasis in vivo. Clinical samples indicate CTGF expression as linked with clinical stage and tumor metastasis. Taken together, data show CTGF elevating MMPs expression and subsequently promoting tumor metastasis in human osteosarcoma, down-regulating miR-519d via MEK and ERK pathways, making CTGF a new molecular therapeutic target in osteosarcoma metastasis. PMID:25003330

  11. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d.

    PubMed

    Tsai, Hsiao-Chi; Su, Hong-Lin; Huang, Chun-Yin; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2014-06-15

    Osteosarcoma, the most common primary malignant bone tumor, shows potent capacity for local invasion and distant metastasis. Connective tissue growth factor (CTGF/CCN2), a secreted protein, binds to integrins, modulates invasive behavior of certain human cancer cells. Effect of CTGF in metastasis of human osteosarcoma is unknown. We found overexpression of CTGF increasing matrix metalloproteinases (MMPs)-2 and MMP-3 expression as well as promoting cell migration. MicroRNA (miRNA) analysis of CTGF-overexpressed osteosarcoma versus control cells probed mechanisms of CTGF-mediated promotion of migration. Among miRNAs regulated by CTGF, miR-519d was most downregulated after CTGF treatment. Co-transfection with miR-519d mimic reversed CTGF-mediated MMPs expression and cell migration. Also, MEK and ERK inhibitors or mutants reduced CTGF-increased cell migration and miR-519d suppression. By contrast, knockdown of CTGF diminished lung metastasis in vivo. Clinical samples indicate CTGF expression as linked with clinical stage and tumor metastasis. Taken together, data show CTGF elevating MMPs expression and subsequently promoting tumor metastasis in human osteosarcoma, down-regulating miR-519d via MEK and ERK pathways, making CTGF a new molecular therapeutic target in osteosarcoma metastasis.

  12. CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration

    PubMed Central

    Braig, S; Wallner, S; Junglas, B; Fuchshofer, R; Bosserhoff, A-K

    2011-01-01

    Background: Malignant melanoma cells are known to have altered expression of growth factors compared with normal human melanocytes. These changes most likely favour tumour growth and progression, and influence tumour environment. The induction of transforming growth factor beta1, 2 and 3 as well as BMP4 and BMP7 expression in malignant melanoma has been reported before, whereas the expression of an important modulator of these molecules, connective tissue growth factor (CTGF), has not been investigated in melanomas until now. Methods: Expression of CTGF was analysed in melanoma cell lines and tissue samples by qRT–PCR and immunohistochemistry. To determine the regulation of CTGF expression in malignant melanoma, specific siRNA was used. Additionally, migration, invasion and attachment assays were carried out. Results: We were able to demonstrate that CTGF expression is upregulated in nine melanoma cell lines and in primary and metastatic melanoma in situ. The transcription factor HIF-1α was revealed as a positive regulator for CTGF expression. Melanoma cells, in which CTGF expression is diminished, show a strong reduction of migratory and invasive properties when compared with controls. Further, treatment of normal human epidermal melanocytes with recombinant CTGF leads to an increase of migratory and invasive behaviour of these cells. Conclusion: These results suggest that CTGF promotes melanoma cell invasion and migration and, therefore, has an important role in the progression of malignant melanoma. PMID:21673687

  13. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    SciTech Connect

    Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu

    2011-06-03

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  14. MicroRNA-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1)

    PubMed Central

    Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-01-01

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension. PMID:27322082

  15. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1).

    PubMed

    Wang, Ran; Ding, Xing; Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-11-08

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.

  16. Molecular requirements for induction of CTGF expression by TGF-beta1 in primary osteoblasts.

    PubMed

    Arnott, J A; Zhang, X; Sanjay, A; Owen, T A; Smock, S L; Rehman, S; DeLong, W G; Safadi, F F; Popoff, S N

    2008-05-01

    Connective tissue growth factor (CTGF/CCN2) is a cysteine rich, extracellular matrix protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. In osteoblasts, CTGF is induced by TGF-beta1 where it acts as a downstream mediator of TGF-beta1 induced matrix production. The molecular mechanisms that control CTGF induction by TGF-beta1 in osteoblasts are not known. To assess the role of individual Smads in mediating the induction of CTGF by TGF-beta1, we used specific Smad siRNAs to block Smad expression. These studies demonstrated that Smads 3 and 4, but not Smad 2, are required for TGF-beta1 induced CTGF promoter activity and expression in osteoblasts. Since the activation of MAPKs (Erk, Jnk and p38) by TGF-beta1 is cell type specific, we were interested in determining the role of individual MAPKs in TGF-beta1 induction of CTGF promoter activity and expression. Using dominant negative (DN) mutants for Erk, Jnk and p38, we demonstrated that the expression of DN-Erk caused a significant inhibition of TGF-beta1 induced CTGF promoter activity. In contrast, the expression of DN-p38 or DN-Jnk failed to inhibit activation of CTGF promoter activity. To confirm the vital role of Erk, we used the Erk inhibitor (PD98059) to block its activation, demonstrating that it prevented TGF-beta1 activation of the CTGF promoter and up-regulation of CTGF expression in osteoblasts. Since Src can also act as a downstream signaling effector for TGF-beta in some cell types, we determined its role in TGF-beta1 induction of CTGF in osteoblasts. Treatment of osteoblasts with a Src family kinase inhibitor, PP2, or the expression of two independent kinase-dead Src mutant constructs caused significant inhibition of TGF-beta1 induced CTGF promoter activity and expression. Additionally, blocking Src activation prevented Erk activation by TGF-beta1 demonstrating a role for Src as an upstream mediator of Erk in regulating CTGF expression in osteoblasts. To

  17. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro.

    PubMed

    Lee, Yu-Tsang; Shao, Hung-Jen; Wang, Jyh-Horng; Liu, Haw-Chang; Hou, Sheng-Mou; Young, Tai-Horng

    2010-04-01

    Intraarticular injection of hyaluronan (hyaluronic acid; HA) is the common way to treat osteoarthritis (OA) of knees. This treatment cannot only maintain the viscoelastic properties of knee but also release the OA pain. However, the exact molecular mechanism is unknown. In this study, after human synovial cells were stimulated with HA and Hylan (Synvisc) for 24 h, real-time polymerase chain reaction (real-time PCR) was used to detect the alteration of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) gene expression, which were specific genes related to pathogenesis of OA knees. Our results illustrated that both HA and Hylan might not cause cytotoxicity or apoptosis of synovial cells in serum deprivation environment. The gene expressions of TGF-beta1 and VEGF were significantly increased at the concentration of 0.1 mg/mL HA and 0.1 mg/mL Hylan, respectively (alpha < 0.05). The synovial cells with treatment of 0.1 mg/mL Hylan decreased the CTGF gene expression (0.66-fold) and VEGF (0.78-fold) compared to 0.1 mg/mL HA (alpha < 0.05). We suggested that the profile of CTGF, TGF-beta1, and VEGF gene expressions in our study might provide the rational mechanism for the therapeutic effect of hyaluronan on OA knees.

  18. CTGF promotes osteosarcoma angiogenesis by regulating miR-543/angiopoietin 2 signaling.

    PubMed

    Wang, Li-Hong; Tsai, Hsiao-Chi; Cheng, Yu-Che; Lin, Chih-Yang; Huang, Yuan-Li; Tsai, Chun-Hao; Xu, Guo-Hong; Wang, Shih-Wei; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-04-10

    Osteosarcoma is the most common primary solid tumor of bone. It has a high metastatic potential and occurs predominantly in adolescents and young adults. Angiopoietin 2 (Angpt2) is a key regulator in tumor angiogenesis, facilitating tumor growth and metastasis. Connective tissue growth factor (CTGF, also known as CCN2), is a cysteine-rich protein that has been reported to promote metastasis of osteosarcoma. However, the effect of CTGF on Angpt2 regulation and angiogenesis in human osteosarcoma remains largely unknown. We found that overexpression of CTGF in osteosarcoma cells increased Angpt2 production and induced angiogenesis, in vitro and in vivo. Our findings demonstrate that CTGF-enhanced Angpt2 expression and angiogenesis is mediated by the phospholipase C (PLC)/protein kinase C (PKCδ) signaling pathway. Moreover, endogenous microRNA-543 (miR-543) expression was negatively regulated by CTGF via the PLC/PKCδ pathway. We also provide evidence showing clinical significance between CTGF, Angpt2, and miR-543 as well as tumor staging in human osteosarcoma tissue. CTGF may serve as a therapeutic target in the process of osteosarcoma metastasis and angiogenesis.

  19. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  20. CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2010-03-01

    Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

  1. Oral glucosamine increases expression of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) mRNA in rat cartilage and kidney: implications for human efficacy and toxicity.

    PubMed

    Ali, Akhtar A; Lewis, Sherry M; Badgley, Heidi L; Allaben, William T; Leakey, Julian E A

    2011-06-01

    Glucosamine is used for alleviating pain in osteoarthritis. Clinical trials have reported that glucosamine has equivocal efficacy. Glucosamine is also used in cell cultures to stimulate hexosamine flux and protein O-glycosylation, but at many-fold greater concentrations than those in human plasma following oral dosing. Lean Zucker rats were dosed orally for 6 weeks with glucosamine hydrochloride at doses (0-600 mg/kg/day) that produced peak serum concentrations of <1-35 μM, spanning the human exposure range. Relative expression of both TGFβ1 and CTGF mRNA were significantly increased up to 2.3-fold in liver, kidney and articular cartilage when evaluated 4h after final dose. Apparent threshold serum glucosamine (C(max)) concentration required to increase TGFβ1 expression in cartilage was 10-20 μM. These increases were associated with significant increases in UDP-N-acetylglucosamine concentrations suggesting increased hexosamine flux. Both TGFβ1 and CTGF are mediators of chondrocyte proliferation and cartilage repair. Study demonstrates that oral glucosamine doses that produce clinically relevant serum glucosamine concentrations can induce tissue TGFβ1 and CTGF expression in vivo and provides a mechanistic rationale for reported beneficial effects of glucosamine therapy. Induction of renal TGFβ1 and CTGF mRNA suggests that potential sclerotic side-effects may occur following consumption of potent glucosamine preparations. Published by Elsevier Inc.

  2. Connecting tubule glomerular feedback (CTGF) in Hypertension

    PubMed Central

    Wang, Hong; D'Ambrosio, Martin A.; Garvin, Jeffrey L.; Ren, Yilin; Carretero, Oscar A.

    2013-01-01

    In Dahl salt-sensitive rats (Dahl SS), glomerular capillary pressure (PGC) increases in response to high salt intake and this is accompanied by significant glomerular injury compared to spontaneously hypertensive rats (SHR) with similar blood pressure. PGC is controlled mainly by afferent arteriolar (Af-Art) resistance, which is regulated by the vasoconstrictor tubuloglomerular feedback (TGF) and the vasodilator connecting tubule glomerular feedback (CTGF). We hypothesized that Dahl SS have a decreased TGF response and enhanced TGF resetting compared to SHR, and that these differences are due in part to an increase in CTGF. In vivo, using micropuncture we measured stop-flow pressure (PSF, a surrogate of PGC). TGF was calculated as the maximal decrease in PSF caused by increasing nephron perfusion, TGF resetting as the attenuation in TGF induced by high salt diet, and CTGF as the difference in TGF response before and during CTGF inhibition with benzamil. Compared to SHR, Dahl SS had 1) lower TGF responses in normal (6.6±0.1 vs. 11.0±0.2 mm Hg; P<0.001) and high-salt diets (3.3±0.1 vs. 10.1±0.3 mmHg; P<0.001), 2) greater TGF resetting (3.3±0.1 vs. 1.0±0.3 mmHg; P<0.001), and 3) greater CTGF (3.4±0.4 vs. 1.2±0.1 mmHg; P<0.001). We conclude that Dahl SS have lower TGF and greater CTGF than SHR, and that CTGF antagonizes TGF. Furthermore, CTGF is enhanced by a high-salt diet and contributes significantly to TGF resetting. Our findings may explain in part the increase in vasodilatation, PGC, and glomerular damage in salt-sensitive hypertension during high salt intake. PMID:23959547

  3. Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Bickelhaupt, Sebastian; Erbel, Christian; Timke, Carmen; Wirkner, Ute; Dadrich, Monika; Flechsig, Paul; Tietz, Alexandra; Pföhler, Johanna; Gross, Wolfgang; Peschke, Peter; Hoeltgen, Line; Katus, Hugo A; Gröne, Hermann-Josef; Nicolay, Nils H; Saffrich, Rainer; Debus, Jürgen; Sternlicht, Mark D; Seeley, Todd W; Lipson, Kenneth E; Huber, Peter E

    2017-08-01

    Radiotherapy is a mainstay for the treatment of lung cancer that can induce pneumonitis or pulmonary fibrosis. The matricellular protein connective tissue growth factor (CTGF) is a central mediator of tissue remodeling. A radiation-induced mouse model of pulmonary fibrosis was used to determine if transient administration of a human antibody to CTGF (FG-3019) started at different times before or after 20 Gy thoracic irradiation reduced acute and chronic radiation toxicity. Mice (25 mice/group; 10 mice/group in a confirmation study) were examined by computed tomography, histology, gene expression changes, and for survival. In vitro experiments were performed to directly study the interaction of CTGF blockade and radiation. All statistical tests were two-sided. Administration of FG-3019 prevented (∼50%-80%) or reversed (∼50%) lung remodeling, improved lung function, improved mouse health, and rescued mice from lethal irradiation ( P < .01). Importantly, when antibody treatment was initiated at 16 weeks after thoracic irradiation, FG-3019 reversed established lung remodeling and restored lung function. CTGF blockade abrogated M2 polarized macrophage influx, normalized radiation-induced gene expression changes, and reduced myofibroblast abundance and Osteopontin expression. These results indicate that blocking CTGF attenuates radiation-induced pulmonary remodeling and can reverse the process after initiation. CTGF has a central role in radiation-induced fibrogenesis, and FG-3019 may benefit patients with radiation-induced pulmonary fibrosis or patients with other forms or origin of chronic fibrotic diseases.

  4. High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells

    PubMed Central

    Zhang, Hao; Li, Aimei; Zhang, Wei; Huang, Zhijun; Wang, Jianwen; Yi, Bin

    2016-01-01

    Connective tissue growth factor (CTGF) plays an essential role in the pathogenesis of diabetic nephropathy and we have previously identified that high glucose induced the expression of CTGF by decreasing DNA methylation. The aim of the present study was to investigate the underlying mechanisms of the high glucose-induced CTGF hypo-methylation. Human glomerular mesangial cells (hMSCs) were treated with low glucose (5 mM), mannitol (30 mM) or high glucose (30 mM) respectively. Immunofluorescence staining, real-time quantitative PCR and western blotting were performed to determine the subcellular distribution and expression of CTGF and Dnmt3a. ChIP-PCR assay was applied to investigate the capability of Dnmt3a to bind the CpG island of CTGF. Our results showed that high glucose induced both mRNA and protein expressions of CTGF, and led to increased cytoplasmic translocation of Dnmt3a in cultured hMSCs. The nuclear Dnmt3a protein was significantly reduced after high glucose treatment, although the expression of total Dnmt3a protein was not altered. We further discovered that ERK/MAPK signalling contributed to the high glucose-induced cytoplasmic translocation of Dnmt3a. Consequently, less Dnmt3a protein was bound to the CpG island of CTGF promoter, which induced an increase in CTGF expression by epigenetic regulation in the presence of high glucose. In conclusion, high glucose induces cytoplasmic translocation of Dnmt3a, possibly through activating ERK/MAPK signalling pathway, which contributes to the decreased binding of Dnmt3a on CTGF promoter and the subsequent CTGF hypo-methylation in diabetic nephropathy. PMID:27364355

  5. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    USDA-ARS?s Scientific Manuscript database

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  6. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth

    PubMed Central

    Capparelli, Claudia; Whitaker-Menezes, Diana; Guido, Carmela; Balliet, Renee; Pestell, Timothy G.; Howell, Anthony; Sneddon, Sharon; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-β signaling, with increased transcription of TGF-β target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF-β / CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1α-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence, and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a

  7. Cartilage–Specific Over-Expression of CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Stimulates Insulin-Like Growth Factor Expression and Bone Growth

    PubMed Central

    Tomita, Nao; Hattori, Takako; Itoh, Shinsuke; Aoyama, Eriko; Yao, Mayumi; Yamashiro, Takashi; Takigawa, Masaharu

    2013-01-01

    Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage–related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in

  8. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth.

    PubMed

    Tomita, Nao; Hattori, Takako; Itoh, Shinsuke; Aoyama, Eriko; Yao, Mayumi; Yamashiro, Takashi; Takigawa, Masaharu

    2013-01-01

    Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage-related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic

  9. CTGF enhances resistance to 5-FU-mediating cell apoptosis through FAK/MEK/ERK signal pathway in colorectal cancer

    PubMed Central

    Yang, Kai; Gao, Kai; Hu, Gui; Wen, Yanguang; Lin, Changwei; Li, Xiaorong

    2016-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers among both males and females; the chemotherapy drug 5-fluorouracil (5-FU) is one of a doctors’ first lines of defense against CRC. However, therapeutic failures are common because of the emergence of drug resistance. Connective tissue growth factor (CTGF) is a secreted protein that binds to integrins, and regulates the invasiveness and metastasis of certain carcinoma cells. Here, we found that CTGF was upregulated in drug-resistant phenotype of human CRC cells. Overexpression of CTGF enhanced the resistance to 5-FU-induced cell apoptosis. Moreover, downregulating the expression of CTGF promoted the curative effect of chemotherapy and blocked the cell cycle in the G1 phase. We also found that CTGF facilitated resistance to 5-FU-induced apoptosis by increasing the expression of B-cell lymphoma-extra large (Bcl-xL) and survivin. Then we pharmacologically blocked MEK/ERK signal pathway and assessed 5-FU response by MTT assays. Our current results indicate that the expression of phosphorylated forms of MEK/ERK increased in high CTGF expression cells and MEK inhibited increases in 5-FU-mediated apoptosis of resistant CRC cells. Therefore, our data suggest that MEK/ERK signaling contributes to 5-FU resistance through upstream of CTGF, and supports CRC cell growth. Comprehending the molecular mechanism underlying 5-FU resistance may ultimately aid the fight against CRC. PMID:27942222

  10. MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer

    PubMed Central

    Wang, Lufei; He, Jin; Xu, Hongmei; Xu, Longjie; Li, Na

    2016-01-01

    A series of recent studies suggested that miR-143 might involve in the tumorigenesis and metastasis of various cancer types. However, the biological function and underlying mechanisms of miR-143 in human epithelial ovarian carcinoma (EOC) remain unknown. Therefore, this study aimed to investigate the miR-143 expression and its clinical diagnosis significance in patients suffering EOC and to analyze its role and underlying molecular mechanism in EOC. Our result showed that the expression levels of miR-143 were downregulated in EOC tissues and cell lines, was associated with International Federation of Gynaecology and Obstetrics (FIGO) stage, pathological grade and lymph node metastasis (all P < 0.01) . Overexpression of miR-143 significantly inhibited EOC cell proliferation, migration, and invasion. Furthermore, computational algorithm combined with luciferase reporter assays identified connective tissue growth factor (CTGF) as the direct target of miR-143 in EOC cells. The expression level of CTGF was significantly increased in EOC tissues, was inversely correlated with miR-143 expression in clinical EOC tissues. Knockdown of CTGF mimicked the suppression effect induced by miR-143 overexpression. Restoration of CTGF expression partially reversed the suppression effect induced by miR-143 overexpression. These results suggested that miR-143 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing CTGF expression. PMID:27398154

  11. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast.

    PubMed

    Cai, Yi; Yu, Shan-Shan; Chen, Ting-Ting; Gao, Si; Geng, Biao; Yu, Yang; Ye, Jian-Tao; Liu, Pei-Qing

    2013-01-15

    Connective tissue growth factor (CTGF) has been reported to play an important role in tissue fibrosis and presents a promising therapeutic target for fibrotic diseases. In heart, inappropriate increase in level of CTGF promotes fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby exacerbating cardiac hypertrophy and subsequent failure. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac fibrosis. However, the molecular mechanism by which EGCG exerts its anti-fibrotic effects has not been well investigated. In this study, we found that EGCG could significantly reduce collagen synthesis, fibronectin (FN) expression and cell proliferation in rat cardiac fibroblasts stimulated with angiotensinII (AngII). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, EGCG attenuated the excessive expression of CTGF induced by AAC or AngII, and reduced the nuclear translocation of NF-κB p65 subunit and degradation of IκB-α. Subsequently, we demonstrated that in cardiac fibroblasts NF-κB inhibition could suppress AngII-induced CTGF expression. Taken together, these findings provide the first evidence that the effect of EGCG against cardiac fibrosis may be attributed to its inhibition on NF-κB activation and subsequent CTGF overexpression, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

  12. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles

    PubMed Central

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Cabrera, Daniel; Vio, Carlos P; Brandan, Enrique

    2012-01-01

    Abstract Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin–angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies. PMID:21645240

  13. Pasteurella multocida toxin (PMT) upregulates CTGF which leads to mTORC1 activation in Swiss 3T3 cells.

    PubMed

    Oubrahim, Hammou; Wong, Allison; Wilson, Brenda A; Chock, P Boon

    2013-05-01

    Pasteurella multocida toxin (PMT) is a mitogenic protein that hijacks cellular signal transduction pathways via deamidation of heterotrimeric G proteins. We previously showed that rPMT activates mTOR signaling via a Gαq/11/PLCβ/PKC mediated pathway, leading in part to cell proliferation and migration. Herein, we show that mTOR and MAPK, but not membrane-associated tyrosine kinases, are activated in serum-starved 3T3 cells by an autocrine/paracrine substance(s) secreted into the conditioned medium following rPMT treatment. Surprisingly, this diffusible factor(s) is capable of activating mTOR and MAPK pathways even in MEF Gαq/11 double knockout cells. Microarray analysis identified connective tissue growth factor (CTGF) mRNA as the most upregulated gene in rPMT-treated serum-starved 3T3 cells relative to untreated cells. These results were further confirmed using RT-PCR and Western blot analyses. In accord with rPMT-induced mTOR activation, upregulation of CTGF protein was observed in WT MEF, but not in Gαq/11 double knockout MEF cells. Although CTGF expression is regulated by TGFβ, rPMT did not activate TGFβ pathway. In addition, MEK inhibitors U0126 or PD98059, but not mTOR specific inhibitors, rapamycin and Torin 1, inhibited rPMT-induced upregulation of CTGF. Importantly, CTGF overexpression in serum-starved 3T3 cells using adenovirus led to phosphorylation of ribosomal protein S6, a downstream target of mTOR. However, despite the ability of CTGF to activate the mTOR pathway, upregulation of CTGF alone could not induce morphological changes as those observed in rPMT-treated cells. Our findings reveal that CTGF plays an important role, but there are additional factors involved in the mitogenic action of PMT.

  14. CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators

    PubMed Central

    Pi, Liya; Shenoy, Anitha K.; Liu, Jianwen; Kim, Seungbum; Nelson, Nikole; Xia, Huiming; Hauswirth, William W.; Petersen, Bryon E.; Schultz, Gregory S.; Scott, Edward W.

    2012-01-01

    Blood vessels are formed during development and tissue repair through a plethora of modifiers that coordinate efficient vessel assembly in various cellular settings. Here we used the yeast 2-hybrid approach and demonstrated a broad affinity of connective tissue growth factor (CCN2/CTGF) to C-terminal cystine knot motifs present in key angiogenic regulators Slit3, von Willebrand factor, platelet-derived growth factor-B, and VEGF-A. Biochemical characterization and histological analysis showed close association of CCN2/CTGF with these regulators in murine angiogenesis models: normal retinal development, oxygen-induced retinopathy (OIR), and Lewis lung carcinomas. CCN2/CTGF and Slit3 proteins worked in concert to promote in vitro angiogenesis and downstream Cdc42 activation. A fragment corresponding to the first three modules of CCN2/CTGF retained this broad binding ability and gained a dominant-negative function. Intravitreal injection of this mutant caused a significant reduction in vascular obliteration and retinal neovascularization vs. saline injection in the OIR model. Knocking down CCN2/CTGF expression by short-hairpin RNA or ectopic expression of this mutant greatly decreased tumorigenesis and angiogenesis. These results provided mechanistic insight into the angiogenic action of CCN2/CTGF and demonstrated the therapeutic potential of dominant-negative CCN2/CTGF mutants for antiangiogenesis.—Pi, L., Shenoy, A. K., Liu, J., Kim, S., Nelson, N., Xia, H., Hauswirth, W. W., Petersen, B. E., Schultz, G. S., Scott, E. W. CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. PMID:22611085

  15. Src is a major signaling component for CTGF induction by TGF-beta1 in osteoblasts.

    PubMed

    Zhang, X; Arnott, J A; Rehman, S; Delong, W G; Sanjay, A; Safadi, F F; Popoff, S N

    2010-09-01

    Connective tissue growth factor (CTGF/CCN2) is induced by transforming growth factor beta1 (TGF-beta1) where it acts as a downstream mediator of TGF-beta1 induced matrix production in osteoblasts. We have shown the requirement of Src, Erk, and Smad signaling for CTGF induction by TGF-beta1 in osteoblasts; however, the potential interaction among these signaling pathways remains undetermined. In this study we demonstrate that TGF-beta1 activates Src kinase in ROS17/2.8 cells and that treatment with the Src family kinase inhibitor PP2 prevents Src activation and CTGF induction by TGF-beta1. Additionally, inhibiting Src activation prevented Erk activation, Smads 2 and 3 activation and nuclear translocation by TGF-beta1, demonstrating that Src is an essential upstream signaling partner of both Erk and Smads in osteoblasts. MAPKs such as Erk can modulate the Smad pathway directly by mediating the phosphorylation of Smads or indirectly through activation/inactivation of required nuclear co-activators that mediate Smad DNA binding. When we treated cells with the Erk inhibitor, PD98059, it inhibited TGF-beta1-induced CTGF protein expression but had no effect on Src activation, Smad activation or Smad nuclear translocation. However PD98059 impaired transcriptional complex formation on the Smad binding element (SBE) of the CTGF promoter, demonstrating that Erk activation was required for SBE transactivation. These data demonstrate that Src is an essential upstream signaling transducer of Erk and Smad signaling with respect to TGF-beta1 in osteoblasts and that Smads and Erk function independently but are both essential for forming a transcriptionally active complex on the CTGF promoter in osteoblasts.

  16. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis

    PubMed Central

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P.; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-01-01

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis. PMID:28191821

  17. Balancing survival: the role of CTGF in controlling experience-modulated olfactory circuitry.

    PubMed

    Sharma, Tanu; Reed, Randall R

    2013-09-18

    The subventricular zone (SVZ) continuously supplies new interneurons that incorporate into pre-existing olfactory bulb circuitry. Khodosevich et al. (2013) show that connective tissue growth factor (CTGF) regulates a multicellular signaling cascade determining the number of postnatally born inhibitory interneurons in odor-activated glomeruli.

  18. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex.

    PubMed

    Ercan, Ebru; Han, Juliette M; Di Nardo, Alessia; Winden, Kellen; Han, Min-Joon; Hoyo, Leonie; Saffari, Afshin; Leask, Andrew; Geschwind, Daniel H; Sahin, Mustafa

    2017-03-06

    Disruption of myelination during development has been implicated in a range of neurodevelopmental disorders including tuberous sclerosis complex (TSC). TSC patients with autism display impairments in white matter integrity. Similarly, mice lacking neuronal Tsc1 have a hypomyelination phenotype. However, the mechanisms that underlie these phenotypes remain unknown. In this study, we demonstrate that neuronal TSC1/2 orchestrates a program of oligodendrocyte maturation through the regulated secretion of connective tissue growth factor (CTGF). We characterize oligodendrocyte maturation both in vitro and in vivo. We find that neuron-specific Tsc1 deletion results in an increase in CTGF secretion that non-cell autonomously stunts oligodendrocyte development and decreases the total number of oligodendrocytes. Genetic deletion of CTGF from neurons, in turn, mitigates the TSC-dependent hypomyelination phenotype. These results show that the mechanistic target of rapamycin (mTOR) pathway in neurons regulates CTGF production and secretion, revealing a paracrine mechanism by which neuronal signaling regulates oligodendrocyte maturation and myelination in TSC. This study highlights the role of mTOR-dependent signaling between neuronal and nonneuronal cells in the regulation of myelin and identifies an additional therapeutic avenue for this disease.

  19. Role of CTGF in White Matter Development in Tuberous Sclerosis

    DTIC Science & Technology

    2015-02-01

    Award Number: W81XWH-13-1-0040 TITLE: Role of CTGF in White Matter Development in Tuberous Sclerosis PRINCIPAL INVESTIGATOR: Mustafa Sahin...2015 4. TITLE AND SUBTITLE Role of CTGF in White Matter Development in Tuberous Sclerosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Development in Tuberous Sclerosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0040 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mustafa Sahin Betty

  20. GPER in CAFs regulates hypoxia-driven breast cancer invasion in a CTGF-dependent manner.

    PubMed

    Ren, Juan; Guo, Hui; Wu, Huili; Tian, Tao; Dong, Danfeng; Zhang, Yuelang; Sui, Yanxia; Zhang, Yong; Zhao, Dongli; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Liu, Rui; Qian, Jianshneg; Wei, Hongxia; Jiang, Wenjun; Liu, Ya; Li, Yi

    2015-04-01

    Recent advances indicate that cancer‑associated fibroblasts (CAFs) play a key role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors often experience low oxygen tension environments, which induce gene expression changes and biological features leading to poor outcomes. The G-protein estrogen receptor (GPER) exhibits a stimulatory role in diverse types of cancer cells and in CAFs under hypoxic conditions. We investigated the role of CAFs and hypoxia in breast cancer aggressiveness, and examined the effect of GPER in CAFs on hypoxia-driven breast cancer progression. The results showed that hypoxia upregulated HIF-1α, GPER and α-SMA expression in CAFs, and induced the secretion of Interleukin-6 (IL-6), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) in CAFs. However, GPER silencing abrogated the above hypoxia-driven cytokine expression in CAFs. Moreover, knockdown of GPER in CAFs suppressed breast cancer cell invasion induced by CAF conditioned media (CM). Furthermore, GPER silencing in CAFs inhibited hypoxia-increased CTGF expression in CAFs and breast cancer cells cultured with CM from CAFs under hypoxic conditions. In addition, CTGF is responsible for the observed effects of GPER on CAFs activation and breast cancer invasion. Our findings further extend the molecular mechanisms through which the tumor microenvironment may contribute to cancer progression.

  1. Connective tissue growth factor in tear film of the horse: detection, identification and origin.

    PubMed

    Ollivier, F J; Brooks, D E; Schultz, G S; Blalock, T D; Andrew, S E; Komaromy, A M; Cutler, T J; Lassaline, M E; Kallberg, M E; Van Setten, G B

    2004-02-01

    Healing of corneal ulcers in horses is often associated with profound corneal stromal fibrosis and scar formation resulting in visual impairment. Connective tissue growth factor (CTGF) is a fibrogenic cytokine involved in wound healing and scarring. The purpose of this study was to determine whether CTGF was present in the tear fluid of normal horse eyes and the eyes of horses with corneal ulcers in order to evaluate the role of CTGF in corneal wound healing and corneal scar formation. Tear fluid samples were collected from 65 eyes of 44 horses; 32 samples from normal eyes, 21 samples from eyes with corneal ulceration, and 12 samples from the unaffected contralateral eyes of horses with ulcers. CTGF levels in the tears were determined by enzyme immunoassay using goat IgG against human CTGF. Antigenetic similarity of human and horse CTGF was established in a bio-equivalence assay. The identity of horse CTGF was confirmed by western blot. Lacrimal and nictitating membrane glands were investigated by immunohistochemistry in the attempt to clarify the origin of tear fluid CTGF. CTGF was detected in tear film of 23 normal unaffected eyes (72%) and 8 normal contralateral eyes (67%), with the mean CTGF levels (+/- SEM) being 51.5+/-19.2 and 13.4+/-3.9 ng/ml respectively. CTGF was found in 8 eyes with corneal ulcers (38%) with the mean CTGF concentration of 26.3+/-14.8 ng/ml. Western blot identified the protein detected as CTGF. The identification of CTGF in lacrimal glands suggests a major role of these glands in the presence of CTGF in tears. CTGF is present in horse tear fluid and derives, at least partly, from the lacrimal gland. Equine CTGF has strong antigenic similarity with human CTGF. Corneal disease leads to a decrease of CTGF concentrations in tears. The possible role of CTGF in the healing process of ocular surface requires further investigation.

  2. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats.

    PubMed

    Yan, Hui; Chen, Yujie; Li, Lingyong; Jiang, Jiaode; Wu, Guangyong; Zuo, Yuchun; Zhang, John H; Feng, Hua; Yan, Xiaoxin; Liu, Fei

    2016-01-01

    Chronic hydrocephalus is one of the severe complications after subarachnoid hemorrhage (SAH). However, there is no efficient treatment for the prevention of chronic hydrocephalus, partially due to poor understanding of underlying pathogenesis, subarachnoid fibrosis. Transforming growth factor-β1(TGF-β1) is a potent fibrogenic factor implicated in wide range of fibrotic diseases. To investigate whether decorin, a natural antagonist for TGF-β1, protects against subarachnoid fibrosis and chronic hydrocephalus after SAH, two-hemorrhage-injection SAH model was conducted in 6-week-old rats. Recombinant human decorin(rhDecorin) (30ug/2ul) was administered before blood injection and on the 10th day after SAH. TGF-β1, p-Smad2/3, connective tissue growth factor (CTGF), collagen I and pro-collagen I c-terminal propeptide were assessed via western blotting, enzyme-linked immunosorbent assay, radioimmunoassay and immunofluorescence. And neurobehavioral tests and Morris water maze were employed to evaluate long-term neurological functions after SAH. We found that SAH induced heightened activation of TGF-β1/Smad/CTGF axis, presenting as a two peak response of TGF-β1 in cerebrospinal fluid, elevation of TGF-β1, p-Smad2/3, CTGF, collagen I in brain parenchyma and pro-collagen I c-terminal propeptide in cerebrospinal fluid, and increased lateral ventricle index. rhDecorin treatment effectively inhibited up-regulation of TGF-β1, p-Smad2/3, CTGF, collagen I and pro-collagen I c-terminal propeptide after SAH. Moreover, rhDecorin treatment significantly reduced lateral ventricular index and incidence of chronic hydrocephalus after SAH. Importantly, rhDecorin improved neurocognitive deficits after SAH. In conclusion, rhDecorin suppresses extracellular matrix accumulation and following subarachnoid fibrosis via inhibiting TGF-β1/Smad/CTGF pathway, preventing development of hydrocephalus and attenuating long-term neurocognitive defects after SAH.

  3. HMGB1 Enhances the AGE-Induced Expression of CTGF and TGF-β via RAGE-Dependent Signaling in Renal Tubular Epithelial Cells.

    PubMed

    Cheng, Meichu; Liu, Hong; Zhang, Dongshan; Liu, Yinghong; Wang, Chang; Liu, Fuyou; Chen, Junxiang

    2015-01-01

    Advanced glycation end products (AGEs) induce epithelial mesenchymal transition (EMT) in renal proximal tubular epithelial cells (PTECs) by promoting the two EMT regulators, transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF). However, the exact signaling mechanism remains largely unclear. We investigated the promotion to high mobility group box 1 (HMGB1) in renal tubular epithelial HK-2 cells by AGE-BSA with quantitative PCR and western blot assay, and then determined the regulatory role of HMGB1 in the AGE-BSA-induced CTGF and TGF-β. In addition, the dependence of the receptor of advanced glycation end products (RAGE) was also examined in the CTGF and TGF-β promotion by AGEs and HMGB1 in HK-2 cells using the RNAi method. It was demonstrated that AGEs induced translocation and release of HMGB1 from tubular epithelial HK-2 cells, and the released HMGB1 enhanced the promotion to CTGF and TGF-β by AGEs in HK-2 cells. On the other side, the HMGB1 knockdown by siRNA attenuated the AGE-BSA-induced expression of TGF-β. Moreover, the CTGF and TGF-β promotion in HK-2 cells by AGEs and HMGB1 was RAGE-dependent. Our results indicated that AGEs induced HMGB-1 and promoted the CTGF and TGF-β in renal epithelial HK-2 cells RAGE-dependently. And there was a synergism between AGEs and HMGB1 in the RAGE signaling activation. The in vitro data suggested that the AGE-RAGE and HMGB-1-RAGE signaling might play an important role in the promotion of CTGF and TGF-β in the renal fibrosis process of diabetic nephropathy. © 2015 S. Karger AG, Basel.

  4. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  5. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    SciTech Connect

    Gu, Jun; Liu, Xu; Wang, Quan-xing; Tan, Hong-wei; Guo, Meng; Jiang, Wei-feng; Zhou, Li

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  6. Angiotensin II Enhances Connecting Tubule Glomerular Feedback (CTGF)

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Garvin, Jeffrey L.; Carretero, Oscar A.

    2011-01-01

    Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) causes dilation of the afferent arteriole (Af-Art), a process we call CNT glomerular feedback (CTGF). Angiotensin II (Ang II) stimulates ENaC in the collecting duct via AT1 receptors. We hypothesized that Ang II in the CNT lumen enhances CTGF by activation of AT1 receptors, protein kinase C (PKC) and ENaC. Rabbit Af-Arts and their adherent CNT were microperfused and preconstricted with norepinephrine. Each experiment involved generating two consecutive concentration-response curves by increasing NaCl in the CNT lumen. During the control period, the maximum dilation of the Af-Art was 7.9 ± 0.4 μm, and the concentration of NaCl in the CNT needed to achieve half maximal response (EC50) was 34.7 ± 5.2 mmol/L. After adding Ang II (10−9 mol/L) to the CNT lumen, the maximal response was 9.5 ± 0.7 μm and the EC50 was 11.6 ± 1.3 mmol/L (P=0.01 vs. control). Losartan, an AT1 antagonist (10−6 mol/L) blocked the stimulatory effect of Ang II, PD123319, an AT2 antagonist (10−6 mol/L) did not. The PKC inhibitor staurosporine (10−8 mol/L) added to the CNT inhibited the stimulatory effect of Ang II. The ENaC inhibitor benzamil (10−6 mol/L) prevented both CTGF and its stimulation by Ang II. We concluded that Ang II in the CNT lumen enhances CTGF via activation of AT1, and that this effect requires activation of PKC and ENaC. Potentiation of CTGF by Ang II could help preserve glomerular filtration rate in the presence of renal vasoconstriction. PMID:20696981

  7. CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: Implications in the action mechanism of TGFβ.

    PubMed

    Bruno, Gennaro; Cencetti, Francesca; Pertici, Irene; Japtok, Lukasz; Bernacchioni, Caterina; Donati, Chiara; Bruni, Paola

    2015-02-01

    The matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGFβ) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins α-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P3 signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P3 became the S1P receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. Another interesting finding is that CTGF/CCN2 silencing prevented the TGFβ-dependent up-regulation of SK1/S1P3 signaling axis and strongly reduced the profibrotic effect exerted by TGFβ, pointing at a crucial role of endogenous CTGF/CCN2 generated following TGFβ challenge in the transmission of at least part of its profibrotic effect. These results provide new insights into the molecular mechanism by which CTGF/CCN2 drives its biological action and strengthen the concept that SK1/S1P3 axis plays a critical role in the onset of fibrotic cell phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  9. Age-dependent shifts in renal response to injury relate to altered BMP6/CTGF expression and signaling.

    PubMed

    Falke, Lucas L; Kinashi, Hiroshi; Dendooven, Amelie; Broekhuizen, Roel; Stoop, Reinout; Joles, Jaap A; Nguyen, Tri Q; Goldschmeding, Roel

    2016-11-01

    Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-β expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.

  10. Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns

    PubMed Central

    Castleberry, Steven A.; Golberg, Alexander; Sharkh, Malak Abu; Khan, Saiqa; Almquist, Benjamin D.; Austen, William G.; Yarmush, Martin L.; Hammond, Paula T.

