Sample records for cu cd hg

  1. Assessment of heavy metal contamination in Hediste diversicolor (O.F. Müller, 1776), Mugil cephalus (Linnaeus, 1758), and surface sediments of Bafa Lake (Eastern Aegean).

    PubMed

    Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S

    2015-06-01

    In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.

  2. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China.

    PubMed

    Tian, Kang; Hu, Wenyou; Xing, Zhe; Huang, Biao; Jia, Mengmeng; Wan, Mengxue

    2016-12-01

    The evaluation of heavy metals (HMs) in greenhouse soils is crucial for both environmental monitoring and human health; thus, it is imperative to determine their concentrations, identify their sources and assess their potential risks. In this study, eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 167 surface soils were investigated in two representative greenhouse vegetable systems of China: perennial solar greenhouse (SG) and seasonal plastic greenhouse (PG). The results indicated accumulations of Cd, Cu, Hg and Zn in the SG soils and Cd, Pb, Hg and Zn in the PG soils, with higher concentrations than the background values. In particular, Cd and Hg exhibited high levels of pollution under both GVP systems due to their positive Igeo values. Principle component analysis (PCA) and correlation analysis suggested that Cd, Cu, Hg and Zn in the SG soils and Cd, Hg and Zn in the PG soils were mainly related to intensive farming practices; Pb in the PG soils was significantly affected by atmospheric deposition. The results showed that soil characteristics, in particular soil organic matter, total nitrogen and total phosphorus, exerted significant influence on Hg, Cu, Cd, and Zn under the SG system. However, the HMs in the PG soils were weakly affected by soil properties. Overall, this study provides comparative research on the accumulation, potential risks and sources of HMs in two typical greenhouse soils in China, and our findings suggest that, Cd and Hg in both greenhouse soils could potentially represent environmental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile.

    PubMed

    Encina-Montoya, Francisco; Vega-Aguayo, Rolando; Díaz, Oscar; Esse, Carlos; Nimptsch, Jorge; Muñoz-Pedreros, Andrés

    2017-10-26

    The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L -1 ; Zn = 5.00 μg L -1 ; Pb = 0.03 μg L -1 ; Cd = 0.05 μg L -1 ; Hg = 0.05 μg L -1 ); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.

  4. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  5. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    PubMed

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  6. [Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China].

    PubMed

    Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming

    2008-12-01

    One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.

  7. Evaluation of dog bones in the indirect assessment of environmental contamination with trace elements.

    PubMed

    Lanocha, Natalia; Kalisinska, Elzbieta; Kosik-Bogacka, Danuta I; Budis, Halina

    2012-06-01

    The aim of this paper was to determine the level of five elements, two essential for life [zinc (Zn) and copper (Cu)] and three distinctly toxic [lead (Pb), cadmium (Cd), and mercury (Hg)], in four types of biological material in bones of the dog Canis lupus familiaris. The experiment was carried out on bones from the hip joints of dogs. The samples of cartilage, compact bone, spongy bone, and cartilage with adjacent compact bone came from 26 domestic dogs from northwestern Poland. Concentrations of Cu, Zn, Pb, and Cd were determined by ICP-AES (atomic absorption spectrophotometry) in inductively coupled argon plasma, using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the examined bone material from the dog, the greatest concentrations (median) were observed for Zn and the lowest for Hg (98 mg Zn/kg and 0.0015 mg Hg/kg dw, respectively). In cartilage and spongy bone, metal concentrations could be arranged in the following descending order: Zn > Pb > Cu > Cd > Hg. In compact bone, the order was slightly different: Zn > Pb > Cd > Cu > Hg (from median 70 mg/kg dw to 0.002 mg/kg dw). The comparisons of metal concentrations between the examined bone materials showed distinct differences only in relation to Hg: between concentrations in spongy bone, compact bone, and in cartilage, being greater in cartilage than in compact bone, and lower again in spongy bone.

  8. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  9. Exogenous Glutathione Enhances Mercury Tolerance by Inhibiting Mercury Entry into Plant Cells

    PubMed Central

    Kim, Yeon-Ok; Bae, Hyeun-Jong; Cho, Eunjin; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the crucial roles of glutathione (GSH) in cellular defense against heavy metal stress as well as oxidative stress, little is known about the functional role of exogenous GSH in mercury (Hg) tolerance in plants. Here, we provide compelling evidence that GSH contributes to Hg tolerance in diverse plants. Exogenous GSH did not mitigate the toxicity of cadmium (Cd), copper (Cu), or zinc (Zn), whereas application of exogenous GSH significantly promoted Hg tolerance during seed germination and seedling growth of Arabidopsis thaliana, tobacco, and pepper. By contrast, addition of buthionine sulfoximine, an inhibitor of GSH biosynthesis, severely retarded seed germination and seedling growth of the plants in the presence of Hg. The effect of exogenous GSH on Hg specific tolerance was also evident in the presence of other heavy metals, such as Cd, Cu, and Zn, together with Hg. GSH treatment significantly decreased H2O2 and O2- levels and lipid peroxidation, but increased chlorophyll content in the presence of Hg. Importantly, GSH treatment resulted in significantly less accumulation of Hg in Arabidopsis plants, and thin layer chromatography and nuclear magnetic resonance analysis revealed that GSH had much stronger binding affinity to Hg than to Cd, Cu, or Zn, suggesting that tight binding of GSH to Hg impedes Hg uptake, leading to low Hg accumulation in plant cells. Collectively, the present findings reveal that GSH is a potent molecule capable of conferring Hg tolerance by inhibiting Hg accumulation in plants. PMID:28507557

  10. Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Płocka Dale in Poland.

    PubMed

    Frankowska, Aneta; Ziółkowska, Joanna; Bielawski, Leszek; Falandysz, Jerzy

    2010-01-01

    This study aimed to provide basic data on the composition of metallic elements, including toxicologically important Cd and Hg, in popular and prized wild King Bolete mushrooms. We investigated the importance of soil substratum as a source of these metals. ICP-OES and CV-AAS were applied to determine the profile of Al, Ba, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, Sr and Zn in caps and stipes of King Bolete mushroom and in the surface layer of soil (0-10 cm) from the Płocka Dale area of Poland. Hg, Cu, Cd, Zn, Mg and K exhibited bioconcentration factors (BCF) > 1. Specifically, Hg, Cu and Cd (mean BCFs for caps were 110, 19 and 16, respectively) were efficiently bioconcentrated by King Bolete, while other elements were bioexcluded (BCF < 1). Cadmium was present in the caps at mean levels of 5.5 ± 2.4 mg kg(-1) dry weight (dw) and mercury at levels of 4.9 ± 1.4 mg kg(-1) dw, both occurring at elevated concentrations in those King Bolete mushrooms surveyed.

  11. Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift

    NASA Astrophysics Data System (ADS)

    Lyubomirsky, Igor; Rabinal, M. K.; Cahen, David

    1997-05-01

    We show that the transient ion drift (TID) method, which is based on recording junction capacitance under constant reverse bias [A. Zamouche, T. Heiser, and A. Mesli, Appl. Phys. Lett. 66, 631 (1995)], can be used not only for measurements of the diffusion coefficient of mobile impurities, but also to estimate the concentration of mobile species as part of the total dopant density. This is illustrated for CdTe, contaminated by Cu, and intentionally doped by Li or Ag and for CuInSe2. We show also that, with some restrictions, the TID method can be used if the mobile ions are major dopants. This is demonstrated using Schottky barriers on CdTe, and p-n junction devices in (Hg,Cd)Te, and CuInSe2. The values that we obtain for the diffusion coefficients (for Li, Ag, and Cu in CdTe and for Cu in CuInSe2) agree well with measured or extrapolated values, obtained by other methods, as reported in the literature. Furthermore, we could distinguish between diffusion and chemical reactions of dopants, as demonstrated for the case of Cu in CdTe and Ag-doped (Hg,Cd)Te. In the former case this allows us to separate copper-free from contaminated CdTe samples.

  12. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.

  13. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions

    PubMed Central

    Hansen, Martine D.; Nøst, Therese H.; Heimstad, Eldbjørg S.; Evenset, Anita; Dudarev, Alexey A.; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V.; Jagodic, Marta; Christensen, Guttorm N.; Anda, Erik E.; Brustad, Magritt; Sandanger, Torkjel M.

    2017-01-01

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013–2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study. PMID:28657608

  14. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions.

    PubMed

    Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M

    2017-06-28

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.

  15. Trace Element Accumulation and Tissue Distribution in the Purpleback Flying Squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea.

    PubMed

    Wu, Yan Yan; Shen, Yu; Huang, Hui; Yang, Xian Qing; Zhao, Yong Qiang; Cen, Jian Wei; Qi, Bo

    2017-01-01

    Sthenoteuthis oualaniensis is a species of cephalopod that is becoming economically important in the South China Sea. As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations were determined in the mantle, arms, and digestive gland of S. oualaniensis from 31 oceanographic survey stations in the central and southern South China Sea. Intraspecific and interspecific comparisons with previous studies were made. Mean concentrations of trace elements analyzed in arms and mantle were in the following orders: Zn > Cu > Cd > Cr > As > Hg. In digestive gland, the concentrations of Cd and Cu exceed that of Zn. All the Pb concentrations were under the detected limit.

  16. Heavy metal levels in kiwifruit orchard soils and trees and its potential health risk assessment in Shaanxi, China.

    PubMed

    Guo, Jing; Yue, Tianli; Li, Xiaotong; Yuan, Yahong

    2016-07-01

    Concentrations of five heavy metals (Cr, Cu, Cd, Hg, and Pb) in orchard soils and kiwifruit tissues (root, twig, leave, fruit) collected from Shaanxi province in China were measured, and the potential health risk for human through the fruit consumption was assessed. The orchard soils were in no pollution for Cr, Cu, Hg, and Pb, with their pollution index (PI) ≤1, while 10.0 % of the soil samples were under Cd contamination. Furthermore, kiwifruit tended to have a higher Cd and Hg accumulation (as indicated by Biological Accumulation Coefficient) from soil and have a higher Cu and Hg translocation (as reflected by Biological Transfer Coefficient) to aboveground parts. From the human health point of view, the DIM and HRI values for all the fruit samples were within the safe limits, while for Cr, Cu, Cd, Hg, and Pb, about 22.5, 12.5, 52.5, 15.0, and 47.5 % of the fruit samples exceeded the national maximum permissible levels, respectively. These results showed that, although there was no possible health risk to consumers due to intake of studied kiwifruit fruits under the current consumption rate, the regular survey of heavy metal pollution levels should be performed for the kiwifruit in Shaanxi province and a strict management program should be established to reduce the amount of chemical fertilizers and pesticides used in fruit production in order to prevent the potential health risk.

  17. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.

    PubMed

    Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei

    2015-09-01

    The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran.

    PubMed

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine

    2017-10-01

    Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

    PubMed Central

    Sumathi, R. B.; Halli, M. B.

    2014-01-01

    A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203

  20. 210Po Activity and concentrations of selected trace elements (As, Cd, Cu, Hg, Pb, Zn) in the muscle tissue of tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean.