    2017-01-01

    Wound healing is an incredibly complex biological process that often results in thickened collagen-enriched healed tissue called scar. Cutaneous scars lack many functional structures of the skin such as hair follicles, sweat glands, and papillae. The absence of these structures contributes to a number of the long-term morbidities of wound healing, including loss of function for tissues, increased risk of re-injury, and aesthetic complications. Scar formation is a pervasive factor in our daily lives; however, in the case of serious traumatic injury, scars can create long-lasting complications due to contraction and poor tissue remodeling. Within this report we target the expression of connective tissue growth factor (CTGF), a key mediator of TGFβ pro-fibrotic response in cutaneous wound healing, with controlled local delivery of RNA interference. Through this work we describe both a thorough in vitro analysis of nanolayer coated sutures for the controlled delivery of siRNA and its application to improve scar outcomes in a third-degree burn induced scar model in rats. We demonstrate that the knockdown of CTGF significantly altered the local expression of αSMA, TIMP1, and Col1a1, which are known to play roles in scar formation. The knockdown of CTGF within the healing burn wounds resulted in improved tissue remodeling, reduced scar contraction, and the regeneration of papillary structures within the healing tissue. This work adds support to a number of previous reports that indicate CTGF as a potential therapeutic target for fibrosis. Additionally, we believe that the controlled local delivery of siRNA from ultrathin polymer coatings described within this work is a promising approach in RNA interference that could be applied in developing improved cancer therapies, regenerative medicine, and fundamental scientific research. PMID:27108403

  11. Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns.

    PubMed

    Castleberry, Steven A; Golberg, Alexander; Sharkh, Malak Abu; Khan, Saiqa; Almquist, Benjamin D; Austen, William G; Yarmush, Martin L; Hammond, Paula T

    2016-07-01

    Wound healing is an incredibly complex biological process that often results in thickened collagen-enriched healed tissue called scar. Cutaneous scars lack many functional structures of the skin such as hair follicles, sweat glands, and papillae. The absence of these structures contributes to a number of the long-term morbidities of wound healing, including loss of function for tissues, increased risk of re-injury, and aesthetic complications. Scar formation is a pervasive factor in our daily lives; however, in the case of serious traumatic injury, scars can create long-lasting complications due to contraction and poor tissue remodeling. Within this report we target the expression of connective tissue growth factor (CTGF), a key mediator of TGFβ pro-fibrotic response in cutaneous wound healing, with controlled local delivery of RNA interference. Through this work we describe both a thorough in vitro analysis of nanolayer coated sutures for the controlled delivery of siRNA and its application to improve scar outcomes in a third-degree burn induced scar model in rats. We demonstrate that the knockdown of CTGF significantly altered the local expression of αSMA, TIMP1, and Col1a1, which are known to play roles in scar formation. The knockdown of CTGF within the healing burn wounds resulted in improved tissue remodeling, reduced scar contraction, and the regeneration of papillary structures within the healing tissue. This work adds support to a number of previous reports that indicate CTGF as a potential therapeutic target for fibrosis. Additionally, we believe that the controlled local delivery of siRNA from ultrathin polymer coatings described within this work is a promising approach in RNA interference that could be applied in developing improved cancer therapies, regenerative medicine, and fundamental scientific research.

  12. Differential expression of CCN family members CYR611, CTGF and NOV in gastric cancer and their association with disease progression

    PubMed Central

    Li, Jun; Gao, Xiangyu; Ji, Ke; Sanders, Andrew J.; Zhang, Zhongtao; Jiang, Wen G.; Ji, Jiafu; Ye, Lin

    2016-01-01

    CCN is an acronym for cysteine-rich protein 61 (CYR61), connective tissue growth factor (CTGF) and nephroblastoma overexpressed (NOV). Aberrations of certain CCN members including CYR61, CTGF, Wnt1-inducible signalling pathway protein (WISP)-1 and -3 have been reported in gastric cancer. The present study aimed to examine the clinical relevance of NOV along with CYR61 and CTGF in gastric cancer by analysing their transcript levels. CYR61, CTGF and NOV transcript expression in 324 gastric cancer samples with paired adjacent normal gastric tissues were determined using real-time quantitative PCR and the results were statistically analysed against patient clinicopathological data using SPSS software. NOV mRNA levels in gastric cancer tissues were significantly elevated when compared with levels in their paired adjacent non-cancerous tissues. Local advanced tumours with invasive expansion (T3 and T4) expressed higher levels of NOV (p=0.013) compared with the less invasive tumours (T1 and T2). CYR61 transcript levels were also significantly increased in gastric cancers compared with levels in the adjacent non-cancerous tissues. Kaplan-Meier survival curves revealed that patients with CYR61-low transcript levels had longer overall survival (OS) (p=0.018) and disease-free survival (DFS) (p=0.015). NOV overexpression promoted the in vitro proliferation of AGS cells while the knockdown resulted in a reduced proliferation of HGC27 cells. A similar effect was observed for the invasion of these two gastric cancer cell lines. NOV expression was increased in gastric cancer which was associated with local invasion and distant metastases. Taken together, the expression of NOV and CYR61 was increased in gastric cancer. The elevated expression of CYR61 was associated with poorer survival. NOV promoted proliferation and invasion of gastric cancer cells. Further investigations may highlight their predictive and therapeutic potential in gastric cancer. PMID:27633176

  13. Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF-β1-Induced CTGF Expression in Keloid Fibroblasts

    PubMed Central

    Lopes, Luciana B.; Furnish, Elizabeth J.; Komalavilas, Padmini; Flynn, Charles R.; Ashby, Patricia; Hansen, Adam; Ly, Daphne P.; Yang, George P.; Longaker, Michael T.; Panitch, Alyssa; Brophy, Colleen M.

    2009-01-01

    A growing body of evidence suggests the involvement of connective tissue growth factor (CTGF) in the development and maintenance of fibrosis and excessive scarring. As the expression of this protein requires an intact actin cytoskeleton, disruption of the cytoskeleton represents an attractive strategy to decrease CTGF expression and, consequently, excessive scarring. The small heat-shock-related protein (HSP20), when phosphorylated by cyclic nucleotide signaling cascades, displaces phospho-cofilin from the 14-3-3 scaffolding protein leading to activation of cofilin as an actin-depolymerizing protein. In the present study, we evaluated the effect of AZX100, a phosphopeptide analogue of HSP20, on transforming growth factor-β-1 (TGF-β1)-induced CTGF and collagen expression in human keloid fibroblasts. We also examined the effect of AZX100 on scar formation in vivo in dermal wounds in a Siberian hamster model. AZX100 decreased the expression of CTGF and type I collagen induced by TGF-β1, endothelin, and lysophosphatidic acid. Treatment with AZX100 decreased stress fiber formation and altered the morphology of human dermal keloid fibroblasts. In vivo, AZX100 significantly improved collagen organization in a Siberian hamster scarring model. Taken together, these results suggest the potential use of AZX100 as a strategy to prevent excessive scarring and fibrotic disorders. PMID:18787533

  14. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF.

    PubMed

    Lai, Dulcie; Ho, King Ching; Hao, Yawei; Yang, Xiaolong

    2011-04-01

    Taxol (paclitaxel) resistance represents a major challenge in breast cancer treatment. The TAZ (transcriptional co-activator with PDZ-binding motif) oncogene is a major component of the novel Hippo-LATS signaling pathway and a transcriptional coactivator that interacts with and activates multiple transcription factors to regulate various biological processes. Here, we report that elevated levels of TAZ found in human breast cancer cells are responsible for their resistance to Taxol. DNA microarray analysis identified the oncogenes Cyr61 and CTGF as downstream transcriptional targets of TAZ. Short hairpin RNA-mediated knockdown of both Cyr61 and CTGF reversed TAZ-induced Taxol resistance in breast cancer cells. Interaction of TAZ with the TEAD family of transcription factors was essential for TAZ to activate the Cyr61/CTGF promoters and to induce Taxol resistance. Our findings define the TAZ-TEAD-Cyr61/CTGF signaling pathway as an important modifier of the Taxol response in breast cancer cells, as well as highlighting it as a novel therapeutic target to treat drug-resistant breast cancers that arise commonly at advanced stages of disease.

  15. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  16. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  17. Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling

    PubMed Central

    Accornero, Federica; van Berlo, Jop H.; Correll, Robert N.; Elrod, John W.; Sargent, Michelle A.; York, Allen; Rabinowitz, Joseph E.; Leask, Andrew

    2015-01-01

    The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart. PMID:25870108

  18. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy

    PubMed Central

    Wang, Songyan; Li, Bing; Li, Chunguang; Cui, Wenpeng; Miao, Lining

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. Therefore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN. PMID:26421309

  19. Caffeine and rolipram affect Smad signalling and TGF-β1 stimulated CTGF and transgelin expression in lung epithelial cells.

    PubMed

    Fehrholz, Markus; Speer, Christian P; Kunzmann, Steffen

    2014-01-01

    Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-β1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF-β1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF-β1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-β1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An

  20. Caffeine and Rolipram Affect Smad Signalling and TGF-β1 Stimulated CTGF and Transgelin Expression in Lung Epithelial Cells

    PubMed Central

    Fehrholz, Markus; Speer, Christian P.; Kunzmann, Steffen

    2014-01-01

    Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-β1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF-β1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF-β1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-β1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An

  1. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy.

    PubMed Central

    Wahab, N A; Yevdokimova, N; Weston, B S; Roberts, T; Li, X J; Brinkman, H; Mason, R M

    2001-01-01

    We characterized a rabbit polyclonal antibody raised against human recombinant connective tissue growth factor (CTGF). The antibody recognised a higher molecular mass form (approx. 56 kDa) of CTGF in mesangial cell lysates as well as the monomeric (36-38 kDa) and lower molecular mass forms (<30 kDa) reported previously. Immunohistochemistry detected CTGF protein in glomeruli of kidneys of non-obese diabetic mice 14 days after the onset of diabetes, and this was prominent by 70 days. CTGF protein is also present in glomeruli of human patients with diabetic nephropathy. No CTGF was detected in either normal murine or human glomeruli. Transient transfection of a transformed human mesangial cell line with a CTGF-V5 epitope fusion protein markedly increased fibronectin and plasminogen activator inhibitor-1 synthesis in cultures maintained in normal glucose (4 mM) conditions; a CTGF-antisense construct reduced the elevated synthesis of these proteins in high glucose (30 mM) cultures. Culture of primary human mesangial cells for 14 days in high glucose, or in low glucose supplemented with recombinant CTGF or transforming growth factor beta1, markedly increased CTGF mRNA levels and fibronectin synthesis. However, whilst co-culture with a CTGF-antisense oligonucleotide reduced the CTGF mRNA pool by greater than 90% in high glucose, it only partially reduced fibronectin mRNA levels and synthesis. A chick anti-CTGF neutralizing antibody had a similar effect on fibronectin synthesis. Thus both CTGF and CTGF-independent pathways mediate increased fibronectin synthesis in high glucose. Nevertheless CTGF expression in diabetic kidneys is likely to be a key event in the development of glomerulosclerosis by affecting both matrix synthesis and, potentially through plasminogen activator inhibitor-1, its turnover. PMID:11563971

  2. Expression of TGF-β1 and CTGF Is Associated with Fibrosis of Denervated Sternocleidomastoid Muscles in Mice.

    PubMed

    Liu, Fei; Tang, Weifang; Chen, Donghui; Li, Meng; Gao, Yinna; Zheng, Hongliang; Chen, Shicai

    2016-01-01

    Injury to the recurrent laryngeal nerve often leads to permanent vocal cord paralysis, which has a significant negative impact on the quality of life. Long-term denervation can induce laryngeal muscle fibrosis, which obstructs the muscle recovery after laryngeal reinnervation. However, the mechanisms of fibrosis remain unclear. In this study, we aimed to analyze the changes in the expression of fibrosis-related factors, including transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) in denervated skeletal muscles using a mouse model of accessory nerve transection. Because of the small size, we used sternocleidomastoid muscles instead of laryngeal muscles for denervation experiments. Masson's trichrome staining showed that the grade of atrophy and fibrosis of muscles became more severe with time, but showed a plateau at 4 weeks after denervation, followed by a slow decrease. Quantitative assessment and immunohistochemistry showed that TGF-β1 expression peaked at 1 week after denervation (p < 0.05) and was maintained at its high level until 4 weeks. CTGF- and α-SMA-positive muscle cells were detected at 1 week after denervation, peaked at 2 weeks (p < 0.05), and remained at high levels with a subsequent slight decrease for 3-4 weeks. These results suggest that TGF-β1 and CTGF may be involved in the process of denervated skeletal muscle fibrosis. They may induce the differentiation of myoblasts into myofibroblasts, as characterized by the activation of α-SMA. These findings may provide insights on key pathological processes in denervated skeletal muscle fibrosis and develop novel therapeutic strategies.

  3. Development of a novel gene silencer pyrrole-imidazole polyamide targeting human connective tissue growth factor.

    PubMed

    Wan, Jian-Xin; Fukuda, Noboru; Ueno, Takahiro; Watanabe, Takayoshi; Matsuda, Hiroyuki; Saito, Kosuke; Nagase, Hiroki; Matsumoto, Yoshiaki; Matsumoto, Koichi

    2011-01-01

    Pyrrole-imidazole (PI) polyamide can bind to specific sequences in the minor groove of double-helical DNA and inhibit transcription of the genes. We designed and synthesized a PI polyamide to target the human connective tissue growth factor (hCTGF) promoter region adjacent to the Smads binding site. Among coupling activators that yield PI polyamides, 1-[bis(dimethylamino)methylene]-5-chloro-1H-benzotriazolium 3-oxide hexafluorophosphate (HCTU) was most effective in total yields of PI polyamides. A gel shift assay showed that a PI polyamide designed specifically for hCTGF (PI polyamide to hCTGF) bound the appropriate double-stranded oligonucleotide. A fluorescein isothiocyanate (FITC)-conjugated PI polyamide to CTGF permeated cell membranes and accumulated in the nuclei of cultured human mesangial cells (HMCs) and remained there for 48 h. The PI polyamide to hCTGF significantly decreased phorbol 12-myristate acetate (PMA)- or transforming growth factor-β1 (TGF-β1)-stimulated luciferase activity of the hCTGF promoter in cultured HMCs. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated expression of hCTGF mRNA in a dose-dependent manner. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated levels of hCTGF protein in HMCs. These results indicate that the developed synthetic PI polyamide to hCTGF could be a novel gene silencer for fibrotic diseases.

  4. FG-3019, a Human Monoclonal Antibody Recognizing Connective Tissue Growth Factor, is Subject to Target-Mediated Drug Disposition.

    PubMed

    Brenner, Mitchell C; Krzyzanski, Wojciech; Chou, James Z; Signore, Pierre E; Fung, Cyra K; Guzman, David; Li, Dongxia; Zhang, Weihua; Olsen, David R; Nguyen, Viet-Tam L; Koo, Carolyn W; Sternlicht, Mark D; Lipson, Kenneth E

    2016-08-01

    To evaluate and model the pharmacokinetic and pharmacodynamic behavior in rats of FG-3019, a human monoclonal antibody targeting connective tissue growth factor (CTGF). FG-3019, human CTGF (rhCTGF), or the N-terminal domain of rhCTGF were administered intravenously to rats and concentrations of these proteins as well as endogenous CTGF were determined by immunoassays. FG-3019, or (125)I-labeled FG-3019, and human CTGF (rhCTGF) were co-administered to assess the impact of CTGF on the elimination rate and tissue localization of FG-3019, which was further characterized by immunohistochemical analysis. A PK/PD model for target-mediated elimination of FG-3019 was developed to fit the kinetic data. FG-3019 exhibited non-linear pharmacokinetics in rats. Circulating concentrations of the N-terminal half of CTGF increased after dosing with FG-3019, reached maximal levels after 1-5 days, and returned toward baseline levels as FG-3019 cleared from the circulation, whereas the concentration of intact CTGF was unaffected by administration of FG-3019. Co-administration of rhCTGF dramatically enhanced the rate of FG-3019 elimination, redistributing the majority of (125)I-labeled FG-3019 from the blood to the liver, kidney, spleen and adrenal gland. FG-3019 co-administered with CTGF was found along the sinusoids of the liver and adrenal glands, the capillaries of the kidney glomeruli and in the spleen. A pharmacokinetic model for target-mediated elimination of FG-3019 was used to fit the time courses of FG-3019 and endogenous CTGF plasma concentrations, as well as time courses of rhCTGF and rhCTGF N-fragment after intravenous administration of these species. FG-3019 is subject to target mediated elimination in rats.

  5. Role of CTGF in sensitivity to hyperthermia in ovarian and uterine cancers

    SciTech Connect

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; Pradeep, Sunila; Wang, Wanqin; Huang, Qian; Court, Karem A.; Liu, Tao; Nie, Song; Rodriguez-Aguayo, Cristian; Shen, Fangrong; Huang, Yan; Hisamatsu, Takeshi; Mitamura, Takashi; Jennings, Nicholas; Shim, Jeajun; Dorniak, Piotr L.; Mangala, Lingegowda S.; Petrillo, Marco; Petyuk, Vladislav A.; Schepmoes, Athena A.; Shukla, Anil K.; Torres-Lugo, Madeline; Lee, Ju -Seog; Rodland, Karin D.; Fagotti, Anna; Lopez-Berestein, Gabriel; Li, Chun; Sood, Anil K.

    2016-11-01

    Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. Lastly, CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.

  6. Role of CTGF in sensitivity to hyperthermia in ovarian and uterine cancers

    PubMed Central

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; Pradeep, Sunila; Wang, Wanqin; Huang, Qian; Court, Karem A.; Liu, Tao; Nie, Song; Rodriguez-Aguayo, Cristian; Shen, Fangrong; Huang, Yan; Hisamatsu, Takeshi; Mitamura, Takashi; Jennings, Nicholas; Shim, Jeajun; Dorniak, Piotr L.; Mangala, Lingegowda S.; Petrillo, Marco; Petyuk, Vladislav A.; Schepmoes, Athena A.; Shukla, Anil K.; Torres-Lugo, Madeline; Lee, Ju-Seog; Rodland, Karin D.; Fagotti, Anna; Lopez-Berestein, Gabriel; Li, Chun; Sood, Anil K.

    2016-01-01

    Summary Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits of and predictors of sensitivity of cancer to hyperthermia are poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures in and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF siRNA treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia resistant cancers. PMID:27806300

  7. Role of CTGF in sensitivity to hyperthermia in ovarian and uterine cancers

    DOE PAGES

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; ...

    2016-11-01

    Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. Lastly, CTGF silencingmore » aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.« less

  8. Connective tissue growth factor is a substrate of ADAM28

    SciTech Connect

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.

  9. Lysophosphatidic Acid Increases Proximal Tubule Cell Secretion of Profibrotic Cytokines PDGF-B and CTGF through LPA2- and Gαq-Mediated Rho and αvβ6 Integrin-Dependent Activation of TGF-β

    PubMed Central

    Geng, Hui; Lan, Rongpei; Singha, Prajjal K.; Gilchrist, Annette; Weinreb, Paul H.; Violette, Shelia M.; Weinberg, Joel M.; Saikumar, Pothana; Venkatachalam, Manjeri A.

    2013-01-01

    After ischemia-reperfusion injury (IRI), kidney tubules show activated transforming growth factor β (TGF-β) signaling and increased expression of profibrotic peptides, platelet-derived growth factor-B (PDGF-B) and connective tissue growth factor (CTGF). If tubule repair after IRI is incomplete, sustained paracrine activity of these peptides can activate interstitial fibroblast progenitors and cause fibrosis. We show that lysophosphatidic acid (LPA), a ubiquitous phospholipid that is increased at sites of injury and inflammation, signals through LPA2 receptors and Gαq proteins of cultured proximal tubule cells to transactivate latent TGF-β in a Rho/Rho-kinase and αvβ6 integrin-dependent manner. Active TGF-β peptide then initiates signaling to increase the production and secretion of PDGF-B and CTGF. In a rat model of IRI, increased TGF-β signaling that was initiated early during reperfusion did not subside during recovery, but progressively increased, causing tubulointerstitial fibrosis. This was accompanied by correspondingly increased LPA2 and β6 integrin proteins and elevated tubule expression of TGF-β1, together with PDGF-B and CTGF. Treatment with a pharmacological TGF-β type I receptor antagonist suppressed TGF-β signaling, decreased the expression of β6 integrin, PDGF-B, and CTGF, and ameliorated fibrosis. We suggest that LPA-initiated autocrine signaling is a potentially important mechanism that gives rise to paracrine profibrotic signaling in injured kidney tubule cells. PMID:22885106

  10. Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Cortes, P

    2001-01-01

    Connective tissue growth factor (CTGF), a member of the closely related CCN family of cytokines appears to be fibrotic in skin. To determine whether CTGF is implicated in diabetic glomerulosclerosis we studied cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to rhCTGF significantly increased fibronectin and collagen type I secretion. Further, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36-38 kDa). However, exposure to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in glomerulosclerosis, markedly induced the expression of CTGF transcripts. With all but mechanical strain there was a concomitant stimulation of CTGF protein secretion. TGF-beta also induced abundant quantities of a small molecular weight form of CTGF (18 kDa). The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta neutralizing antibody blocked this stimulation. In vivo studies using quantitative RT-PCR demonstrated that while CTGF transcripts were low in the glomeruli of control mice, expression was increased 27-fold after approximately 3.5 months of diabetes. These changes occurred early in diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (2-fold) observed in whole kidney cortices indicted that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation in both diabetic and non-diabetic glomerulosclerosis, acting downstream of TGF-beta.

  11. Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action.

    PubMed Central

    Wahab, N A; Brinkman, H; Mason, R M

    2001-01-01

    Connective tissue growth factor (CTGF) is a secreted cysteine-rich protein now considered as an important effector molecule in both physiological and pathological processes. An increasing amount of evidence indicates that CTGF plays a key role in the pathogenesis of different fibrotic disorders including diabetic nephropathy. However, the molecular mechanisms by which CTGF exerts its effects are not known. Here we provide the first evidence for the existence of an intracellular transport pathway for the growth factor in human mesangial cells. Our results demonstrate that CTGF is internalized from the cell surface in endosomes and accumulates in a juxtanuclear organelle from which the growth factor is then translocated into the cytosol. In the cytosol CTGF is phosphorylated by protein kinase C and PMA treatment can enhance this phosphorylation. Phosphorylated CTGF may have an important role in the cytosol, but it is also translocated into the nucleus where it may directly affect transcription. PMID:11563972

  12. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  13. Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction.

    PubMed

    Chuva de Sousa Lopes, Susana M; Feijen, Alie; Korving, Jeroen; Korchynskyi, Olexander; Larsson, Jonas; Karlsson, Stefan; ten Dijke, Peter; Lyons, Karen M; Goldschmeding, Roel; Doevendans, Pieter; Mummery, Christine L

    2004-11-01

    Connective tissue growth factor (CTGF) is reported to be a target gene of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) in vitro. Its physiological role in angiogenesis and skeletogenesis during mouse development has been described recently. Here, we have mapped expression of CTGF mRNA during mouse heart development, postnatal adult life, and after experimental myocardial infarction. Furthermore, we investigated the relationship between CTGF and the BMP/TGFbeta signaling pathway in particular during heart development in mutant mice. Postnatally, CTGF expression in the heart became restricted to the atrium. Strikingly, 1 week after myocardial infarction, when myocytes have disappeared from the infarct zone, CTGF and TGFbeta expression as well as activated forms of TGFbeta but not BMP, Smad effector proteins are colocalized exclusively in the fibroblasts of the scar tissue, suggesting possible cooperation between CTGF and TGFbeta during the pathological fibrotic response.

  14. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer.

    PubMed

    Kikuchi, Ryoko; Kikuchi, Yoshihiro; Tsuda, Hitoshi; Maekawa, Hitoshi; Kozaki, Ken-Ichi; Imoto, Issei; Tamai, Seiichi; Shiotani, Akihiro; Iwaya, Keiichi; Sakamoto, Masaru; Sekiya, Takao; Matsubara, Osamu

    2014-07-01

    Connective tissue growth factor (CTGF) has been reported to play critical roles in the tumorigenesis of several human malignancies. This study was performed to evaluate CTGF protein expression in head and neck squamous cell carcinoma (HNSCC). Surgical specimens from 76 primary HNSCC were obtained with written informed consents and the expression level of CTGF was immunohistochemically evaluated. The cytoplasmic immunoreactivity of CTGF in cancer cells was semiquantitatively classified into low and high expression. Among all 76 cases with or without neoadjuvant therapy, low CTGF showed significantly longer (P = 0.0282) overall survival (OS), but not disease-free survival (DFS) than high CTGF. Although low CTGF in patients with stage I, II and III did not result in any significant difference of the OS and DFS, stage IV HNSCC patients with low CTGF showed significantly longer OS (P = 0.032) and DFS (P = 0.0107) than those with high CTGF. These differences in stage IV cases were also confirmed using multivariate analyses. These results suggest that low CTGF in stage IV HNSCC is an independent prognostic factor, despite with or without neoadjuvant therapy.

  15. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system

    PubMed Central

    Malik, Anna R.; Liszewska, Ewa; Jaworski, Jacek

    2015-01-01

    Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology. PMID:26157362

  16. Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage.

    PubMed

    Arauz, Jonathan; Moreno, Marina Galicia-; Cortés-Reynosa, Pedro; Salazar, Eduardo Pérez; Muriel, Pablo

    2013-09-01

    This study was performed to evaluate the antifibrotic properties of coffee in a model of liver damage induced by repeated administration of thioacetamide (TAA) in male Wistar rats. In this study, cirrhosis was induced by chronic TAA administration and the effects of co-administration of conventional caffeinated coffee or decaffeinated coffee (CC, DC, respectively) for 8 weeks were evaluated. TAA administration elevated serum alkaline phosphatase (AP), γ-glutamyl transpeptidase (γ-GTP) and alanine aminotransferase (ALAT), liver lipid peroxidation, collagen content, depleted liver glycogen and glutathione peroxidase (GPx) activity. Additionally increased levels of a number of proteins were detected including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF) and alpha-smooth muscle actin (α-SMA), and matrix metalloproteinase (MMP)-2, 9 and 13. Coffee suppressed most of the changes produced by TAA. Histopathological analysis was in agreement with biochemical and molecular findings. These results indicate that coffee attenuates experimental cirrhosis; the action mechanisms are probably associated with its antioxidant properties and mainly by its ability to block the elevation of the profibrogenic cytokine TGF-β and its downstream effector CTGF. Various components of coffee that have been related to such a favorable effect include caffeine, coffee oils kahweol, cafestol and antioxidant substances; however, no definite evidence for the role of these components has been established. These results support earlier findings suggesting a beneficial effect of coffee on the liver. However, more basic clinical studies must be performed to confirm this hypothesis. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Locally expressed IGF1 propeptide improves mouse heart function in induced dilated cardiomyopathy by blocking myocardial fibrosis and SRF-dependent CTGF induction

    PubMed Central

    Touvron, Melissa; Escoubet, Brigitte; Mericskay, Mathias; Angelini, Aude; Lamotte, Luciane; Santini, Maria Paola; Rosenthal, Nadia; Daegelen, Dominique; Tuil, David; Decaux, Jean-François

    2012-01-01

    SUMMARY Cardiac fibrosis is critically involved in the adverse remodeling accompanying dilated cardiomyopathies (DCMs), which leads to cardiac dysfunction and heart failure (HF). Connective tissue growth factor (CTGF), a profibrotic cytokine, plays a key role in this deleterious process. Some beneficial effects of IGF1 on cardiomyopathy have been described, but its potential role in improving DCM is less well characterized. We investigated the consequences of expressing a cardiac-specific transgene encoding locally acting IGF1 propeptide (muscle-produced IGF1; mIGF1) on disease progression in a mouse model of DCM [cardiac-specific and inducible serum response factor (SRF) gene disruption] that mimics some forms of human DCM. Cardiac-specific mIGF1 expression substantially extended the lifespan of SRF mutant mice, markedly improved cardiac functions, and delayed both DCM and HF. These protective effects were accompanied by an overall improvement in cardiomyocyte architecture and a massive reduction of myocardial fibrosis with a concomitant amelioration of inflammation. At least some of the beneficial effects of mIGF1 transgene expression were due to mIGF1 counteracting the strong increase in CTGF expression within cardiomyocytes caused by SRF deficiency, resulting in the blockade of fibroblast proliferation and related myocardial fibrosis. These findings demonstrate that SRF plays a key role in the modulation of cardiac fibrosis through repression of cardiomyocyte CTGF expression in a paracrine fashion. They also explain how impaired SRF function observed in human HF promotes fibrosis and adverse cardiac remodeling. Locally acting mIGF1 efficiently protects the myocardium from these adverse processes, and might thus represent a therapeutic avenue to counter DCM. PMID:22563064

  18. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  19. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced

  20. Long Noncoding RNA H19 Acts as a Competing Endogenous RNA to Mediate CTGF Expression by Sponging miR-455 in Cardiac Fibrosis.

    PubMed

    Huang, Zhi-Wen; Tian, Li-Hong; Yang, Bin; Guo, Run-Min

    2017-09-01

    Cardiac fibrosis is closely related to multiple cardiovascular system diseases, and noncoding RNAs (ncRNAs), including long noncoding RNA (lncRNA) and microRNA (miRNA), have been reported to play a vital role in fibrogenesis. The present study aims to investigate the potential regulatory mechanism of lncRNA H19 and miR-455 on fibrosis-associated protein synthesis in cardiac fibroblasts (CFs). miRNA microarray assay revealed 34 significantly dysregulated miRNAs, including 13 upregulated miRNAs and 21 downregulated miRNAs. Among these aberrantly expressed miRNAs, we paid attention to miR-455, which was significantly downregulated in diabetic mouse myocardium and Ang II-induced CFs. Loss- and gain-of-function experiments showed that miR-455 expression levels were negatively correlated with collagen I and III expression in Ang II-induced CFs. Bioinformatic prediction programs (TargetScan, miRanda, starBase) predicted that miR-455 targeted connective tissue growth factor (CTGF) and H19 with complementary binding sites at the 3'-untranslated region, which was validated by luciferase reporter assay. Functional validation assay demonstrated that H19 knockdown could enhance the antifibrotic role of miR-455 and attenuate the CTGF expression and further decrease fibrosis-associated protein synthesis (collagen I, III, and α-SMA). The present study reveals a novel function of the H19/miR-455 axis targeting CTGF in cardiac fibrosis, suggesting its potential therapeutic role in cardiac diseases.

  1. Transcutaneous electrical acupoint stimulation alleviates the hyperandrogenism of polycystic ovarian syndrome rats by regulating the expression of P450arom and CTGF in the ovaries

    PubMed Central

    Qu, Fan; Liang, Yi; Zhou, Jue; Ma, Rui-Jie; Zhou, Jie; Wang, Fang-Fang; Wu, Yan; Fang, Jian-Qiao

    2015-01-01

    The present study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) in alleviating the hyperandrogenism of polycystic ovarian syndrome (PCOS) model rats induced by testosterone propionate and the possible underlying mechanism. Thirty-six female Sprague-Dawley rats were randomly divided into normal control, PCOS model and TEAS groups with twelve rats in each group. The PCOS model rats were established by single injection of testosterone propionate at 9th day after birth, and the status of estrous cyclicity for each rat was observed. When the 8-week TEAS treatment completed, the weight of body, uterus and ovaries of the rats were respectively measured. The serum levels of total testosterone (TT), sex hormone binding globulin (SHBG), androstenedione, luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were detected. The mRNA and protein expression levels of aromatase cytochrome P450 (P450arom) and connective tissue growth factor (CTGF) in the ovaries of the rats were respectively measured with real-time quantitative PCR and immunohistochemistry. The TEAS treatment significantly improved the estrous cycles of the PCOS rats and the TEAS group displayed significantly lower average body and ovaries weights than the PCOS model group (P < 0.05). TEAS significantly decreased the serum TT, free androgen index (FAI), androstenedione and LH/FSH levels, and increased the serum FSH levels of the PCOS rats (P < 0.05). The TEAS treatment significantly increased the P450arom mRNA as well as protein expression levels and significantly decreased the CTGF mRNA as well as protein expression levels in the ovaries of the PCOS rats (P < 0.05). We concluded that it is through regulating the P450arom and CTGF expression levels in the ovaries that TEAS significantly alleviates the hyperandrogenism of PCOS rats induced by testosterone propionate. PMID:26221326

  2. Transcutaneous electrical acupoint stimulation alleviates the hyperandrogenism of polycystic ovarian syndrome rats by regulating the expression of P450arom and CTGF in the ovaries.

    PubMed

    Qu, Fan; Liang, Yi; Zhou, Jue; Ma, Rui-Jie; Zhou, Jie; Wang, Fang-Fang; Wu, Yan; Fang, Jian-Qiao

    2015-01-01

    The present study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) in alleviating the hyperandrogenism of polycystic ovarian syndrome (PCOS) model rats induced by testosterone propionate and the possible underlying mechanism. Thirty-six female Sprague-Dawley rats were randomly divided into normal control, PCOS model and TEAS groups with twelve rats in each group. The PCOS model rats were established by single injection of testosterone propionate at 9th day after birth, and the status of estrous cyclicity for each rat was observed. When the 8-week TEAS treatment completed, the weight of body, uterus and ovaries of the rats were respectively measured. The serum levels of total testosterone (TT), sex hormone binding globulin (SHBG), androstenedione, luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were detected. The mRNA and protein expression levels of aromatase cytochrome P450 (P450arom) and connective tissue growth factor (CTGF) in the ovaries of the rats were respectively measured with real-time quantitative PCR and immunohistochemistry. The TEAS treatment significantly improved the estrous cycles of the PCOS rats and the TEAS group displayed significantly lower average body and ovaries weights than the PCOS model group (P < 0.05). TEAS significantly decreased the serum TT, free androgen index (FAI), androstenedione and LH/FSH levels, and increased the serum FSH levels of the PCOS rats (P < 0.05). The TEAS treatment significantly increased the P450arom mRNA as well as protein expression levels and significantly decreased the CTGF mRNA as well as protein expression levels in the ovaries of the PCOS rats (P < 0.05). We concluded that it is through regulating the P450arom and CTGF expression levels in the ovaries that TEAS significantly alleviates the hyperandrogenism of PCOS rats induced by testosterone propionate.

  3. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure.

    PubMed

    Szabó, Zoltán; Magga, Johanna; Alakoski, Tarja; Ulvila, Johanna; Piuhola, Jarkko; Vainio, Laura; Kivirikko, Kari I; Vuolteenaho, Olli; Ruskoaho, Heikki; Lipson, Kenneth E; Signore, Pierre; Kerkelä, Risto

    2014-06-01

    Connective tissue growth factor (CTGF) is involved in the pathogenesis of various fibrotic disorders. However, its role in the heart is not clear. To investigate the role of CTGF in regulating the development of cardiac fibrosis and heart failure, we subjected mice to thoracic aortic constriction (TAC) or angiotensin II infusion, and antagonized the function of CTGF with CTGF monoclonal antibody (mAb). After 8 weeks of TAC, mice treated with CTGF mAb had significantly better preserved left ventricular (LV) systolic function and reduced LV dilatation compared with mice treated with control immunoglobulin G. CTGF mAb-treated mice exhibited significantly smaller cardiomyocyte cross-sectional area and reduced expression of hypertrophic marker genes. CTGF mAb treatment reduced the TAC-induced production of collagen 1 but did not significantly attenuate TAC-induced accumulation of interstitial fibrosis. Analysis of genes regulating extracellular matrix proteolysis showed decreased expression of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 in mice treated with CTGF mAb. In contrast to TAC, antagonizing the function of CTGF had no effect on LV dysfunction or LV hypertrophy in mice subjected to 4-week angiotensin II infusion. Further analysis showed that angiotensin II-induced expression of hypertrophic marker genes or collagens was not affected by treatment with CTGF mAb. In conclusion, CTGF mAb protects from adverse LV remodeling and LV dysfunction in hearts subjected to pressure overload by TAC. Antagonizing the function of CTGF may offer protection from cardiac end-organ damage in patients with hypertension.

  4. Connective Tissue Growth Factor Reporter Mice Label a Subpopulation of Mesenchymal Progenitor Cells that Reside in the Trabecular Bone Region

    PubMed Central

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2014-01-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947

  5. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.

  6. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment

    PubMed Central

    Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina

    2013-01-01

    Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006

  7. Change in the cells that express connective tissue growth factor in acute Coxsackievirus-induced myocardial fibrosis in mouse.

    PubMed

    Yun, Soo-Hyeon; Shin, Jae-Ok; Lim, Byung-Kwan; Kim, Kyoung-Li; Gil, Chae-Ok; Kim, Duk-Kyung; Jeon, Eun-Seok

    2007-06-01

    Cardiac fibrosis and inflammation are major pathologic conditions that result from viral myocarditis. Connective tissue growth factor (CTGF) stimulates fibroblast proliferation and induces production of extracellular matrix molecules. We studied the correlation between CTGF and cardiac fibrosis in an acute Coxsackievirus B3 (CVB3) myocarditis animal model. Eight-week-old BALB/c mice were infected intraperitoneally with 10(4) plaque forming units (PFU) of CVB3. Myocardial inflammation peaked on day 7 and decreased markedly by day 14 post-infection (pi); cardiac fibrosis was noted from day 7 and peaked on day 14. By contrast, CTGF was weakly expressed by the interstitial cells in uninfected control hearts and also in the hearts of day 3 pi. CTGF expression measured by real-time PCR was elevated on day 3 and peaked on day 7 pi. TGF-beta expression peaked at day 7 pi. The cell type of CTGF expression changed from interstitial cells to myocytes after virus infection. On day 7, CTGF was strongly expressed by myocytes and inflammatory cells surrounding calcified necrotic areas. In addition, cardiac myocytes expressed CTGF on day 14. Our results, based on an acute CVB3 model of myocarditis, provide evidence that CTGF may mediate the development of fibrosis after viral myocarditis, and that the cells expressed CTGF changes during the course of viral myocarditis.

  8. SMAD3 and SP1/SP3 Transcription Factors Collaborate to Regulate Connective Tissue Growth Factor Gene Expression in Myoblasts in Response to Transforming Growth Factor β.

    PubMed

    Córdova, Gonzalo; Rochard, Alice; Riquelme-Guzmán, Camilo; Cofré, Catalina; Scherman, Daniel; Bigey, Pascal; Brandan, Enrique

    2015-09-01

    Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and deposition, Duchene Muscular Dystrophy being one of them. Among the factors that induce fibrosis are Transforming Growth Factor type β (TGF-β) and the matricellular protein Connective Tissue Growth Factor (CTGF/CCN2), the latter being a target of the TGF-β/SMAD signaling pathway and is the responsible for the profibrotic effects of TGF-β. Both CTGF and TGF are increased in tissues affected by fibrosis but little is known about the regulation of the expression of CTGF mediated by TGF-β in muscle cells. By using luciferase reporter assays, site directed mutagenesis and specific inhibitors in C2C12 cells; we described a novel SMAD Binding Element (SBE) located in the 5' UTR region of the CTGF gene important for the TGF-β-mediated expression of CTGF in myoblasts. In addition, our results suggest that additional transcription factor binding sites (TFBS) present in the 5' UTR of the CTGF gene are important for this expression and that SP1/SP3 factors are involved in TGF-β-mediated CTGF expression.