    PubMed

    Ruelas-Inzunza, Jorge; Soto-Jiménez, Martín Federico; Ruiz-Fernández, Ana Carolina; Bojórquez-Leyva, Humberto; Pérez-Bernal, Hascibe; Páez-Osuna, Federico

    2012-12-01

    Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of (210)Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g(-1) dw) and Cu (1.85 μg g(-1) dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g(-1) dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. (210)Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.

  1. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd

  2. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Sources of Heavy Metals in Surface Sediments and an Ecological Risk Assessment from Two Adjacent Plateau Reservoirs

    PubMed Central

    Wu, Binbin; Wang, Guoqiang; Wu, Jin; Fu, Qing; Liu, Changming

    2014-01-01

    The concentrations of heavy metals (mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu) and arsenic (As)) in surface water and sediments were investigated in two adjacent drinking water reservoirs (Hongfeng and Baihua Reservoirs) on the Yunnan-Guizhou Plateau in Southwest China. Possible pollution sources were identified by spatial and statistical analyses. For both reservoirs, Cd was most likely from industrial activities, and As was from lithogenic sources. For the Hongfeng Reservoir, Pb, Cr and Cu might have originated from mixed sources (traffic pollution and residual effect of former industrial practices), and the sources of Hg included the inflows, which were different for the North (industrial activities) and South (lithogenic origin) Lakes, and atmospheric deposition resulting from coal combustion. For the Baihua Reservoir, the Hg, Cr and Cu were primarily derived from industrial activities, and the Pb originated from traffic pollution. The Hg in the Baihua Reservoir might also have been associated with coal combustion pollution. An analysis of ecological risk using sediment quality guidelines showed that there were moderate toxicological risks for sediment-dwelling organisms in both reservoirs, mainly from Hg and Cr. Ecological risk analysis using the Hakanson index suggested that there was a potential moderate to very high ecological risk to humans from fish in both reservoirs, mainly because of elevated levels of Hg and Cd. The upstream Hongfeng Reservoir acts as a buffer, but remains an important source of Cd, Cu and Pb and a moderately important source of Cr, for the downstream Baihua Reservoir. This study provides a replicable method for assessing aquatic ecosystem health in adjacent plateau reservoirs. PMID:25010771

  4. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  5. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  6. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; Almadani, Sattam A; El-Sorogy, Abdelbaset

    2017-11-13

    To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

  7. Spatial distribution and ecological risk assessment of heavy metal on surface sediment in west part of Java Sea

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea

    2017-01-01

    The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).

  8. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  9. Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia.

    PubMed

    Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen

    2010-11-01

    Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.

  10. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China.

    PubMed

    Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu

    2016-05-01

    The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.

  11. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China.

    PubMed

    Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai

    2017-03-01

    Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.

  12. Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway.

    PubMed

    Lepland, Aivo; Andersen, Thorbjørn J; Lepland, Aave; Arp, Hans Peter H; Alve, Elisabeth; Breedveld, Gijs D; Rindby, Anders

    2010-09-01

    Stratigraphic profiles of Cu, Cd and Hg in ten sediment cores from the Oslo harbor, Norway, combined with results of radiometric dating demonstrate that pollution by these metals peaked between 1940 and 1970. Dating results indicate that Hg discharges peaked between 1940 and 1950, Cd reached maximum ca. 1955-1960, and Cu has the highest concentration in sediment interval corresponding to ca. 1970. Geochemical profiles and maxima of Cu, Cd and Hg concentrations can be used as chronostratigraphic markers for sediment cores from the Oslo harbor. Acoustic backscatter and sediment core data indicate that propeller wash affects the seabed in the Oslo harbor. The propeller-induced turbulence causes erosion, and in places exposes and remobilizes contaminated sediments that accumulated in the harbor during previous decades. Such re-exposure of contaminated sediments could be detrimental to local ecosystems and offset remediation efforts, warranting further impact studies and potential mitigation strategies to prevent redistribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Age-dependent accumulation of heavy metals in a pod of killer whales (Orcinus orca) stranded in the northern area of Japan.

    PubMed

    Endo, Tetsuya; Kimura, Osamu; Hisamichi, Yohsuke; Minoshima, Yasuhiko; Haraguchi, Koichi

    2007-02-01

    Mercury (Hg), cadmium (Cd), iron (Fe) manganese (Mn), zinc (Zn) and copper (Cu) concentrations in the liver, kidney and muscle of nine killer whales (including three calves) that stranded together in the northern area of Japan were determined. The Hg and Cd concentrations were found at trace levels in the calf organs, and increased with age. The Fe concentration in the muscle was significantly lower in the calves than in the mature whales and also increased with age. In contrast, Mn and Cu concentrations in the muscle were significantly higher in the calves than in the mature whales, and changes in the Zn concentration relative to age were unclear. These results suggest minimal mother-to-calf transfer of the toxic metals Hg and Cd and accumulation of these metals in the organs with age, while the essential metals Mn and Cu were found at higher concentrations in the muscle of calves than in mature whales.

  14. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling.