  9. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis

    PubMed Central

    2009-01-01

    Introduction A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA. Methods Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions. Results The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor. Conclusions These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment. PMID:19922639

  10. Members of the Cyr61/CTGF/NOV Protein Family: Emerging Players in Hepatic Progenitor Cell Activation and Intrahepatic Cholangiocarcinoma

    PubMed Central

    Jorgensen, Marda; Song, Joanna; Zhou, Junmei; Liu, Chen

    2016-01-01

    Hepatic stem/progenitor cells (HPC) reside quiescently in normal biliary trees and are activated in the form of ductular reactions during severe liver damage when the replicative ability of hepatocytes is inhibited. HPC niches are full of profibrotic stimuli favoring scarring and hepatocarcinogenesis. The Cyr61/CTGF/NOV (CCN) protein family consists of six members, CCN1/CYR61, CCN2/CTGF, CCN3/NOV, CCN4/WISP1, CCN5/WISP2, and CCN6/WISP3, which function as extracellular signaling modulators to mediate cell-matrix interaction during angiogenesis, wound healing, fibrosis, and tumorigenesis. This study investigated expression patterns of CCN proteins in HPC and cholangiocarcinoma (CCA). Mouse HPC were induced by the biliary toxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Differential expression patterns of CCN proteins were found in HPC from DDC damaged mice and in human CCA tumors. In addition, we utilized reporter mice that carried Ccn2/Ctgf promoter driven GFP and detected strong Ccn2/Ctgf expression in epithelial cell adhesion molecule (EpCAM)+ HPC under normal conditions and in DDC-induced liver damage. Abundant CCN2/CTGF protein was also found in cytokeratin 19 (CK19)+ human HPC that were surrounded by α-smooth muscle actin (α-SMA)+ myofibroblast cells in intrahepatic CCA tumors. These results suggest that CCN proteins, particularly CCN2/CTGF, function in HPC activation and CCA development. PMID:27829832

  11. Yap/Taz transcriptional activity is essential for vascular regression via Ctgf expression and actin polymerization

    PubMed Central

    Nagasawa-Masuda, Ayumi; Terai, Kenta

    2017-01-01

    Vascular regression is essential to remove redundant vessels during the formation of an efficient vascular network that can transport oxygen and nutrient to every corner of the body. However, no mechanism is known to explain how major blood vessels regress during development. Here we use the dorsal part of the caudal vein plexus (dCVP) in Zebrafish to investigate the mechanism of regression and discover a new role of Yap/Taz in vascular regression. During regression, Yap/Taz is activated by blood circulation in the endothelial cells. This leads to induction of Ctgf and actin polymerization. Interference with Yap/Taz activation decreased Ctgf production, which decreased actin polymerization and vascular regression. These results implicate a novel role of Yap/Taz in vascular regression. PMID:28369143

  12. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro.

    PubMed

    Sonnylal, Sonali; Xu, Shiwen; Jones, Helen; Tam, Angela; Sreeram, Vivek R; Ponticos, Markella; Norman, Jill; Agrawal, Pankaj; Abraham, David; de Crombrugghe, Benoit

    2013-05-15

    Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.

  13. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro

    PubMed Central

    Sonnylal, Sonali; Xu, Shiwen; Jones, Helen; Tam, Angela; Sreeram, Vivek R.; Ponticos, Markella; Norman, Jill; Agrawal, Pankaj; Abraham, David; de Crombrugghe, Benoit

    2013-01-01

    Summary Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis. PMID:23525012

  14. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    PubMed

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  15. The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis

    PubMed Central

    Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.

    2013-01-01

    Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844

  16. Up-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4.

    PubMed

    Samarin, Jana; Rehm, Margot; Krueger, Bettina; Waschke, Jens; Goppelt-Struebe, Margarete

    2009-02-01

    Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer. Furthermore, CA-4P induced CTGF expression in endothelial cells, forming tube-like structures on basement membrane gels. Up-regulation of CTGF by CA-4P was dependent on Rho kinase signaling and was increased when p42/44 mitogen-activated protein kinase was inhibited. Additionally, FoxO transcription factors were identified as potent regulators of CTGF expression in endothelial cells. Activation of FoxO transcription factors by inhibition of phosphatidylinositol 3-kinase/AKT signaling resulted in a synergistic increase in CA-4P-mediated CTGF induction. CA-4P-mediated expression of CTGF was thus potentiated by the inhibition of kinase pathways, which are targets of novel antineoplastic drugs. Up-regulation of CTGF by low concentrations of CA-4P may thus occur in newly formed tumor vessels and contribute to the microvessel destabilization and antiangiogenic effects of CA-4P observed in vivo.

  17. MicroRNA signature in wound healing following excimer laser ablation: role of miR-133b on TGFβ1, CTGF, SMA, and COL1A1 expression levels in rabbit corneal fibroblasts.

    PubMed

    Robinson, Paulette M; Chuang, Tsai-Der; Sriram, Sriniwas; Pi, Liya; Luo, Xiao Ping; Petersen, Bryon E; Schultz, Gregory S

    2013-10-23

    The role of microRNA (miRNA) regulation in corneal wound healing and scar formation has yet to be elucidated. This study analyzed the miRNA expression pattern involved in corneal wound healing and focused on the effect of miR-133b on expression of several profibrotic genes. Laser-ablated mouse corneas were collected at 0 and 30 minutes and 2 days. Ribonucleic acid was collected from corneas and analyzed using cell differentiation and development miRNA PCR arrays. Luciferase assay was used to determine whether miR-133b targeted the 3' untranslated region (UTR) of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) in rabbit corneal fibroblasts (RbCF). Quantitative real-time PCR (qRT-PCR) and Western blots were used to determine the effect of miR-133b on CTGF, smooth muscle actin (SMA), and collagen (COL1A1) in RbCF. Migration assay was used to determine the effect of miR-133b on RbCF migration. At day 2, 37 of 86 miRNAs had substantial expression fold changes. miR-133b had the greatest fold decrease at -14.33. Pre-miR-133b targeted the 3' UTR of CTGF and caused a significant decrease of 38% (P < 0.01). Transforming growth factor β1-treated RbCF had a significant decrease of miR-133b of 49% (P < 0.01), whereas CTGF, SMA, and COL1A1 had significant increases of 20%, 54%, and 37% (P < 0.01), respectively. The RbCF treated with TGFβ1 and pre-miR133b showed significant decreases in expression of CTGF, SMA, and COL1A1 of 30%, 37%, and 28% (P < 0.01), respectively. Finally, there was significant decrease in migration of miR-133b-treated RbCF. Significant changes occur in key miRNAs during early corneal wound healing, suggesting novel miRNA targets to reduce scar formation.

  18. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.

    PubMed

    Neesse, Albrecht; Frese, Kristopher K; Bapiro, Tashinga E; Nakagawa, Tomoaki; Sternlicht, Mark D; Seeley, Todd W; Pilarsky, Christian; Jodrell, Duncan I; Spong, Suzanne M; Tuveson, David A

    2013-07-23

    Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA. Prior studies could not determine whether chemotherapy delivery or microenvironment modulation per se were the dominant features in treatment response, and such information could guide the optimal translation of these preclinical findings to patients. To distinguish between these possibilities, we used a chemical inhibitor of cytidine deaminase to stabilize and thereby artificially elevate gemcitabine levels in murine PDA tumors without disrupting the tumor microenvironment. Additionally, we used the FG-3019 monoclonal antibody (mAb) that is directed against the pleiotropic matricellular signaling protein connective tissue growth factor (CTGF/CCN2). Inhibition of cytidine deaminase raised the levels of activated gemcitabine within PDA tumors without stimulating neoplastic cell killing or decreasing the growth of tumors, whereas FG-3019 increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. The response to FG-3019 correlated with the decreased expression of a previously described promoter of PDA chemotherapy resistance, the X-linked inhibitor of apoptosis protein. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models, and by extension in PDA patients.

  19. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  20. Connective tissue growth factor is required for normal follicle development and ovulation.

    PubMed

    Nagashima, Takashi; Kim, Jaeyeon; Li, Qinglei; Lydon, John P; DeMayo, Francesco J; Lyons, Karen M; Matzuk, Martin M

    2011-10-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein the synthesis and secretion of which are hypothesized to be selectively regulated by activins and other members of the TGF-β superfamily. To investigate the in vivo roles of CTGF in female reproduction, we generated Ctgf ovarian and uterine conditional knockout (cKO) mice. Ctgf cKO mice exhibit severe subfertility and multiple reproductive defects including disrupted follicle development, decreased ovulation rates, increased numbers of corpus luteum, and smaller but functionally normal uterine horns. Steroidogenesis is disrupted in the Ctgf cKO mice, leading to increased levels of serum progesterone. We show that disrupted follicle development is accompanied by a significant increase in granulosa cell apoptosis. Moreover, despite normal cumulus expansion, Ctgf cKO mice exhibit a significant decrease in oocytes ovulated, likely due to impaired ovulatory process. During analyses of mRNA expression, we discovered that Ctgf cKO granulosa cells show gene expression changes similar to our previously reported granulosa cell-specific knockouts of activin and Smad4, the common TGF-β family intracellular signaling protein. We also discovered a significant down-regulation of Adamts1, a progesterone-regulated gene that is critical for the remodeling of extracellular matrix surrounding granulosa cells of preovulatory follicles. These findings demonstrate that CTGF is a downstream mediator in TGF-β and progesterone signaling cascades and is necessary for normal follicle development and ovulation.

  1. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  2. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  3. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells.

    PubMed

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-03-22

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis.

  4. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells

    PubMed Central

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K.; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-01-01

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis. PMID:27011166

  5. Connective Tissue Growth Factor Is Required for Normal Follicle Development and Ovulation

    PubMed Central

    Nagashima, Takashi; Kim, Jaeyeon; Li, Qinglei; Lydon, John P.; DeMayo, Francesco J.; Lyons, Karen M.

    2011-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein the synthesis and secretion of which are hypothesized to be selectively regulated by activins and other members of the TGF-β superfamily. To investigate the in vivo roles of CTGF in female reproduction, we generated Ctgf ovarian and uterine conditional knockout (cKO) mice. Ctgf cKO mice exhibit severe subfertility and multiple reproductive defects including disrupted follicle development, decreased ovulation rates, increased numbers of corpus luteum, and smaller but functionally normal uterine horns. Steroidogenesis is disrupted in the Ctgf cKO mice, leading to increased levels of serum progesterone. We show that disrupted follicle development is accompanied by a significant increase in granulosa cell apoptosis. Moreover, despite normal cumulus expansion, Ctgf cKO mice exhibit a significant decrease in oocytes ovulated, likely due to impaired ovulatory process. During analyses of mRNA expression, we discovered that Ctgf cKO granulosa cells show gene expression changes similar to our previously reported granulosa cell-specific knockouts of activin and Smad4, the common TGF-β family intracellular signaling protein. We also discovered a significant down-regulation of Adamts1, a progesterone-regulated gene that is critical for the remodeling of extracellular matrix surrounding granulosa cells of preovulatory follicles. These findings demonstrate that CTGF is a downstream mediator in TGF-β and progesterone signaling cascades and is necessary for normal follicle development and ovulation. PMID:21868453

  6. "La Clave Profesional": Validation of a Vocational Guidance Instrument

    ERIC Educational Resources Information Center

    Mudarra, Maria J.; Lázaro Martínez, Ángel

    2014-01-01

    Introduction: The current study demonstrates empirical and cultural validity of "La Clave Profesional" (Spanish adaptation of Career Key, Jones's test based Holland's RIASEC model). The process of providing validity evidence also includes a reflection on personal and career development and examines the relationahsips between RIASEC…

  7. "La Clave Profesional": Validation of a Vocational Guidance Instrument

    ERIC Educational Resources Information Center

    Mudarra, Maria J.; Lázaro Martínez, Ángel

    2014-01-01

    Introduction: The current study demonstrates empirical and cultural validity of "La Clave Profesional" (Spanish adaptation of Career Key, Jones's test based Holland's RIASEC model). The process of providing validity evidence also includes a reflection on personal and career development and examines the relationahsips between RIASEC…

  8. Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes

    PubMed Central

    Van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M.C.; Van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J.F.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR. PMID:24217924

  9. A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice

    PubMed Central

    Li, Shuang; Lv, Yi-Fei; Su, Hou-Qiang; Zhang, Qian-Nan; Wang, Li-Rong; Hao, Zhi-Ming

    2016-01-01

    Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138–159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1–149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis. PMID:27562139

  10. [Preliminary study of the expression of connective tissue growth factor in papillary muscles of the patients with rheumatic heart disease].

    PubMed

    Wang, Y N; Li, T; Gu, J R; Yu, B Y

    2016-04-19

    To investigate the expression and the effect of connective tissue growth factor (CTGF) on rheumatic myocardial fibrosis of rheumatic heart disease (RHD). The papillary muscles samples were obtained from patients with RHD during mitral valve replacement.The expression of TGF-β1, CTGF mRNA and CTGF protein were detected with semiquantitative RT-PCR technique and immunohistochemistry technologyin the papillary muscles cell from 41RHD patients and 20 normal papillary muscles samples.The area of myocardial fibrosis was measured by imaging analysis system. SPSS package was used to analyze the relationship between the expression of CTGF and the area of myocardial fibrosis. Compared with normal controls (PU 2.4±0.9), the mean level of CTGF protein expression in the papillary muscles samples of the RHD patients (PU 44.7±6.0) was significantly increased(P<0.01). The expression of CTGF protein in papillary muscles of RHD was positivelycorrelated with the expression of CTGFmRNA (r=0.862, P<0.01) and the area of myocardial fibrosis (r=0.856, P<0.01). Compared with normal controls, CTGF expression in the papillary muscles of the RHD patients is significantly increased, which suggests CTGF may play animportant role in myocardial fibrosis of RHD.

  11. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    PubMed

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  12. Exposure-dependent increases in IL-1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury.

    PubMed

    Fedorczyk, Jane M; Barr, Ann E; Rani, Shobha; Gao, Helen G; Amin, Mamta; Amin, Shreya; Litvin, Judith; Barbe, Mary F

    2010-03-01

    Upper extremity tendinopathies are associated with performance of forceful repetitive tasks. We used our rat model of repetitive strain injury to study changes induced in forelimb flexor digitorum tendons. Rats were trained to perform a high repetition high force (HRHF) handle-pulling task (12 reaches/min at 60 +/- 5% maximum pulling force [MPF]), or a low repetition negligible force (LRNF) reaching and food retrieval task (three reaches/min at 5 +/- 5% MPF), for 2 h/day in 30 min sessions, 3 days/week for 3-12 weeks. Forelimb grip strength was tested. Flexor digitorum tendons were examined at midtendon at the level of the carpal tunnel for interleukin (IL)-1beta, neutrophil, and macrophage influx, Substance P, connective tissue growth factor (CTGF), and periostin-like factor (PLF) immunoexpression, and histopathological changes. In HRHF rats, grip strength progressively decreased, while IL-1beta levels progressively increased in the flexor digitorum peritendon (para- and epitendon combined) and endotendon with task performance. Macrophage invasion was evident in week 6 and 12 HRHF peritendon but not endotendon. Also in HRHF rats, Substance P immunoexpression increased in week 12 peritendon as did CTGF- and PLF-immunopositive fibroblasts, the increased fibroblasts contributing greatly to peritendon thickening. Endotendon collagen disorganization was evident in week 12 HRHF tendons. LRNF tendons did not differ from controls, even at 12 weeks. Thus, we observed exposure-dependent changes in flexor digitorum tendons within the carpal tunnel, including increased inflammation, nociceptor-related neuropeptide immunoexpression, and fibrotic histopathology, changes associated with grip strength decline.

  13. Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts.

    PubMed

    Sriram, Sriniwas; Robinson, Paulette; Pi, Liya; Lewin, Alfred S; Schultz, Gregory

    2013-12-17

    Transforming growth factor β1 (TGFβ1), TGFβ receptor (TGFβR2), and connective tissue growth factor (CTGF) are key regulators of fibrosis in the cornea and in other tissues, including liver, skin, and kidney. We developed an antifibrotic treatment targeting these three critical scarring genes by using a combination of small interfering RNAs (siRNAs) and assessed its effect on downstream scarring genes, collagen I, and α smooth muscle actin (SMA). Up to six individual siRNAs for each of the three target gene mRNAs were transfected into cultures of rabbit corneal fibroblasts at concentrations from 15 to 90 nM. The knockdown of target gene proteins was measured by ELISA, and the two most effective siRNAs were tested in dual combinations. Knockdown percentages of both individual and dual siRNA combinations were analyzed for synergy by using combination index to predict "effective" and "ineffective" triple siRNA combinations. Effects of both triple siRNA combinations on target and downstream mRNAs were measured by using quantitative RT-PCR, and levels of SMA protein were assessed by immunohistochemistry. Single and dual siRNA combinations produced a wide range of protein knockdown of target genes (5%-80%). The effective triple siRNA combination significantly reduced mRNA levels of target genes (>80%) and downstream scarring genes (>85%), and of SMA protein (>95%), and significantly reduced cell migration without reducing cell viability. Simultaneous targeting of TGFβ1, TGFβR2, and CTGF genes by effective triple siRNA combination produced high knockdown of target and downstream scarring genes without cell toxicity, which may have clinical applications in reducing corneal fibrosis and scarring in other tissues.

  14. Triple Combination of siRNAs Targeting TGFβ1, TGFβR2, and CTGF Enhances Reduction of Collagen I and Smooth Muscle Actin in Corneal Fibroblasts

    PubMed Central

    Sriram, Sriniwas; Robinson, Paulette; Pi, Liya; Lewin, Alfred S.; Schultz, Gregory

    2013-01-01

    Purpose. Transforming growth factor β1 (TGFβ1), TGFβ receptor (TGFβR2), and connective tissue growth factor (CTGF) are key regulators of fibrosis in the cornea and in other tissues, including liver, skin, and kidney. We developed an antifibrotic treatment targeting these three critical scarring genes by using a combination of small interfering RNAs (siRNAs) and assessed its effect on downstream scarring genes, collagen I, and α smooth muscle actin (SMA). Methods. Up to six individual siRNAs for each of the three target gene mRNAs were transfected into cultures of rabbit corneal fibroblasts at concentrations from 15 to 90 nM. The knockdown of target gene proteins was measured by ELISA, and the two most effective siRNAs were tested in dual combinations. Knockdown percentages of both individual and dual siRNA combinations were analyzed for synergy by using combination index to predict “effective” and “ineffective” triple siRNA combinations. Effects of both triple siRNA combinations on target and downstream mRNAs were measured by using quantitative RT-PCR, and levels of SMA protein were assessed by immunohistochemistry. Results. Single and dual siRNA combinations produced a wide range of protein knockdown of target genes (5%–80%). The effective triple siRNA combination significantly reduced mRNA levels of target genes (>80%) and downstream scarring genes (>85%), and of SMA protein (>95%), and significantly reduced cell migration without reducing cell viability. Conclusions. Simultaneous targeting of TGFβ1, TGFβR2, and CTGF genes by effective triple siRNA combination produced high knockdown of target and downstream scarring genes without cell toxicity, which may have clinical applications in reducing corneal fibrosis and scarring in other tissues. PMID:24282226

  15. Molecular control of vascular development by the matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF).

    PubMed

    Chaqour, Brahim

    2013-01-01

    The circulatory system is the first hierarchically ordered network to form during the development of vertebrates as it is an indispensable means of adequate oxygen and nutrient delivery to developing organs. During the initial phase of vascular development, endothelial lineage-committed cells differentiate, migrate, and coalesce to form the central large axial vessels and their branches. The subsequent phase of vessel expansion (i.e., angiogenesis) involves a cascade of events including endothelial cell migration, proliferation, formation of an immature capillary structure, recruitment of mural cells and deposition of a basement membrane to yield a functional vasculature. These series of events are tightly regulated by the coordinated expression of several angiogenic, morphogenic and guidance factors. The extracellular matrix (ECM) is synthesized and secreted by embryonic cells at the earliest stages of development and forms a pericellular network of bioactive stimulatory and inhibitory angiogenesis regulatory factors. Here we describe the role of a subset of inducible immediate-early gene-encoded, ECM-associated integrin- and heparin-binding proteins referred to as CCN1 (or Cyr61) and CCN2 (or CTGF) and their function in the development of the vascular system. Gene-targeting experiments in mice have identified CCN1 and CCN2 as critical rate-limiting determinants of endothelial cell differentiation and quiescence, mural cell recruitment and basement membrane formation during embryonic vascular development. Emphasis will be placed on the regulation and function of these molecules and their contextual mode of action during vascular development. Further understanding of the mechanisms of CCN1- and CCN2-mediated blood vessel expansion and remodeling would enhance the prospects that these molecules provide for the development of new treatments for vascular diseases.

  16. [The role of connective tissue growth factor, transforming growth factor and Smad signaling pathway during corneal wound healing].

    PubMed

    Yang, Yong-mei; Wu, Xin-yi; Du, Li-qun

    2006-10-01

    To study the expression and location of connective tissue growth factor (CTGF) and transforming growth factor-beta(1) (TGF-beta(1)) protein and mRNA in rabbit cornea during the wound healing process. To assess the interaction between CTGF and TGF-beta(1), as well as the Smad signaling pathway involved. Twenty-six Albino white rabbits were used as experimental animals and randomly divided into 4 groups: (1) CONTROL GROUP: two rabbits. (2) Simple corneal injury group: a 3 mm diameter and 0.05 mm depth corneal tissue was excised by a trephine at the anterior central cornea as a corneal wound model in 12 rabbits. Two rabbits were randomly sacrificed at 2 h, 6 h, 1 d, 3 d, 7 d and 21 d after the trauma. (3) TGF-beta(1) antibodies treated group: 6 rabbits were injected with TGF-beta(1) antibodies (15.5 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. (4) Smad4 antibodies treated group: 6 rabbits were injected with Smad4 antibodies (20 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. Protein of CTGF, TGF-beta(1), and FN was assessed with immunohistochemistry. CTGF and type one collagen mRNA were measured in by in situ hybridization. (1) CTGF protein or mRNA did not exist in normal rabbit corneas, but TGF-beta(1) protein was expressed in normal rabbit cornea epithelium. (2) Cornea fibroblasts activated 6 h after the operation. Expression of CTGF, TGF-beta(1), FN protein and mRNA of CTGF and type one collagen were upregulated after cornea injury, and reached the highest level in 3 days. The expression was reduced to the basal level 21 days later. (3) Injection of TGF-beta(1) antibodies reduced the expression of CTGF, TGF-beta(1) and FN in the cornea stroma and down-regulated the expression of CTGF in corneal epithelial cells. (4) Injection of Smad4 antibodies inhibited the expression of TGF in the stroma but did not

  17. Optimum scratch assay condition to evaluate connective tissue growth factor expression for anti-scar therapy.

    PubMed

    Moon, Heekyung; Yong, Hyeyoung; Lee, Ae-Ri Cho

    2012-02-01

    To evaluate a potential anti-scar therapy, we first need to have a reliable in vitro wound model to understand dermal fibroblast response upon cell injury and how cytokine levels are changed upon different wound heal phases. An in vitro wound model with different scratch assay conditions on primary human foreskin fibroblast monolayer cultures was prepared and cytokine levels and growth properties were evaluated with the aim of determining optimum injury conditions and observation time. Morphological characteristics of differently scratched fibroblasts from 0 to 36 h post injury (1 line, 2 lines and 3 lines) were investigated. The expression of connective tissue growth factor, CTGF, which is a key mediator in hyper-tropic scarring, and relative intensity of CTGF as a function of time were determined by western blot and gelatin Zymography. After injury (1 line), CTGF level was increased more than 2-fold within 1 h and continuously increased up to 3-fold at 6 h and was leveled down to reach normal value at 36 h, at which cell migration was complete. In more serious injury (2 lines), higher expression of CTGF was observed. The down regulation of CTGF expression after CTGF siRNA/lipofectamine transfection in control, 1 line and 2 lines scratch conditions were 40%, 75% and 55%, respectively. As a model anti-CTGF based therapy, CTGF siRNA with different ratios of linear polyethyleneimine (PEI) complexes (1:1, 1:5, 1:10, 1:20 and 1:30) were prepared and down-regulation efficacy of CTGF was evaluated with our optimized scratch assay, which is 1 line injury at 6 h post injury observation time. As the cationic linear PEI ratio increased, the down regulation efficacy was increased from 20% (1:20) to 55% (1:30). As CTGF level was increased to the highest at 6 h and leveled down afterwards, CTGF level at 6 h could provide the most sensitive response upon CTGF siRNA transfection. The scratch assay in the present study can be employed as a useful experimental tool to differentiate

  18. High expression of connective tissue growth factor accelerates dissemination of leukaemia.

    PubMed

    Wells, J E; Howlett, M; Halse, H M; Heng, J; Ford, J; Cheung, L C; Samuels, A L; Crook, M; Charles, A K; Cole, C H; Kees, U R

    2016-09-01

    To improve treatment of acute lymphoblastic leukaemia (ALL), a better understanding of disease development is needed to tailor new therapies. Connective tissue growth factor (CTGF/CCN2) is highly expressed in leukaemia cells from the majority of paediatric patients with B-lineage ALL (pre-B ALL). CTGF is a matricellular protein and plays a role in aggressive cancers. Here we have genetically engineered leukaemia cells to modulate CTGF expression levels. Elevated CTGF levels accelerated disease dissemination and reduced survival in NOD/SCID mice. In vitro studies showed that CTGF protein induces stromal cell proliferation, promotes adhesion of leukaemia cells to stromal cells and leads to overexpression of genes associated with cell cycle and synthesis of extracellular matrix (ECM). Corresponding data from our leukaemia xenograft models demonstrated that CTGF leads to increased proliferation of non-leukaemia cells and deposition of ECM in the bone marrow. We document for the first time a functional role of CTGF in altering disease progression in a lymphoid malignancy. The findings provide support for targeting the bone marrow microenvironment in aggressive forms of leukaemia.

  19. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  20. Increased connective tissue growth factor associated with cardiac fibrosis in the mdx mouse model of dystrophic cardiomyopathy.

    PubMed

    Au, Carol G; Butler, Tanya L; Sherwood, Megan C; Egan, Jonathan R; North, Kathryn N; Winlaw, David S

    2011-02-01

    Cardiomyopathy contributes to morbidity and mortality in Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disorder. A major feature of the hearts of DMD patients and the mdx mouse model of the disease is cardiac fibrosis. Connective tissue growth factor (CTGF) is involved in the fibrotic process in many organs. This study utilized the mdx mouse model to assess the role of CTGF and other extracellular matrix components during the development of fibrosis in the dystrophic heart. Left ventricular function of mdx and control mice at 6, 29 and 43 weeks was measured by echocardiography. Young (6 weeks old) mdx hearts had normal function and histology. At 29 weeks of age, mdx mice developed cardiac fibrosis and increased collagen expression. The onset of fibrosis was associated with increased CTGF transcript and protein expression. Increased intensity of CTGF immunostaining was localized to fibrotic areas in mdx hearts. The upregulation of CTGF was also concurrent with increased expression of tissue inhibitor of matrix metalloproteinases (TIMP-1). These changes persisted in 43 week old mdx hearts and were combined with impaired cardiac function and increased gene expression of transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMP-2, MMP-9). In summary, an association was observed between cardiac fibrosis and increased CTGF expression in the mdx mouse heart. CTGF may be a key mediator of early and persistent fibrosis in dystrophic cardiomyopathy.

  1. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells.

    PubMed

    Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas; Rahman, Masmudur M; Song, Wen-Yuan; Scott, Edward W; Petersen, Bryon E; Schultz, Gregory S

    2015-11-26

    To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls (P < 0.01). Cells

  2. miR‑132 in atrial fibrillation directly targets connective tissue growth factor.

    PubMed

    Qiao, Gang; Xia, Dongsheng; Cheng, Zhaoyun; Zhang, Guobao

    2017-10-01

    Atrial fibrillation (AF) is the most frequently occurring, persistent cardiac arrhythmia, and the hallmark of AF‑dependent structural remodeling is atrial fibrosis. Connective tissue growth factor (CTGF) is important in the process of fibrosis. The association between miRNA and CTGF in AF‑dependent fibrosis remains to be elucidated. The present study aimed to determine if microRNA (miR)‑132 was able to regulate CTGF with an anti‑fibrotic effect in AF. A total of ten dogs or patients were assigned to control (n=4) and AF groups (n=6). The left atrium of dogs or right atrial appendage of patients was observed. Following this, cardiac fibroblasts of adult rats were treated with or without angiotensin II (Ang II). Furthermore, cardiac fibroblasts were transfected with miR‑132 mimics, inhibitor or negative control. The expression of miR‑132 and CTGF were analyzed by reverse transcription‑quantitative polymerase chain reaction or western blotting. These analyses demonstrated that miR‑132 expression was decreased and CTGF increased in the human and canine models with AF. The expression of miR‑132 and CTGF protein levels were upregulated in Ang II stimulated cardiac fibroblasts of adult rats. Furthermore, when miR‑132 was introduced into cardiac fibroblasts, the expression of miR‑132 increased significantly whereas the expression of CTGF decreased. Inverse results were observed when cardiac fibroblasts were transfected with miR‑132 inhibitor. The luciferase reporter assay was then performed to confirm that miR‑132 may suppress CTGF expression by binding to its 3'‑untranslated region. In conclusion, miR‑132 may target CTGF in regulating fibrosis in Ang II‑treated cardiac fibroblasts. These findings may aid in providing potential therapeutic targets in the treatment of AF.

  3. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    PubMed

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  4. Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis.

    PubMed

    Gerritsen, K G F; Bovenschen, N; Nguyen, T Q; Sprengers, D; Koeners, M P; van Koppen, A N; Joles, J A; Goldschmeding, R; Kok, R J

    2016-12-01

    CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, full length CCN-2 is primarily eliminated by the liver via a fast RAP-sensitive, probably LRP1-dependent

  5. Connective Tissue Growth Factor Regulates Cardiac Function and Tissue Remodeling in a Mouse Model of Dilated Cardiomyopathy

    PubMed Central

    Koshman, Yevgeniya E.; Sternlicht, Mark D.; Kim, Taehoon; O'Hara, Christopher P.; Koczor, Christopher A.; Lewis, William; Seeley, Todd W.; Lipson, Kenneth E.; Samarel, Allen M.

    2015-01-01

    Cardiac structural changes associated with dilated cardiomyopathy (DCM) include cardiomyocyte hypertrophy and myocardial fibrosis. Connective Tissue Growth Factor (CTGF) has been associated with tissue remodeling and is highly expressed in failing hearts. Our aim was to test if inhibition of CTGF would alter the course of cardiac remodeling and preserve cardiac function in the protein kinase Cε (PKCε) mouse model of DCM. Transgenic mice expressing constitutively active PKCε in cardiomyocytes develop cardiac dysfunction that was evident by 3 months of age, and that progressed to cardiac fibrosis, heart failure, and increased mortality. Beginning at 3 months of age, PKCε mice were treated with a neutralizing monoclonal antibody to CTGF (FG-3149) for an additional 3 months. CTGF inhibition significantly improved left ventricular (LV) systolic and diastolic function in PKCε mice, and slowed the progression of LV dilatation. Using gene arrays and quantitative PCR, the expression of many genes associated with tissue remodeling were elevated in PKCε mice, but significantly decreased by CTGF inhibition. However total collagen deposition was not attenuated. The observation of significantly improved LV function by CTGF inhibition in PKCε mice suggests that CTGF inhibition may benefit patients with DCM. Additional studies to explore this potential are warranted. PMID:26549358

  6. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    PubMed

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC.

  7. Connective Tissue Growth Factor (CTGF) as a Regulator of Lactogenic Differentiation

    DTIC Science & Technology

    2009-06-09

    HEALTH Ph.D. Degrees Interdisciplinary -Emerging Infectious Diseases ~Molecular & Cell Biology -Neuroscience Departmental -Clinical Psychology...No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing ...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information

  8. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    PubMed

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  9. The specificity of expertise: for whom is the clave pattern the "key" to salsa music?

    PubMed

    Getz, L M; Barton, S; Kubovy, M

    2014-10-01

    Each Latin salsa music style is associated with a characteristic clave pattern that constitutes an essential structure for performers. In this article we asked what types of expertise are needed to detect the correct salsa-clave pairing. Using two clave patterns (the 3-2 and 2-3 son clave) and three manipulated alternatives, we asked listeners to choose the correct clave pattern for a variety of bomba, calypso, mambo and merengue excerpts. The results of Studies 1 and 2 show that listeners unfamiliar with salsa were unable to detect the correct salsa-clave pairing. Listeners who had some music training or were familiar with salsa detected the need for syncopation but not the specific pairing. Only musicians well-acquainted with salsa correctly detected the salsa-clave pairing. Studies 3 and 4 showed that incorrect choices were not due to an inability to distinguish between the alternatives: both adults and five-year-olds could easily tell apart the various patterns we used. We conclude that the distinction between the 2-3 and 3-2 claves is not inherent in the music itself, but rather is a convention to be learned through exposure and training. We discuss the results using an analogy to language learning.

  10. Knockdown of connective tissue growth factor by plasmid-based short hairpin RNA prevented pulmonary vascular remodeling in cigarette smoke-exposed rats.

    PubMed

    Wang, Ran; Xu, Yong-Jian; Liu, Xian-Sheng; Zeng, Da-Xiong; Xiang, Min

    2011-04-01

    Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by resulting in pulmonary vascular remodeling that involves pulmonary artery smooth muscle cell proliferation. Connective tissue growth factor (CTGF) is a cysteine-rich peptide implicated in several biological processes such as cell proliferation, survival, and migration. This study investigated the potential role of CTGF in pulmonary vascular remodeling. We constructed a plasmid-based short hairpin RNA (shRNA) to knock down the expression of CTGF in primary cultured rat pulmonary artery smooth muscle cells (rPASMCs) and in rat lung vessels. Rat PASMCs were challenged with cigarette smoke extract (CSE). Rats were exposed to cigarette smoke for 3 months in the absence or in the presence of plasmid-based short hairpin RNA against CTGF which was administrated by tail vein injection. CTGFshRNA significantly prevented CTGF and cyclin D1 expression, arrested cell cycle at G0/G1 phase and suppressed cell proliferation in rPASMCs exposed to CSE. CTGFshRNA administration ameliorated pulmonary vascular remodeling, inhibited cigarette smoke-induced CTGF elevation and reversed the cyclin D1 increase in pulmonary vessels in rats. Collectively, our data demonstrated that plasmid-based shRNA against CTGF attenuated pulmonary vascular remodeling in cigarette smoke-exposed rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The Association Between Aqueous Connective Tissue Growth Factor and the Severity of Age-related Cataracts as Graded by the Lens Opacities Classification System III.

    PubMed

    Hwang, Hyung Bin; Yim, Hye Bin; Cho, Yang Kyung; Choi, Jin A

    2016-01-01

    To evaluate the relationship between aqueous humor concentrations of connective tissue growth factor (CTGF) and the severity of age-related cataracts. We conducted a prospective clinical study on 43 eyes of 43 patients with senile cataracts scheduled to undergo routine phacoemulsification surgery. Before surgery, all patients were graded for cataract severity using the Lens Opacities Classification System III in terms of four features: nuclear opalescence (NO), nuclear color (NC), cortical cataracts (C), and posterior sub-capsular cataracts (P). During surgery, aqueous humor samples were obtained from all patients, and sandwich enzyme-linked immunosorbent assays (ELISAs) were used to determine CTGF concentrations. To assess any relationship between cataract severity and CTGF levels of the aqueous humor, various correlation analyses and multiple linear regression were used. We found a positive correlation between the overall cataract grade and aqueous CTGF level (p < 0.05). In addition, four features of the cataract grade (nuclear opalescence, nuclear color, cortical cataract and posterior sub-capsular cataract) were positively correlated with the aqueous CTGF concentration (p < 0.05). The final regression model identified overall cataract grade as an independent predictor of increased CTGF levels in the aqueous humor (p < 0.05). CTGF tends to increase in the aqueous humor as the severity of age-related cataracts increases. Therefore, this cytokine may play an important role in the pathogenesis of age-related cataracts. Additional studies are required for clarification of this finding.

  12. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    PubMed

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  13. Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion

    PubMed Central

    Edwards, Lincoln A.; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A.; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T.; Zhang, Wei

    2011-01-01

    Background Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Methods Highly infiltrative patient-derived glioma tumor–initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Results Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1–TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF200 ng/mL: 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF200 ng/mL + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most

  14. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  15. Comparison of TGF-β, PDGF, and CTGF in hepatic fibrosis models using DMN, CCl4, and TAA.

    PubMed

    Park, Hye-Jung; Kim, Hyeong-Geug; Wang, Jing-Hua; Choi, Min-Kyung; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue

    2016-01-01

    Three chemotoxins including dimethylnitrosamine (DMN), carbon tetrachloride (CCl4), and thioacetamide (TAA) are commonly used in hepatofibrotic models. We aimed to draw characteristics of histopathology and pro-fibrogenic cytokines including TGF-β, PDGF and CTGF among three models. Rats were divided into six groups and intra-peritoneally injected with DMN (10 mg/kg, for three weeks, three consecutive days weekly), CCl4 (1.6 g/kg, for 10 weeks, twice weekly), TAA (200 mg/kg, for 12 weeks, twice weekly) or their corresponded treatment for each control group. The liver weights were decreased in DMN model, but not other models. Ascites were occurred as 3-, 2-, and 7-rats in DMN, CCl4, and TAA model, respectively. The lipid peroxidation was highest in CCl4 model, serum levels of liver enzymes were increased as similar severity. The hepatofibrotic alterations were remarkable in DMN and TAA model, but not CCl4 as evidenced by the Masson trichrome staining and hydroxyproline. The immunohistochemistry for α-SAM showed that the DMN model was most severely enhanced than other models. On the other hand, hepatic tissue levels of pro-fibrogenic cytokines including TGF-β, PDGF, and CTGF were generally increased in three models, but totally different among models or measurement resources. Especially, serum levels of three cytokines were remarkably increased by CCl4 injection and CTGF levels in both hepatic tissue and serum were highest in CCl4 group. Our results firstly demonstrated comparative study for features of morphological finding and pro-fibrogenic cytokines in serum and hepatic protein levels among three models. Above results would be a helpful reference for hepatofibrotic studies.

  16. Vemurafenib and trametinib reduce expression of CTGF and IL-8 in (V600E)BRAF melanoma cells.

    PubMed

    Hartman, Mariusz L; Rozanski, Michal; Osrodek, Marta; Zalesna, Izabela; Czyz, Malgorzata

    2017-02-01

    Clinical evidence has revealed that while RAS/RAF/MEK/ERK pathway is a crucial component of melanomagenesis, other signaling pathways can also contribute to the malignant growth and development of resistance to targeted therapies. We explored the response of (V600E)BRAF melanoma cells derived from surgical specimens and grown in stem cell medium to vemurafenib and trametinib, drugs targeting the activity of (V600E)BRAF and MEK1/2, respectively. Cell growth and apoptosis were monitored by real-time imaging system, immunophenotype and cell cycle by flow cytometry, gene expression by quantitative real-time PCR, immunoblotting and enzyme-linked immunosorbent assay. The (V600E)BRAF melanoma cell populations were diverse. Differences in morphology, pigmentation, cell cycle profiles, and immunophenotype were observed. At the molecular level, melanoma cells differed in the phosphorylation of ERK1/2, NF-κB, and β-catenin, and expression of several relevant genes, including MITF-M, DKK1, CCND1, BRAF, CXCL8, and CTGF. Despite having different characteristics, melanoma cells responded similarly to vemurafenib and trametinib. Both drugs reduced ERK1/2 phosphorylation and percentages of cells expressing Ki-67 at high level, inhibited expression of CCND1 and induced cell cycle arrest in the Go/G1 phase. These expected cytostatic effects were accompanied by increased CD271 expression, a marker of stem-like cells. NF-κB activity was reduced by both drugs, however, not completely abolished, whereas the level of active β-catenin was increased by drugs in three out of six cell populations. Interestingly, expression of IL-8 and CTGF was significantly reduced by treatment with vemurafenib and trametinib. Simultaneous inhibition of NF-κB activity and induction of ERK1/2 phosphorylation revealed that CTGF expression depends on ERK1/2 activity but not on NF-κB activity. Both, the positive effects of treatment with vemurafenib and trametinib such as the newly identified CTGF

  17. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1

    PubMed Central

    2014-01-01

    Background Multicellular tumor spheroids (MCTS) formed scaffold-free under microgravity are of high interest for research and medicine. Their formation mechanism can be studied in space in real microgravity or on Earth using ground-based facilities (GBF), which simulate microgravity. On Earth, these experiments are more cost-efficient and easily performable. However, each GBF might exert device-specific and altered superimposingly gravity-dependent effects on the cells. Results FTC-133 human thyroid cancer cells were cultivated on a 2D clinostat (CN) and a random positioning machine (RPM) and compared with corresponding 1 g control cells. Harvested cell samples were investigated by microscopy, quantitative realtime-PCR and Multi-Analyte Profiling. Spheroid formation and growth occurred during 72 h of cultivation on both devices. Cytokine secretion and gene activation patterns frequently altered in different ways, when the cells were cultured either on the RPM or the CN. A decreased expression of CAV1 and CTGF in MCTS compared to adherent cells was observed after cultivation on both machines. Conclusion The development of MCTS proceeds similarly on the RPM and the CN resembling the situation observed under real microgravity conditions, while no MCTS formation was observed at 1 g under identical experimental conditions. Simultaneously, changes in the regulation of CTGF and CAV1 appeared in a comparable manner on both machines. A relationship between these molecules and MCTS formation is discussed. PMID:24885050

  18. Transcriptional co-activator TAZ sustains proliferation and tumorigenicity of neuroblastoma by targeting CTGF and PDGF-β.