    PubMed

    Ni, Maofei; Mao, Rong; Jia, Zhongmin; Dong, Ruozhu; Li, Siyue

    2018-02-01

    In order to assess heavy metals (HMs) in soils of the upper Yangtze Basin, a very high-spatial-resolution sampling (582 soil samples) was conducted from Hechuan County, an important agricultural practice area in the Southwest China. Multiple indices including geoaccumulation index (I geo ), enrichment factor (EF), sediment pollution index (SPI) and risk index (RI), as well as multivariate statistics were employed for pollution assessment and source identification of HMs in soils. Our results demonstrated that the averages of eight HMs decreased in the following order: Zn (82.8 ± 15.9) > Cr (71.6 ± 12.2) > Ni (32.1 ± 9.89) > Pb (27.6 ± 13.8) > Cu (25.9 ± 11.8) > As (5.48 ± 3.42) > Cd (0.30 ± 0.077) > Hg (0.082 ± 0.092). Averages of HMs except Cd were lower than threshold value of Environmental Quality Standard for Soils, while 43% of total samples had Cd concentration exceeding the national standard, 1% of samples for Hg and 5% samples for Ni, moreover, Cd and Hg averages were much higher than their background levels. I geo and EF indicated that their levels decreased as follows: Cd > Hg > Zn > Pb > Ni > Cu > Cr > As, with moderate enrichments of Cd and Hg. RI indicated that 61.7% of all samples showed moderate risk, while 6.5% of samples with greater than considerable risk due to human activities should be paid more attention. Multivariate analysis showed lithogenic source of Cu, Cr, Ni and Zn, while Cd and Hg were largely contributed by anthropogenic activities such as agricultural practices. Our study would be helpful for improving soil environmental quality in SW, China, as well as supplying modern approaches for other areas with soil HM pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Health Risks and Contamination Levels of Heavy Metals in Dusts from Parks and Squares of an Industrial City in Semi-Arid Area of China

    PubMed Central

    Han, Xiufeng; Lu, Xinwei; Qinggeletu; Wu, Yongfu

    2017-01-01

    The contamination characteristics and health risk of barium (Ba), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), arsenic (As), mercury (Hg), and cadmium (Cd) in samples of dust gathered from squares and parks of Baotou city, an industrial city situated in a semi-arid location of the northwest China were investigated. The contents of Ba, Co, Cr, Cu, Mn, Ni, V, Pb, and Zn in the collected dust samples were determined using X-ray fluorescence spectrometry, while the contents of As and Hg in the dust were investigated by use of the ICP-MS. Further, cadmium was quantified through the atomic absorption spectrometry. Levels of contamination of heavy metals analyzed in the dust samples were evaluated using the Geo-Accumulation index (Igeo) as well as through a Pollution Load Index (PLI). Their health risks to children and adults were evaluated based on the US EPA model of health risk. The findings portrayed that the mean concentrations of Ba, Co Cr, Cu, Pb, V, Cd, and Hg were elevated as compared with their local soil background values. Mean values of Igeo illustrate the order of Co > Cr> Cd > Hg > Pb > Cu > Ba > V > Ni > Mn > Zn > As. It was evident that dusts from the parks and squares were “unpolluted” to “moderately polluted”. Assessment of health risk depicts that ingestion is the foremost route of exposure in regard to the heavy metals, then the dermal adsorption follows. Hg exposure from dust might also set impending health threats to children. Besides, the cancer risks of Co, Cr, Ni, Cd, and As are considered to be within the presently tolerable range. PMID:28783109

  17. [Distribution and Pollution Assessment of Nutrient and Heavy Metals in Surface Sediments from Lake Gehu in Southern Jiangsu Province, China].

    PubMed

    Xiong, Chun-hui; Zhagn, Rui-lei; Wu, Xiao-dong; Feng, Li-hui; Wang, Li-qing

    2016-03-15

    This study investigated the horizontal distribution characteristics of nutrients and heavy metals (Zn, As, Cr, Cu, Ni, Pb, Cd and Hg) in January, 2014, and assessed the potential ecological risk of Lake Gehu. It was found that the average contents of TN and TP were 2,207.94 and 708.62 mg · kg⁻¹ respectively. TN and TP contents of the sediments at the centre were significantly highei than those in the north, while the TN content in the south was also significantly higher than that in the north of Lake Gehu. The average contents of Zn, As, Cr, Cu, Ni, Pb, Cd, Hg were 766.59, 350.66, 307.98, 59.54, 122.67, 168.97, 2.34, 0.41 mg · kg⁻¹, respectively. The content of Cu at the centre was significantly higher than that in the north, and the Zn content at the centre was significantly greater than that in the south of Lake Gehu, however the difference in the content of other heavy metals at these three areas was not significant. Furthermore, the obvious correlation between elements and granularity was only found in the aspect of TP, Cu and Hg. The comprehensive pollution index (PI) indicated that the Lake Gehu was heavily polluted, especially the centre and south areas. The potential ecological risk index (RI) showed that Cd, As and Hg had caused serious pollution in Lake Gehu while the other heavy metals only induced slight or medium pollution. According to the contribution of Cd, As and Hg to RI, it was concluded that the sediments in Lake Gehu were at a serious potential ecological risk.

  18. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China

    USGS Publications Warehouse

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W.

    2018-01-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were more finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution.

  19. Effects of metal salts on the oral production of volatile sulfur-containing compounds (VSC).

    PubMed

    Young, A; Jonski, G; Rölla, G; Wåler, S M

    2001-08-01

    Halitosis, mainly caused by bacteria located on the posterior dorsum of the tongue and in periodontal pockets, is due to formation of volatile sulfur compounds (VSC). The hypothesis to be tested was that the affinity of a metal for sulfur determines its anti-VSC activity. Clinical tests were carried out on 12 subjects who rinsed with cysteine to induce halitosis (baseline) before rinsing with 7.34 mM ZnCl2, SnF2 and CuCl2. Mouth air VSC analyses were repeated following cysteine rinses at 1 h, 2 h and 3 h using a gas chromatograph. In vitro experiments tested toxic metals Hg2+, Pb2+ and Cd2+. 10-microl aliquots of metal salts were added to 1-ml aliquots of human whole saliva from 30 subjects. Samples were incubated overnight at 37oC and saliva headspace was analyzed for VSC in a gas chromatograph. Cu2+>Sn2+>Zn2+ (supports hypothesis). Zn2+ had significantly less anti-VSC effect compared with Cu2+ and Sn2+ at 1, 2 and 3 h. In vitro results indicated that Hg2+, Cu2+ and Cd2+ had close to 100% anti-VSC effect, and that Pb2+ was less effective and Cd2+ more effective than expected in inhibiting VSC. Apart from Hg2+ and Cu2+, the metals had a significantly greater effect on H2S than on CH3SH. Cu2+ and Hg2+ have well-known antibacterial activity and may presumably also operate by this mechanism.