    PubMed

    Wang, Mei; Liu, Yang; Zou, Jiahua; Yang, Rui; Xuan, Fan; Wang, Yi; Gao, Ning; Cui, Hongjuan

    2015-04-20

    Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial event in the pathogenesis of neuroblastoma is to promote proliferation of neuroblasts, which is closely related to poor survival. However, mechanisms for regulation of cell proliferation and tumorigenicity in neuroblastoma are not well understood. Here, we report that overexpression of TAZ in neuroblastoma BE(2)-C cells causes increases in cell proliferation, self renewal and colony formation, which was restored back to its original levels by knockdown of TAZ in TAZ-overexpression cells. Inhibition of endogenous TAZ attenuated cell proliferation, colony formation and tumor development in neuroblastoma SK-N-AS cell, which could be rescued by re-introduction of TAZ into TAZ-knockdown cells. In addition, we found that overexpressing TAZ-mediated induction of CTGF and PDGF-β expression, cell proliferation and colony formation were inhibited by knocking down CTGF and PDGF-β with siRNA in TAZ-overexpressing cell. Overall, our findings suggested that TAZ plays an essential role in regulating cell proliferation and tumorigenesis in neuroblastoma cells. Thus, TAZ seems to be a novel and promising target for the treatment of neuroblastoma.

  19. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    PubMed Central

    Wang, Ying-Na; Qin, Li; Li, Jing-Ming; Chen, Li; Pei, Cheng

    2015-01-01

    AIM To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF). METHODS HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis. RESULTS HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01). CONCLUSION Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro. PMID:26558194

  20. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  1. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease.

    PubMed

    Riser, Bruce L; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R; Rambow, Jo Ann; Riser, Melisa L; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C

    2009-05-01

    Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-beta treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-beta treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-beta to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments.

  2. Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-β1-connective tissue growth factor signalling cascade.

    PubMed

    Huang, Jiqian; Matavelli, Luis C; Siragy, Helmy M

    2011-04-01

    1. Transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) are expressed in renal glomeruli, and contribute to the development of diabetic nephropathy. Recently, we showed that (pro)renin receptor (PRR) is upregulated in the kidneys of the streptozocin (STZ)-induced diabetes rat model. We hypothesized that in the presence of hyperglycaemia, increased renal PRR expression contributes to enhanced TGF-β1-CTGF signalling activity, leading to the development of diabetic kidney disease. 2. In vivo and in vitro studies were carried out in Sprague-Dawley rats and rat mesangial cells (RMC). PRR blockade was achieved in vivo by treating STZ induced diabetes rats with the handle region peptide (HRP) of prorenin and in vitro by HRP or PRR siRNA in RMC. Angiotensin AT1 receptor blockade was achieved by valsartan treatment. 3. Results showed that expression of PRR, TGF-β1 and CTGF were upregulated in diabetic kidneys and RMC exposed to high glucose. Glucose exposure also induced PRR phosphorylation, a process that was inhibited by HRP, valsartan or PRR siRNA. HRP and valsartan significantly attenuated renal TGF-β1 and CTGF expression in diabetic animals and high glucose treated RMC. Similar results were observed in high glucose exposed RMC in response to PRR siRNA. TGF-β receptor blockade decreased CTGF expression in RMC. Combined administration of valsartan and PRR siRNA showed further reduction of TGF-β1 and CTGF expression in RMC. 4. In conclusion, PRR contributes to kidney disease in diabetes through an enhanced TGF-β1-CTGF signalling cascade.

  3. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice.

    PubMed

    Inoue, Tsutomu; Okada, Hirokazu; Kobayashi, Tatsuya; Watanabe, Yusuke; Kanno, Yoshihiko; Kopp, Jeffrey B; Nishida, Takashi; Takigawa, Masaharu; Ueno, Munehisa; Nakamura, Toshikazu; Suzuki, Hiromichi

    2003-02-01

    We investigated the mechanism of the anti-fibrotic effects of hepatocyte growth factor (HGF) in the kidney, with respect to its effect on connective tissue growth factor (CTGF), a down-stream, profibrotic mediator of transforming growth factor-beta1 (TGF-beta1). In wild-type (WT) mice with 5/6 nephrectomy (Nx), HGF and TGF-beta1 mRNAs increased transiently in the remnant kidney by week 1 after the Nx, returned to baseline levels, and increased again at weeks 4 to 12. In contrast, CTGF and alpha1(I) procollagen (COLI) mRNAs increased in parallel with HGF and TGF-beta1 during the early stage, but did not re-increase during the late stage. In the case of TGF-beta1 transgenic (TG) mice with 5/6 Nx, excess TGF-beta1 derived from the transgene enhanced CTGF expression significantly in the remnant kidney, accordingly accelerating renal fibrogenesis. Administration of dHGF (5.0 mg/kg/day) to TG mice with 5/6 Nx for 4 weeks from weeks 2 to 6 suppressed CTGF expression in the remnant kidney, attenuating renal fibrosis and improving the survival rate. In an experiment in vitro, renal tubulointerstitial fibroblasts (TFB) were co-cultured with proximal tubular epithelial cells (PTEC). Pretreatment with HGF reduced significantly CTGF induction in PTEC by TGF-beta1, consequently suppressing COLI synthesis in TFB. In conclusion, HGF can block, at least partially, renal fibrogenesis promoted by TGF-beta1 in the remnant kidney, via attenuation of CTGF induction.

  4. Dynamic Vibration Cooperates with Connective Tissue Growth Factor to Modulate Stem Cell Behaviors

    PubMed Central

    Tong, Zhixiang; Zerdoum, Aidan B.; Duncan, Randall L.

    2014-01-01

    Vocal fold disorders affect 3–9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices. PMID:24456068

  5. Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury.

    PubMed

    Fuchshofer, Rudolf; Ullmann, Sabrina; Zeilbeck, Ludwig F; Baumann, Matti; Junglas, Benjamin; Tamm, Ernst R

    2011-09-01

    Structural changes of podocytes and retraction of their foot processes are a critical factor in the pathogenesis of minimal change nephritis and glomerulosclerosis. Here we tested, if connective tissue growth factor (CTGF) is involved in podocyte injury during acute and chronic puromycin aminonucleoside nephrosis (PAN) as animal models of minimal change nephritis, and focal segmental glomerulosclerosis, respectively. Rats were treated once (acute PAN) or for 13 weeks (chronic PAN). In both experimental conditions, CTGF and its mRNA were found to be highly upregulated in podocytes. The upregulation correlated with onset and duration of proteinuria in acute PAN, and glomerulosclerosis and high expression of glomerular fibronectin, and collagens I, III, and IV in chronic PAN. In vitro, treatment of podocytes with recombinant CTGF increased amount and density of actin stress fibers, the expression of actin-associated molecules such as podocalyxin, synaptopodin, ezrin, and actinin-4, and activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Moreover, we observed increased podocyte expression of mRNA for transforming growth factor (TGF)-β2, TGF-β receptor II, fibronectin, and collagens I, III, and IV. Treatment of cultured podocytes with puromycin aminonucleoside resulted in loss of actin stress fibers and cell death, effects that were partially prevented when CTGF was added to the culture medium. Depletion of CTGF mRNA in cultured podocytes by RNA interference reduced both the number of actin stress fibers and the expression of actin-associated molecules. We propose that the expression of CTGF is acutely upregulated in podocytes as part of a cellular attempt to repair structural changes of the actin cytoskeleton. When the damaging effects on podocyte structure and function persist chronically, continuous CTGF expression in podocytes is a critical factor that promotes progressive accumulation of glomerular extracellular matrix and

  6. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro.

    PubMed

    Istvánffy, Rouzanna; Vilne, Baiba; Schreck, Christina; Ruf, Franziska; Pagel, Charlotta; Grziwok, Sandra; Henkel, Lynette; Prazeres da Costa, Olivia; Berndt, Johannes; Stümpflen, Volker; Götze, Katharina S; Schiemann, Matthias; Peschel, Christian; Mewes, Hans-Werner; Oostendorp, Robert A J

    2015-11-10

    Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage⁻ SCA-1⁺ KIT⁺ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34⁻ CD48⁻ CD150⁺ LSK (CD34⁻ SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34⁻ SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27(Kip1) expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Connective tissue growth factor is expressed in malignant cells of Hodgkin lymphoma but not in other mature B-cell lymphomas.

    PubMed

    Birgersdotter, Anna; Baumforth, Karl R N; Wei, Wenbin; Murray, Paul G; Sjöberg, Jan; Björkholm, Magnus; Porwit, Anna; Ernberg, Ingemar

    2010-02-01

    Connective tissue growth factor (CTGF) has a major role in development of fibrosis and in the wound-healing process. Microarray analysis of 44 classical Hodgkin lymphoma (cHL) samples showed higher CTGF messenger RNA expression in the nodular sclerosis (NS) than in the mixed cellularity (MC) subtype. When analyzed by immunohistochemical analysis, Hodgkin-Reed-Sternberg (H-RS) cells and macrophages in 23 cHLs and "popcorn" cells in 2 nodular lymphocyte predominant Hodgkin lymphomas showed expression of CTGF protein correlating with the extent of fibrosis. In NS, CTGF was also expressed in fibroblasts and occasional lymphocytes. Malignant cells in 32 samples of various non-Hodgkin lymphomas were negative for CTGF. A staining pattern of stromal cells similar to that of NS cHL was seen in anaplastic large cell lymphoma. Macrophages stained positively in Burkitt lymphomas and in some mantle cell lymphomas. The high occurrence of fibrosis in cHL may be related to CTGF expression by malignant H-RS cells.

  8. Fell-Muir lecture: Connective tissue growth factor (CCN2) -- a pernicious and pleiotropic player in the development of kidney fibrosis.

    PubMed

    Mason, Roger M

    2013-02-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  9. Lentiviral Delivery of Small Hairpin RNA Targeting Connective Tissue Growth Factor Blocks Profibrotic Signaling in Tenon's Capsule Fibroblasts.

    PubMed

    Lei, Dawei; Dong, Changgui; Wu, William Ka Kei; Dong, Aimeng; Li, Tingting; Chan, Matthew T V; Zhou, Xinrong; Yuan, Huiping

    2016-10-01

    Trabeculectomy is a surgical procedure for lowering intraocular pressure in glaucoma patients, in which excessive scarring leading to failure of the filtering bleb adversely affects the surgical outcome. Heightened Tenon's capsule fibroblast (TCF) proliferation and extracellular matrix (ECM) deposition are implicated in this process but endogenous factors that regulate TCF functions remain largely elusive. This study sought to elucidate the role of connective tissue growth factor (CTGF) in the regulation of TCF phenotypes and signaling. Expression of CTGF in scarring and nonscarring Tenon's capsules was measured by real-time PCR and immunofluorescence. Knockdown of CTGC was achieved by lentivirus delivery of small-hairpin RNA. Cell proliferation was measured by CCK8, cell cycle progression, and apoptosis by flow cytometry, adhesion, migration, and invasion of TCF by functional assays in vitro. Proteins and cytokines related to fibrosis were measured by Western blot and ELISA, respectively. Expression of CTGF was significantly upregulated in scarring Tenon's capsules and their isolated fibroblasts when compared with the nonfibrotic counterparts. Functionally, targeting CTGF with lentivirus-delivered small-hairpin RNA inhibited the proliferation, adhesion, migration, and invasion of TCFs, accompanied by downregulation of p38 and nuclear factor-κB as well as matrix metalloproteinase-2, cyclin D1, and collagen I. In addition, lentiviral targeting of CTGF reduced the release of fibrosis-related cytokines from TCFs and inhibited TCF-conditioned, medium-induced macrophage chemotaxis. Our study supports a crucial role of CTGF in the regulation of TCF proliferation and ECM deposition. Targeting CTGF using lentiviral vector may be a promising approach for preventing excessive scarring after trabeculectomy.

  10. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion.

    PubMed

    Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon

    2009-08-15

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.

  11. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    PubMed Central

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  12. Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury.

    PubMed

    Ding, Wei; Yang, Lei; Zhang, Minmin; Gu, Yong

    2012-04-20

    Recent studies suggested that nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of renal injury. This study investigated whether NF-κB inhibition attenuates progressive renal damage in aldosterone/salt-induced renal injury and its mechanisms. Adult male rats were uninephrectomized and treated with one of the following for 4 weeks: vehicle (0.5% ethanol, subcutaneously); vehicle/1% NaCl (1% NaCl in drinking solution); aldosterone/1% NaCl (1% NaCl in drinking solution and aldosterone, 0.75 μg/h, subcutaneously); or aldosterone/1%NaCl+pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB (100 mg/kg/day, by gavage). The activity of NF-κB was measured by EMSA and immunohistochemistry, CTGF and ICAM-1 were measured by Western blot and real-time PCR, and TGF-β and CTGF were measured by immunohistochemistry. Rats that received aldosterone/1% NaCl exhibited hypertension and severe renal injury. Renal cortical mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, protein expression of CTGF and ICAM-1, and NF-κB-DNA binding activity were significantly upregulated in rats that received aldosterone/1% NaCl. Treatment with PDTC significantly decreased the percentage of cells positive for CTGF and TGF-β; mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, and protein levels of CTGF and ICAM-1 were also inhibited by PDTC. These data suggest that the NF-κB signal pathway plays a role in the progression of aldosterone/salt-induced renal injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Matrix Metalloproteinase-2-deficient Fibroblasts Exhibit an Alteration in the Fibrotic Response to Connective Tissue Growth Factor/CCN2 because of an Increase in the Levels of Endogenous Fibronectin*

    PubMed Central

    Droppelmann, Cristian A.; Gutiérrez, Jaime; Vial, Cecilia; Brandan, Enrique

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin αV subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin αV subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF. PMID:19276073

  14. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways

    PubMed Central

    Cheng, Yi; Lin, Chien-huang; Chen, Jing-Yun; Li, Chien-Hua; Liu, Yu-Tin; Chen, Bing-Chang

    2016-01-01

    Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and

  15. "La CLAve" to Increase Psychosis Literacy of Spanish-Speaking Community Residents and Family Caregivers

    ERIC Educational Resources Information Center

    Lopez, Steven R.; Lara, Ma. Del Carmen; Kopelowicz, Alex; Solano, Susana; Foncerrada, Hector; Aguilera, Adrian

    2009-01-01

    The authors developed and tested a 35-min psychoeducational program with the goal of increasing Spanish-speaking persons' literacy of psychosis. The program uses popular cultural icons derived from music, art, and videos, as well as a mnemonic device--La CLAve (The Clue)--to increase (a) knowledge of psychosis, (b) efficacy beliefs that one can…

  16. "La CLAve" to Increase Psychosis Literacy of Spanish-Speaking Community Residents and Family Caregivers

    ERIC Educational Resources Information Center

    Lopez, Steven R.; Lara, Ma. Del Carmen; Kopelowicz, Alex; Solano, Susana; Foncerrada, Hector; Aguilera, Adrian

    2009-01-01

    The authors developed and tested a 35-min psychoeducational program with the goal of increasing Spanish-speaking persons' literacy of psychosis. The program uses popular cultural icons derived from music, art, and videos, as well as a mnemonic device--La CLAve (The Clue)--to increase (a) knowledge of psychosis, (b) efficacy beliefs that one can…

  17. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.

  18. CXCL12 Induces Connective Tissue Growth Factor Expression in Human Lung Fibroblasts through the Rac1/ERK, JNK, and AP-1 Pathways

    PubMed Central

    Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  19. Hammerhead ribozyme targeting connective tissue growth factor mRNA blocks transforming growth factor-beta mediated cell proliferation.

    PubMed

    Blalock, Timothy D; Yuan, Rong; Lewin, Alfred S; Schultz, Gregory S

    2004-06-01

    Excessive scarring following trauma or surgery of cornea, conjunctiva or retina can greatly impair visual outcome. At present, no agents are clinically available that selectively reduce activity of genes that regulate fibrosis. Connective tissue growth factor (CTGF) has been linked to fibrosis in several tissues, including cornea and conjunctiva. In this study, hammerhead ribozymes targeting CTGF mRNA were synthesized, kinetic parameters were measured, and the effect on TGF-beta-mediated cell proliferation was measured in cultured human fibroblasts. The mRNA sequence of human CTGF was scanned for potential hammerhead ribozyme cleavage sites, and predicted secondary folding structures around the sites were calculated. Synthetic 12mer ribozymes and 33mer oligonucleotide mRNA targets corresponding to two sites were synthesized, and kinetic constants calculated from Hanes-Wolff plots of in vitro cleavage reactions. The ribozyme with higher percentage cleavage and kinetic rate was cloned into an expression plasmid (pTR-UF21) and stably transfected into cultured human fibroblasts. An inactive ribozyme plasmid served as a negative control. The effects of the ribozyme on expression of TGF-beta-induced CTGF mRNA and protein levels were measured using ELISA and real-time TaqMan quantitative RT-PCR. Finally, the effect of the CTGF ribozyme on TGF-beta-mediated proliferation of fibroblasts was measured using a non-radioactive cell proliferation microtiter assay. Of the eight potential hammerhead ribozyme cleavage sites in human CTGF mRNA, two sites (CHR 745, and CHR 859) were identified with optimal secondary folding. CHR 859 cleaved 94% of the target mRNA, compared to 46% cleavage for CHR 745 after 16 hr of reaction. CHR 859 had a K(m) of 1.56 microM and a K(cat) of 2.97 min(-1), while CHR 745 had a K(m) of 7.80 microM and a K(cat) of 5.7 min(-1). The turnover numbers (K(cat)/K(m)) of CHR 859 and CHR 745 were 1.9 x 10(6) M min(-1) and 7.4 x 10(5) M min(-1), respectively

  20. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  1. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  2. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis

    PubMed Central

    Charrier, Alyssa; Brigstock, David R.

    2010-01-01

    Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for three weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared to control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared to other treatment groups as well as increased frequency of α-smooth muscle actin and desmin-positive PSC which also demonstrated significantly enhanced CTGF protein production. Expression of mRNA for collagen α1(I), α-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP. PMID:20368699

  3. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients

    PubMed Central

    Stratton, Richard; Shiwen, Xu; Martini, Giorgia; Holmes, Alan; Leask, Andrew; Haberberger, Thomas; Martin, George R.; Black, Carol M.; Abraham, David

    2001-01-01

    Patients with scleroderma receiving Iloprost as a treatment for severe Raynaud’s phenomenon report a reduction in skin tightness, suggesting that this drug inhibits skin fibrosis. Connective tissue growth factor (CTGF), a recently described profibrotic cytokine, acts downstream and in concert with TGF-β to stimulate the fibrotic process and is involved in the fibrosis seen in scleroderma. Here we show that Iloprost, acting by elevation of cAMP, blocks the induction of CTGF and the increase in collagen synthesis in fibroblasts exposed to TGF-β. The potency of Iloprost with respect to suppression of CTGF far exceeds that of other prostanoid receptor agonists, suggesting that its effect is mediated by the prostacyclin receptor IP. By sampling dermal interstitial fluid using a suction blister device, we show that CTGF levels are greatly elevated in the dermis of scleroderma patients compared with healthy controls and that Iloprost infusion causes a marked decrease in dermal CTGF levels. These studies suggest that Iloprost could be reducing the level of a key profibrotic cytokine in scleroderma patients and that endogenous production of eicosanoids may limit the fibrotic response to TGF-β. PMID:11457877

  4. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  5. Assembly of the Prothrombinase Complex on the Surface of Human Foreskin Fibroblasts: Implications for Connective Tissue Growth Factor

    PubMed Central

    Rico, Mario C.; Rough, James J.; Manns, Joanne M.; Carpio-Cano, Fabiola Del; Safadi, Fayez F.; Kunapuli, Satya P.; Cadena, Raul A DeLa

    2011-01-01

    Activated factor X (FXa) and thrombin can up-regulate gene expression of connective tissue growth factor (CTGF/CCN2) on fibroblasts. Since tissue factor (TF) is expressed on these cells, we hypothesized that they may assemble the prothrombinase complex leading to CTGF/CCN2 upregulation. In addition, the effect of thrombospondin-1 (TSP1) on this reaction was evaluated. Human foreskin fibroblasts were incubated with purified factor VII (FVII), factor X (FX), factor V (FV), prothrombin and calcium in the presence and absence of TSP1. Generation of FXa and of thrombin were assessed using chromogenic substrates. SMAD pathway phosphorylation was detected via Western-blot analysis. Pre-incubation of fibroblasts with FVII led to its auto-activation by cell-surface expressed TF, which in turn in the presence of FX, FVa, prothrombin and calcium led to FXa (9.7 ± 0.8 nM) and thrombin (7.9 ± 0.04 U/mL × 10-3) generation. Addition of TSP1 significantly enhanced thrombin (23.3 ± 0.7 U/mL × 10-3) but not FXa (8.5 ± 0.6 nM) generation. FXa and thrombin generation leads to upregulation of CTGF/CCN2. TSP1 alone upregulated CTGF/CCN2, an effect mediated via activation of transforming growth factor beta (TGFβ) as showed by phosphorylation of the SMAD pathway an event blunted by using a TGFβ receptor I inhibitor (TGFβRI). FXa- and thrombin-induced upregulation of CTGF/CCN2 was not blocked by TGFβRI. In summary, assembly of the prothrombinase complex occurs on fibroblast’s surface leading to serine proteases generation, an event enhanced by TSP1 and associated with CTGF/CCN2 upregulation. These mechanisms may play an important role in human diseases associated with fibrosis. PMID:21889790

  6. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes.

    PubMed

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    2014-02-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF⁺/⁻) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF⁺/⁻ mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF⁺/⁻ mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.

  7. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  8. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    PubMed

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p < 0.01), CTGF (p < 0.01), and Col3 (p < 0.01) were increased in SSCT of CTS patients compared with control tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients.

  9. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissue in a rabbit model of carpal tunnel syndrome.

    PubMed

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Vanhees, Matthias; Moriya, Tamami; Reisdorf, Ramona; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Carpal tunnel syndrome (CTS) is an idiopathic disease that results from increased fibrosis of the subsynovial connective tissue (SSCT). A recent study found overexpression of both transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) in the SSCT of CTS patients. This study investigated TGF-β and CTGF expression in a rabbit model of CTS, in which SSCT fibrosis is induced by a surgical injury. Levels of TGF-β1 and CTGF at 6, 12, 24 weeks after injury were determined by immunohistochemistry A significant increase in TGF-β1 and a concomitant significant increase in CTGF were found at 6 weeks, in addition to higher cell density compared to normal (all p<0.05), Interestingly, CTGF expression was reduced at 12 and 24 weeks, suggesting that an initial insult results in a time limited response. We conclude that this rabbit model mimics the fibrosis found in human CTS, and may be useful to study pathogenetic mechanisms of CTS in vivo.

  10. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70.

    PubMed

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S

    2014-01-01

    In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses, which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be differentially expressed genes, which includes some of the highly differentially expressed genes like matrix metalloproteinases (MMP-1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/-11), PTHLH, SERPINE1, NELL2, S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11 and serine peptidase inhibitors (SPINK-5/7). XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis. Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70.

  11. Potential Therapeutic Targets for Oral Cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70

    PubMed Central

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2014-01-01

    In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses, which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be differentially expressed genes, which includes some of the highly differentially expressed genes like matrix metalloproteinases (MMP-1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/-11), PTHLH, SERPINE1, NELL2, S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11 and serine peptidase inhibitors (SPINK-5/7). XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis. Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70. PMID:25029526

  12. [Role of connective tissue growth factor on pulmonary artery remodeling in rats exposed to smoke].

    PubMed

    Tian, Feng; Xu, Yong-Jian; Zhang, Zhen-Xiang; Fan, Xin-Lei; Hu, Jing

    2007-12-01

    To explore the role of connective tissue growth factor (CTGF) on pulmonary artery remodeling induced by smoke exposure in rats. Thirty-five male Wistar rats were randomly assigned into a control group (A group), a smoke exposure one month group (B group), a smoke exposure and high dose CTGF antisense oligonucleotide (ASON) one month group (C group), a smoke exposure and low dose CTGF ASON one month group (D group), a smoke exposure two month group (E group), a smoke exposure and high dose CTGF ASON two month group (F group), and a smoke exposure and low dose CTGF ASON two month group (G group). Pulmonary artery remodeling was observed by hematoxylin-eosin staining, and the CTGF mRNA expressions of pulmonary arteries were evaluated by RT-PCR. Immunohistochemistry methods were performed to determine CTGF protein expression in pulmonary artery smooth muscle. The difference between the groups was analyzed. (1) The pulmonary artery WA% of the seven groups were respectively (28.6 +/- 1.2)%, (42.5 +/- 2.3)%, (33.7 +/- 1.8)%, (42.1 +/- 2.4)%, (49.6 +/- 2.1)%, (34.3 +/- 1.9)% and (38.4 +/- 2.0)%. There was significant difference between B group and C group (q = 5.09, P < 0.01). Compared to E group, there were significant decreases in F group and G group (q = 8.15, 3.75, all P < 0.05). (2) The CTGF protein expressions (A value) of pulmonary artery smooth muscle were respectively 0.098 +/- 0.015, 0.159 +/- 0.023, 0.118 +/- 0.017, 0.153 +/- 0.022, 0.406 +/- 0.036, 0.109 +/- 0.012 and 0.146 +/- 0.024. There was significant difference between B group and C group (q = 3.26, P < 0.05). Compared to E group, there were significant decreases in F group and G group (q = 67.08, 18.09, all P < 0.01). (3) The CTGF mRNA expressions (A(CTGF)/A(beta-actin)) of pulmonary artery were respectively 0.051 +/- 0.010, 0.823 +/- 0.096, 0.216 +/- 0.056, 0.810 +/- 0.085, 2.452 +/- 0.267, 0.207 +/- 0.062 and 0.509 +/- 0.067. There was significant difference between B group and C group (q = 53.50, P

  13. VRP09 Reduction of Corneal Scarring Following Blast and Burn Injuries to Cornea Using siRNAs Targeting TGFb and CTGF

    DTIC Science & Technology

    2013-03-01

    aSMA ) synthesis. Second, we proposed to develop an advanced ex vivo organ culture system using viable explants of rabbit corneas, and assess the...effect of the most effective triple siRNA combination for reduction of target genes, collagen and alpha smooth muscle actin ( aSMA ) in rabbit corneas...targeting three key genes (TGFb, TGFbRII, and CTGF) that synergistically reduces the level of mRNAs for type I collagen gene and aSMA by >95% without

  14. A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.

    PubMed

    Mott, G Adam; Costales, Jaime A; Burleigh, Barbara A

    2011-01-01

    The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the

  15. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis.

    PubMed

    Chung, Hyunjae; Ramachandran, Rithwik; Hollenberg, Morley D; Muruve, Daniel A

    2013-12-27

    Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.

  16. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway.

    PubMed

    Guo, Jingdong; Lin, Quan; Shao, Ying; Rong, Li; Zhang, Duo

    2017-04-01

    The hypertrophic scar is a medical difficulty of humans, which has caused great pain to patients. Here, we investigated the inhibitory effect of miR-29b on scar formation. The scalded model was established in mice and miR-29b mimics or a negative control was subcutaneously injected into the injury skin. Then various molecular biological experiments were performed to assess the effect of miR-29b on scar formation. According to our present study, first, the results demonstrated that miR-29b was down-regulated in thermal injury tissue and miR-29b treatment could promote wound healing, inhibit scar formation, and alleviate histopathological morphologic alteration in scald tissues. Additionally, miR-29b treatment suppressed collagen deposition and fibrotic gene expression in scar tissues. Finally, we found that miR-29b treatment inhibited the TGF-β1/Smad/CTGF signaling pathway. Taken together, our data suggest that miR-29b treatment has an inhibitory effect against scar formation via inhibition of the TGF-β1/Smad/CTGF signaling pathway and may provide a potential molecular basis for future treatments for hypertrophic scars.

  17. La CLAve to Increase Psychosis Literacy of Spanish-Speaking Community Residents and Family Caregivers

    PubMed Central

    López, Steven R.; Kopelowicz, Alex; Solano, Susana; del Carmen Lara, Ma.; Foncerrada, Hector; Aguilera, Adrian

    2014-01-01

    The authors developed and tested a 35-min psychoeducational program with the goal of increasing Spanish-speaking persons’ literacy of psychosis. The program uses popular cultural icons derived from music, art, and videos, as well as a mnemonic device—La CLAve (The Clue)—to increase (a) knowledge of psychosis, (b) efficacy beliefs that one can identify psychosis in others, (c) attributions to mental illness, and (d) professional help-seeking. Assessments were conducted before and after administering the program to both community residents (n = 57) and family caregivers of persons with schizophrenia (n = 38). For community residents, the authors observed increases across the 4 domains of symptom knowledge, efficacy beliefs, illness attributions, and recommended help-seeking. For caregivers, increases were observed in symptom knowledge and efficacy beliefs. La CLAve is a conceptually informed psychoeducational tool with a developing empirical base aimed at helping Spanish-speaking Latinos with serious mental illness obtain care in a timely manner. PMID:19634968

  18. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor

    PubMed Central

    Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M.; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A.; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors. PMID:23390502

  19. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings

    PubMed Central

    Kang, Hara; Park, Kye Won; Park, Woo Jin; Yang, Seung Yul; Yang, Dong Kwon

    2015-01-01

    Cucurbitacin I is a naturally occurring triterpenoid derived from Cucurbitaceae family plants that exhibits a number of potentially useful pharmacological and biological activities. However, the therapeutic impact of cucurbitacin I on the heart has not heretofore been reported. To evaluate the functional role of cucurbitacin I in an in vitro model of cardiac hypertrophy, phenylephrine (PE)-stimulated cardiomyocytes were treated with a sub-cytotoxic concentration of the compound, and the effects on cell size and mRNA expression levels of ANF and β-MHC were investigated. Consequently, PE-induced cell enlargement and upregulation of ANF and β-MHC were significantly suppressed by pretreatment of the cardiomyocytes with cucurbitacin I. Notably, cucurbitacin I also impaired connective tissue growth factor (CTGF) and MAPK signaling, pro-hypertrophic factors, as well as TGF-β/Smad signaling, the important contributing factors to fibrosis. The protective impact of cucurbitacin I was significantly blunted in CTGF-silenced or TGF-β1-silenced hypertrophic cardiomyocytes, indicating that the compound exerts its beneficial actions through CTGF. Taken together, these findings signify that cucurbitacin I protects the heart against cardiac hypertrophy via inhibition of CTGF/MAPK, and TGF- β/Smad-facilitated events. Accordingly, the present study provides new insights into the defensive capacity of cucurbitacin I against cardiac hypertrophy, and further suggesting cucurbitacin I’s utility as a novel therapeutic agent for the management of heart diseases. PMID:26296085

  20. Connective tissue growth factor is not necessary for haze formation in excimer laser wounded mouse corneas

    PubMed Central

    Feng, Xiaodi; Pi, Liya; Sriram, Sriniwas; Schultz, Gregory S.

    2017-01-01

    We sought to determine if connective tissue growth factor (CTGF) is necessary for the formation of corneal haze after corneal injury. Mice with post-natal, tamoxifen-induced, knockout of CTGF were subjected to excimer laser phototherapeutic keratectomy (PTK) and the corneas were allowed to heal. The extent of scaring was observed in non-induced mice, heterozygotes, and full homozygous knockout mice and quantified by macrophotography. The eyes from these mice were collected after euthanization for re-genotyping to control for possible Cre-mosaicism. Primary corneal fibroblasts from CTGF knockout corneas were established in a gel plug assay. The plug was removed, simulating an injury, and the rate of hole closure and the capacity for these cells to form light reflecting cells in response to CTGF and platelet-derived growth factor B (PDGF-B) were tested and compared to wild-type cells. We found that independent of genotype, each group of mice was still capable of forming light reflecting haze in the cornea after laser ablation (p = 0.40). Results from the gel plug closure rate in primary cell cultures of knockout cells were not statistically different from serum starved wild-type cells, independent of treatment. Compared to the serum starved wild-type cells, stimulation with PDGF-BB significantly increased the KO cell culture’s light reflection (p = 0.03). Most interestingly, both reflective cultures were positive for α-SMA, but the cellular morphology and levels of α-SMA were distinct and not in proportion to the light reflection seen. This new work demonstrates that corneas without CTGF can still form sub-epithelial haze, and that the light reflecting phenotype can be reproduced in culture. These data support the possibilities of growth factor redundancy and that multiple pro-haze pathways exist. PMID:28207886

  1. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  2. CLAVE: Revista Especializada de ASOVELE (Asociacion Venezolana para la Ensenanza de la Lengua), 1997-1998 (CLAVE: Specialized Magazine of ASOVELE [Venezuelan Association for Language Teaching], 1997-1998).

    ERIC Educational Resources Information Center

    Rondon, Adolfo, Ed.; Serron, Sergio, Ed.

    1998-01-01

    These two issues of the journal "CLAVE" contain these articles in Spanish with one article in English: "La ensenanza de la lingua materna" (Pablo Arnaez); "Saben resumir los alumnos universitarios de nuevo ingreso?" (Marisol Garcia); "El desempeno en la escritura de cartas argumentativas y cuentos en alumnos de octavo grado" (Yolanda Perez, Maria…

  3. Activation of PPAR-γ inhibits differentiation of rat osteoblasts by reducing expression of connective tissue growth factor.

    PubMed

    Yu, Wei-Wei; Xia, Qin; Wu, Yan; Bu, Qiao-Yun

    2014-10-01

    Long-term treatment with an agonist of peroxisome proliferator-activated receptor (PPAR)-γ is associated with bone fractures in the clinical practice. However, the mechanisms underlying the fractures are not fully understood. This study was aimed to examine the effect of rosiglitazone (an agonist of PPAR-γ) of different doses on the proliferation, differentiation, and transforming growth factor beta 1 (TGF-β1)-induced expression of connective tissue growth factor (CTGF) in primary rat osteoblasts in vitro. Osteoblasts were isolated from newly born SD rats and treated with different doses of rosiglitazone (0-20 μmol/L). The proliferation and differentiation of osteoblasts were measured by MTT assay and NPP assay, respectively. The expression of CTGF was determined by RT-PCR and Western blotting. The results showed that most isolated osteoblasts displayed strong alkaline phosphatase (ALP) activity and treatment with different doses of rosiglitazone did not affect their proliferation, but significantly inhibited the differentiation of osteoblasts in a dose-dependent manner. Moreover, treatment with different doses of rosiglitazone significantly reduced the TGF-β1-induced CTGF mRNA transcription and protein expression in a dose-dependent manner in rat osteoblasts. It was concluded that the activation of PPAR-γ may inhibit the differentiation of osteoblasts by reducing the TGF-β1-induced CTGF expression in vitro.

  4. Expression of leptin, leptin receptor, and connective tissue growth factor in degenerative disk lesions in the wrist.

    PubMed

    Unglaub, Frank; Wolf, Maya B; Kroeber, Markus W; Dragu, Adrian; Schwarz, Stephan; Mittlmeier, Thomas; Kloeters, Oliver; Horch, Raymund E

    2011-06-01

    The purpose of this study was to identify whether leptin and connective tissue growth factor (CTGF) occur in the degenerative fibrocartilage disk and whether cartilage cells express leptin receptors. The study included 23 patients diagnosed with degenerative articular disk tears of the triangular fibrocartilage (TFC) (Palmer type 2C). Patients were divided into 2 groups based on ulna length: 1 group consisted of patients with an ulna-positive variance (group A), and the other group included patients with ulna-negative or -neutral variance (group B). After arthroscopic debridement of the TFC, histologic sections of biopsy specimens were prepared. The biopsy specimens were immunohistochemically analyzed, and the quantity of leptin-, CTGF-, and leptin receptor-positive cells was assessed. Cells positive for leptin, leptin receptor, and CTGF were found. The number of cells positive for leptin was significantly increased in specimens of patients with an ulna-negative variance (group B). In contrast, no significant difference was found for leptin receptor and CTGF in biopsy specimens of patients with ulna-positive or ulna-negative/neutral variance. The inner, middle, and outer zones of the disk do not express significantly different quantities of marker-positive cells. Degenerative fibrocartilage disk tissue cells exhibit leptin receptors and are exposed to the markers leptin and CTGF, providing evidence of a local paracrine system and regenerative processes. Cells of disks from patients with an ulna-neutral/negative length express significantly higher numbers of leptin-positive cells. Level II, diagnostic study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts

    PubMed Central

    Tang, Chun-Mei; Zhang, Ming; Huang, Lei; Hu, Zhi-qin; Zhu, Jie-Ning; Xiao, Zhen; Zhang, Zhuo; Lin, Qiu-xiong; Zheng, Xi-Long; -Yang, Min; Wu, Shu-Lin; Cheng, Jian-Ding; Shan, Zhi-Xin

    2017-01-01

    Circular RNAs (circRNAs) participate in regulating gene expression in diverse biological and pathological processes. The present study aimed to investigate the mechanism underlying the modulation of circRNA_000203 on expressions of fibrosis-associated genes in cardiac fibroblasts. CircRNA_000203 was shown upregulated in the diabetic mouse myocardium and in Ang-II-induced mouse cardiac fibroblasts. Enforced-expression of circRNA_000203 could increase expressions of Col1a2, Col3a1 and α-SMA in mouse cardiac fibroblasts. RNA pull-down and RT-qPCR assay indicated that circRNA_000203 could specifically sponge miR-26b-5p. Dual luciferase reporter assay revealed that miR-26b-5p interacted with 3′UTRs of Col1a2 and CTGF, and circ_000203 could block the interactions of miR-26b-5p and 3′UTRs of Col1a2 and CTGF. Transfection of miR-26b-5p could post-transcriptionaly inhibit expressions of Col1a2 and CTGF, accompanied with the suppressions of Col3a1 and α-SMA in cardiac fibroblasts. Additionally, over-expression of circRNA_000203 could eliminate the anti-fibrosis effect of miR-26b-5p in cardiac fibroblasts. Together, our results reveal that suppressing the function of miR-26b-5p contributes to the pro-fibrosis effect of circRNA_000203 in cardiac fibroblasts. PMID:28079129

  6. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model.

    PubMed

    Lui, Pauline Po Yee; Wong, On Tik; Lee, Yuk Wa

    2016-01-01

    Treatment of tendon-derived stem cells (TDSCs) with connective tissue growth factor (CTGF) and ascorbic acid promoted their tenogenic differentiation. We investigated the effects of TDSCs pre-treated with CTGF and ascorbic acid on tendon repair in a patellar tendon window injury rat model. Green fluorescent protein-TDSCs (GFP-TDSCs) were pre-treated with or without CTGF and ascorbic acid for 2 weeks before transplantation. The patellar tendons of rats were injured and divided into three groups: fibrin glue-only group (control group), untreated and treated TDSC group. The rats were followed up until week 16. The treated TDSCs accelerated and enhanced the quality of tendon repair compared with untreated TDSCs up to week 8, which was better than that in the controls up to week 16 as shown by histology, ultrasound imaging and biomechanical test. The fibrils in the treated TDSC group showed better alignment and larger size compared with those in the control group at week 8 (P = 0.004). There was lower risk of ectopic mineralization after transplantation of treated or untreated TDSCs (all P ≤ 0.050). The transplanted cells proliferated and could be detected in the window wound up to weeks 2 to 4 and week 8 for the untreated and treated TDSC groups, respectively. The transplantation of TDSCs promoted tendon repair up to week 16, with CTGF and ascorbic acid pre-treatment showing the best results up to week 8. Pre-treatment of TDSCs with CTGF and ascorbic acid may be used to further enhance the rate and quality of tendon repair after injury. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  8. Therapeutic effect of intra-articular injection of ribbon-type decoy oligonucleotides for hypoxia inducible factor-1 on joint contracture in an immobilized knee animal model.