  20. Seasonal variations in the concentrations of metals in Crassostrea corteziensis from Sonora, México.

    PubMed

    García-Rico, L; Tejeda-Valenzuela, L; Burgos-Hernández, A

    2010-08-01

    This study examines seasonal variations in the concentrations of Cd, Cu, Pb, and Hg in experimentally cultured Crassostrea corteziensis, an oyster species known to have high resistance to physical and chemical stressors. The highest levels of Cd (4.92 mg/kg), Cu (3.45 mg/kg), and Pb (0.67 mg/kg) were detected in oyster samples collected during the summer, while Hg concentrations were similar (0.03 to 0.04 mg/kg) throughout all seasons. Results indicate that except for Cd, Crassostrea corteziensis accumulates metals to levels below those recommended by the US. FDA and the Mexican government. For Cd, its concentration correlates more strongly with the temperature of the oyster's environment rather than to the oyster growth cycle.

  1. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  2. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio

    2015-09-01

    Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

  4. [Evaluation and cumulative characteristics of heavy metals in soil-Uncaria rhynchophylla system of different functional areas].

    PubMed

    Zhang, Jia-Chun; Zeng, Xian-Ping; Zhang, Zhen-Ming; Lin, Shao-Xia; Zhang, Qing-Hai; Lin, Chang-Hu

    2016-10-01

    Soil and Uncaria rhynchophylla in different functional areas were selected for the study,the content of heavy metals such as As, Cd, Cu, Cr, Pb, and Hg in soil and U. rhynchophylla was discussed, the characteristics of their accumulation in the U.rhynchophylla was analyzed, the contamination levels of heavy metals in soil in different functional areas was evaluated. The results showed that content of Cu, As, Pb and Cr in soil was being cropland>woodland>wasteland, content of Cd was being woodland>cropland>wasteland, content of Hg was being cropland>woodland>wasteland. According to quality standard of soil environment, soil Cd in woodland, cropland and wasteland all exceeded the state-level standards, soil Cd in woodland exceeded the secondary standard, soil Hg in cropland and wasteland all exceeded the state-level standards. According to technical conditions of green food producing area, soil Cd in woodland exceeded the limit value of standard. According to Green Trade Standards of Importing Exporting Medicinal Plants Preparations,the content of heavy metals of U.rhynchophylla in cropland,woodland and wasteland were correspond to the specification. From the single factor pollution index, the soil in woodland was polluted by Cd. From the comprehensive pollution index, the soils in different functional areas were not contaminated by heavy metals. The enrichment coefficient of heavy metals such as As, Cu, Cr, and Pb in hook of U.rhynchophylla was being wasteland>woodland>cropland, the enrichment coefficient of Cu in hook of U. rhynchophylla in wasteland was more than 1. Except Cu, the enrichment coefficient of other heavy metals was low. Copyright© by the Chinese Pharmaceutical Association.

  5. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  6. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China

    PubMed Central

    Yang, Ruidong; Chen, Rong; Peng, Yishu; Wen, Xuefeng; Gao, Lei

    2018-01-01

    This study features a survey of the concentrations of aluminum (Al) and heavy metals (Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn) in tea leaves and the corresponding cultivation soils (0–30 cm), carried out in Puan County (Guizhou Province, China). The average concentrations of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn in the soil were 106 × 103, 214, 20.9, 0.09, 0.12, 17.5, 121, 27.8, 131.2, and 64 mg·kg−1, respectively. The heavy metals’ pollution indexes in the soil can be ranked as follows: Cu > Cr > Hg > As > Ni > Zn > Pb > Mn > Cd. The soil was moderately polluted by Cu because of the high geochemical background value of Cu in the area. The potential environment risk index (RI) showed that 7.69% out of the total sample sites were within the moderate level. Moreover, the ranges of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn concentrations in young tea leaves were 250–660, 194–1130, 0.107–0.400, 0.012–0.092, 0.014–0.085, 0.073–0.456, 0.33–1.26, 6.33–14.90, 14.90–26.10, and 35.8–50.3 mg·kg−1, respectively. While in mature tea leaves, they were 4300–10,400, 536–4610, 0.560–1.265, 0.040–0.087, 0.043–0.089, 0.189–0.453, 0.69–2.91, 3.43–14.20, 6.17–16.25, and 9.1–20.0 mg·kg−1, respectively. Furthermore, the concentrations of Pb, Cu, As, Hg, Cd, and Cr in young tea leaves and mature tea leaves were all lower than the standard limit values (5.0, 30, 2.0, 0.3, 1.0, and 5.0 mg·kg−1 for Pb, Cu, As, Hg, Cd, and Cr, respectively) in China. Besides, the accumulation ability of tea leaves to Mn was the strongest, and the average bioconcentration factor (BCF) of Mn in mature tea leaves was 12.5. In addition, the average target hazard quotients (THQ) were all less than one for the young tea leaves and the average aggregate risk hazard index (HI) to adults was 0.272, indicating that there was not a potential health risk for adults through the consumption of the infusions brewed by young tea leaves. However, for mature tea leaves, the percentage which HI values were above one was 38.46%, and the risk to adults via the consumption of mature tea infusions were mainly contributed by Mn and Al. PMID:29342877

  7. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  8. Trace elements and heavy metals in mineral and bottled drinking waters on the Iranian market.