    PubMed

    Sotobayashi, Daisuke; Kawahata, Hirohisa; Anada, Natsuki; Ogihara, Toshio; Morishita, Ryuichi; Aoki, Motokuni

    2016-08-01

    Limited range of motion (ROM) as a result of joint contracture in treatment associated with joint immobilization or motor paralysis is a critical issue. However, its molecular mechanism has not been fully clarified and a therapeutic approach is not yet established. In the present study, we investigated its molecular mechanism, focusing on the role of a transcription factor, hypoxia inducible factor-1 (HIF-1), which regulates the expression of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF), and evaluated the possibility of molecular therapy to inhibit HIF-1 activation by ribbon-type decoy oligonucleotides (ODNs) for HIF-1 using immobilized knee animal models. In a mouse model, ROM of the immobilized knee significantly decreased in a time-dependent manner, accompanied by synovial hypertrophy. Immunohistochemical studies suggested that CTGF and VEGF are implicated in synovial hypertrophy with fibrosis. CTGF and VEGF were up-regulated at both the mRNA and protein levels at 1 and 2 weeks after immobilization, subsequent to up-regulation of HIF-1 mRNA and transcriptional activation of HIF-1. Of importance, intra-articular transfection of decoy ODNs for HIF-1 in a rat model successfully inhibited transcriptional activation of HIF-1, followed by suppression of expression of CTGF and VEGF, resulting in attenuation of restricted ROM, whereas transfection of scrambled decoy ODNs did not. The present study demonstrates the important role of HIF-1 in the initial progression of immobilization-induced joint contracture, and indicates the possibility of molecular treatment to prevent the progression of joint contracture prior to intervention with physical therapy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. [Mechanism of Smad 3 signaling pathway and connective tissue growth factor in the inhibition of form deprivation myopia by pirenzepine].

    PubMed

    Ji, Xueying; Zhang, Jinsong; Wang, Yanting; Sun, Hongliang; Jia, Peisheng

    2009-04-01

    To observe the inhibitive effect of pirenzepine on form deprivation myopia in guinea pigs and to explore the mechanism of Smad3 signaling pathway and connective tissue growth factor (CTGF) in the inhibition of myopia by pirenzepine. Forty 1-week-old guinea pigs of either sex were randomly divided into 4 groups: a control group (Group I), a form deprivation group (Group II), a pirenzepine ophthalmic solution group (Group III), and a sodium chloride ophthalmic solution group (Group IV). Translucent blinders were used in the right eyes of Group II, III and IV. The left eyes were not given any treatment as the normal control group. Covered eyes of Group III and IV were given 3% pirenzepine ophthalmic solution and 0.1% azone ophthalmic solution respectively twice every day. Six weeks later, refraction and axial length were measured at the end of the experiment, and immunohistochemistry and Western blot were used to analyze the expression levels of Smad3 and CTGF in the sclera of all 4 groups. There was no significant difference between Group III and I in relative refraction and changes of axial length (P>0.05). The difference of Group II and IV compared with Group I was statistically significant (P<0.05). The number of Smad3 and CTGF positive cells in the sclera between Group III and I was not significantly different (P>0.05), while the difference in Group II, IV and I was significant (P<0.05). Western blot showed that the expression levels of Smad3 and CTGF in Group II and IV were much lower than those in Group I (P<0.05), but not evident in Group III and I (P>0.05). Pirenzepine ophthalmic solution can inhibit the development of form deprivation myopia. Pirenzepine may affect Smad3 signaling pathway in the sclera by inhibiting the development of form deprivation myopia.

  10. l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor.

    PubMed

    Pérez-Vargas, J E; Zarco, N; Vergara, P; Shibayama, M; Segovia, J; Tsutsumi, V; Muriel, P

    2016-02-01

    Here we evaluated the ability of L-theanine in preventing experimental hepatic cirrhosis and investigated the roles of nuclear factor-κB (NF-κB) activation as well as transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) regulation. Experimental hepatic cirrhosis was established by the administration of carbon tetrachloride (CCl4) to rats (0.4 g/kg, intraperitoneally, three times per week, for 8 weeks), and at the same time, adding L-theanine (8.0 mg/kg) to the drinking water. Rats had ad libitum access to water and food throughout the treatment period. CCl4 treatment promoted NF-κB activation and increased the expression of both TGF-β and CTGF. CCl4 increased the serum activities of alanine aminotransferase and γ-glutamyl transpeptidase and the degree of lipid peroxidation, and it also induced a decrease in the glutathione and glutathione disulfide ratio. L-Theanine prevented increased expression of NF-κB and down-regulated the pro-inflammatory (interleukin (IL)-1β and IL-6) and profibrotic (TGF-β and CTGF) cytokines. Furthermore, the levels of messenger RNA encoding these proteins decreased in agreement with the expression levels. L-Theanine promoted the expression of the anti-inflammatory cytokine IL-10 and the fibrolytic enzyme metalloproteinase-13. Liver hydroxyproline contents and histopathological analysis demonstrated the anti-fibrotic effect of l-theanine. In conclusion, L-theanine prevents CCl4-induced experimental hepatic cirrhosis in rats by blocking the main pro-inflammatory and pro-fibrogenic signals.

  11. [Effects of rosiglitazone on the expression of connective tissue growth factor in the pulmonary arteries of rats suffering from fibrosis in lung].

    PubMed

    Cui, Mao-xiang; Chen, Xiao-ling; Chen, Chao; Hu, Xiao-jie; Jin, Hui

    2010-05-01

    To explore the effects of rosiglitazone (RSG), an agonist of peroxisome proliferators-activated receptor-gamma (PPAR-gamma), on the up-regulation of connective tissue growth factor (CTGF) and the deposition of type I and type III collagens in the pulmonary arteries of rats suffering from fibrosis in lung. Forty-eight male Sprague-Dawley rats were randomly divided into 4 groups: bleomycin (BLM) plus normal saline (NS) group (n=21), BLM plus RSG group (n=9), NS plus NS group (n=9), and NS plus RSG group (n=9). The rats were received single intratracheal instillation of BLM (5 mg/kg bw) or equal volume of NS as control, and received intra-gastric adminnistration of RSG (3 mg/(kg x day), 14 day) or the same volume of NS as vehicle. In vio, the observation was conducted on day 14 after intratracheal instillation. In vitro, the pulmonary arteries of rats on day 14 after BLM were isolated and incubated with DMEM alone or with RSG (37 degrees C, 5% CO2, for 24 h. In vivo, the expression and the content of CTGF, the contents of type I and type III collagens, and the ratio of type I collagen and type III collagen were increased in the pulmonary arteries of BLM-instilled rats, compared with those of NS-instilled rats (All P < 0.05). The above abnormal changes were ameliorated by RSG (All P < 0.05). In vitro, RSG blocked the up-regulation of CTGF (P < 0.05), but not the deposition of type I collagen and type III collagen in the pulmonary arteries isolated from the BLM-instilled rats (P > 0.05). The results suggest that RSG directly blocks the up-regulation of CTGF in pulmonary arteries of rats suffering from fibrosis in lung, and this might be one of the mechanisms underling the ameliorated pulmonary arterial remodeling by RSG.

  12. Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Wagner, Diane R.; Bekerman, Elena; Chiou, Michael; James, Aaron W.; Carter, Dennis; Longaker, Michael T.

    2010-01-01

    Background Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation. PMID:20585662

  13. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  14. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors.

    PubMed

    Hausman, G J; Barb, C R; Dean, R G

    2008-07-01

    Although cDNA microarray studies have examined gene expression in human and rodent adipose tissue, only one microarray study of adipose tissue from growing pigs has been reported. Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) from gilts at 90, 150, and 210 d (n=5 age(-1)). Dye labeled cDNA probes were hybridized to custom porcine microarrays (70-mer oligonucleotides). Gene expression of insulin-like growth factor binding proteins (IGFBPs), hormones, growth factors, neuropeptide Y (NPY) receptors (NPYRs) and other receptors in OSQ and MSQ changed little with age in growing pigs. Distinct patterns of relative gene expression were evident within NPYR and IGFBP family members in adipose tissue from growing pigs. Relative gene expression levels of NPY2R, NPY4R and angiopoietin 2 (ANG-2) distinguished OSQ and MSQ depots in growing pigs. We demonstrated, for the first time, the expression of IGFBP-7, IGFBP-5, NPY1R, NPY2R, NPY, connective tissue growth factor (CTGF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) genes in pig adipose tissue with microarray and RT-PCR assays. Furthermore, adipose tissue CTGF gene expression was upregulated while NPY and NPY2R gene expression were significantly down regulated by age. These studies demonstrate that expression of neuropeptides and neurotrophic factors in pig adipose tissue may be involved in regulation of leptin secretion. Many other regulatory factors were not influenced by age in growing pigs but may be influenced by location or depot.

  15. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.

    PubMed

    Kannampuzha-Francis, Jasmine; Tribulo, Paula; Hansen, Peter J

    2016-05-17

    The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0 nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm : ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01 nM and expression of S100A10 at 1.0 nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.

  16. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism.

  18. Paraquat increases connective tissue growth factor expression and impairs lung fibroblast proliferation and viscoelasticity.

    PubMed

    Zhang, N; Xie, Y-P; Pang, L; Zang, X-X; Wang, J; Shi, D; Wu, Y; Liu, X-L; Wang, G-H

    2014-12-01

    This in vitro study was designed to investigate the molecular mechanisms of paraquat-induced damage using cultured human fetal lung fibroblasts (MRC-5 cells), in order to promote the development of improved therapies for paraquat poisoning. Paraquat's effects on proliferation were examined by flow cytometry, on viscoelasticity by the micropipette aspiration technique, and on connective tissue growth factor (CTGF) expression by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Paraquat was found to significantly reduce the proliferation index of MRC-5 cells in a concentration-dependent manner (p < 0.05) and to significantly impair the viscoelastic properties in a time-independent manner (p < 0.05). Exposure to paraquat led to a significant and time-dependent increase in CTGF expression (p < 0.05) and induced changes in the morphology and biomechanical characteristics of the MRC-5 cells. These findings not only provide novel insights into the mechanisms of paraquat-induced lung fibrosis but may represent useful targets of improved molecular-based therapies for paraquat poisoning.

  19. Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury.

    PubMed

    Ando, Hideyuki; Fukuda, Noboru; Kotani, Motoko; Yokoyama, Shin ichiro; Kunimoto, Satoshi; Matsumoto, Koichi; Saito, Satoshi; Kanmatsuse, Katsuo; Mugishima, Hideo

    2004-01-12

    We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.

  20. Dynamic Analysis of the Expression of the TGFβ/SMAD2 Pathway and CCN2/CTGF during Early Steps of Tooth Development

    PubMed Central

    Pacheco, Marcos S.; Reis, Alice H.; Aguiar, Diego P.; Lyons, Karen M.; Abreu, José G.

    2009-01-01

    Background/Aims CCN2 is present during tooth development. However, the relationship between CCN2 and the transforming growth factor β (TGFβ)/SMAD2/3 signaling cascade during early stages of tooth development is unclear. Here, we compare the expression of CCN2 and TGFβ/SMAD2/3 components during tooth development, and analyze the functioning of TGFβ/SMAD2/3 in wild-type (WT) and Ccn2 null (Ccn2−/−) mice. Methods Coronal sections of mice on embryonic day (E)11.5, E12.5, E13.5, E14.5 and E18.5 from WT and Ccn2−/− were immunoreacted to detect CCN2 and components of the TGFβ signaling pathway and assayed for 5′-bromo-2′-deoxyuridine immunolabeling and proliferating cell nuclear antigen immunostaining. Results CCN2 and TGFβ signaling components such as TGFβ1, TGFβ receptor II, SMADs2/3 and SMAD4 were expressed in inducer tissues during early stages of tooth development. Proliferation analysis in these areas showed that epithelial cells proliferate less than mesenchymal cells from E11.5 to E13.5, while at E14.5 they proliferate more than mesenchymal cells. We did not find a correlation between functioning of the TGFβ1 cascade and CCN2 expression because Ccn2−/− mice showed neither a reduction in SMAD2 phosphorylation nor a difference in cell proliferation. Conclusion CCN2 and the TGFβ/SMAD2/3 signaling pathway are active in signaling centers of tooth development where proliferation is dynamic, but these mechanisms may act independently. PMID:18089935

  1. [Effects of Chinese herbal medicine Yiqi Huoxue Formula on TGF-β/smad signal transduction pathway and connective tissue growth factor in rats with renal interstitial fibrosis].

    PubMed

    Liu, Yong-mei; Liu, Rui-hua; Liu, Wen-jun; Liu, Li; Wu, Zhi-kui; Chen, Yu-ying

    2010-12-01

    To observe the effects of Yiqi Huoxue Formula (YQHXF), a compound Chinese herbal medicine, on transforming growth factor-β (TGF-β)/smad signal transduction pathway and connective tissue growth factor (CTGF) in rats with renal interstitial fibrosis Unilateral ureteral obstruction (UUO) rat model was established and the rats were randomly divided into 5 groups: untreated group, high-, medium-, and low-dose YQHXF groups and fosinopril sodium group. Another group with sham operation was set as control. All rats were administered with corresponding drugs for 3 weeks. After the last administration, each rat was sacrificed and weighed and the serum was separated for creatinine (Cr) and blood urea nitrogen (BUN) detection. Kidneys of the rats were taken out, and mRNA and protein expressions of TGF-β, smad2, smad7 and CTGF were measured with real-time fluorescent quantitative reverse transcription-polymerase chain reaction and Western blotting respectively; fibrosis of the kidney tissue was observed with hematoxylin-eosin (HE) staining and Masson trichrome staining. Compared with sham-operation group, Cr and BUN in serum of UUO groups were increased, while high-dose YQHXF treatment decreased the UUO-induced increase of Cr and BUN levels. HE staining and Masson staining results showed that the renal tubular epithelial cells in untreated group got atrophied; lumens of renal tubules expanded; fibroplastic proliferation and inflammatory cell infiltration were observed in renal interstitium; the number of glomerulus decreased and collagen increased significantly compared with sham-operation group. In the high- and medium-dose YQHXF groups and fosinopril sodium group, the histopathological changes of inflammatory cell infiltration, fibroplastic proliferation, expansion of lumens of renal tubules was improved as compared with the untreated group. The mRNA and protein expressions of TGF-β, smad2 and CTGF in untreated group were higher than those in sham-operation group (P<0

  2. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-02-21

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  3. Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts.

    PubMed

    Luo, Limin; Li, Jun; Liu, Han; Jian, Xiaoqing; Zou, Qianlei; Zhao, Qing; Le, Qu; Chen, Hongdou; Gao, Xinghua; He, Chundi

    2017-05-12

    Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those

  4. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  5. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  6. Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren's contracture.

    PubMed

    Viil, Janeli; Maasalu, Katre; Mäemets-Allas, Kristina; Tamming, Liis; Lõhmussaar, Kadi; Tooming, Mikk; Ingerpuu, Sulev; Märtson, Aare; Jaks, Viljar

    2015-05-28

    Dupuytren's contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches. We studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR). We found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types. Based on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.

  7. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition.

    PubMed

    Zhang, Heng; Liu, Chen-Ying; Zha, Zheng-Yu; Zhao, Bin; Yao, Jun; Zhao, Shimin; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2009-05-15

    The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription factor mediating the function of TAZ. Disruption of TEAD-TAZ binding or silencing of TEAD expression blocked the function of TAZ to promote cell proliferation and to induce epithelial-mesenchymal transition, demonstrating TEAD as a key downstream effector of TAZ. We also identified CTGF, a gene that regulates cell adhesion, proliferation, and migration, as a direct target of TAZ and TEAD. Our study establishes a functional partnership between TAZ and TEAD under negative regulation by the Hippo signaling pathway.

  8. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro

    PubMed Central

    Chiang, Chih-Kang; Sheu, Meei-Ling; Lin, Yi-Wei; Wu, Cheng-Tien; Yang, Chin-Ching; Chen, Min-Wei; Hung, Kuan-Yu; Wu, Kuan-Dun; Liu, Shing-Hwa

    2011-01-01

    BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. The present study investigated, in vivo and in vitro, the anti-fibrotic and anti-inflammatory effects, particularly on the epithelial to mesenchymal transition of renal tubular cells, exerted by honokiol, a phytochemical used in traditional medicine, and mechanisms underlying these effects. EXPERIMENTAL APPROACH Anti-fibrotic effects in vivo were assayed in a rat model of renal fibrosis [the unilateral ureteral obstruction (UUO) model]. A rat tubular epithelial cell line (NRK-52E) was stimulated by transforming growth factor-β1 (TGF-β1) and treated with honokiol to explore possible mechanisms of these anti-fibrotic effects. Gene or protein expression was analysed by Northern or Western blotting. Transcriptional regulation was investigated using luciferase activity driven by a connective tissue growth factor (CTGF) promoter. KEY RESULTS Honokiol slowed development of renal fibrosis both in vivo and in vitro. Honokiol treatment attenuated tubulointerstitial fibrosis and expression of pro-fibrotic factors in the UUO model. Honokiol also decreased expression of the mRNA for the chemokine CCL2 and for the intracellular adhesion molecule-1, as well as accumulation of type I (α1) collagen and fibronectin in UUO kidneys. Phosphorylation of Smad-2/3 induced by TGF-β1 and CTGF luciferase activity in renal tubular cells were also inhibited by honokiol. CONCLUSIONS AND IMPLICATIONS Honokiol suppressed expression of pro-fibrotic and pro-inflammatory factors and of extracellular matrix proteins. Honokiol may become a therapeutic agent to prevent renal fibrosis. PMID:21265825

  9. Sildenafil promotes smooth muscle preservation and ameliorates fibrosis through modulation of extracellular matrix and tissue growth factor gene expression after bilateral cavernosal nerve resection in the rat

    PubMed Central

    Sirad, Fara; Hlaing, Su; Kovanecz, Istvan; Artaza, Jorge N.; Garcia, Leah A.; Rajfer, Jacob; Ferrini, Monica G.

    2010-01-01

    Introduction It has been shown that PDE 5 inhibitors preserve smooth muscle (SM) content and ameliorate the fibrotic degeneration normally seen in the corpora cavernosa after bilateral cavernosal nerve resection (BCNR). However, the downstream mechanisms by which these drugs protect the corpora cavernosa remain poorly understood. Aim To provide insight into the mechanism, we aimed to determine the gene expression profile of angiogenesis related pathways within the penile tissue after BCNR with or without continuous sildenafil treatment. Methods 5-month old Fisher rats were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/Kg. B.W drinking water) for 3 days or 45 days (n=8 rats per group). Total RNAs isolated from the denuded penile shaft and prostate were subjected to reverse transcription and to angiogenesis real time-PCR arrays (84 genes). Changes in protein expression of selected genes such as epiregulin and CTGF were corroborated by western blot and immunohistochemistry. Main outcomes measures Genes modulated by BCNR and sildenafil treatment. Results A decreased expression of genes related to SM growth factors such as epiregulin (EREG), platelet derived growth factor (PDGF), extracellular matrix regulators such as metalloproteinases 3 and 9, endothelial growth factors, together with an up-regulation of pro-fibrotic genes such as connective tissue growth factor (CTGF) and TGFβ2 were found at both time points after BCNR. Sildenafil treatment reversed this process by up-regulating endothelial and SM growth factors and down-regulating pro-fibrotic factors. Sildenafil did not affect the expression of EREG, VEGF, PDGF in the ventral prostate of BCNR animals Conclusions Sildenafil treatment after BCNR activates genes related to SM preservation and down regulates genes related to fibrosis in the corpora cavernosa. These results provide a mechanistic justification for the use of sildenafil and other PDE5 inhibitors as protective therapy

  10. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  11. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet.

    PubMed

    de Las Heras, Natalia; Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; López-Farré, Antonio; Ruiz-Roso, Baltasar; Lahera, Vicente

    2017-02-01

    Hypolipidemic and hypoglycemic properties of ginger in animal models have been reported. However, information related to the mechanisms and factors involved in the metabolic effects of ginger at a hepatic level are limited. The aim of the present study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of a hydroethanolic ginger extract (GE) in the liver of rats fed a high-fat diet (HFD). The study was conducted in male Wistar rats divided into the following 3 groups: (i) Rats fed a standard diet (3.5% fat), the control group; (ii) rats fed an HFD (33.5% fat); and (iii) rats fed an HFD treated with GE (250 mg·kg(-1)·day(-1)) for 5 weeks (HFD+GE). Plasma levels of glucose, insulin, lipid profile, leptin, and adiponectin were measured. Liver expression of glycerol phosphate acyltransferase (GPAT), cholesterol 7 alpha-hydroxylase, peroxisome proliferator-activated receptors (PPAR), PPARα and PPARγ, glucose transporter 2 (GLUT-2), liver X receptor, sterol regulatory element-binding protein (SREBP1c), connective tissue growth factor (CTGF), and collagen I was measured. Data were analyzed using a 1-way ANOVA, followed by a Newman-Keuls test if differences were noted. The study showed that GE improved lipid profile and attenuated the increase of plasma levels of glucose, insulin, and leptin in HFD rats. This effect was associated with a higher liver expression of PPARα, PPARγ, and GLUT-2 and an enhancement of plasma adiponectin levels. Furthermore, GE reduced liver expression of GPAT, SREBP1c, CTGF, and collagen I. The results suggest that GE might be considered as an alternative therapeutic strategy in the management of overweight and hepatic and metabolic-related alterations.

  12. Velvet antler peptide prevents pressure overload-induced cardiac fibrosis via transforming growth factor (TGF)-β1 pathway inhibition.

    PubMed

    Zhao, Lihong; Mi, Yang; Guan, Hongya; Xu, Yan; Mei, Yingwu

    2016-07-15

    Velvet antlers (VAs) are commonly used in traditional Chinese medicine and invigorant and contain many functional components for health promotion. The velvet antler peptide sVAP32 is one of active components in VAs; based on structural study, the sVAP32 interacts with TGF-β1 receptors and disrupts the TGF-β1 pathway. We hypothesized that sVAP32 prevents cardiac fibrosis from pressure overload by blocking TGF-β1 signaling. Sprague-Dawley rats underwent transverse aortic constriction (TAC) or a sham operation. After one month, rats received either sVAP32 (15mg/kg/day) or vehicle for an additional one month. TAC surgery induced significant cardiac dysfunction, fibroblast activation and fibrosis; these effects were improved by treatment with sVAP32. In the heart tissue, TAC remarkably increased the expression of TGF-β1 and connective tissue growth factor (CTGF), reactive oxygen species levels, and the phosphorylation levels of Smad2/3 and extracellular signal-regulated kinases 1/2 (ERK1/2). SVAP32 inhibited the increases in reactive oxygen species levels, CTGF expression and the phosphorylation of Smad2/3 and ERK1/2, but not TGF-β1 expression. In cultured cardiac fibroblasts, angiotensin II (Ang II) had similar effects compared to TAC surgery, such as increases in α-SMA-positive cardiac fibroblasts and collagen synthesis. SVAP32 eliminated these effects by disrupting TGF-β1 binding to its receptors and blocking Ang II/TGF-β1 downstream signaling. These results demonstrated that sVAP32 has anti-fibrotic effects by blocking the TGF-β1 pathway in cardiac fibroblasts.

  13. A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis

    PubMed Central

    Shiwen, Xu; Stratton, Richard; Nikitorowicz-Buniak, Joanna; Ahmed-Abdi, Bahja; Ponticos, Markella; Denton, Christopher; Abraham, David; Takahashi, Ayuko; Suki, Bela; Layne, Matthew D.; Lafyatis, Robert; Smith, Barbara D.

    2015-01-01

    In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix. PMID:25955164

  14. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise.

    PubMed

    Heinemeier, K M; Bjerrum, S S; Schjerling, P; Kjaer, M

    2013-06-01

    Acute kicking exercise induces collagen synthesis in both tendon and muscle in humans, but it is not known if this relates to increased collagen transcription and if other matrix genes are regulated. Young men performed 1 h of one-leg kicking at 67% of max workload. Biopsies were taken from the patellar tendon and vastus lateralis muscle of each leg at 2 (n = 10), 6 (n = 11), or 26 h (n = 10) after exercise. Levels of messenger ribonucleic acid mRNA for collagens, noncollagenous matrix proteins, and growth factors were measured with real-time reverse transcription polymerase chain reaction. In tendon, gene expression was unchanged except for a decrease in insulin-like growth factor-IEa (IGF-IEa; P < 0.05). In muscle, collagen expression was not significantly altered, while levels of connective tissue growth factor (CTGF), IGF-IEa, transforming growth factor-β1, -2 (TGF-β), and the TGF-β receptor II mRNA were increased (P < 0.05). Matrix components tenascin-C, fibronectin, and decorin were also induced in loaded muscle (P < 0.05), while fibromodulin was unaffected. In conclusion, the relatively robust changes in matrix components and related growth factors in muscle indicate a stimulation of extracellular matrix even with moderate exercise. However, in tendon tissue, this exercise model does not appear to induce any anabolic response on the transcriptional level.

  15. Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation.

    PubMed

    Benhaddou, A; Keime, C; Ye, T; Morlon, A; Michel, I; Jost, B; Mengus, G; Davidson, I

    2012-02-01

    The TEAD (1-4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes.

  16. Transcription factor TEAD4 regulates expression of Myogenin and the unfolded protein response genes during C2C12 cell differentiation

    PubMed Central

    Benhaddou, A; Keime, C; Ye, T; Morlon, A; Michel, I; Jost, B; Mengus, G; Davidson, I

    2012-01-01

    The TEAD (1–4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes. PMID:21701496

  17. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury.

    PubMed

    Haak, Andrew J; Tsou, Pei-Suen; Amin, Mohammad A; Ruth, Jeffrey H; Campbell, Phillip; Fox, David A; Khanna, Dinesh; Larsen, Scott D; Neubig, Richard R

    2014-06-01

    Systemic sclerosis (SSc), or scleroderma, similar to many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF)-and serum response factor (SRF)-regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explored the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF/SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in lysophosphatidic acid (LPA)-and transforming growth factor β (TGFβ)-stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus, targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders.

  18. HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Sugata, Kenji; Miyazato, Paola; Green, Patrick L; Imamura, Takeshi; Matsuoka, Masao

    2011-08-18

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the provirus, is involved in both regulation of viral gene transcription and T-cell proliferation. We showed in this report that HBZ interacted with Smad2/3, and enhanced transforming growth factor-β (TGF-β)/Smad transcriptional responses in a p300-dependent manner. The N-terminal LXXLL motif of HBZ was responsible for HBZ-mediated TGF-β signaling activation. In a serial immunoprecipitation assay, HBZ, Smad3, and p300 formed a ternary complex, and the association between Smad3 and p300 was markedly enhanced in the presence of HBZ. In addition, HBZ could overcome the repression of the TGF-β response by Tax. Finally, HBZ expression resulted in enhanced transcription of Pdgfb, Sox4, Ctgf, Foxp3, Runx1, and Tsc22d1 genes and suppression of the Id2 gene; such effects were similar to those by TGF-β. In particular, HBZ induced Foxp3 expression in naive T cells through Smad3-dependent TGF-β signaling. Our results suggest that HBZ, by enhancing TGF-β signaling and Foxp3 expression, enables HTLV-1 to convert infected T cells into regulatory T cells, which is thought to be a critical strategy for virus persistence.

  19. Role of CTGF in White Matter Development in Tuberous Sclerosis

    DTIC Science & Technology

    2016-04-01

    Tsai and Sahin, 2011). TSC affects 1/6,000 individuals worldwide and affects multiple organs including the brain, skin, eyes, kidneys , heart, and...affects multiple organs including the brain, skin, eyes, kidneys , heart, and lungs(Crino et al., 2006). TSC patients present with epilepsy (~90

  20. Role of CTGF in White Matter Development in Tuberous Sclerosis

    DTIC Science & Technology

    2014-02-01

    Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...the oligodendrocytes by PLP promoter driven GFP expression. In addition to this finding , we now demonstrate the decrease in mature oligodendrocyte...TSC1/2 function and oligodendrocyte maturation, thus myelination. While much of the pathology of TSC is established during embryonic development

  1. The effect of prostaglandin E2 receptor (PTGER2) activation on growth factor expression and cell proliferation in bovine endometrial explants.

    PubMed

    Zhang, Shuangyi; Liu, Bo; Mao, Wei; Li, Qianru; Fu, Changqi; Zhang, Nan; Zhang, Ying; Gao, Long; Shen, Yuan; Cao, Jinshan

    2017-07-01

    The domestic animal endometrium undergoes regular periods of regeneration and degeneration during cycles of oestrus and dioestrus. If blastocyst implantation occurs in the uterus, the endometrium will prepare for pregnancy by changing its pattern of development to build a connection with the embryo to nourish it. Prostaglandin E2 (PGE2) secretion synchronized with endometrial growth in these processes and could be involved in endometrial growth. One of the PGE2 receptors (PTGER2) is present in endometrium and its increased expression accompanies with endometrial growth in above processes. However, the association between PTGER2 and endometrial growth remains unclear. Endometrial growth factors and cell proliferation is the foundation for endometrial growth. Therefore, in this study, the response of growth factors and cell proliferation essential for endometrial growth to PTGER2 activation were investigated in bovine endometrium. The results indicated that mRNA and protein expression of connective tissue growth factor (CTGF), fibroblast growth factor-2 (FGF-2), interleukin-8 (IL-8), transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and vascular endothelial growth factor A (VEGFA) were up-regulated after PTGER2 activation by corresponding agonist butaprost (P < 0.05), and proliferation of endometrial epithelia and fibroblasts were induced in response to increased levels of proliferating cell nuclear antigen (PCNA), cytokeratin-18 (CK-18) and fibroblast-specific protein 1 (FSP-1) expression in bovine endometrial explants in vitro (P < 0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  3. Emerging roles of TEAD transcription factors and its coactivators in cancers

    PubMed Central

    Pobbati, Ajaybabu V.; Hong, Wanjin

    2013-01-01

    TEAD proteins are transcription factors that are crucial for development, but also play a role in cancers. Several developmentally and pathologically important genes are upregulated by TEADs. TEADs have a TEA domain that enables them to bind specific DNA elements and a transactivation domain that enables them to interact with coactivators. TEADs on their own are unable to activate transcription and they require the help of coactivators. Several TEAD-interacting coactivators are known and they can be classified into three groups: (1) YAP and its paralog TAZ; (2) Vgll proteins; and (3) p160s. Accordingly, these coactivators also play a role in development and cancers. Recent studies have shown that TEADs and their coactivators aid in the progression of various cancers, including the difficult to treat glioblastoma, liver and ovarian cancers. They facilitate cancer progression through expression of proliferation promoting genes such as c-myc, survivin, Axl, CTGF and Cyr61. There is also a good correlation between high TEAD or its coactivator expression and poor prognosis in various cancers. Given the fact that TEADs and their coactivators need to work together for a functional outcome, disrupting the interaction between them appears to be a viable option for cancer therapy. Structures of TEAD-coactivator complexes have been elucidated and will facilitate drug design and development. PMID:23380592

  4. Emerging roles of TEAD transcription factors and its coactivators in cancers.

    PubMed

    Pobbati, Ajaybabu V; Hong, Wanjin

    2013-05-01

    TEAD proteins are transcription factors that are crucial for development, but also play a role in cancers. Several developmentally and pathologically important genes are upregulated by TEADs. TEADs have a TEA domain that enables them to bind specific DNA elements and a transactivation domain that enables them to interact with coactivators. TEADs on their own are unable to activate transcription and they require the help of coactivators. Several TEAD-interacting coactivators are known and they can be classified into three groups: (1) YAP and its paralog TAZ; (2) Vgll proteins; and (3) p160s. Accordingly, these coactivators also play a role in development and cancers. Recent studies have shown that TEADs and their coactivators aid in the progression of various cancers, including the difficult to treat glioblastoma, liver and ovarian cancers. They facilitate cancer progression through expression of proliferation promoting genes such as c-myc, survivin, Axl, CTGF and Cyr61. There is also a good correlation between high TEAD or its coactivator expression and poor prognosis in various cancers. Given the fact that TEADs and their coactivators need to work together for a functional outcome, disrupting the interaction between them appears to be a viable option for cancer therapy. Structures of TEAD-coactivator complexes have been elucidated and will facilitate drug design and development.

  5. CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis

    PubMed Central

    Huang, Bau-Lin; van Handel, Ben; Hofmann, Jennifer J.; Chen, Tom T.; Choi, Aaron; Ong, Jessica R.; Benya, Paul D.; Mikkola, Hanna; Iruela-Arispe, M. Luisa; Lyons, Karen M.

    2012-01-01

    CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes. PMID:22363445

  6. The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration.

    PubMed

    Yu, Xiaofang; Fang, Yi; Liu, Hong; Zhu, Jiaming; Zou, Jianzhou; Xu, Xunhui; Jiang, Suhua; Ding, Xiaoqiang

    2012-08-01

    Chronic hypoxia in the kidney has been suggested as a final common pathway in the progression of chronic kidney disease (CKD) leading to eventual kidney failure. Hypoxia-inducible factor (HIF) activation might offer a promising approach to the protection of hypoxic tissues, but the effect of HIF activation on CKD is still controversial. In this study, we investigated whether HIF activation had a beneficial or deleterious effect on CKD in the rat remnant kidney (RK) model. One week after a subtotal nephrectomy, rats were randomized and each received special administration of prolyl hydroxylases (PHD) inhibitor L-mimosine (L-Mim) as follows: in the early long-time L-Mim treatment group they were administered L-Mim at Weeks 2-12; in the advanced medium-term L-Mim treatment group they were administered L-Mim at Weeks 4-12 and in the end-stage L-Mim treatment group they were administered L-Mim at Weeks 8-12. Compared with the control group, renal dysfunction and increased collagen III deposition, α-smooth muscle actin expression and ED-1-positive macrophage infiltration in tubulointerstitium were exacerbated by early long-term L-Mim treatment and improved by advanced medium-term L-Mim treatment. End-stage L-Mim treatment had no effect on RK rats. Furthermore, early long-term L-Mim treatment activated HIF-1α, connective tissue growth factor (CTGF) and phospho-Smad3 prominently throughout the time course and activated HIF-2α, vascular endothelial growth factor (VEGF) and erythropoietin (EPO) slightly at the end stage, while advanced medium-term L-Mim treatment activated HIF-2α, VEGF and EPO significantly and had no effect on HIF-1α, CTGF and phospho-Smad3. HIF-α activation by PHD inhibitor L-Mim has dual roles in the development of CKD in the rat RK model depending on the timing of the administration and possibly the activated isoform of HIF-α.

  7. Impact Factor? Shmimpact Factor!

    PubMed Central

    2007-01-01

    The journal impact factor is a measure of the citability of articles published in that journal—the more citations generated, the more important that article is considered to be, and as a consequence the prestige of the journal is enhanced. The impact factor is not without controversy, and it can be manipulated. It no longer dominates the choices of journals to search for information. Online search engines, such as PubMed, can locate articles of interest in seconds across journals regardless of high or low impact factors. Editors desiring to increase their influence will need to focus on a fast and friendly submission and review process, early online and speedy print publication, and encourage the rapid turnaround of high-quality peer reviews. Authors desiring to have their results known to the world have never had it so good—the internet permits anyone with computer access to find the author's work. PMID:20806031

  8. CCN2 (Connective Tissue Growth Factor) is essential for extracellular matrix production and integrin signaling in chondrocytes

    PubMed Central

    Nishida, Takashi; Kawaki, Harumi; Baxter, Ruth M.; DeYoung, R. Andrea; Takigawa, Masaharu

    2007-01-01

    The matricellular protein CCN2 (Connective Tissue Growth Factor; CTGF) is an essential mediator of ECM composition, as revealed through analysis of Ccn2 deficient mice. These die at birth due to complications arising from impaired endochondral ossification. However, the mechanism(s) by which CCN2 mediates its effects in cartilage are unclear. We investigated these mechanisms using Ccn2−/− chondrocytes. Expression of type II collagen and aggrecan were decreased in Ccn2−/− chondrocytes, confirming a defect in ECM production. Ccn2−/− chondrocytes also exhibited impaired DNA synthesis and reduced adhesion to fibronectin. This latter defect is associated with decreased expression of α5 integrin. Moreover, CCN2 can bind to integrin α5β1 in chondrocytes and can stimulate increased expression of integrin α5. Consistent with an essential role for CCN2 as a ligand for integrins, immunofluorescence and Western blot analysis revealed that levels of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK)1/2 phosphorylation were reduced in Ccn2−/− chondrocytes. These findings argue that CCN2 exerts major effects in chondrocytes through its ability to (1) regulate ECM production and integrin α5 expression, (2) engage integrins and (3) activate integrin-mediated signaling pathways. PMID:18481209

  9. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells.

    PubMed

    Ali, Anwar; Akhter, Muhammad Aleem; Haneef, Kanwal; Khan, Irfan; Naeem, Nadia; Habib, Rakhshinda; Kabir, Nurul; Salim, Asmat

    2015-01-25

    Various preconditioning strategies influence regeneration properties of stem cells. Preconditioned stem cells generally show better cell survival, increased differentiation, enhanced paracrine effects, and improved homing to the injury site by regulating the expression of tissue-protective cytokines and growth factors. In this study, we analyzed gene expression pattern of growth factors through RT-PCR after treatment of mesenchymal stem cells (MSCs) with a metabolic inhibitor, 2,4 dinitrophenol (DNP) and subsequent re-oxygenation for periods of 2, 6, 12 and 24h. These growth factors play important roles in cardiomyogenesis, angiogenesis and cell survival. Mixed pattern of gene expression was observed depending on the period of re-oxygenation. Of the 13 genes analyzed, ankyrin repeat domain 1 (Ankrd1) and GATA6 were downregulated after DNP treatment and subsequent re-oxygenations. Ankrd1 expression was, however, increased after 24h of re-oxygenation. Placental growth factor (Pgf), endoglin (Eng), neuropilin (Nrp1) and jagged 1 (Jag1) were up-regulated after DNP treatment. Gradual increase was observed as re-oxygenation advances and by the end of the re-oxygenation period the expression started to decrease and ultimately regained normal values. Epiregulin (Ereg) was not expressed in normal MSCs but its expression increased gradually from 2 to 24h after re-oxygenation. No change was observed in the expression level of connective tissue growth factor (Ctgf) at any time period after re-oxygenation. Kindlin3, kinase insert domain receptor (Kdr), myogenin (Myog), Tbx20 and endothelial tyrosine kinase (Tek) were not expressed either in normal cells or cells treated with DNP. It can be concluded from the present study that MSCs adjust their gene expression levels under the influence of DNP induced metabolic stress. Their levels of expression vary with varying re-oxygenation periods. Preconditioning of MSCs with DNP can be used for enhancing the potential of these cells for

  10. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  11. The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; De Francesco, Ernestina Marianna; Vivacqua, Adele; Sisci, Diego; Panno, Maria Luisa; Andò, Sebastiano; Maggiolini, Marcello

    2011-03-25

    GPR30, also known as GPER, has been suggested to mediate rapid effects induced by estrogens in diverse normal and cancer tissues. Hypoxia is a common feature of solid tumors involved in apoptosis, cell survival, and proliferation. The response to low oxygen environment is mainly mediated by the hypoxia-inducible factor named HIF-1α, which activates signaling pathways leading to adaptive mechanisms in tumor cells. Here, we demonstrate that the hypoxia induces HIF-1α expression, which in turn mediates the up-regulation of GPER and its downstream target CTGF in estrogen receptor-negative SkBr3 breast cancer cells and in HL-1 cardiomyocytes. Moreover, we show that HIF-1α-responsive elements located within the promoter region of GPER are involved in hypoxia-dependent transcription of GPER, which requires the ROS-induced activation of EGFR/ERK signaling in both SkBr3 and HL-1 and cells. Interestingly, the apoptotic response to hypoxia was prevented by estrogens through GPER in SkBr3 cells. Taken together, our data suggest that the hypoxia-induced expression of GPER may be included among the mechanisms involved in the anti-apoptotic effects elicited by estrogens, particularly in a low oxygen microenvironment.

  12. Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach.

    PubMed

    Manczinger, Máté; Kemény, Lajos

    2013-01-01

    Psoriasis is a multifactorial inflammatory skin disease characterized by increased proliferation of keratinocytes, activation of immune cells and susceptibility to metabolic syndrome. Systems biology approach makes it possible to reveal novel important factors in the pathogenesis of the disease. Protein-protein, protein-DNA, merged (containing both protein-protein and protein-DNA interactions) and chemical-protein interaction networks were constructed consisting of differentially expressed genes (DEG) between lesional and non-lesional skin samples of psoriatic patients and/or the encoded proteins. DEGs were determined by microarray meta-analysis using MetaOMICS package. We used STRING for protein-protein, CisRED for protein-DNA and STITCH for chemical-protein interaction network construction. General network-, cluster- and motif-analysis were carried out in each network. Many DEG-coded proteins (CCNA2, FYN, PIK3R1, CTGF, F3) and transcription factors (AR, TFDP1, MEF2A, MECOM) were identified as central nodes, suggesting their potential role in psoriasis pathogenesis. CCNA2, TFDP1 and MECOM might play role in the hyperproliferation of keratinocytes, whereas FYN may be involved in the disturbed immunity in psoriasis. AR can be an important link between inflammation and insulin resistance, while MEF2A has role in insulin signaling. A controller sub-network was constructed from interlinked positive feedback loops that with the capability to maintain psoriatic lesional phenotype. Analysis of chemical-protein interaction networks detected 34 drugs with previously confirmed disease-modifying effects, 23 drugs with some experimental evidences, and 21 drugs with case reports suggesting their positive or negative effects. In addition, 99 unpublished drug candidates were also found, that might serve future treatments for psoriasis.

  13. Novel Factors in the Pathogenesis of Psoriasis and Potential Drug Candidates Are Found with Systems Biology Approach

    PubMed Central

    Manczinger, Máté; Kemény, Lajos

    2013-01-01

    Psoriasis is a multifactorial inflammatory skin disease characterized by increased proliferation of keratinocytes, activation of immune cells and susceptibility to metabolic syndrome. Systems biology approach makes it possible to reveal novel important factors in the pathogenesis of the disease. Protein-protein, protein-DNA, merged (containing both protein-protein and protein-DNA interactions) and chemical-protein interaction networks were constructed consisting of differentially expressed genes (DEG) between lesional and non-lesional skin samples of psoriatic patients and/or the encoded proteins. DEGs were determined by microarray meta-analysis using MetaOMICS package. We used STRING for protein-protein, CisRED for protein-DNA and STITCH for chemical-protein interaction network construction. General network-, cluster- and motif-analysis were carried out in each network. Many DEG-coded proteins (CCNA2, FYN, PIK3R1, CTGF, F3) and transcription factors (AR, TFDP1, MEF2A, MECOM) were identified as central nodes, suggesting their potential role in psoriasis pathogenesis. CCNA2, TFDP1 and MECOM might play role in the hyperproliferation of keratinocytes, whereas FYN may be involved in the disturbed immunity in psoriasis. AR can be an important link between inflammation and insulin resistance, while MEF2A has role in insulin signaling. A controller sub-network was constructed from interlinked positive feedback loops that with the capability to maintain psoriatic lesional phenotype. Analysis of chemical-protein interaction networks detected 34 drugs with previously confirmed disease-modifying effects, 23 drugs with some experimental evidences, and 21 drugs with case reports suggesting their positive or negative effects. In addition, 99 unpublished drug candidates were also found, that might serve future treatments for psoriasis. PMID:24303025

  14. Parasite-Derived Neurotrophic Factor/trans-Sialidase of Trypanosoma cruzi Links Neurotrophic Signaling to Cardiac Innate Immune Response

    PubMed Central

    Salvador, Ryan; Aridgides, Daniel

    2014-01-01

    The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2). PMID:24935974

  15. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways.

    PubMed

    Rupérez, Mónica; Rodrigues-Díez, Raquel; Blanco-Colio, Luis Miguel; Sánchez-López, Elsa; Rodríguez-Vita, Juan; Esteban, Vanesa; Carvajal, Gisselle; Plaza, Juan José; Egido, Jesús; Ruiz-Ortega, Marta

    2007-08-01

    3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.

  16. Transfer factor.

    PubMed

    1998-01-01

    Transfer factor, a natural substance of the immune system, was discovered in 1949. More than 3,000 scientific articles have established it as an effective treatment for many diseases, usually those related to the immune system. In China, more than six million people have used transfer factor as a prophylaxis for hepatitis. Information on ordering articles on transfer factor, olive leaf extract, and coconut oil is included.

  17. [Effects of blocking two sites of transforming growth factor-β/Smads signaling on the formation of scar-related proteins in human skin fibroblasts].

    PubMed

    Wang, Yang; Zhang, Liangping; Lei, Rui; Shen, Yichen; Shen, Hui; Wu, Zhinan; Xu, Jinghong

    2015-10-01

    To explore the effects of blocking two sites of TGF-β/Smads signaling on the formation of scar-related proteins in human skin fibroblasts. Two lentivirus vectors encoding soluble TGF-β receptor II (sTβRII) and mutant Smad 4-Smad 4ΔM4 were respectively transfected into human skin fibroblast cell line human foreskin fibroblast 1 (HFF-1) cells with the optimum multiplicity of infection (MOI) of 50. The protein expressions of sTβRII and Smad 4ΔM4 of the two types of transfected cells were determined by Western blotting so as to compare with those of the untransfected cells. The HFF-1 cells were divided into 6 groups as named below according to the random number table, with 6 dishes in each group, 1×10(4) cells per dish. Co-transfection group, transfected with the two previous lentivirus vectors, mixed with the ratio of 1:1 and MOI of 50, and then stimulated with 5 ng/mL TGF-β1 for 72 h; sTβRII group, transfected with lenti-sTβRII with MOI of 50, with the other treatment as above; Smad 4ΔM4 group, transfected with lenti-Smad 4ΔM4 with MOI of 50, with the other treatment as above; negative virus group, transfected with empty lentivirus vector, with the other treatment as above; positive control group, stimulated with 5 ng/mL TGF-β1 for 72 h; and blank control group, conventionally cultured without any other treatment. After stimulation, Western blotting and real-time fluorescent quantitative RT-PCR were respectively used to determine the protein and mRNA expressions of fibronectin in cells of each group. ELISA and Sircol collagen assay were respectively used to determine the protein expressions of connective tissue growth factor (CTGF) and total collagen in the cell culture supernate of each group. Data were processed with one-way analysis of variance and SNK-(q test). (1) HFF-1 cells transfected with lenti-sTβRII and HFF-1 cells transfected with lenti-Smad 4ΔM4 respectively expressed higher levels of sTβRII protein and Smad 4ΔM4 protein compared with

  18. The insulin-like growth factor system in chronic kidney disease: Pathophysiology and therapeutic opportunities.

    PubMed

    Oh, Youngman

    2012-03-01

    The growth hormone-insulin-like growth factor-insulin-like growth factor binding protein (GH-IGF-IGFBP) axis plays a critical role in the maintenance of normal renal function and the pathogenesis and progression of chronic kidney disease (CKD). Serum IGF-I and IGFBPs are altered with different stages of CKD, the speed of onset, the amount of proteinuria, and the potential of remission. Recent studies demonstrate that growth failure in children with CKD is due to a relative GH insensitivity and functional IGF deficiency. The functional IGF deficiency in CKD results from either IGF resistance due to increased circulating levels of IGFBPs or IGF deficiency due to increased urinary excretion of serum IGF-IGFBP complexes. In addition, not only GH and IGFs in circulation, but locally produced IGFs, the high-affinity IGFBPs, and low-affinity insulin-like growth factor binding protein-related proteins (IGFBP-rPs) may also affect the kidney. With respect to diabetic kidney disease, there is growing evidence suggesting that GH, IGF-I, and IGFBPs are involved in the pathogenesis of diabetic nephropathy (DN). Thus, prevention of GH action by blockade either at the receptor level or along its signal transduction pathway offers the potential for effective therapeutic opportunities. Similarly, interrupting IGF-I and IGFBP actions also may offer a way to inhibit the development or progression of DN. Furthermore, it is well accepted that the systemic inflammatory response is a key player for progression of CKD, and how to prevent and treat this response is currently of great interest. Recent studies demonstrate existence of IGF-independent actions of high-affinity and low-affinity-IGFBPs, in particular, antiinflammatory action of IGFBP-3 and profibrotic action of IGFBP-rP2/CTGF. These findings reinforce the concept in support of the clinical significance of the IGF-independent action of IGFBPs in the assessment of pathophysiology of kidney disease and its therapeutic potential for

  19. Hypoxia-Inducible Factor-1alpha and MAPK Co-Regulate Activation of Hepatic Stellate Cells upon Hypoxia Stimulation

    PubMed Central

    Guan, Fei; Xiao, Yan; Deng, Jing; Chen, Huoying; Chen, Xiaolin; Li, Jianrong; Huang, Hanju; Shi, Chunwei

    2013-01-01

    Background Hepatic stellate cell (HSC) plays a key role in pathogenesis of liver fibrosis. During liver injury, hypoxia in local micro-environment is inevitable. Hif-1α is the key transcriptional regulation factor that induces cell’s adaptive responses to hypoxia. Recently, it was reported that MAPK is involved in regulation of Hif-1α activity. Aims To explore whether Hif-1α regulates HSC activation upon hypoxia, and whether MAPK affects Hif-1α-regulated signaling cascades, thus providing new targets for preventing liver fibrosis. Methods Hif-1α expression in livers of Schistosomajaponicum infected BALB/c mice was detected with western blot and immunohistochemistry. A rat cell line of HSC, HSC-T6, was cultured in 1% oxygen. HSC activation, including F-actin reorganization, increase of vimentin and α-SMA, was detected with western blot or immunocytochemistry. Cells were transfected with specific siRNA to Hif-1α, expression of activation markers, transcription of fibrosis-promoting cytokines, secretion of collagen I were detected with western blot, Real Time PCR and ELISA. Lysate from HSC-T6 cells pretreated with PD98059, a specific MEK1 pharmacological inhibitor, was subjected to detect Hif-1α ubiquitination and nuclear translocation with western blot and immunoprecipitation. Results and Conclusions Hif-1α apparently increased in liver tissues of Schistosomajaponicum infected mice. 1% O2 induced F-actin reorganization, increase of Hif-1α, vimentin and α-SMA in HSC-T6 cells. Hif-1α Knockdown inhibited HSC-T6 activation, transcription of IL-6, TGF-β and CTGF and secretion of collagen I from HSC-T6 cells upon hypoxia. Inhibition of MAPK phosphorylation enhanced Hif-1α ubiquitination, and inhibited Hif-1α translocation into nucleus. Conclusively, Hif-1α and MAPK participate in HSC activation upon hypoxia. PMID:24040163

  20. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways.

    PubMed

    Yu, Zi-Li; Li, Dian-Qi; Huang, Xiang-Yu; Xing, Xin; Yu, Ru-Qing; Li, Zhi; Li, Zu-Bing

    2016-02-01

    Lysophosphatidic acid (LPA) is an efficient, bioactive phospholipid involved in various biological processes. In this study, LPA-induced connective tissue growth factor (CTGF/CCN2) expression and the underlying mechanisms were investigated using the MC3T3-E1 cell line. The MC3T3-E1 cells were stimulated with an inhibitor of LPA receptors, an activator and inhibitor of protein kinase C (PKC) and protein kinase A (PKA) for indicated periods of time. RT-qPCR and western blot analyses were used to measure the expression levels of CCN2. Immunofluorescence staining was used to observe the translocation of PKC. The mRNA expression level of CCN2 was increased following stimulation of the cells with LPA; LPA transiently induced the mRNA expression of CCN2; maximum expression levels were observed 2 h following stimulation with LPA. This increase was accompanied by CCN2 protein synthesis. LPA receptor1/3 was inhibited by Ki16425, a specific inhibitor of LPA1/3; as a result, the LPA-induced increase in CCN2 expression was abrogated. LPA also induced the membrane translocation of PKC and enhanced PKC activity in the osteoblasts. Pre-treatment of the osteoblasts with staurosporine prevented the increase in CCN2 expression by induced by LPA, and the activation of PKC by phorbol 12-myristate 13-acetate (PMA) enhanced CCN2 expression, indicating that the PKC pathway is involved in the LPA-induced increase in CCN2 expression. The interference of PKA signaling also led to the induction of CCN2 expresion by LPA. These data indicate that LPA increases CCN2 expression through the activation of PKC and PKA. Thus, the regulatory functions of the PKC and PKA pathways are implicated in the LPA-induced increase in CCN2 expression.

  1. The insulin-like growth factor system in chronic kidney disease: Pathophysiology and therapeutic opportunities

    PubMed Central

    Oh, Youngman

    2012-01-01

    The growth hormone–insulin-like growth factor–insulin-like growth factor binding protein (GH–IGF–IGFBP) axis plays a critical role in the maintenance of normal renal function and the pathogenesis and progression of chronic kidney disease (CKD). Serum IGF-I and IGFBPs are altered with different stages of CKD, the speed of onset, the amount of proteinuria, and the potential of remission. Recent studies demonstrate that growth failure in children with CKD is due to a relative GH insensitivity and functional IGF deficiency. The functional IGF deficiency in CKD results from either IGF resistance due to increased circulating levels of IGFBPs or IGF deficiency due to increased urinary excretion of serum IGF–IGFBP complexes. In addition, not only GH and IGFs in circulation, but locally produced IGFs, the high-affinity IGFBPs, and low-affinity insulin-like growth factor binding protein-related proteins (IGFBP-rPs) may also affect the kidney. With respect to diabetic kidney disease, there is growing evidence suggesting that GH, IGF-I, and IGFBPs are involved in the pathogenesis of diabetic nephropathy (DN). Thus, prevention of GH action by blockade either at the receptor level or along its signal transduction pathway offers the potential for effective therapeutic opportunities. Similarly, interrupting IGF-I and IGFBP actions also may offer a way to inhibit the development or progression of DN. Furthermore, it is well accepted that the systemic inflammatory response is a key player for progression of CKD, and how to prevent and treat this response is currently of great interest. Recent studies demonstrate existence of IGF-independent actions of high-affinity and low-affinity-IGFBPs, in particular, antiinflammatory action of IGFBP-3 and profibrotic action of IGFBP-rP2/CTGF. These findings reinforce the concept in support of the clinical significance of the IGF-independent action of IGFBPs in the assessment of pathophysiology of kidney disease and its therapeutic

  2. Palabras clave SmokefreeTXT | Smokefree Español

    Cancer.gov

    Reciba gratuitamente estímulos para dejar de fumar, consejos y recomendaciones 24 horas al día, los 7 días de la semana en su celular con SmokefreeTXT en Español. Envíe LIBRE al 47848 para suscríbirse.

  3. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate.

    PubMed

    Hsieh, Yu-Ping; Wu, King-Jean; Chen, Hsin-Ming; Deng, Yi-Ting

    2017-07-15

    Oral submucous fibrosis (OSF) is a premalignant condition caused by the chewing of areca nut (AN). Transforming growth factor β (TGFβ) plays a central role in the pathogenesis of OSF. Connective tissue growth factor (CTGF or CCN2) and early growth response-1 (Egr-1) are important mediators in the fibrotic response to TGFβ in several fibrotic disorders including OSF. Arecoline, a major AN alkaloid, induced the synthesis of CCN2 and Egr-1 in human buccal mucosal fibroblast (BMFs). The aims of this study were to investigate whether arecoline-induced CCN2 and Egr-1 syntheses are mediated through TGFβ1 signaling and to inspect the detailed mechanisms involved. Western blot and TGFβ1 Emax(®) ImmunoAssay were used to measure the effect of arecoline on the TGFβ signaling pathways. 2',7'-dichlorodihydrofluorescein diacetate and MitoSOX™ Red were used to measure the effect of arecoline on the cellular and mitochondrial reactive oxygen species (ROS). Arecoline induced latent TGFβ1 activation, Smad2 phosphorylation, and mitochondrial and total cellular ROS in BMFs. TGFβ-neutralizing antibody completely inhibited the arecoline-induced synthesis of CCN2 and Egr-1. Mito-TEMPO, a mitochondria-targeted antioxidant, completely suppressed arecoline-induced latent TGFβ1 activation and mitochondrial and total cellular ROS. Epigallocatechin-3-gallate (EGCG) dose-dependently inhibited arecoline-induced TGFβ1 activation and mitochondrial ROS in BMFs. Our results indicated that arecoline-induced mitochondrial ROS plays pivotal roles in the activation of latent TGFβ1 leading to the initiation of TGFβ1 signaling and subsequent increase in the synthesis of CCN2 and Egr-1. EGCG can be a useful agent in the chemoprevention and treatment of OSF. Copyright © 2017. Published by Elsevier B.V.

  4. The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis

    DTIC Science & Technology

    2009-05-01

    trichrome staining of the samples also showed the same results. Notably, increased hair follicles were inconsistently seen in Ctgf siRNA- and Sparc siRNA...Real-Time PCR System in Caucasian, African American and Hispanic populations. Genotyping results of all five SNPs passed quality tests for Hardy...by the comparison of minor allele frequencies of the cases and controls, with significance determined by p-values of chi-square tests , Cochran

  5. The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells

    PubMed Central

    Rodrigues-Diez, Raúl R.; Orejudo, Macarena; Rodrigues-Diez, Raquel; Briones, Ana Maria; Bosch-Panadero, Enrique; Kery, Gyorgy; Pato, Janos; Ortiz, Alberto; Salaices, Mercedes; Egido, Jesus; Ruiz-Ortega, Marta

    2015-01-01

    Abstract Aims: Connective tissue growth factor (CTGF/CCN2) is a developmental gene upregulated in pathological conditions, including cardiovascular diseases, whose product is a matricellular protein that can be degraded to biologically active fragments. Among them, the C-terminal module IV [CCN2(IV)] regulates many cellular functions, but there are no data about redox process. Therefore, we investigated whether CCN2(IV) through redox signaling regulates vascular responses. Results: CCN2(IV) increased superoxide anion (O2•−) production in murine aorta (ex vivo and in vivo) and in cultured vascular smooth muscle cells (VSMCs). In isolated murine aorta, CCN2(IV), via O2•−, increased phenylephrine-induced vascular contraction. CCN2(IV) in vivo regulated several redox-related processes in mice aorta, including increased nonphagocytic NAD(P)H oxidases (Nox)1 activity, protein nitrosylation, endothelial dysfunction, and activation of the nuclear factor-κB (NF-κB) pathway and its related proinflammatory factors. The role of Nox1 in CCN2(IV)-mediated vascular responses in vivo was investigated by gene silencing. The administration of a Nox1 morpholino diminished aortic O2•− production, endothelial dysfunction, NF-κB activation, and overexpression of proinflammatory genes in CCN2(IV)-injected mice. The link CCN2(IV)/Nox1/NF-κB/inflammation was confirmed in cultured VSMCs. Epidermal growth factor receptor (EGFR) is a known CCN2 receptor. In VSMCs, CCN2(IV) activates EGFR signaling. Moreover, EGFR kinase inhibition blocked vascular responses in CCN2(IV)-injected mice. Innovation and Conclusion: CCN2(IV) is a novel prooxidant factor that in VSMCs induces O2•− production via EGFR/Nox1 activation. Our in vivo data demonstrate that CCN2(IV) through EGFR/Nox1 signaling pathway induces endothelial dysfunction and activation of the NF-κB inflammatory pathway. Therefore, CCN2(IV) could be considered a potential therapeutic target for redox-related cardiovascular

  6. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways

    SciTech Connect

    Bordonaro, Michael Tewari, Shruti Atamna, Wafa Lazarova, Darina L.

    2011-06-10

    Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.

  7. Behavioral factors.

    PubMed

    Zero, D T; Lussi, A

    2006-01-01

    During and after an erosive challenge, behavioral factors play a role in modifying the extent of erosive tooth wear. The manner that dietary acids are introduced into the mouth (gulping, sipping, use of a straw) will affect how long the teeth are in contact with the erosive challenge. The frequency and duration of exposure to an erosive agent is of paramount importance. Night-time exposure (e.g. baby bottle-feeding) to erosive agents may be particularly destructive because of the absence of salivary flow. Health-conscious individuals tend to ingest acidic drinks and juices more frequently and tend to have higher than average oral hygiene. While good oral hygiene is of proven value in the prevention of periodontal disease and dental caries, frequent toothbrushing with abrasive oral hygiene products may enhance erosive tooth wear. Unhealthy lifestyles such as consumption of designer drugs, alcopops and alcohol abuse are other important behavioral factors.

  8. Factor IX assay

    MedlinePlus

    Christmas factor assay; Serum factor IX; Hemophilic factor B; Plasma thromboplastin component; PTC ... chap 137. Chernecky CC, Berger BJ. Factor IX (Christmas factor, hemophilic factor B, plasma thromboplastin component, PTC) - ...

  9. Comparison of transforming growth factor beta expression in healthy and diseased human tendon.

    PubMed

    Goodier, Henry C J; Carr, Andrew J; Snelling, Sarah J B; Roche, Lucy; Wheway, Kim; Watkins, Bridget; Dakin, Stephanie G

    2016-02-17

    Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p < 0.01) in diseased compared to healthy tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p < 0.01). BMP-2, BMP-7 and CTGF mRNA remained unchanged with tendon disease. We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has

  10. Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers

    SciTech Connect

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; Pradeep, Sunila; Wang, Wanqin; Huang, Qian; Court, Karem A.; Liu, Tao; Nie, Song; Rodriguez-Aguayo, Cristian; Shen, Fangrong; Huang, Yan; Hisamatsu, Takeshi; Mitamura, Takashi; Jennings, Nicholas; Shim, Jeajun; Dorniak, Piotr L.; Mangala, Lingegowda S.; Petrillo, Marco; Petyuk, Vladislav A.; Schepmoes, Athena A.; Shukla, Anil K.; Torres-Lugo, Madeline; Lee, Ju-Seog; Rodland, Karin D.; Fagotti, Anna; Lopez-Berestein, Gabriel; Li, Chun; Sood, Anil K.

    2016-11-01

    Therapeutic hyperthermia involves raising the temperature of a tumor tissue to 40–43°C. It has been used for treatment of ovarian and other cancers. The rationale for this therapy is based on the direct-killing effects of temperatures above 41-42°C (Wust et al., 2002). Hyperthermia is also applied as an adjunctive therapy with various established cancer treatments, such as radiotherapy and chemotherapy, to sensitize cancers to their effects (Moyer and Delman, 2008; Nagata et al., 1997; Palazzi et al., 2010). Some studies suggested that hyperthermia activates the immune systems against tumor cells by increasing the release of heat shock proteins (HSPs) associated with tumor-specific antigens from heat-stressed or dying tumor cells that are phagocytized by antigen-presenting cells (APCs) (Binder et al., 2000). As interest in hyperthermic treatment of cancer has increased, researchers have made significant progress in developing strategies to heat tumors via local, regional, and whole-body hyperthermia with advancements in surgical techniques, equipment, and nanotechnology (van der Zee, 2002). In localized hyperthermia, heat is applied to a small area restricted to the tumor using various techniques that deliver energy for heating. Different types of energy may be used, including microwaves and radio waves (Gazelle et al., 2000; Seki et al., 1999), magnetic heating (Lee et al., 2011; Rodriguez-Luccioni et al., 2011), and ultrasound (Jolesz and Hynynen, 2002). Regional hyperthermia is applied via perfusion of a limb, organ, or body cavity with heated fluids. For example, the intraperitoneal route of heated chemotherapy administration (hyperthermic intraperitoneal chemotherapy [HIPEC]), which usually lasts 60-120 min with continuous cycling of the chemotherapeutic agent at 42°C, enables direct contact between the tumor cells and the chemotherapeutic agent to control all residual microscopic disease, including microscopic ovarian cancers (Jinny Ha, 2012). Even though hyperthermia is a promising improvement of cancer treatment, multiple obstacles remain to be cleared. One of the major issues is that the tumor temperatures that must be reached for obtaining clinical efficacy are undefined (Wust et al., 2002). In the present study, we monitored the temperature transition in tumors during HIPEC in ovarian cancer patients (Figure S1). Even though the perfusion temperature at the entrance was maintained at 42.5°C, the temperature in most of the tumors was about 40°C, which is the temperature seen with just a high fever, and the clinical benefit of these lower temperatures was unclear. Also, no data on predictors of sensitivity of ovarian and uterine tumors to hyperthermia has been addressed. The purpose of the present study was to determine the molecular mechanism of response of gynecological cancer cells to hyperthermia. We hypothesized that inhibition of a critical gene of hyperthermia resistance by small interfering RNA (siRNA) can sensitize ovarian and uterine cancers to hyperthermia. To achieve this, we explored the genes that regulate hyperthermia resistance by comparing gene and protein expression between hyperthermia sensitive and resistant cells. We performed that silencing of the novel target gene could sensitize hyperthermia resistant cancer cells to hyperthermic treatment both in vitro and orthotopic ovarian cancer models in vivo with copper sulfate nanoparticles and near-infrared laser treatment.

  11. Pancreatic Cancer Risk Factors

    MedlinePlus

    ... Cancer Causes, Risk Factors, and Prevention Pancreatic Cancer Risk Factors A risk factor is anything that affects ... these are risk factors for exocrine pancreatic cancer . Risk factors that can be changed Tobacco use Smoking ...

  12. [Subtypes of mild cognitive impairment in Parkinson's disease and factors predicting its becoming dementia].

    PubMed

    Toribio-Diaz, M Elena; Carod-Artal, Francisco J

    2015-07-01

    Introduccion. El deterioro cognitivo puede aparecer en las etapas mas iniciales de la enfermedad de Parkinson (EP). Determinar la prevalencia del deterioro cognitivo leve (DCL) como etapa de transicion o sus diferentes perfiles resulta complicado por la ausencia de criterios diagnosticos consensuados. Objetivo. Revisar el concepto de DCL en la EP, sus criterios diagnosticos y los factores predictores de conversion a demencia. Pacientes y metodos. Revision sistematica de los articulos publicados en Medline (PubMed) utilizando la combinacion de las palabras clave 'deterioro cognitivo leve' y 'enfermedad de Parkinson'. Resultados. Los criterios diagnosticos del DCL en la EP publicados por la Sociedad de Trastornos del Movimiento, a pesar de no estar validados, constituyen una importante herramienta para el diagnostico de estos pacientes. Su aplicacion se ve influida por las siguientes limitaciones: la heterogeneidad de los deficits cognitivos descritos en la EP, su evolucion variable, que dificulta el hallazgo de factores predictores de conversion a demencia, la seleccion de las pruebas neuropsicologicas mas apropiadas y la determinacion de los puntos de corte mas idoneos, y las caracteristicas del paciente, etapa de la enfermedad y tipo de tratamiento antiparkinsoniano. Conclusiones. Marcadores neuropsicologicos, de neuroimagen, biomarcadores o la limitacion en algunas actividades instrumentales son muy prometedores para la deteccion de pacientes con DCL en la EP y riesgo elevado de conversion a demencia.

  13. Factor VII deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  14. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  15. Heart disease - risk factors

    MedlinePlus

    Heart disease - prevention; CVD - risk factors; Cardiovascular disease - risk factors; Coronary artery disease - risk factors; CAD - risk ... a certain health condition. Some risk factors for heart disease you cannot change, but some you can. ...

  16. Risk Factors and Prevention

    MedlinePlus

    ... Resources Risk Factors & Prevention Back to Patient Resources Risk Factors & Prevention Even people who look healthy and ... Blood Pressure , high cholesterol, diabetes, and thyroid disease. Risk Factors For Arrhythmias and Heart Disease The following ...

  17. Resolution with Limited Factoring

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    The resolution principle was originally proposed by J.A. Robinson. Resolution with factoring rule is complete for the first-order logic. However, unlimited applications of factoring rule may generate many irrelevant and redundant clauses. Noll presented resolution rule with half-factoring. In this paper, we demonstrate how to eliminate the half-factoring.

  18. Constructivism, Factoring, and Beliefs.

    ERIC Educational Resources Information Center

    Rauff, James V.

    1994-01-01

    Discusses errors made by remedial intermediate algebra students in factoring polynomials in light of student definitions of factoring. Found certain beliefs about factoring to logically imply many of the errors made. Suggests that belief-based teaching can be successful in teaching factoring. (16 references) (Author/MKR)

  19. Psychological factors affecting migraine.

    PubMed

    Shulman, B H

    1989-01-01

    Psychological factors are known to increase the severity and intensity of headaches. When they are shown to be present, an appropriate psychiatric diagnosis is the Diagnostic and Statistical Manual's (DSMIII-R) category of psychological factors affecting physical condition (code no. 316.0). These factors can be differentiated into stress factors, personality traits, psychodynamic factors, learned behaviors, and mood disturbances. The factors overlap and intertwine in the average headache patient. Attention to these factors in a systematic way should enhance our understanding and treatment of the chronic headache patient.

  20. ISS Payload Human Factors

    NASA Technical Reports Server (NTRS)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  1. Activation of human factor IX (Christmas factor).

    PubMed Central

    Di Scipio, R G; Kurachi, K; Davie, E W

    1978-01-01

    Human Factor IX (Christmas factor) is a single-chain plasma glycoprotein (mol wt 57,000) that participates in the middle phase of the intrinsic pathway of blood coagulation. It is present in plasma as a zymogen and is converted to a serine protease, Factor IXabeta, by Factor XIa (activated plasma thromboplastin antecedent) in the presence of calcium ions. In the activation reaction, two internal peptide bonds are hydrolyzed in Factor IX. These cleavages occur at a specific arginyl-alanine peptide bond and a specific arginyl-valine peptide bond. This results in the release of an activation peptide (mol wt approximately equal to 11,000) from the internal region of the precursor molecule and the generation of Factor IXabeta (mol wt approximately equal to 46,000). Factor IXabeta is composed of a light chain (mol wt approximately equal to 18,000) and a heavy chain (mol wt approximately equal to 28,000), and these chains are held together by a disulfide bond(s). The light chain originates from the amino terminal portion of the precursor molecule and has an amino terminal sequence of Tyr-Asn-Ser-Gly-Lys. The heavy chain originates from the carboxyl terminal region of the precursor molecule and contains an amino terminal sequence of Val-Val-Gly-Gly-Glu. The heavy chain of Factor IXabeta also contains the active site sequence of Phe-Cys-Ala-Gly-Phe-His-Glu-Gly-Arg-Asp-Ser-Cys-Gln-Gly-Asp-SER-Gly-Gly-Pro. The active site serine residue is shown in capital letters. Factor IX is also converted to Factor IXaalpha by a protease from Russell's viper venom. This activation reaction, however, occurs in a single step and involves only the cleavage of the internal arginyl-valine peptide bond. Human Factor IXabeta was inhibited by human antithrombin III by the formation of a one-to-one complex of enzyme and inhibitor. In this reaction, the inhibitor was tightly bound to the heavy chain of the enzyme. These data indicate that the mechanism of activation of human Factor IX and its

  2. Factoring Polynomials and Fibonacci.

    ERIC Educational Resources Information Center

    Schwartzman, Steven

    1986-01-01

    Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)

  3. Factoring Polynomials and Fibonacci.

    ERIC Educational Resources Information Center

    Schwartzman, Steven

    1986-01-01

    Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)

  4. Risk Factors for Scleroderma

    MedlinePlus

    ... Home For Patients Risk Factors Risk Factors for Scleroderma The cause of scleroderma is still unknown. Scientists ... help find improved therapies and a cure for scleroderma! Your gift today will be matched to have ...

  5. Prognostic factors in cancer.

    PubMed

    Gospodarowicz, Mary; O'Sullivan, Brian

    2003-01-01

    Diagnosis, prognosis, and treatment are the three core elements of the art of medicine. Modern medicine pays more attention to diagnosis and treatment but prognosis has been a part of the practice of medicine much longer than diagnosis. Cancer is a heterogeneous group of disease characterized by growth, invasion and metastasis. To plan the management of an individual cancer patient, the fundamental knowledge base includes the site of origin of the cancer, its morphologic type, and the prognostic factors specific to that particular patient and cancer. Most prognostic factors literature describes those factors that directly relate to the tumor itself. However, many other factors, not directly related to the tumor, also affect the outcome. To comprehensively represent these factors we propose three broad groupings of prognostic factors: 'tumor'-related prognostic factors, 'host'-related prognostic factors, and 'environment'-related prognostic factors. Some prognostic factors are essential to decisions about the goals and choice treatment, while others are less relevant for these purposes. To guide the use of various prognostic factors we have proposed a grouping of factors based on their relevance in everyday practice; these comprise 'essential,' 'additional,' and 'new and promising factors.' The availability of a comprehensive classification of prognostic factors assures an ordered and deliberate approach to the subject and provide safeguard against skewed approaches that may ignore large parts of the field. The current attention to tumor factors has diminished the importance of 'patient' (i.e., 'host'), and almost completely overshadows the importance of the 'environment'. This ignores the fact that the latter presents the greatest potential for immediate impact. The acceptance of a generic prognostic factor classification would facilitate communication and education about this most important subject in oncology.

  6. Rh Factor Blood Test

    MedlinePlus

    Tests and Procedures Rh factor blood test By Mayo Clinic Staff Rhesus (Rh) factor is an inherited protein found on the surface of red ... positive. Your health care provider will recommend an Rh factor test during your first prenatal visit. This test ...

  7. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  8. A Factor Simplicity Index.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2003-01-01

    Proposes an index for assessing the degree of factor simplicity in the context of principal components and exploratory factor analysis. The index does not depend on the scale of the factors, and its maximum and minimum are related only to the degree of simplicity in the loading matrix. (SLD)

  9. Aerostructural safety factor criteria

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    The present modification of the conventional safety factor method for aircraft structures evaluation involves the expression of deterministic safety factors in probabilistic tolerance limit ratios; these are found to involve a total of three factors that control the interference of applied and resistive stress distributions. The deterministic expression is extended so that it may furnish a 'relative ultimate safety' index that encompasses all three distribution factors. Operational reliability is developed on the basis of the applied and the yield stress distribution interferences. Industry standards are suggested to be derivable from factor selections that are based on the consequences of failure.

  10. Bayesian Exploratory Factor Analysis

    PubMed Central

    Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi

    2014-01-01

    This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517

  11. Acquired Factor V Inhibitor

    PubMed Central

    Hirai, Daisuke; Yamashita, Yugo; Masunaga, Nobutoyo; Katsura, Toshiaki; Akao, Masaharu; Okuno, Yoshiaki; Koyama, Hiroshi

    2016-01-01

    Inhibitors directed against factor V rarely occur, and the clinical symptoms vary. We herein report the case of a patient who presented with a decreased factor V activity that had decreased to <3 %. We administered vitamin K and 6 units of fresh frozen plasma, but she thereafter developed an intracerebral hemorrhage. It is unclear whether surgery >10 years earlier might have caused the development of a factor V inhibitor. The treatment of acquired factor V inhibitors is mainly the transfusion of platelet concentrates and corticosteroids. Both early detection and the early initiation of the treatment of factor V inhibitor are thus considered to be important. PMID:27746446

  12. Oversimplifying quantum factoring.

    PubMed

    Smolin, John A; Smith, Graeme; Vargo, Alexander

    2013-07-11

    Shor's quantum factoring algorithm exponentially outperforms known classical methods. Previous experimental implementations have used simplifications dependent on knowing the factors in advance. However, as we show here, all composite numbers admit simplification of the algorithm to a circuit equivalent to flipping coins. The difficulty of a particular experiment therefore depends on the level of simplification chosen, not the size of the number factored. Valid implementations should not make use of the answer sought.

  13. Graphical mass factorization

    NASA Astrophysics Data System (ADS)

    Humpert, B.; van Neerven, W. L.

    1981-07-01

    We point to the close analogy between (multiplicative) BPHZ-renormalization and mass factorization. Adapation of the forest formula to mass singular graphs allows an alternative proof of mass factorization. A diagrammatic method is developed to carry out diagram-by-diagram mass factorization with the mass singularities being subtracted by counter terms which built up the operator matrix element. The reasoning is exposed for deep-inelastic (DI) scattering and for the Drell-Yan (DY) process.

  14. [Acquired coagulant factor inhibitors].

    PubMed

    Nogami, Keiji

    2015-02-01

    Acquired coagulation factor inhibitors are an autoimmune disease causing bleeding symptoms due to decreases in the corresponding factor (s) which result from the appearance of autoantibodies against coagulation factors (inhibitor). This disease is quite different from congenital coagulation factor deficiencies based on genetic abnormalities. In recent years, cases with this disease have been increasing, and most have anti-factor VIII autoantibodies. The breakdown of the immune control mechanism is speculated to cause this disease since it is common in the elderly, but the pathology and pathogenesis are presently unclear. We herein describe the pathology and pathogenesis of factor VIII and factor V inhibitors. Characterization of these inhibitors leads to further analysis of the coagulation process and the activation mechanisms of clotting factors. In the future, with the development of new clotting examination method (s), we anticipate that further novel findings will be obtained in this field through inhibitor analysis. In addition, detailed elucidation of the coagulation inhibitory mechanism possibly leading to hemostatic treatment strategies for acquired coagulation factor disorders will be developed.

  15. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  16. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  17. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  18. Overview of environmental factors

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1989-01-01

    The orbital environment is complex, dynamic, and comprised of both natural and system-induced components. Several environment factors are important for materials. Materials selection/suitability determination requires consideration of each and all factors, including synergisms among them. Understanding and evaluating these effects will require ground testing, modeling, and focused flight experimentation.

  19. Rasch Factor Analysis.

    ERIC Educational Resources Information Center

    Wright, Benjamin D.

    Factor analysis and Rasch measurement are compared, showing how they address the same data with different interpretations of numerical status. Both methods use the same estimation method, with different measurement models, and they solve the same problem, with different utility. Factor analysis is faulted for mistaking stochastic observations of…

  20. Exposure Factors Handbook Chapter 16

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  1. Exposure Factors Handbook Chapter 6

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  2. Exposure Factors Handbook Chapter 11

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  3. Exposure Factors Handbook Chapter 12

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  4. Exposure Factors Handbook Chapter 7

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  5. Exposure Factors Handbook Chapter 15

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  6. Exposure Factors Handbook (2011 Edition)

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  7. Exposure Factors Handbook Chapter 19

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  8. Exposure Factors Handbook Chapter 1

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  9. Exposure Factors Handbook Chapter 17

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  10. Exposure Factors Handbook Chapter 5

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  11. Exposure Factors Handbook Chapter 9

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  12. Exposure Factors Handbook Chapter 2

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  13. Exposure Factors Handbook Chapter 3

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  14. Exposure Factors Handbook Chapter 18

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  15. Exposure Factors Handbook Chapter 14

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  16. Exposure Factors Handbook Chapter 10

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  17. Exposure Factors Handbook Chapter 8

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  18. Exposure Factors Handbook Chapter 13

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  19. Exposure Factors Handbook Chapter 4

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  20. Risk Factors for Tuberculosis

    PubMed Central

    Narasimhan, Padmanesan; Wood, James; MacIntyre, Chandini Raina; Mathai, Dilip

    2013-01-01

    The risk of progression from exposure to the tuberculosis bacilli to the development of active disease is a two-stage process governed by both exogenous and endogenous risk factors. Exogenous factors play a key role in accentuating the progression from exposure to infection among which the bacillary load in the sputum and the proximity of an individual to an infectious TB case are key factors. Similarly endogenous factors lead in progression from infection to active TB disease. Along with well-established risk factors (such as human immunodeficiency virus (HIV), malnutrition, and young age), emerging variables such as diabetes, indoor air pollution, alcohol, use of immunosuppressive drugs, and tobacco smoke play a significant role at both the individual and population level. Socioeconomic and behavioral factors are also shown to increase the susceptibility to infection. Specific groups such as health care workers and indigenous population are also at an increased risk of TB infection and disease. This paper summarizes these factors along with health system issues such as the effects of delay in diagnosis of TB in the transmission of the bacilli. PMID:23476764

  1. Environmental Factors in Autism

    PubMed Central

    Grabrucker, Andreas M.