    PubMed

    Hadiani, Mohammad Rasoul; Dezfooli-Manesh, Shirin; Shoeibi, Shahram; Ziarati, Parisa; Mousavi Khaneghah, Amin

    2015-01-01

    A survey of Iranian waters, sampled from 2010 to 2013, is presented. A total of 128 water samples from 42 different brands of bottled mineral and drinking water were collected and analysed for contamination levels of lead (Pb), cadmium (Cd), copper (Cu), arsenic (As) and mercury (Hg). Determinations were performed using a graphite furnace atomic absorption spectrophotometer for Pb, Cd and Cu, a hydride vapour generation as well as an Arsenator digital kit (Wagtech WTD, Tyne and Wear, UK) for As and a direct mercury analyser for Hg. Arsenic concentration in six bottled gaseous mineral samples was higher than the related limit. Regardless of these, mean concentrations of Pb, Cd, Cu, As and Hg in all types of water samples were 4.50 ± 0.49, 1.08 ± 0.09, 16.11 ± 2.77, 5.80 ± 1.63 and 0.52 ± 0.03 µg L⁻¹, respectively. Values obtained for analysed heavy metals in all samples were permissible according to the limits of national and international standards.

  9. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    PubMed Central

    Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq. PMID:27293963

  10. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    PubMed

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  12. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    PubMed

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively, indicating Cd and Hg had a strong ecological risk and therefore might pose the most serious ecological risk in the soils of P. praecox standsin Lin' an. In addition, the integrated factor potential ecological risk analysis suggested a slight risk to local ecosystem originated from heavy metal contamination in the soils of P. praecox stands in Lin'an.

  13. Heavy metal coordination chemistry in mercaptides and enzymes studied by TDPAC

    NASA Astrophysics Data System (ADS)

    Butz, T.

    1993-03-01

    Time differential perturbed angular correlation (TDPAC) studies of the coordination chemistry of the heavy metal atoms Cd and Hg via the nuclear quadrupole interaction are presented for the following systems; (i) mercury complexes with mercaptides, polymers with thiol groups, and ferrocenethiols. Mercury has a strong tendency to form linear or almost linear bonds with sulfur ligands. Evidence for 1,3-dithia-2-mercura[3]ferrocenophane formation is presented. (ii)111mCd-derivatives of the small electron transport proteins azurin, including a his 117gly mutant, and stellacyanin. The titration of the his 117gly mutant of azurin with imidazole was monitored in situ. (iii)111mCd- and199mHg-derivatives of the multi-Cu enzymes ascorbate oxidase and laccase. Reconstitution probabilities for Hg-reconstitution will be given as well as information on selective depletion and blocking of Cu-sites.

  14. Heavy metal concentrations in diploid and triploid oysters (Crassostrea gigas) from three farms on the north-central coast of Sinaloa, Mexico.

    PubMed

    Muñoz Sevilla, Norma Patricia; Villanueva-Fonseca, Brenda Paulina; Góngora-Gómez, Andrés Martin; García-Ulloa, Manuel; Domínguez-Orozco, Ana Laura; Ortega-Izaguirre, Rogelio; Campos Villegas, Lorena Elizabeth

    2017-10-03

    The concentrations of Cu, Cd, Pb, Zn, and Hg in diploid and triploid oysters from three farms (Guasave, Ahome, and Navolato) on the north-central coast of Sinaloa, Mexico, were assessed based on samples recovered during a single culture cycle 2013-2014. Metal burdens were more strongly correlated (p < 0.05) with the location of the farm than with either the ploidy or the interaction of both variables. The metal concentration ranking for oysters of both ploidies from the three farms was Zn > Cu > Cd > Pb > Hg. For all three farms, the mean concentrations of Cd and Pb in Crassostrea gigas were high, ranging from 2.52 to 7.98 μg/g wet weight for Cd and from 0.91 to 2.83 μg/g wet weight for Pb. Diploid and triploid oysters from the Guasave farm contained high levels of Cu (76.41 and 68.97 μg/g wet weight, respectively). Cu, Cd, and Zn were highly correlated (p < 0.05), and their concentrations may be influenced by agrochemical inputs. The mean levels of Cu for the Guasave farm and of Cd and Pb for all three farms exceeded permissible limits and represented a threat to human health during the sampling period (July 2014 to July 2014).

  15. Solid State Reaction of Thin Metal Films with MERCURY(1-X)CADMIUM(X)TELLURIDE.

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan

    The solid state reactions of both e-beam evaporation and sputter deposition of thin layers of Cu, Co, and Ni onto CdTe and Hg_{0.8}Cd _{0.2}Te have been investigated using Transmission Electron Microscopy and Auger Electron Spectroscopy. For a Cu overlayer deposited by either method on CdTe(111) and Hg_{0.8}Cd _{0.2}Te substrates, we observed formation of a relatively thick region of Cu _{rm 2-x}Te (superlattice structure), even though the heat of reactions ( DeltaH_{rm R} ) are positive as calculated using bulk parameters. Deposition of Co onto Hg_{0.8 }Cd_{0.2}Te substrates reacted to form the gamma -phase (Co_3Te_4) at room temperature in the case of deposition by sputtering, and at 150^circC annealing temperature in the case of deposition by e-beam evaporation. This compound was stable at room and elevated temperatures (100 ^circC, 200^ circC, 300^circC, and 400^circC). On the other hand Co did not react with CdTe (at temperature less than 300^circC) instead, generation of Te was observed. The Te generated in the case of sputter deposition and fast deposition (8-10A) e-beam evaporation was polycrystalline whereas, in the case of slow deposition (0.3-0.5A) e-beam evaporation it was amorphous. Auger depth profile indicated that the amount of excess Te in the case of sputter deposition was larger in compared with deposition by e-beam evaporation. The excess Te was distributed throughout the Co film. The results of Ni deposited onto Hg_ {0.8}Cd_{0.2} Te or CdTe substrate were somewhat similar to the Co cases. Ni reacted with Hg_{0.8 }Cd_{0.2}Te at room temperature in either deposition system to form the delta-phase (NiTe-Ni _2Te). From the results of this work it is clear that the solid produced as a result of either e-beam or sputter deposition has a higher free energy than that of a metal layer on contact with the substrate. This result indicates importance of kinetics in the formation of the interface structure of metals deposited on Hg_{0.8 }Cd_{0.2}Te substrates. (Abstract shortened with permission of author.).