    2013-01-01

    Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed. PMID:23346059

  2. Factor V Leiden thrombophilia.

    PubMed

    Kujovich, Jody Lynn

    2011-01-01

    Factor V Leiden is a genetic disorder characterized by a poor anticoagulant response to activated Protein C and an increased risk for venous thromboembolism. Deep venous thrombosis and pulmonary embolism are the most common manifestations, but thrombosis in unusual locations also occurs. The current evidence suggests that the mutation has at most a modest effect on recurrence risk after initial treatment of a first venous thromboembolism. Factor V Leiden is also associated with a 2- to 3-fold increased relative risk for pregnancy loss and possibly other obstetric complications, although the probability of a successful pregnancy outcome is high. The clinical expression of Factor V Leiden is influenced by the number of Factor V Leiden alleles, coexisting genetic and acquired thrombophilic disorders, and circumstantial risk factors. Diagnosis requires the activated Protein C resistance assay (a coagulation screening test) or DNA analysis of the F5 gene, which encodes the Factor V protein. The first acute thrombosis is treated according to standard guidelines. Decisions regarding the optimal duration of anticoagulation are based on an individualized assessment of the risks for venous thromboembolism recurrence and anticoagulant-related bleeding. In the absence of a history of thrombosis, long-term anticoagulation is not routinely recommended for asymptomatic Factor V Leiden heterozygotes, although prophylactic anticoagulation may be considered in high-risk clinical settings. In the absence of evidence that early diagnosis reduces morbidity or mortality, decisions regarding testing at-risk family members should be made on an individual basis.

  3. Environmental factors in autism.

    PubMed

    Grabrucker, Andreas M

    2012-01-01

    Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed.

  4. Factorized Graph Matching.

    PubMed

    Zhou, Feng; de la Torre, Fernando

    2015-11-19

    Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm.

  5. Conundrums with uncertainty factors.

    PubMed

    Cooke, Roger

    2010-03-01

    The practice of uncertainty factors as applied to noncancer endpoints in the IRIS database harkens back to traditional safety factors. In the era before risk quantification, these were used to build in a "margin of safety." As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is overprotective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or subchronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log-linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill-conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on nonparametric continuous Bayesian belief nets.

  6. Introduction to human factors.

    PubMed

    Bergman, Eric

    2012-03-01

    This paper provides an introduction to "human factors engineering," an applied science that seeks to optimize usability and safety of systems. Human factors engineering pursues this goal by aligning system design with the perceptual, cognitive, and physical capabilities of users. Human factors issues loom large in the diabetes management domain because patients and health care professionals interact with a complex variety of systems, including medical device hardware and software, which are themselves embedded within larger systems of institutions, people, and processes. Usability considerations must be addressed in these systems and devices to ensure safe and effective diabetes management.

  7. Factors Influencing Army Maintenance

    DTIC Science & Technology

    1989-01-01

    ARI Research Note 89-11 (N 00 Factors Influencing Army Maintenance LOloD Debra C. Evans and J. Thomas Roth Applied Science Associates, Inc. for...1.2.7 .2.7.C.1 11. TITLE (Include Security ClassifIcarIon) Factors Influencing Army Maintenance i2. FERSONAL AuTtiOR(S) Evans, Debra C., and Roth, J...y • ’ Factors and variables that influence maintenance for systems and related manpower, per- sonnel, and training (MPT) characteristics were

  8. Scaling factors: transcription factors regulating subcellular domains.

    PubMed

    Mills, Jason C; Taghert, Paul H

    2012-01-01

    Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.

  9. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  10. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  11. Sleep regulatory factors.

    PubMed

    Porkka-Heiskanen, T

    2014-01-01

    The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The pro- gram core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Knowledge of the factors that regulate the spontaneous sleep-wake cycle and factors that can affect this regulation forms the basis for diagnosis and treatment of the many common disorders of sleep.

  12. Factors Affecting Wound Healing

    PubMed Central

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  13. Rheumatoid Factors: Clinical Applications

    PubMed Central

    Castelli, Roberto

    2013-01-01

    Rheumatoid factors are antibodies directed against the Fc region of immunoglobulin G. First detected in patients with rheumatoid arthritis 70 years ago, they can also be found in patients with other autoimmune and nonautoimmune conditions, as well as in healthy subjects. Rheumatoid factors form part of the workup for the differential diagnosis of arthropathies. In clinical practice, it is recommended to measure anti-cyclic citrullinated peptide antibodies and rheumatoid factors together because anti-cyclic citrullinated peptide antibodies alone are only moderately sensitive, and the combination of the two markers improves diagnostic accuracy, especially in the case of early rheumatoid arthritis. Furthermore, different rheumatoid factor isotypes alone or in combination can be helpful when managing rheumatoid arthritis patients, from the time of diagnosis until deciding on the choice of therapeutic strategy. PMID:24324289

  14. von Willebrand Factor Test

    MedlinePlus

    ... Was this page helpful? Also known as: VWF:Ag; VWF:RCo; von Willebrand Panel; Ristocetin Cofactor Formal ... may include: Ratio of VWF:RCo to VWF:Ag Factor VIII binding assay Platelet VWF studies Collagen ...

  15. Explicit correlation factors

    NASA Astrophysics Data System (ADS)

    Johnson, Cole M.; Hirata, So; Ten-no, Seiichiro

    2017-09-01

    We analyze the performance of 17 different correlation factors in explicitly correlated second-order many-body perturbation calculations for correlation energies. Highly performing correlation factors are found to have near-universal shape and size in the short range of electron-electron distance (0 1.5 a.u.) is insignificant insofar as the factor becomes near constant, leaving an orbital expansion to describe decoupled electrons. An analysis based on a low-rank Taylor expansion of the correlation factor seems limited, except that a negative second derivative with the value of around -1.3 a.u. correlates with high performance.

  16. New microbial growth factor.

    PubMed Central

    Bok, S H; Casida, L E

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a new microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight, and it has high specific activity. When added to the diets for a meadow vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain. PMID:327929

  17. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  18. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  19. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  20. Impact factor distribution revisited

    NASA Astrophysics Data System (ADS)

    Huang, Ding-wei

    2017-09-01

    We explore the consistency of a new type of frequency distribution, where the corresponding rank distribution is Lavalette distribution. Empirical data of journal impact factors can be well described. This distribution is distinct from Poisson distribution and negative binomial distribution, which were suggested by previous study. By a log transformation, we obtain a bell-shaped distribution, which is then compared to Gaussian and catenary curves. Possible mechanisms behind the shape of impact factor distribution are suggested.

  1. General Factors in Graphs.

    DTIC Science & Technology

    1986-07-01

    conjectured that the general factor problem can be solved in polynomial time when, in each Bi, all the gaps (if any) have length one. We prove this conjecture...exactly bi edges incident with node i, for each i. This problem is well-solved. A polynomial algorithm is known (Edmonds and Johnson (1970)) as well as a...powerful theorem to characterize the existence of solutions ( Tutte (1952)). The following generalization of the factor problem was studied by Lovtsz

  2. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. [Pathological gambling: risk factors].

    PubMed

    Bouju, G; Grall-Bronnec, M; Landreat-Guillou, M; Venisse, J-L

    2011-09-01

    In France, consumption of gambling games increased by 148% between 1960 and 2005. In 2004, gamblers lost approximately 0.9% of household income, compared to 0.4% in 1960. This represents approximately 134 Euros per year and per head. In spite of this important increase, the level remains lower than the European average (1%). However, gambling practices may continue to escalate in France in the next few years, particularly with the recent announce of the legalisation of online games and sports betting. With the spread of legalised gambling, pathological gambling rates may increase in France in the next years, in response to more widely available and more attractive gambling opportunities. In this context, there is a need for better understanding of the risk factors that are implicated in the development and maintenance of pathological gambling. This paper briefly describes the major risk factors for pathological gambling by examining the recent published literature available during the first quarter of 2008. This documentary basis was collected by Inserm for the collective expert report procedure on Gambling (contexts and addictions). Seventy-two articles focusing on risk factors for pathological gambling were considered in this review. Only 47 of them were taken into account for analysis. The selection of these 47 publications was based on the guide on literature analysis established by the French National Agency for Accreditation and Assessment in Health (ANAES, 2000). Some publications from more recent literature have also been added, mostly about Internet gambling. We identify three major types of risk factors implicated in gambling problems: some of them are related to the subject (individual factors), others are related to the object of the addiction, here the gambling activity by itself (structural factors), and the last are related to environment (contextual or situational factors). Thus, the development and maintenance of pathological gambling seems to be

  4. Purification and characterization of an abnormal factor IX (Christmas factor) molecule. Factor IX Chapel Hill.

    PubMed Central

    Chung, K S; Madar, D A; Goldsmith, J C; Kingdon, H S; Roberts, H R

    1978-01-01

    Human Factor IX (Christmas factor) was isolated from the plasma of a patient with mild hemophilia B. The patient's plasma contained 5% Factor IX clotting activity but 100% Factor IX antigenic activity as determined by immunological assays, which included inhibitor neutralization and a radioimmunoassay for Factor IX. This abnormal Factor IX is called Factor IX Chapel Hill (Factor IXCH). Both normal Factor IX and Factor IXCH have tyrosine as the NH2-terminal amino acid. The two proteins have a similar molecular weight, a similar amino acid analysis, the same number of gamma-carboxyglutamic acid residues (10 gamma-carboxyglutamic acid residues), and a similar carbohydrate content. Both exist as a single-chain glycoprotein in plasma. The major difference between normal Factor IX and Factor IXCH is that the latter exhibits delayed activation to Factor IXa in the presence of Factor XIa and Ca2+. Thus, Factor IXCH differs from other previously described abnormal Factor IX molecules. Images PMID:711853

  5. CATTELL AND EYSENCK FACTOR SCORES RELATED TO COMREY PERSONALITY FACTORS.

    PubMed

    Comrey, A L; Duffy, K E

    1968-10-01

    The Eysenck Personality Inventory, the Cattell 16 PF Inventory, and the Comrey Personality Inventory were administered to 272 volunteers. Eysenck and Cattell factor scores were correlated with scores over homogeneous item groups (FHIDs) which define the Comrey test factors. This matrix was factor analyzed to relate the Eysenck and Cattell factor scores to the factor structure underlying the Comrey test. The Eysenck Neuroticism, Comrey Neuroticism, and Cattell second-order Anxiety factors appeared to match. The Eysenck Introversion and the Comrey Shyness factors also matched. The 16 Cattell primary factors overlapped but did not match with the Comrey factors.

  6. Breast cancer risk factors

    PubMed Central

    Ciszewski, Tomasz; Łopacka-Szatan, Karolina; Miotła, Paweł; Starosławska, Elżbieta

    2015-01-01

    Breast cancer is the most frequently diagnosed neoplastic disease in women around menopause often leading to a significant reduction of these women's ability to function normally in everyday life. The increased breast cancer incidence observed in epidemiological studies in a group of women actively participating in social and professional life implicates the necessity of conducting multidirectional studies in order to identify risk factors associated with the occurrence of this type of neoplasm. Taking the possibility of influencing the neoplastic transformation process in individuals as a criterion, all the risk factors initiating the process can be divided into two groups. The first group would include inherent factors such as age, sex, race, genetic makeup promoting familial occurrence of the neoplastic disease or the occurrence of benign proliferative lesions of the mammary gland. They all constitute independent parameters and do not undergo simple modification in the course of an individual's life. The second group would include extrinsic factors conditioned by lifestyle, diet or long-term medical intervention such as using oral hormonal contraceptives or hormonal replacement therapy and their influence on the neoplastic process may be modified to a certain degree. Identification of modifiable factors may contribute to development of prevention strategies decreasing breast cancer incidence. PMID:26528110

  7. [Prognostic factors in resuscitation].

    PubMed

    Bahloul, F; Le Gall, J R; Loirat, P; Alperovitch, A; Patois, E

    1988-10-08

    The outcome from intensive care is known to be influenced by such factors as age, previous health status, severity of the disease and diagnosis. In order to assess the influence of each individual factor, 3,687 patients from 38 French intensive care units were studied. For each patient were recorded: age, simplified acute physiological score (SAPS), previous health status, diagnosis, type of intensive care unit (medicine, scheduled or elective surgery) and immediate outcome. Each of these factors was found to influence the immediate survival rate. A multivariate analysis ranked the factors in the following order: SAPS, age, type of intensive care unit and previous health status. Diagnosis played a role in the prognosis since with a 10-15 points SAPS mortality was nil for drug overdose, 12 per cent for chronic obstructive pulmonary disease and 38 per cent for cardiogenic shock. However, a single diagnosis was made in only 37 per cent of the patients, as against 3 diagnoses in 17 per cent and 4 diagnoses or more in 7 per cent. When the type of intensive care unit was considered, the mean death rate was 20 per cent in medicine, 27 per cent in scheduled surgery and 5 per cent in elective surgery (P less than 0.001). Since this study showed a definite influence of each of the four factors on immediate survival, intensive care patients can be described and classified according to this system. However, it must be stressed that individual prognoses are extremely vague.

  8. Factor Loading Estimation Error and Stability Using Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Sass, Daniel A.

    2010-01-01

    Exploratory factor analysis (EFA) is commonly employed to evaluate the factor structure of measures with dichotomously scored items. Generally, only the estimated factor loadings are provided with no reference to significance tests, confidence intervals, and/or estimated factor loading standard errors. This simulation study assessed factor loading…

  9. Factor Loading Estimation Error and Stability Using Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Sass, Daniel A.

    2010-01-01

    Exploratory factor analysis (EFA) is commonly employed to evaluate the factor structure of measures with dichotomously scored items. Generally, only the estimated factor loadings are provided with no reference to significance tests, confidence intervals, and/or estimated factor loading standard errors. This simulation study assessed factor loading…

  10. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells

    PubMed Central

    Phanish, Mysore K.; Wahab, Nadia A.; Colville-Nash, Paul; Hendry, Bruce M.; Dockrell, Mark E. C.

    2005-01-01

    In chronic renal diseases, progressive loss of renal function correlates with advancing tubulo-interstitial fibrosis. TGFβ1-Smad (transforming growth factor-β1–Sma and Mad protein) signalling plays an important role in the development of renal tubulo-interstitial fibrosis. Secretion of CTGF (connective-tissue growth factor; CCN2) by PTECs (proximal-tubule epithelial cells) and EMT (epithelial–mesenchymal transdifferentiation) of PTECs to myofibroblasts in response to TGFβ are critical Smad-dependent events in the development of tubulo-interstitial fibrosis. In the present study we have investigated the distinct contributions of Smad2 and Smad3 to expression of CTGF, E-cadherin, α-SMA (α-smooth-muscle actin) and MMP-2 (matrix-metalloproteinase-2) in response to TGFβ1 treatment in an in vitro culture model of HKC-8 (transformed human PTECs). RNA interference was used to achieve selective and specific knockdown of Smad2 and Smad3. Cellular E-cadherin, α-SMA as well as secreted CTGF and MMP-2 were assessed by Western immunoblotting. TGFβ1 treatment induced a fibrotic phenotype with increased expression of CTGF, MMP-2 and α-SMA, and decreased expression of E-cadherin. TGFβ1-induced increases in CTGF and decreases in E-cadherin expression were Smad3-dependent, whereas increases in MMP-2 expression were Smad2-dependent. Increases in α-SMA expression were dependent on both Smad2 and Smad3 and were abolished by combined knockdown of both Smad2 and Smad3. In conclusion, we have demonstrated distinct roles for Smad2 and Smad3 in TGFβ1-induced CTGF expression and markers of EMT in human PTECs. This can be of therapeutic value in designing targeted anti-fibrotic therapies for tubulo-interstitial fibrosis. PMID:16253118

  11. Geothermal Plant Capacity Factors

    SciTech Connect

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  12. Multi-factor authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  13. Electromagnetic nucleon form factors

    SciTech Connect

    Bender, A.; Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.

  14. DSN human factors project

    NASA Technical Reports Server (NTRS)

    Chafin, R. L.; Martin, T. H.

    1980-01-01

    The project plan was to hold focus groups to identify the factors influencing the ease of use characteristics of software and to bond the problem. A questionnaire survey was conducted to evaluate those factors which were more appropriately measured with that method. The performance oriented factors were analyzed and relationships hypothesized. The hypotheses were put to test in the experimental phase of the project. In summary, the initial analysis indicates that there is an initial performance effect favoring computer controlled dialogue but the advantage fades fast as operators become experienced. The user documentation style is seen to have a significant effect on performance. The menu and prompt command formats are preferred by inexperienced operators. The short form mnemonic is least favored. There is no clear best command format but the short form mnemonic is clearly the worst.

  15. Psychological Factors in Asthma

    PubMed Central

    2008-01-01

    Asthma has long been considered a condition in which psychological factors have a role. As in many illnesses, psychological variables may affect outcome in asthma via their effects on treatment adherence and symptom reporting. Emerging evidence suggests that the relation between asthma and psychological factors may be more complex than that, however. Central cognitive processes may influence not only the interpretation of asthma symptoms but also the manifestation of measurable changes in immune and physiologic markers of asthma. Furthermore, asthma and major depressive disorder share several risk factors and have similar patterns of dysregulation in key biologic systems, including the neuroendocrine stress response, cytokines, and neuropeptides. Despite the evidence that depression is common in people with asthma and exerts a negative impact on outcome, few treatment studies have examined whether improving symptoms of depression do, in fact, result in better control of asthma symptoms or improved quality of life in patients with asthma. PMID:20525122

  16. Factor D Enzyme

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The trauma caused by the open heart surgery often triggers massive inflammation because the immune system overreacts. Factor D, the protein which plays a key role in the biological steps that activate this immune response prevents the imune system from inappropriately rurning out of control, allowing the patient to recover more rapidly. Factor D blockers, with their great potential to alleviate the complication of inflammation associated with heart surgery, are now being developed for clinical trials. These new drugs, developed from space research, should be commercially available as soon as year 2001.

  17. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  18. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  19. [Natural factors influencing sleep].

    PubMed

    Jurkowski, Marek K; Bobek-Billewicz, Barbara

    2007-01-01

    Sleep is a universal phenomenon of human and animal lives, although the importance of sleep for homeo-stasis is still unknown. Sleep disturbances influence many behavioral and physiologic processes, leading to health complications including death. On the other hand, sleep improvement can beneficially influence the course of healing of many disorders and can be a prognostic of health recovery. The factors influencing sleep have different biological and chemical origins. They are classical hormones, hypothalamic releasing and inhibitory hormones, neuropeptides, peptides and others as cytokines, prostaglandins, oleamid, adenosine, nitric oxide. These factors regulate most physiologic processes and are likely elements integrating sleep with physiology and physiology with sleep in health and disorders.

  20. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  1. Factor D Enzyme

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The trauma caused by the open heart surgery often triggers massive inflammation because the immune system overreacts. Factor D, the protein which plays a key role in the biological steps that activate this immune response prevents the imune system from inappropriately rurning out of control, allowing the patient to recover more rapidly. Factor D blockers, with their great potential to alleviate the complication of inflammation associated with heart surgery, are now being developed for clinical trials. These new drugs, developed from space research, should be commercially available as soon as year 2001.

  2. Endodontic surgery prognostic factors.

    PubMed

    Azarpazhooh, Amir; Shah, Prakesh S

    2011-01-01

    Medline, (PubMed) and the Cochrane databases together with hand searching of the following journals: Journal of Endodontics, International Endodontic Journal, Oral Surgery Oral Medicine Oral Pathology (name changed to Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics in 1995), Endodontics and Dental Traumatology (name changed to Dental Traumatology in 2001), Journal of Oral and Maxillofacial Surgery, and International Journal of Oral and Maxillofacial Surgery. Clinical studies evaluating apical surgery with placement of a root-end filling were included. Studies on apical surgery with orthograde root canal filling or about apicectomy alone without root-end filling were excluded, as were experimental and animal studies. Only studies with ≥ ten patients with a minimum six month follow-up period and clearly defined radiographic and clinical healing criteria, with healing reported for at least two categories of a specific prognostic factor were accepted. Studies reporting in English, German, French, Spanish, Italian, Portuguese and Scandinavian languages were included. All studies were assessed separately by two of the three authors, with disagreements resolved by discussion. Prognostic factors were divided into patient related, tooth-related or treatment-related factors. The reported percentages of healed teeth were pooled per category. The statistical method of Mantel-Haenszel was applied to estimate the odds ratios and their 95% confidence intervals. Homogeneity was assessed using Woolf's test. With regard to tooth-related factors, the following were identified as predictors of healing: absence of preoperative pain or signs, good density of the root canal filling and a periapical lesion size of ≤ 5 mm. With regard to treatment-related factors, teeth treated with the use of an endoscope tended to have higher healed rates than teeth treated without the use of an endoscope. Although the clinician may be able to control treatment

  3. Factor Analysis and Counseling Research

    ERIC Educational Resources Information Center

    Weiss, David J.

    1970-01-01

    Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…

  4. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  5. Factor Analysis and Counseling Research

    ERIC Educational Resources Information Center

    Weiss, David J.

    1970-01-01

    Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…

  6. Exercise and food factors.

    PubMed

    Aoi, Wataru

    2009-01-01

    Habitual exercise is beneficial to health as it improves metabolism, reduces the risk of cardiovascular disease, and maintains the immune system. Appropriate nutrition contributes to acceleration of health promotion due to exercise. Recommended daily allowance is elevated by physical activity and intake of various food factors such carbohydrates, proteins, vitamins, minerals, and other phytochemicals is required to avoid their shortage. Additional dietary food factors are effective not only in supplementation to satisfy the allowance but also in further acceleration of the benefits of fitness. Dietary nutrition is also important to maintain active function in the elderly by preventing aging-induced muscle atrophy and avoiding intense exercise-induced disorders. Recently, several food components have been found to show physiological effects, and some of them are considered to be useful for promoting or alternating the beneficial effects of exercise, maintaining homeostasis, and preventing muscle aging. However, some of these food factors should only be used when there is clear scientific evidence. Also, it is important to understand the physiological changes caused by exercise to use them correctly. This article describes various food factors that have been reported to be effective for improving health promotion, along with the relevant physiological changes that occur during exercise.

  7. Factors leading to dermatophytosis.

    PubMed

    Qadim, Hamideh Herizchi; Golforoushan, Farideh; Azimi, Hamideh; Goldust, Mohamad

    2013-01-01

    Tinea or dermatophytoses are of skin superficial and fungous infections affecting keratinized tissues such as hair, nail, and superficial layer of epidermis. This study aimed at evaluating some predisposing factors for tinea corporis, because elimination or treatment of them not only ceases spreading of the lesion but also prevents reinfection. In this descriptive cross-sectional study patients who were visited in Sina Hospital in Tabriz and had confirmed tinea corporis with direct fungal smear were selected. Other regarding were age, sex, occupation and predisposing factors. Of 76 confirmed cases, 46 (60.5%) were males and 30 (30.5%) were females. Tinea corporis was common in the third decade. The main predisposing factor was dry skin. Diabetes was found only in 4 (5.2%) patients. According to the results of the present research, xerosis was the most common factor leading to tinea corporis in these patients rather than diabetes or lymphoma that it's diagnosis, treatment and some simple educations may inhence improvement of tinea corporis and prevents other superficial infections too.

  8. Affective Factors: Anxiety

    ERIC Educational Resources Information Center

    Tasnimi, Mahshad

    2009-01-01

    Affective factors seem to play a crucial role in success or failure in second language acquisition. Negative attitudes can reduce learners' motivation and harm language learning, while positive attitudes can do the reverse. Discovering students' attitudes about language will help both teacher and student in teaching learning process. Anxiety is…

  9. Managing Multiple Risk Factors.

    DTIC Science & Technology

    1998-09-01

    cardiovascular disease among black women can be better controlled through the use of a stress reduction intervention that reduces the sympathetic nervous...All participants will have high normal (130/80) or mild hypertension and at least two additional risk factors for cardiovascular disease (e.g

  10. ERYTHROPOIETIC FACTOR PURIFICATION

    DOEpatents

    White, W.F.; Schlueter, R.J.

    1962-05-01

    A method is given for purifying and concentrating the blood plasma erythropoietic factor. Anemic sheep plasma is contacted three times successively with ion exchange resins: an anion exchange resin, a cation exchange resin at a pH of about 5, and a cation exchange resin at a pH of about 6. (AEC)

  11. Introduction to human factors

    SciTech Connect

    Winters, J.M.

    1988-03-01

    Some background is given on the field of human factors. The nature of problems with current human/computer interfaces is discussed, some costs are identified, ideal attributes of graceful system interfaces are outlined, and some reasons are indicated why it's not easy to fix the problems. (LEW)

  12. Factor Analysis and AIC.

    ERIC Educational Resources Information Center

    Akaike, Hirotugu

    1987-01-01

    The Akaike Information Criterion (AIC) was introduced to extend the method of maximum likelihood to the multimodel situation. Use of the AIC in factor analysis is interesting when it is viewed as the choice of a Bayesian model; thus, wider applications of AIC are possible. (Author/GDC)

  13. Assessment of Human Factors

    NASA Technical Reports Server (NTRS)

    Mount, Frances; Foley, Tico

    1999-01-01

    Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.

  14. [Risk factors for stroke].

    PubMed

    Mandić, Milan; Rancić, Natasa

    2011-01-01

    Stroke is the third cause of mortality both in men and in women throughout the world. In Serbia, stroke is the first cause of mortality in women older than 55 years of age and the second cause of death in men of the same age. Both ischemic heart diseases and ischemic stroke correlate with the same predisposing, potentially modifiable risk factors (hypertension, abnormal blood lipids and lipoproteins, cigarette smoking, physical inactivity, obesity, diabetes mellitus). Stroke does not usually occur on its own. Patients with stroke have a high prevalence of associated medical problems. These conditions may predict the stroke ("preexisting conditions"), occur for the first time after stroke ("post-stroke complications"), or present as manifestations of preexisting medical conditions after stroke. Risk factors for stroke are divided into the three groups: risk factors which cannot be influenced on such as: age, gender, positive family history of stroke, race: those which are modifiable such as: hypertension, diabetes mellitus, smoking cigarettes, obesity, physical inactivity and the third group consists of potential risk factors for stroke (consumption of alcohol, hormones, changes in fibrinolysis, changes in blood. Stroke remains a leading cause of long-term disability and premature death of both men and women. Consequently, stroke survivors are often handicapped and doomed to sedentary lifestyle which restrains performance of activities of daily living, increases the risk for falls, and may contribute to a higher risk for recurrent stroke and cardiovascular disease. Prevention of stroke is still a great medical and social problem. Further studies are required to investigate potential risk factors for the occurrence of stroke as well as the measures of primary and secondary prevention.

  15. On The Factor Score Controversy

    ERIC Educational Resources Information Center

    Green, Bert F. Jr.

    1976-01-01

    A summary and interpretation of the recent literature on the indeterminancy of factor scores is given in simple terms. A good index of factor score determinancy is the squared multiple correlation of the factor with the observed variables. (Author)

  16. Hypoxia-induced ADAM 17 expression is mediated by RSK1-dependent C/EBPβ activation in human lung fibroblasts.

    PubMed

    Chen, Jing-Yun; Lin, Chien-Huang; Chen, Bing-Chang

    2017-08-01

    Hypoxia was identified as a mediator of lung fibrosis in patients with chronic obstructive asthma (COA). Overexpression of a disintegrin and metalloproteinase 17 (ADAM 17) and connective tissue growth factor (CTGF) leads to development of tissue fibrosis. However, the signaling pathway in hypoxia-induced ADAM 17 expression remains poorly defined. In this study, we investigated the roles that ribosomal S-6 kinase 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ)-dependent ADAM 17 expression plays in hypoxia-induced CTGF expression in human lung fibroblasts. We observed that hypoxia caused increases in ADAM 17 expression and ADAM 17-luciferase activity in WI-38 cells. Hypoxia-induced CTGF-luciferase activity and CTGF expression were reduced in cells transfected with small interfering (si)RNA of ADAM 17 in WI-38 cells. Moreover, hypoxia-induced ADAM 17 expression was reduced by RSK1 siRNA and C/EBPβ siRNA. Hypoxia caused time-dependent increases in RSK1 phosphorylation at Thr359/Ser363. Exposure of cells to hypoxia resulted in increased C/EBPβ phosphorylation at Thr266 and C/EBPβ-luciferase activity in time-dependent manners, and these effects were suppressed by RSK1 siRNA. Hypoxia induced recruitment of C/EBPβ to the ADAM 17 promoter. Furthermore, CTGF-luciferase activity induced by hypoxia was attenuated by RSK1 siRNA and C/EBPβ siRNA. These results suggest that hypoxia instigates the RSK1-dependent C/EBPβ signaling pathway, which in turn initiates binding of C/EBPβ to the ADAM 17 promoter and ultimately induces ADAM 17 expression in human lung fibroblasts. Moreover, RSK1/C/EBPβ-dependent ADAM 17 expression is involved in hypoxia-induced CTGF expression. Our results suggest possible therapeutic approaches for treating hypoxia-mediated lung fibrosis in COA. Copyright © 2017. Published by Elsevier Ltd.

  17. Molecular analysis of arterial remodeling: a novel application of infrared imaging

    NASA Astrophysics Data System (ADS)

    Herman, Brad C.; Kundi, Rishi; Yamanouchi, Dai; Kent, K. Craig; Liu, Bo; Pleshko, Nancy

    2009-02-01

    Arterial remodeling, i.e. changes in size and/or structure of arteries, plays an important role in vascular disease. Conflicting findings have been reported as to whether an abundance of collagen causes inward or outward remodeling, phenomena that result in either a smaller or larger lumen, respectively. We hypothesize that the amount, type and quality of collagen influence the remodeling response. Here, we create mechanical injury to the rat carotid artery using a balloon catheter, and this leads to inward remodeling. Treatment of the artery with Connective Tissue Growth Factor (CTGF) causes outward remodeling. We investigated the arterial composition in injured CTGF-treated and non-CTGF-treated and sham CTGF-treated and non-CTGF treated arteries 14 days post-injury (n = 7-8 per group) using infrared imaging. A Perkin Elmer Spotlight Spectrum 300 FT-IR microscope was used for data collection. Cross-sections of paraffinembedded arteries were scanned at 2 cm-1 spectral resolution with spatial resolution of 6.25 μm/pixel, and data analyzed using Malvern Instruments ISys 5.0. Post-injury, we found a nearly 50% reduction in the average 1338/AM2 area ratio (correlated to collagen helical integrity). The most dramatic change was a 600% increase in the 1660/1690 peak height ratio, which has previously been related to collagen crosslink maturity. In all cases, CTGF treatment resulted in the observed changes in peak parameters normalized back to control values. Overall, these preliminary studies demonstrate that infrared imaging can provide insight into the underlying molecular changes that contribute to arterial disease.

  18. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    SciTech Connect

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  19. Helicopter human factors

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1988-01-01

    The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.

  20. Factors regulating microglia activation

    PubMed Central

    Kierdorf, Katrin; Prinz, Marco

    2013-01-01

    Microglia are resident macrophages of the central nervous system (CNS) that display high functional similarities to other tissue macrophages. However, it is especially important to create and maintain an intact tissue homeostasis to support the neuronal cells, which are very sensitive even to minor changes in their environment. The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly regulated by several intrinsic (e.g., Runx-1, Irf8, and Pu.1) and extrinsic factors (e.g., CD200, CX3CR1, and TREM2). Under physiological conditions, minor changes of those factors are sufficient to cause fatal dysregulation of microglial cell homeostasis and result in severe CNS pathologies. In this review, we discuss recent achievements that gave new insights into mechanisms that ensure microglia quiescence. PMID:23630462

  1. [Streptococcus pyogenes pathogenic factors].

    PubMed

    Bidet, Ph; Bonacorsi, S

    2014-11-01

    The pathogenicity of ß-hemolytic group A streptococcus (GAS) is particularly diverse, ranging from mild infections, such as pharyngitis or impetigo, to potentially debilitating poststreptococcal diseases, and up to severe invasive infections such as necrotizing fasciitis or the dreaded streptococcal toxic shock syndrome. This variety of clinical expressions, often radically different in individuals infected with the same strain, results from a complex interaction between the bacterial virulence factors, the mode of infection and the immune system of the host. Advances in comparative genomics have led to a better understanding of how, following this confrontation, GAS adapts to the immune system's pressure, either peacefully by reducing the expression of certain virulence factors to achieve an asymptomatic carriage, or on the contrary, by overexpressing them disproportionately, resulting in the most severe forms of invasive infection.

  2. Helicopter human factors

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1988-01-01

    The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.

  3. Smad transcription factors.

    PubMed

    Massagué, Joan; Seoane, Joan; Wotton, David

    2005-12-01

    Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

  4. Analytic pion form factor

    NASA Astrophysics Data System (ADS)

    Lomon, Earle L.; Pacetti, Simone

    2016-09-01

    The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of timelike data. The description of high-q2 data, in the timelike region, requires one more meson with ρ quantum numbers than listed in the 2014 Particle Data Group review.

  5. Safety performance factor.

    PubMed

    Venkataraman, Naray

    2008-01-01

    Workplace safety performance is computed using frequency rate (FR) and severity rate (SR). Only work time lost due to occupational incidents that need to be reported is counted. FR and SR are the 2 most important safety performance indicators that are applied universally; however, calculations differ from country to country. All injuries and time lost should be considered while calculating safety performance. The extent of severity does not matter as every incident is counted. So, a new factor has to be defined; it should be based on the hours or days lost due to each occupational incident, irrespective of its severity. The new safety performance factor is defined as the average human-hour unit lost due to occupational accidents/incidents, including fatalities, first-aid incidents, bruises and cuts. The formula is simple and easy to apply.

  6. Factors stimulating bone formation.

    PubMed

    Lind, M; Bünger, C

    2001-10-01

    The aim of this review is to describe major approaches for stimulating bone healing and to review other factors affecting bone healing. Spinal bone fusion after surgery is a demanding process requiring optimal conditions for clinical success. Bone formation and healing can be enhanced through various methods. Experimental studies have revealed an array of stimulative measures. These include biochemical stimulation by use of hormones and growth factors, physical stimulation through mechanical and electromagnetic measures, and bone grafting by use of bone tissue or bone substitutes. Newer biological techniques such as stem cell transplantation and gene therapy can also be used to stimulate bone healing. Apart from bone transplantation, clinical experience with the many stimulation modalities is limited. Possible areas for clinical use of these novel methods are discussed.

  7. Human factors workplace considerations

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    Computer workstations assume many different forms and play different functions today. In order for them to assume the effective interface role which they should play they must be properly designed to take into account the ubiguitous human factor. In addition, the entire workplace in which they are used should be properly configured so as to enhance the operational features of the individual workstation where possible. A number of general human factors workplace considerations are presented. This ongoing series of notes covers such topics as achieving comfort and good screen visibility, hardware issues (e.g., mouse maintenance), screen symbology features (e.g., labels, cursors, prompts), and various miscellaneous subjects. These notes are presented here in order to: (1) illustrate how one's workstation can be used to support telescience activities of many other people working within an organization, and (2) provide a single complete set of considerations for future reference.

  8. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  9. Factorized Diffusion Map Approximation

    PubMed Central

    Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos

    2013-01-01

    Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework. PMID:25309676

  10. Psychosomatic factors in dermatology.

    PubMed

    Urpe, Mauro; Pallanti, Stefano; Lotti, Torello

    2005-10-01

    Psychosomatics describes any aspect of dermatology with psychologic or psychiatric elements. Dermatologists know that a significant proportion of their practice involves patients for whom psychologic elements either partially or sometimes entirely dominate their presenting chief complaints. This article explores the role of psychosomatic factors in dermatologic disorders. The authors discuss the clinical interface between psychiatry, psychology and dermatology and the interpretation of possible relationships between cutaneous diseases, the role of the mind, and psychotherapeutic interventions.

  11. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    General guidance for designing field studies to measure bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) is not available. To develop such guidance, a series of modeling simulations were performed to evaluate the underlying factors and principles th...

  12. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    A series of modeling simulations were performed to develop an understanding of the underlying factors and principles involved in developing field sampling designs for measuring bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs. These simulations reveal...

  13. Risk Factors for Cholelithiasis.

    PubMed

    Pak, Mila; Lindseth, Glenda

    2016-01-01

    Gallstone disease is one of the most common public health problems in the United States. Approximately 10%-20% of the national adult populations currently carry gallstones, and gallstone prevalence is rising. In addition, nearly 750,000 cholecystectomies are performed annually in the United States; direct and indirect costs of gallbladder surgery are estimated to be $6.5 billion. Cholelithiasis is also strongly associated with gallbladder, pancreatic, and colorectal cancer occurrence. Moreover, the National Institutes of Health estimates that almost 3,000 deaths (0.12% of all deaths) per year are attributed to complications of cholelithiasis and gallbladder disease. Although extensive research has tried to identify risk factors for cholelithiasis, several studies indicate that definitive findings still remain elusive. In this review, predisposing factors for cholelithiasis are identified, the pathophysiology of gallstone disease is described, and nonsurgical preventive options are discussed. Understanding the risk factors for cholelithiasis may not only be useful in assisting nurses to provide resources and education for patients who are diagnosed with gallstones, but also in developing novel preventive measures for the disease.

  14. Fano factor estimation.

    PubMed

    Rajdl, Kamil; Lansky, Petr

    2014-02-01

    Fano factor is one of the most widely used measures of variability of spike trains. Its standard estimator is the ratio of sample variance to sample mean of spike counts observed in a time window and the quality of the estimator strongly depends on the length of the window. We investigate this dependence under the assumption that the spike train behaves as an equilibrium renewal process. It is shown what characteristics of the spike train have large effect on the estimator bias. Namely, the effect of refractory period is analytically evaluated. Next, we create an approximate asymptotic formula for the mean square error of the estimator, which can also be used to find minimum of the error in estimation from single spike trains. The accuracy of the Fano factor estimator is compared with the accuracy of the estimator based on the squared coefficient of variation. All the results are illustrated for spike trains with gamma and inverse Gaussian probability distributions of interspike intervals. Finally, we discuss possibilities of how to select a suitable observation window for the Fano factor estimation.

  15. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  16. The malingering factor.

    PubMed

    Williams, J Michael

    2011-04-01

    The influence of malingering and suboptimal performance on neuropsychological tests has become a major interest of clinical neuropsychologists. Methods to detect malingering have focused on specialized tests or embedded patterns associated with malingering present in the conventional neuropsychology tests. There are two stages to the study of their validity. The first stage involves whether the method can discriminate malingering subjects from those who are not malingering. In the second stage, they must be examined for their relationship to the conventional tests used to establish impairment and disability. Constantinou, Bauer, Ashendorf, Fisher, and McCaffrey (2005. Is poor performance on recognition memory effort measures indicative of generalized poor performance on neuropsychological tests? Archives of Clinical Neuropsychology, 20, 191-198.) conducted the only study in which correlations are presented between a commonly used symptom validity test, the Test of Memory Malingering (TOMM) and the subtests of the Wechsler Adult Intelligence Scale-Revised (WAIS-R). A factor analysis was conducted using these correlations. It revealed a clear malingering factor that explained significant variance in the TOMM and the WAIS-R subtests. The relationship of malingering with cognitive tests is complex: some tests are sensitive to malingering and others are not. Factor analysis can summarize the magnitude of variance associated with each test and reveal the patterns of inter-relationships between malingering and clinical tests. The analysis also suggested that malingering assessment methods could be improved by the addition of timing the responses.

  17. Molecular factors in migraine

    PubMed Central

    Kowalska, Marta; Prendecki, Michał; Kozubski, Wojciech; Lianeri, Margarita; Dorszewska, Jolanta

    2016-01-01

    Migraine is a common neurological disorder that affects 11% of adults worldwide. This disease most likely has a neurovascular origin. Migraine with aura (MA) and more common form - migraine without aura (MO) – are the two main clinical subtypes of disease. The exact pathomechanism of migraine is still unknown, but it is thought that both genetic and environmental factors are involved in this pathological process. The first genetic studies of migraine were focused on the rare subtype of MA: familial hemiplegic migraine (FHM). The genes analysed in familial and sporadic migraine are: MTHFR, KCNK18, HCRTR1, SLC6A4, STX1A, GRIA1 and GRIA3. It is possible that migraine is a multifactorial disease with polygenic influence. Recent studies have shown that the pathomechanisms of migraine involves both factors responsible for immune response and oxidative stress such as: cytokines, tyrosine metabolism, homocysteine; and factors associated with pain transmission and emotions e.g.: serotonin, hypocretin-1, calcitonin gene-related peptide, glutamate. The correlations between genetic variants of the HCRTR1 gene, the polymorphism 5-HTTLPR and hypocretin-1, and serotonin were observed. It is known that serotonin inhibits the activity of hypocretin neurons and may affect the appearance of the aura during migraine attack. The understanding of the molecular mechanisms of migraine, including genotype-phenotype correlations, may contribute to finding markers important for the diagnosis and treatment of this disease. PMID:27191890

  18. Human Factors Review Plan

    SciTech Connect

    Paramore, B.; Peterson, L.R.