  16. Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, Eastern China.

    PubMed

    Cheng, Qingli; Lou, Guangyan; Huang, Wenhai; Li, Xudong

    2017-07-01

    The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.

  17. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: a multivariate statistical approach.

    PubMed

    Armah, Frederick A; Obiri, Samuel; Yawson, David O; Onumah, Edward E; Yengoh, Genesis T; Afrifa, Ernest K A; Odoi, Justice O

    2010-11-01

    The levels of heavy metals in surface water and their potential origin (natural and anthropogenic) were respectively determined and analysed for the Obuasi mining area in Ghana. Using Hawth's tool an extension in ArcGIS 9.2 software, a total of 48 water sample points in Obuasi and its environs were randomly selected for study. The magnitude of As, Cu, Mn, Fe, Pb, Hg, Zn and Cd in surface water from the sampling sites were measured by flame Atomic Absorption Spectrophotometry (AAS). Water quality parameters including conductivity, pH, total dissolved solids and turbidity were also evaluated. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to identify possible sources of these heavy metals. Pearson correlation coefficients among total metal concentrations and selected water properties showed a number of strong associations. The results indicate that apart from tap water, surface water in Obuasi has elevated heavy metal concentrations, especially Hg, Pb, As, Cu and Cd, which are above the Ghana Environmental Protection Agency (GEPA) and World Health Organisation (WHO) permissible levels; clearly demonstrating anthropogenic impact. The mean heavy metal concentrations in surface water divided by the corresponding background values of surface water in Obuasi decrease in the order of Cd > Cu > As > Pb > Hg > Zn > Mn > Fe. The results also showed that Cu, Mn, Cd and Fe are largely responsible for the variations in the data, explaining 72% of total variance; while Pb, As and Hg explain only 18.7% of total variance. Three main sources of these heavy metals were identified. As originates from nature (oxidation of sulphide minerals particularly arsenopyrite-FeAsS). Pb derives from water carrying drainage from towns and mine machinery maintenance yards. Cd, Zn, Fe and Mn mainly emanate from industry sources. Hg mainly originates from artisanal small-scale mining. It cannot be said that the difference in concentration of heavy metals might be attributed to difference in proximity to mining-related activities because this is inconsistent with the cluster analysis. Based on cluster analysis SN32, SN42 and SN43 all belong to group one and are spatially similar. But the maximum Cu concentration was found in SN32 while the minimum Cu concentration was found in SN42 and SN43.

  18. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China.

    PubMed

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W

    2018-06-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    PubMed

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

    PubMed

    Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey

    2017-01-01

    Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.

  1. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China.

    PubMed

    Chen, Mo; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Jiang, Xue; Wu, Jichun

    2017-01-01

    Different gold mining and smelting processes can lead to distinctive heavy metal contamination patterns and results. This work examined heavy metal pollution from a large-scale cyanidation gold mining operation, which is distinguished from artisanal and small-scale amalgamation gold mining, in Jilin Province, China. A total of 20 samples including one background sample were collected from the surface of the mining area and the tailings pond in June 2013. These samples were analyzed for heavy metal concentrations and degree of pollution as well as sources of Cr, Cu, Zn, Pb, Ni, Cd, As, and Hg. The mean concentrations of Pb, Hg, and Cu (819.67, 0.12, and 46.92 mg kg -1 , respectively) in soil samples from the gold mine area exceeded local background values. The mean Hg content was less than the first-class standard of the Environmental Quality for Soils, which suggested that the cyanidation method is helpful for reducing Hg pollution. The geochemical accumulation index and enrichment factor results indicated clear signs that enrichment was present for Pb, Cu, and Hg, with the presence of serious Pb pollution and moderate presence to none of Hg and Cu pollution. Multivariate statistical analysis showed that there were three metal sources: (1) Pb, Cd, Cu, and As came from anthropogenic sources; (2) Cr and Zn were naturally occurring; whereas (3) Hg and Ni had a mix of anthropogenic and natural sources. Moreover, the tailings dam plays an important role in intercepting the tailings. Furthermore, the potential ecological risk assessment results showed that the study area poses a potentially strong risk to the ecological health. Furthermore, Pb and Hg (due to high concentration and high toxicity, respectively) are major pollutants on the risk index, and both Pb and Hg pollution should be of great concern at the Haigou gold mines in Jilin, China.

  2. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    PubMed

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  3. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China.

    PubMed

    Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing

    2015-12-01

    A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.

  4. [Calculation of environmental dredging depth of heavy sediments in Zhushan Bay of Taihu Lake metal polluted].