    1985-12-01

    ''Human Factors'' is concerned with the incorporation of human user considerations into a system in order to maximize human reliability and reduce errors. This Review Plan is intended to assist in the assessment of human factors conditions in existing DOE facilities. In addition to specifying assessment methodologies, the plan describes techniques for improving conditions which are found to not adequately support reliable human performance. The following topics are addressed: (1) selection of areas for review describes techniques for needs assessment to assist in selecting and prioritizing areas for review; (2) human factors engineering review is concerned with optimizing the interfaces between people and equipment and people and their work environment; (3) procedures review evaluates completeness and accuracy of procedures, as well as their usability and management; (4) organizational interface review is concerned with communication and coordination between all levels of an organization; and (5) training review evaluates training program criteria such as those involving: trainee selection, qualification of training staff, content and conduct of training, requalification training, and program management.

  19. Human Platelets and Factor XI

    PubMed Central

    Lipscomb, Myatt S.; Walsh, Peter N.

    1979-01-01

    Because human platelets participate in the contact phase of intrinsic coagulation and contain a Factor XI-like coagulant activity, the nature of the Factor XI-like activity was examined and compared with purified plasma Factor XI. The platelet factor XI-like activity was sedimented with the particulate fraction of a platelet lysate, was inactivated by heat (t1/2 3.5 min, 56°C), was not a nonspecific phospholipid activity, and was destroyed by treatment with Triton X-100. Isolated platelet membranes were four-fold enriched in Factor XI activity and similarly enriched in plasma membrane marker enzymes. The Factor XI-like activity of platelet membranes was detected only when assayed in the presence of kaolin, which suggests that it is present in an unactivated form and can participate in contact activation. Concanavalin A inhibited the Factor XI-like activity of platelet lysates and platelet membranes but not of plasma or purified Factor XI. A platelet membrane-Factor XI complex was isolated after incubation of membranes with purified Factor XI. The Factor XI activity of the platelet membrane-plasma Factor XI complex was inhibited by concanavalin A, whereas unbound plasma Factor XI retained activity. An antibody raised against plasma Factor XI inhibited the in vitro Factor XI activity of plasma and of the platelet membrane-plasma Factor XI complex but had no effect on the endogenous Factor XI-like activity of washed lysed platelets or isolated platelet membranes. Washed platelets and isolated platelet membranes obtained from a Factor XI-deficient donor without a history of excessive bleeding had normal quantities of platelet Factor XI-like activity and normal behavior in the contact phase of coagulation (collagen-induced coagulant activity). These results indicate that platelet membranes contain an endogenous Factor XI-like activity that is functionally distinct from plasma Factor XI. PMID:447822

  20. Risk Factors for Eating Disorders

    ERIC Educational Resources Information Center

    Striegel-Moore, Ruth H.; Bulik, Cynthia M.

    2007-01-01

    The authors review research on risk factors for eating disorders, restricting their focus to studies in which clear precedence of the hypothesized risk factor over onset of the disorder is established. They illustrate how studies of sociocultural risk factors and biological factors have progressed on parallel tracks and propose that major advances…

  1. Inhibition of the activation of Hageman factor (factor XII) by platelet factor 4.

    PubMed

    Dumenco, L L; Everson, B; Culp, L A; Ratnoff, O D

    1988-09-01

    Platelet factor 4 is a polypeptide constituent of platelet alpha granules that is released during platelet aggregation and inhibits heparin-mediated reactions. Hageman factor (factor XII) is a plasma proenzyme that, when activated by certain negatively charged agents, initiates clotting via the intrinsic pathway of thrombin formation. In earlier studies using crude systems, platelet factor 4 inhibited activation of Hageman factor by dextran sulfate or cerebrosides, but not activation of Hageman factor by kaolin or ellagic acid. In the present study we examined the mechanisms of inhibition by platelet factor 4, using purified reagents. Platelet factor 4 inhibited activation of Hageman factor by ellagic acid, as measured by amidolysis of a synthetic substrate of activated Hageman factor, an effect inhibited by heparin or by an anti-platelet factor 4 antiserum. Coating glass tubes with platelet factor 4 before addition of normal plasma significantly lengthened the partial thromboplastin time of normal plasma. In addition, the clot-promoting properties of kaolin were inhibited by its prior exposure to platelet factor 4. Thus, the inhibitory properties of platelet factor 4 directed against the activation of Hageman factor were confirmed in a purified system. In this purified system, in contrast to earlier studies using crude systems, platelet factor 4 inhibited activation of Hageman factor by glass, ellagic acid, or kaolin.

  2. Neutron quality factor

    SciTech Connect

    1995-06-01

    Both the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP) have recommended that the radiation quality weighting factor for neutrons (Q{sub n}, or the corresponding new modifying factor, w{sub R}) be increased by a value of two for most radiation protection practices. This means an increase in the recommended value for Q{sub n} from a nominal value of 10 to a nominal value of 20. This increase may be interpreted to mean that the biological effectiveness of neutrons is two times greater than previously thought. A decision to increase the value of Q{sub n} will have a major impact on the regulations and radiation protection programs of Federal agencies responsible for the protection of radiation workers. Therefore, the purposes of this report are: (1) to examine the general concept of {open_quotes}quality factor{close_quotes} (Q) in radiation protection and the rationale for the selection of specific values of Q{sub n}; and (2) to make such recommendations to the Federal agencies, as appropriate. This report is not intended to be an exhaustive review of the scientific literature on the biological effects of neutrons, with the aim of defending a particular value for Q{sub n}. Rather, the working group examined the technical issues surrounding the current recommendations of scientific advisory bodies on this matter, with the aim of determining if these recommendations should be adopted by the Federal agencies. Ultimately, the group concluded that there was no compelling basis for a change in Q{sub n}. The report was prepared by Federal scientists working under the auspices of the Science Panel of the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC).

  3. [Factors affecting postoperative pain].

    PubMed

    Soler Company, E; Faus Soler, M; Montaner Abasolo, M; Morales Olivas, F; Martínez-Pons Navarro, V

    2001-04-01

    To determine the influence on the intensity of postoperative pain of the following variables: sex, age, type of surgery, surgical approach, anesthetic technique and analgesia administered. Six hundred twenty-three hospitalized patients were enrolled from the units of general and digestive surgery, gynecology and obstetrics, ophthalmology, otorhinolaryngology, traumatology and orthopedics, and urology. Pain intensity was measured on a visual analog scale (VAS) when the patient left the post-anesthesia recovery ward (PARU) and 24 and 48 h after surgery, and on a verbal evaluation scale (VES) during the first and second days after surgery. Gynecology is the department where the most pain is reported, both when the patient leaves the PARU (>= 4 for 56.6% of patients) and during the first day on the ward (71.3% of patients suffer pain of moderate or high intensity). The correlation of pain with duration of procedure was strongest in the urology and surgery units, with common variances of 32.3% and 23.4%, respectively. More pain is felt during open procedures in the traumatology and urology units, which is not the case in gynecology and surgery. Patients receiving general anesthesia leave the PARU with pain at 3.4 +/- 1.8 cm on the VAS scale, versus 1.3 +/- 1.6 cm for patients receiving locoregional anesthesia. Patients who received only ketorolac for pain in the PARU generally experienced less intense pain (2.5 +/- 2.0 cm) than did those who received metamizol (3.3 +/- 1.5 cm), morphine (4.0 +/- 1.8 cm) or tramadol (4.5 +/- 1.8 cm). Surgical department, surgical approach, anesthetic technique and, finally, analgesic administered are the factors that determine the intensity of postoperative pain. These factors should therefore be taken into account when establishing treatment protocols to assure adequate control of postoperative pain. Neither sex nor age were determining factors for the intensity of postoperative pain.

  4. Milestones and Impact Factors

    PubMed Central

    2010-01-01

    Environmental Health has just received its first Impact Factor by Thomson ISI. At a level of 2.48, this achievement is quite satisfactory and places Environmental Health in the top 25% of environmental science journals. When the journal was launched in 2002, it was still unclear whether the Open Access publishing model could be made into a viable commercial enterprise within the biomedical field. During the past eight years, Open Access journals have become widely available, although still covering only about 15% of journal titles. Major funding agencies and institutions, including prominent US universities, now require that researchers publish in Open Access journals. Because of the profound role of scientific journals for the sharing of results and communication between researchers, the advent of Open Access may be of as much significance as the transition from handwriting to printing via moveable type. As Environmental Health is an electronic Open Access journal, the numbers of downloads at the journal website can be retrieved. The top-20 list of articles most frequently accessed shows that all of them have been downloaded over 10,000 times. Back in 2002, the first article published was accessed only 49 times during the following month. A year later, the server had over 1,000 downloads per month, and now the total number of monthly downloads approaches 50,000. These statistics complement the Impact Factor and confirm the viability of Open Access in our field of research. The advent of digital media and its decentralized mode of distribution - the internet - have dramatically changed the control and financing of scientific information dissemination, while facilitating peer review, accelerating editorial handling, and supporting much needed transparency. Both the meaning and means of "having an impact" are therefore changing, as will the degree and way in which scientific journals remain "factors" in that impact. PMID:20615249

  5. From compatible factorization to near-compatible factorization

    NASA Astrophysics Data System (ADS)

    Aldiabat, Raja'i.; Ibrahim, Haslinda

    2014-12-01

    A compatible factorization of order ν, is an ν× ν-1/2 array in which the entries in row i form a near-one-factor with focus i, and the triples associated with the rows contain no repetitions. In this paper, we aim to amend this compatible factorization so that we can display ν(ν-1)/2 - 2ν/3 triples with the minimum repeated triples. Throughout this paper we propose a new type of factorization called near-compatible factorization. First, we present the compatible factorization towards developing a near-compatible factorization. Second, we discuss briefly the necessary and sufficient conditions for the existence of near-compatible factorization. Then, we exemplify the construction for case ν = 9 as a groundwork in developing near-compatible factorization.

  6. Human Factors Model

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Jack is an advanced human factors software package that provides a three dimensional model for predicting how a human will interact with a given system or environment. It can be used for a broad range of computer-aided design applications. Jack was developed by the computer Graphics Research Laboratory of the University of Pennsylvania with assistance from NASA's Johnson Space Center, Ames Research Center and the Army. It is the University's first commercial product. Jack is still used for academic purposes at the University of Pennsylvania. Commercial rights were given to Transom Technologies, Inc.

  7. Electromagnetic pion form factor

    SciTech Connect

    Roberts, C.D.

    1995-08-01

    A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.

  8. The "impact factor" revisited

    PubMed Central

    Dong, Peng; Loh, Marie; Mondry, Adrian

    2005-01-01

    The number of scientific journals has become so large that individuals, institutions and institutional libraries cannot completely store their physical content. In order to prioritize the choice of quality information sources, librarians and scientists are in need of reliable decision aids. The "impact factor" (IF) is the most commonly used assessment aid for deciding which journals should receive a scholarly submission or attention from research readership. It is also an often misunderstood tool. This narrative review explains how the IF is calculated, how bias is introduced into the calculation, which questions the IF can or cannot answer, and how different professional groups can benefit from IF use. PMID:16324222

  9. SARSCEST (human factors)

    NASA Technical Reports Server (NTRS)

    Parsons, H. Mcilvaine

    1988-01-01

    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed.

  10. Auxin response factors.

    PubMed

    Chandler, John William

    2016-05-01

    Auxin signalling involves the activation or repression of gene expression by a class of auxin response factor (ARF) proteins that bind to auxin response elements in auxin-responsive gene promoters. The release of ARF repression in the presence of auxin by the degradation of their cognate auxin/indole-3-acetic acid repressors forms a paradigm of transcriptional response to auxin. However, this mechanism only applies to activating ARFs, and further layers of complexity of ARF function and regulation are being revealed, which partly reflect their highly modular domain structure. This review summarizes our knowledge concerning ARF binding site specificity, homodimer and heterodimer multimeric ARF association and cooperative function and how activator ARFs activate target genes via chromatin remodelling and evolutionary information derived from phylogenetic comparisons from ARFs from diverse species. ARFs are regulated in diverse ways, and their importance in non-auxin-regulated pathways is becoming evident. They are also embedded within higher-order transcription factor complexes that integrate signalling pathways from other hormones and in response to the environment. The ways in which new information concerning ARFs on many levels is causing a revision of existing paradigms of auxin response are discussed.

  11. Fungal CSL transcription factors

    PubMed Central

    Převorovský, Martin; Půta, František; Folk, Petr

    2007-01-01

    Background The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins. Results We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied. Conclusion Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans. PMID:17629904

  12. Leukemia inhibitory factor (LIF).

    PubMed

    Nicola, Nicos A; Babon, Jeffrey J

    2015-10-01

    Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  14. Leukemia Inhibitory Factor (LIF)

    PubMed Central

    Nicola, Nicos A; Babon, Jeffrey J

    2015-01-01

    Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells. PMID:26187859

  15. The atrial natriuretic factor.

    PubMed Central

    Genest, J

    1986-01-01

    In less than three years since the rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats was reported the factor responsible for the diuretic, natriuretic, and vasodilating activity of the atrial homogenates was isolated, its chemical structure elucidated, and its total synthesis achieved. Also the cDNA and the gene encoding for the atrial natriuretic factor in mice, rats, and man have been cloned and the chromosomal site identified. The major effects of this hormone are vasodilatation, prevention and inhibition of the contraction induced by noradrenaline and angiotensin II, diuresis, and natriuresis associated in most instances with a pronounced increase in glomerular filtration rate and filtration fraction, inhibition of aldosterone secretion, and considerable stimulation of particulate guanylate cyclase activity. High density specific binding sites have been demonstrated in the zona glomerulosa of the adrenal cortex, in the renal glomeruli, and in the collecting ducts, and in the brain areas involved in the regulation of blood pressure and of sodium and water (AV3V region, subfornical organ, nucleus tractus solitarius, area postrema). Images Fig 1 Fig 5 PMID:2945572

  16. Tumor necrosis factor.

    PubMed

    Chu, Wen-Ming

    2013-01-28

    Tumor necrosis factor (TNF) is a critical cytokine, which contributes to both physiological and pathological processes. This mini-review will briefly touch the history of TNF discovery, its family members and its biological and pathological functions. Then, it will focus on new findings on the molecular mechanisms of how TNF triggers activation of the NF-κB and AP-1 pathways, which are critical for expression of pro-inflammatory cytokines, as well as the MLKL cascade, which is critical for the generation of ROS in response to TNF. Finally, this review will briefly summarize recent advances in understanding TNF-induced cell survival, apoptosis and necrosis (also called necroptosis). Understanding new findings and emerging concepts will impact future research on the molecular mechanisms of TNF signaling in immune disorders and cancer-related inflammation.

  17. Human factors in aviation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L. (Editor); Nagel, David C. (Editor)

    1988-01-01

    The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.

  18. Factorization of Observables

    NASA Astrophysics Data System (ADS)

    Eliaš, Peter; Frič, Roman

    2017-06-01

    Categorical approach to probability leads to better understanding of basic notions and constructions in generalized (fuzzy, operational, quantum) probability, where observables—dual notions to generalized random variables (statistical maps)—play a major role. First, to avoid inconsistencies, we introduce three categories L, S, and P, the objects and morphisms of which correspond to basic notions of fuzzy probability theory and operational probability theory, and describe their relationships. To illustrate the advantages of categorical approach, we show that two categorical constructions involving observables (related to the representation of generalized random variables via products, or smearing of sharp observables, respectively) can be described as factorizing a morphism into composition of two morphisms having desired properties. We close with a remark concerning products.

  19. [Pathogenic factors of mycoplasma].

    PubMed

    Shimizu, Takashi

    2015-01-01

    Mycoplasmas are smallest organisms capable of self-replication and cause various diseases in human. Especially, Mycoplasma pneumoniae is known as an etiological agent of pneumonia. From 2010 to 2012, epidemics of M. pneumoniae infections were reported worldwide (e.g., in France, Israel, and Japan). In the diseases caused by mycoplasmas, strong inflammatory responses induced by mycoplasmas have been thought to be important. However, mycoplasmas lack of cell wall and do not possess inflammation-inducing endotoxin such as lipopolysaccharide (LPS). We purified inflammation-inducing factors from pathogenic mycoplasmas and identified that they were lipoproteins. Lipoproteins derived from mycoplasmas induced inflammatory responses through Toll-like receptor (TLR) 2. In addition, we demonstrated that cytadherent property of M. pneumoniae played an important role in induction of inflammatory responses. Cytadherent property of M. pneumoniae induced inflammatory responses through TLR2 independent pathway. TLR4, inflammasomes, and autophagy were involved in this TLR2 independent induction of inflammatory responses.

  20. Exposure factors handbook

    SciTech Connect

    Konz, J.J.; Lisi, K.; Friebele, E.; Dixon, D.A.

    1989-07-01

    The document provides a summary of the available data on various factors used in assessing human exposure including drinking-water consumption, consumption rates of broad classes of food including fruits, vegetables, beef, dairy products, and fish; soil ingestion; inhalation rate; skin area; lifetime; activity patterns; and body weight. Additionally, a number of specific exposure scenarios are identified with recommendations for default values to use when site-specific data are not available. The basic equations using these parameters to calculate exposure levels are also presented for each scenario. Default values are presented as ranges from typical to reasonable worst case and as frequency distributions where appropriate data were available. Finally, procedures for assessing the uncertainties in exposure assessments are also presented with illustrative examples. These procedures include qualitative and quantitative methods such as Monte Carlo and sensitivity analysis.

  1. Pion form factor

    SciTech Connect

    Ryong Ji, C.; Pang, A.; Szczepaniak, A.

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  2. Unity power factor converter

    NASA Technical Reports Server (NTRS)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  3. Pediatric rhinitis risk factors

    PubMed Central

    Ji, Yaofeng; Liu, Yin; Yang, Na

    2016-01-01

    Rhinitis is a common global disorder that impacts on the quality of life of the sufferer and caregivers. Treatment for pediatric rhinitis is empirical and does not include a detailed history of the allergy triggers or allergy testing. Thus, allergen avoidance advice is not tailored to the child's sensitivities, which may result in adenoid hypertrophy. However, infant onset rhinitis, especially its relationship with respiratory viruses, remains to be further clarified. Rhinitis basically involves inflammation of the upper nasal lining, presenting typically with symptoms of runny nose (rhinorrhea), nasal blockage, and/or sneezing. While not typically fatal, it does impose significant health, psychological, and monetary burden to its sufferers, and is thus considered a global health problem. Previous findings showed that immunotherapy had significant clinical efficacy in children with allergic rhinitis. The present review article aims to highlight recent perspectives pertaining to the rhinitis risk factors especially in pediatric patients. PMID:27698737

  4. Psychosomatic factors in pruritus.

    PubMed

    Tey, Hong Liang; Wallengren, Joanna; Yosipovitch, Gil

    2013-01-01

    Pruritus and psyche are intricately and reciprocally related, with psychophysiological evidence and psychopathological explanations helping us to understand their complex association. Their interaction may be conceptualized and classified into 3 groups: pruritic diseases with psychiatric sequelae, pruritic diseases aggravated by psychosocial factors, and psychiatric disorders causing pruritus. Management of chronic pruritus is directed at treating the underlying causes and adopting a multidisciplinary approach to address the dermatologic, somatosensory, cognitive, and emotional aspects. Pharmcotherapeutic agents that are useful for chronic pruritus with comorbid depression and/or anxiety comprise selective serotonin reuptake inhibitors, mirtazapine, tricyclic antidepressants (amitriptyline and doxepin), and anticonvulsants (gabapentin, pregabalin); the role of neurokinin receptor-1 antagonists awaits verification. Antipsychotics are required for treating itch and formication associated with schizophrenia and delusion of parasitosis (including Morgellons disease).

  5. Psychosomatic factors in pruritus

    PubMed Central

    Tey, Hong Liang; Wallengren, Joanna; Yosipovitch, Gil

    2013-01-01

    Pruritus and psyche are intricately and reciprocally related, with psychophysiological evidence and psychopathological explanations helping us to understand their complex association. Their interaction may be conceptualized and classified into 3 groups: pruritic diseases with psychiatric sequelae, pruritic diseases aggravated by psychosocial factors, and psychiatric disorders causing pruritus. Management of chronic pruritus is directed at treating the underlying causes and adopting a multidisciplinary approach to address the dermatologic, somatosensory, cognitive, and emotional aspects. Pharmcotherapeutic agents that are useful for chronic pruritus with comorbid depression and/or anxiety comprise selective serotonin reuptake inhibitors, mirtazapine, tricyclic antidepressants (amitriptyline and doxepin), and anticonvulsants (gabapentin, pregabalin); the role of neurokinin receptor-1 antagonists awaits verification. Antipsychotics are required for treating itch and formication associated with schizophrenia and delusion of parasitosis (including Morgellons disease). PMID:23245971

  6. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  7. Helicopter Human Factors

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    Even under optimal conditions, helicopter flight is a most demanding form of human-machine interaction, imposing continuous manual, visual, communications, and mental demands on pilots. It is made even more challenging by small margins for error created by the close proximity of terrain in NOE flight and missions flown at night and in low visibility. Although technology advances have satisfied some current and proposed requirements, hardware solutions alone are not sufficient to ensure acceptable system performance and pilot workload. However, human factors data needed to improve the design and use of helicopters lag behind advances in sensor, display, and control technology. Thus, it is difficult for designers to consider human capabilities and limitations when making design decisions. This results in costly accidents, design mistakes, unrealistic mission requirements, excessive training costs, and challenge human adaptability. NASA, in collaboration with DOD, industry, and academia, has initiated a program of research to develop scientific data bases and design principles to improve the pilot/vehicle interface, optimize training time and cost, and maintain pilot workload and system performance at an acceptable level. Work performed at Ames, and by other research laboratories, will be reviewed to summarize the most critical helicopter human factors problems and the results of research that has been performed to: (1) Quantify/model pilots use of visual cues for vehicle control; (2) Improve pilots' performance with helmet displays of thermal imagery and night vision goggles for situation awareness and vehicle control; (3) Model the processes by which pilots encode maps and compare them to the visual scene to develop perceptually and cognitively compatible electronic map formats; (4) Evaluate the use of spatially localized auditory displays for geographical orientation, target localization, radio frequency separation; (5) Develop and flight test control

  8. Helicopter Human Factors

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    Even under optimal conditions, helicopter flight is a most demanding form of human-machine interaction, imposing continuous manual, visual, communications, and mental demands on pilots. It is made even more challenging by small margins for error created by the close proximity of terrain in NOE flight and missions flown at night and in low visibility. Although technology advances have satisfied some current and proposed requirements, hardware solutions alone are not sufficient to ensure acceptable system performance and pilot workload. However, human factors data needed to improve the design and use of helicopters lag behind advances in sensor, display, and control technology. Thus, it is difficult for designers to consider human capabilities and limitations when making design decisions. This results in costly accidents, design mistakes, unrealistic mission requirements, excessive training costs, and challenge human adaptability. NASA, in collaboration with DOD, industry, and academia, has initiated a program of research to develop scientific data bases and design principles to improve the pilot/vehicle interface, optimize training time and cost, and maintain pilot workload and system performance at an acceptable level. Work performed at Ames, and by other research laboratories, will be reviewed to summarize the most critical helicopter human factors problems and the results of research that has been performed to: (1) Quantify/model pilots use of visual cues for vehicle control; (2) Improve pilots' performance with helmet displays of thermal imagery and night vision goggles for situation awareness and vehicle control; (3) Model the processes by which pilots encode maps and compare them to the visual scene to develop perceptually and cognitively compatible electronic map formats; (4) Evaluate the use of spatially localized auditory displays for geographical orientation, target localization, radio frequency separation; (5) Develop and flight test control

  9. Anthrax lethal factor inhibition.

    PubMed

    Shoop, W L; Xiong, Y; Wiltsie, J; Woods, A; Guo, J; Pivnichny, J V; Felcetto, T; Michael, B F; Bansal, A; Cummings, R T; Cunningham, B R; Friedlander, A M; Douglas, C M; Patel, S B; Wisniewski, D; Scapin, G; Salowe, S P; Zaller, D M; Chapman, K T; Scolnick, E M; Schmatz, D M; Bartizal, K; MacCoss, M; Hermes, J D

    2005-05-31

    The primary virulence factor of Bacillus anthracis is a secreted zinc-dependent metalloprotease toxin known as lethal factor (LF) that is lethal to the host through disruption of signaling pathways, cell destruction, and circulatory shock. Inhibition of this proteolytic-based LF toxemia could be expected to provide therapeutic value in combination with an antibiotic during and immediately after an active anthrax infection. Herein is shown the crystal structure of an intimate complex between a hydroxamate, (2R)-2-[(4-fluoro-3-methylphenyl)sulfonylamino]-N-hydroxy-2-(tetrahydro-2H-pyran-4-yl)acetamide, and LF at the LF-active site. Most importantly, this molecular interaction between the hydroxamate and the LF active site resulted in (i) inhibited LF protease activity in an enzyme assay and protected macrophages against recombinant LF and protective antigen in a cell-based assay, (ii) 100% protection in a lethal mouse toxemia model against recombinant LF and protective antigen, (iii) approximately 50% survival advantage to mice given a lethal challenge of B. anthracis Sterne vegetative cells and to rabbits given a lethal challenge of B. anthracis Ames spores and doubled the mean time to death in those that died in both species, and (iv) 100% protection against B. anthracis spore challenge when used in combination therapy with ciprofloxacin in a rabbit "point of no return" model for which ciprofloxacin alone provided 50% protection. These results indicate that a small molecule, hydroxamate LF inhibitor, as revealed herein, can ameliorate the toxemia characteristic of an active B. anthracis infection and could be a vital adjunct to our ability to combat anthrax.

  10. Factors affecting corneoscleral topography.

    PubMed

    Hall, Lee A; Hunt, Chris; Young, Graeme; Wolffsohn, James

    2013-05-01

    To evaluate factors affecting corneoscleral profile (CSP) using anterior segment optical coherence tomography (AS-OCT) in combination with conventional videokeratoscopy. OCT DATA WERE COLLECTED FROM 204 SUBJECTS OF MEAN AGE 34.9 YEARS (SD: ±15.2 years, range 18-65) using the Zeiss Visante AS-OCT and Medmont M300 corneal topographer. Measurements of corneal diameter (CD), corneal sagittal height (CS), iris diameter (ID), corneoscleral junction angle (CSJ), and scleral radius (SR) were extracted from multiple OCT images. Horizontal visible iris diameter (HVID) and vertical palpebral aperture (PA) were measured using a slit lamp graticule. Subject body height was also measured. Associations were then sought between CSP variables and age, height, ethnicity, sex, and refractive error. Significant correlations were found between age and ocular topography variables of HVID, PA, CSJ, SR, and ID (P < 0.0001), while height correlated with HVID, CD, and ID, and power vector terms with vertical plane keratometry, CD, and CS. Significant differences were noted between ethnicities with respect to CD (P = 0.0046), horizontal and vertical CS (P = 0.0068 and P = 0.0095), and horizontal ID (P = 0.0010). The same variables, with the exception of vertical CS, also varied with sex; horizontal CD (P = 0.0018), horizontal CS (P = 0.0018), and ID (P = 0.0012). Age accounted for the greatest variance in topography variables (36%). Age is the main factor influencing CSP; this should be taken into consideration in contact lens design, IOL selection, and in the optimization of surgical procedures. Ocular topography also varied with height, sex, ethnicity, and refractive error.

  11. Factor Rotation and Standard Errors in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.

    2015-01-01

    In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…

  12. Factor Rotation and Standard Errors in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.

    2015-01-01

    In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…

  13. Environmental factors and aggressive behavior

    SciTech Connect

    Anderson, A.C.

    1982-07-01

    This paper briefly reviews some of the research areas which indicate a correlation between environmental factors and initiation of aggressive behavior. Environmental factors including lunar influences, month of birth, climate and the effects of crowding and certain chemicals are discussed.

  14. FACTORING TO FIT OFF DIAGONALS.

    DTIC Science & Technology

    imply an upper bound on the number of factors. When applied to somatotype data, the method improved substantially on centroid solutions and indicated a reinterpretation of earlier factoring studies. (Author)

  15. Air Emissions Factors and Quantification

    EPA Pesticide Factsheets

    Emissions factors are used in developing air emissions inventories for air quality management decisions and in developing emissions control strategies. This area provides technical information on and support for the use of emissions factors.

  16. Salivary Gland Cancer: Risk Factors

    MedlinePlus

    ... Cancer > Salivary Gland Cancer: Risk Factors Request Permissions Salivary Gland Cancer: Risk Factors Approved by the Cancer.Net ... f t k e P Types of Cancer Salivary Gland Cancer Guide Cancer.Net Guide Salivary Gland Cancer ...

  17. Electromagnetic Hadronic Form-Factors

    SciTech Connect

    Robert Edwards

    2004-06-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks.

  18. THE ASSAY AND PROPERTIES OF LABILE FACTOR (FACTOR V)

    PubMed Central

    Quick, Armand J.

    1960-01-01

    Human oxalated plasma stored at 4° C. until the prothrombin time is increased beyond 60 sec. is a reliable medium for assaying labile factor (factor V) because its response to added labile factor corresponds quantitatively to that of plasma from patients with congenital deficiency of this factor. Such an agreement is not obtained with plasma stored at 37°C. The stability of labile factor is closely associated with ionized calcium. The addition of thrombin to fresh oxalated plasma causes an apparent hyperactivity of labile factor, but this is completely removed by adsorption with Ca3(PO)2. Oxalated plasma when adsorbed with Ca3(PO4)2 before treatment with thrombin does not develop this adventitious activity, nor does it occur in stored plasma treated with thrombin. The seemingly high labile factor activity in serum can be explained by the activation of this factor which is independent of labile factor but acts synergistically with it. The true labile factor concentration can be determined only after the accelerator is removed by adsorption with Ca3(PO4)2. A close agreement between the consumption of prothrombin and the loss of labile factor during clotting is observed. PMID:13738700

  19. Current status on tissue factor activation of factor VIIa.

    PubMed

    Persson, Egon; Olsen, Ole H

    2010-04-01

    Free factor VIIa displays a zymogen-like behavior with low intrinsic activity. Formation of a complex between factor VIIa and tissue factor is necessary to enhance the procoagulant activity of factor VIIa, not only by providing membrane localization, substrate exosites and positioning the active site at an appropriate distance above the surface but also by allosteric enhancement of the enzymatic activity, and this event signals initiation of blood coagulation. The interaction is of high affinity and all the domains are engaged at the interface. The crosstalk between the protease domain of factor VIIa, in particular residue Met-306, and the N-terminal domain of tissue factor provides the starting point for the allosteric activation of factor VIIa. The pathway(s) of conformational transitions in factor VIIa ensuing tissue factor binding has not been entirely mapped. The present paper is a brief compilation of our current knowledge of the allosteric mechanism by which tissue factor induces and stabilizes the active conformation of factor VIIa.

  20. Plasma factor XIII and platelet factor XIII in hyperlipaemia.

    PubMed

    Cucuianu, M P; Miloszewski, K; Porutiu, D; Losowsky, M S

    1976-12-31

    Plasma factor XIII activity measured by a quantitative assay was found to be significantly higher in hypertriglyceridaemic patients (type IV and combined hyperlipoproteinaemia), as compared to normolipaemic controls. No such elevation in plasma factor XIII activity was found in patients with type Ha hyperlipaemia. Plasma pseudocholinesterase was found to parallel the elevated factor XIII activity in hypertriglyceridaemic subjects. In contrast, platelet factor XIII activity was not raised in hyperlipaemic subjects, and plasma factor XIII was found to be normal in a normolipaemic subjects with thrombocythaemia. It was concluded that there is no significant contribution from platelets to plasma factor XIII activity, and that the observed increase in plasma factor XIII in hypertriglyceridaemia results from enhanced hepatic synthesis of the enzyme.

  1. Factor Analysis of Intern Effectiveness

    ERIC Educational Resources Information Center

    Womack, Sid T.; Hannah, Shellie Louise; Bell, Columbus David

    2012-01-01

    Four factors in teaching intern effectiveness, as measured by a Praxis III-similar instrument, were found among observational data of teaching interns during the 2010 spring semester. Those factors were lesson planning, teacher/student reflection, fairness & safe environment, and professionalism/efficacy. This factor analysis was as much of a…

  2. Risk Factor Assessment Branch (RFAB)

    Cancer.gov

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  3. Phonological Awareness: Factors of Influence

    ERIC Educational Resources Information Center

    Frohlich, Linda Paulina; Petermann, Franz; Metz, Dorothee

    2013-01-01

    Early child development is influenced by various genetic and environmental factors. This study aims to identify factors that affect the phonological awareness of preschool and first grade children. Based on a sample of 330 German-speaking children (mean age = 6.2 years) the following domains were evaluated: Parent factors, birth and pregnancy,…

  4. Phonological Awareness: Factors of Influence

    ERIC Educational Resources Information Center

    Frohlich, Linda Paulina; Petermann, Franz; Metz, Dorothee

    2013-01-01

    Early child development is influenced by various genetic and environmental factors. This study aims to identify factors that affect the phonological awareness of preschool and first grade children. Based on a sample of 330 German-speaking children (mean age = 6.2 years) the following domains were evaluated: Parent factors, birth and pregnancy,…

  5. Factor Analysis via Components Analysis

    ERIC Educational Resources Information Center

    Bentler, Peter M.; de Leeuw, Jan

    2011-01-01

    When the factor analysis model holds, component loadings are linear combinations of factor loadings, and vice versa. This interrelation permits us to define new optimization criteria and estimation methods for exploratory factor analysis. Although this article is primarily conceptual in nature, an illustrative example and a small simulation show…

  6. Quantification of Emission Factor Uncertainty

    EPA Science Inventory

    Emissions factors are important for estimating and characterizing emissions from sources of air pollution. There is no quantitative indication of uncertainty for these emission factors, most factors do not have an adequate data set to compute uncertainty, and it is very difficult...

  7. Quantification of Emission Factor Uncertainty

    EPA Science Inventory

    Emissions factors are important for estimating and characterizing emissions from sources of air pollution. There is no quantitative indication of uncertainty for these emission factors, most factors do not have an adequate data set to compute uncertainty, and it is very difficult...

  8. Effects of astragalosides from Radix Astragali on high glucose-induced proliferation and extracellular matrix accumulation in glomerular mesangial cells

    PubMed Central

    CHEN, XIAO; WANG, DONG-DONG; WEI, TONG; HE, SU-MEI; ZHANG, GUAN-YING; WEI, QUN-LI

    2016-01-01

    Diabetic nephropathy (DN) exhibits a deteriorating course that may lead to end-stage renal failure. Astragalosides have been clinically tested for the treatment of DN, but the mechanism is unclear at present. In this study, the effects of astragalosides were investigated on high glucose-induced proliferation and expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), type IV collagen (colIV) and fibronectin (FN) in glomerular mesangial cells (MCs). Cell proliferation was determined by 5-bromo-2′-deoxyuridine assay, and the expression of TGF-β1, CTGF, colIV and FN mRNA and proteins in MCs was detected by reverse transcription-polymerase chain reaction and ELISA assay, respectively. The results showed that high glucose clearly induced the proliferation of MCs and increased the expression of TGF-β1, CTGF, colIV and FN. Treatment with 50, 100, 200 µg/ml astragalosides inhibited cell proliferation and the expression of TGF-β1, CTGF, colIV and FN induced by high glucose. Thus, it is concluded that astragalosides inhibit the increased cell proliferation and expression of major extracellular matrix proteins that are induced by high glucose, indicating their value for the prophylaxis and therapy of DN. PMID:27313676

  9. Activation of AMPK by metformin inhibits TGF-β-induced collagen production in mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Li, Manxiang; Gui, Baosong; Fu, Rongguo; Yao, Ganglian; Duan, Zhaoyang; Lv, Zhian; Yang, Yanyan; Chen, Zhao; Jia, Lining; Tian, Lifang

    2015-04-15

    To clarify whether activation of adenosine monophosphate-activated protein kinase (AMPK) by metformin inhibits transforming growth factor beta (TGF-β)-induced collagen production in primary cultured mouse renal fibroblasts and further to address the molecular mechanisms. Primary cultured mouse renal fibroblasts were stimulated with TGF-β1 and the sequence specific siRNA of Smad3 or connective tissue growth factor (CTGF) was applied to investigate the involvement of these molecular mediators in TGF-β1-induced collagen type I production. Cells were pre-incubated with AMPK agonist metformin or co-incubated with AMPK agonist metformin and AMPK inhibitor Compound C before TGF-β1 stimulation to clarify whether activation of AMPK inhibition of TGF-β1-induced renal fibroblast collagen type I expression. Our results demonstrate that TGF-β1 time- and dose-dependently induced renal fibroblast collagen type I production; TGF-β1 also stimulated Smad3-dependent CTGF expression and caused collagen type I generation; this effect was blocked by knockdown of Smad3 or CTGF. Activation of AMPK by metformin reduced TGF-β1-induced collagen type I production by suppression of Smad3-driven CTGF expression. This study suggests that activation of AMPK might be a novel strategy for the treatment of chronic kidney disease (CKD) partially by inhibition of renal interstitial fibrosis (RIF). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effect of astilbin on experimental diabetic nephropathy in vivo and in vitro.

    PubMed

    Li, Gui-Sheng; Jiang, Wang-Lin; Yue, Xi-Dian; Qu, Gui-Wu; Tian, Jing-Wei; Wu, Juan; Fu, Feng-Hua

    2009-11-01

    Astilbin, a flavonoid compound, was isolated from the rhizome of Smilax glabra Roxb. This study was conducted to investigate the efficacy of astilbin on experimental diabetic nephropathy (DN) in vivo and in vitro and its possible mechanisms. Astilbin was added in high glucose stimulated HK-2 cells, streptozotocin-induced experimental DN, randomized to receive intragastric ( I. G.) astilbin to observe its anti-renal lesion effect. Results showed that astilbin inhibited high glucose stimulated HK-2 cell production of transforming growth factor-beta1 (TGF-beta1) and connective tissue growth factor (CTGF) in vitro, especially CTGF; analogic results was also found in vivo. I. G. of astilbin 2.5 mg/kg or 5 mg/kg significantly ameliorated renal function, reduced kidney index, while it increased body weight and survival time in animals. In addition there was no significant difference in blood glucose level between the STZ-treated group and the astilbin groups. Furthermore, astilbin ameliorated the pathological progress of renal morphology. Astilbin can exert an early renal protective role to DN, inhibit production of TGF-beta1 and especially of CTGF. We suggest that astilbin inhibition of CTGF may be a potential target in DN therapy. This work provides the first evidence for astilbin as a new candidate of DN therapeutic medicine.

  11. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byrne, Vicky; Arsintescu, Lucia; Connell, Erin

    2010-01-01

    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 09 (FY09) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; and 3) Risk associated with reduced safety and efficiency due to poor human factors design.

  12. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byrne, Vicky; Arsintescu, Lucia; Connell, Erin; Sandor, Aniko

    2009-01-01

    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 08 (FY08) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: (1) Risk associated with poor task design (2) Risk of error due to inadequate information (3) Risk associated with reduced safety and efficiency due to poor human factors design

  13. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byme, Vicky; Arsintescu, Lucia

    2008-01-01

    Future space missions will be significantly longer than current Shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. Training efforts in FY07 strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center operations. Beginning in January 2008, the training research effort will include team training prototypes and tools. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; 3) Risk associated with reduced safety and efficiency due to poor human factors design.

  14. Factorizing monolithic applications

    SciTech Connect

    Hall, J.H.; Ankeny, L.A.; Clancy, S.P.