    PubMed

    Jiang, Xia; Wang, Wen-Wen; Wang, Shu-Hang; Jin, Xiang-Can

    2012-04-01

    Horizontal distribution of heavy metals in surface sediments of Zhushan Bay was investigated, and core sediment samples were collected in the representative area. Core sediments were divided into oxide layer (A), polluted layer (B), upper polluted transition layer(C1), lower polluted transition layer(C2) and normal mud layer(D) from top to bottom. The change of total contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and contents of biological available Cr, Ni, Cu, Zn, As, Cd, Pb with depths were analyzed. Ecological risk assessment of heavy metals in sediments was done by potential ecological risk index method. At last, environmental dredging depth was calculated. The results shows that the contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 30.56-216.58, 24.07-59.95, 16.71-140.30, 84.31-193.43, 3.39-22.30, 0.37-1.59, 0.00-0.80 and 9.67-99.35 mg x kg(-1), respectively. The average concentrations of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 79.74, 37.74, 44.83, 122.39, 10.39, 0.77, 0.14 and 40.08 mg x kg(-1), respectively. Heavy metals in the surface sediments of Zhushan Bay mainly distribute in the west bank and the estuaries of Taige canal, Yincun Port, and Huanshan River,and Cd pollution is relatively serious. There is an accumulative effect of heavy metals in Zhushan Bay, and the contents of biological available metals decrease with depths. Ecological risk grades of Cd in layer A and B are high, and the comprehensive potential ecological risk grades of each layer are in middle or low. The environmental dredging layers are A and B, and the average dredging depth is 0.39 m.

  5. Trace element levels in fish from clean and polluted coastal marine sites in the Mediterranean Sea, Red Sea and North Sea

    NASA Astrophysics Data System (ADS)

    Kress, Nurit; Herut, Barak; Shefer, Edna; Hornung, Hava

    1999-12-01

    The bioaccumulation of Hg, Cd, Zn, Cu, Mn and Fe was evaluated in the muscle and liver tissue of four fish species (Siganus rivulatus, Diplodus sargus, Lithognatus mormyrus and Plathychtis flesus) from clean and polluted marine coastal sites in the Red Sea, Mediterranean Sea and North Sea within the framework of the MARS 1 program. Representative liver samples were screened for organic contaminants (DDE, PCBs and PAHs) which exhibited very low concentrations. The levels of Cd, Cu, Zn, Fe and Mn found in the muscle tissue in this study were similar among the four species and within the naturally occurring metal ranges. However, differences were found among the sites. In the Red Sea, Cu was higher in the muscle of S. rivulatus at Ardag and Zn at the Observatory (OBS). Cu, Zn and Mn were higher in the Red Sea than in the specimens from the Mediterranean. The differences were attributed to different diets derived from distinctively different natural environments. D. sargus from Haifa Bay (HB) had higher Cd, Cu and Mn values than specimens from Jaffa (JFA), and L. mormyrus higher Cd, Fe and Mn in HB, corresponding to the polluted environmental status of the Bay. No differences in metal levels were found among the North Sea sites, except for Fe that was lower at the Eider station. Hg was low in all the specimens, but the values varied with species and sites. The lowest Hg values were found in S. rivulatus, the herbivorous species, as expected from its trophic level. Hg in P. flesus was higher than in S. rivulatus but still low. Higher Hg values were found in the muscle tissue of L. mormyrus,with the highest values in D. sargus, both carnivorous species from the same family. Hg in D. sargus was higher in HB than in JFA, as expected, but in the larger specimens of L. mormyrus from JFA values were higher, while in the small specimens there were no differences in Hg values. The levels of all metals were higher in the liver than in the muscle, with enrichment factors ranging from 3 to 104, depending on species and sites. The lowest enrichment values were found for Hg. Based on liver values, the specimens of S. rivulatus from the OBS had the highest levels, as well as D. sargus and L. mormyrus from JFA, contrary to the known relative environmental status of the sites.

  6. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China)

    PubMed Central

    Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Wu, Xianliang

    2017-01-01

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People’s Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area. PMID:29258250

  7. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    PubMed

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  8. Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs.

    PubMed

    Agusa, Tetsuro; Matsumoto, Taro; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Yasunaga, Genta; Kunito, Takashi; Tanabe, Shinsuke; Ogi, Haruo; Shibata, Yasuyuki

    2005-09-01

    Body distribution and maternal transfer of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) to eggs were examined in black-tailed gulls (Larus crassirostris), which were culled in Rishiri Island, Hokkaido Prefecture, Japan. Manganese, Cu, Rb, Mo, and Cd showed the highest levels in liver and kidney, Ag, Sb, and Hg in feather, and V, Sr, and Pb in bone. Maternal transfer rates of trace elements ranged from 0.8% (Cd) to as much as 65% (Tl) of maternal body burden. Large amounts of Sr, Ba, and Tl were transferred to the eggs, though maternal transfer rates of V, Cd, Hg, and Pb were substantially low. It also was observed that Rb, Sr, Cd, Cs, and Ba hardly were excreted into feathers. Concentrations of Co in liver, Ba in liver and kidney, and Mo in liver increased significantly with age, whereas Se in bone and kidney, Hg in kidney, and Cr in feather decreased with age in the known-aged black-tailed gulls (2-20 years old). It also was suggested that feathers might be useful to estimate contamination status of trace elements in birds, especially for Hg on a population basis, although the utility is limited on an individual basis for the black-tailed gulls. To our knowledge, this is the first report on the maternal transfer rate of multielements and also on the usefulness of feathers to estimate contamination status of Hg in birds on a population basis.

  9. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  10. Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Stevanovic, Vladan; Toberer, Eric

    In this work, we discover anomalously low lattice thermal conductivity (<0.25 W/mK at 300 degrees C) in the Hg-containing quaternary diamond-like semiconductors within the Cu2IIBIVTe4 (IIB: Zn, Cd, Hg) (IV: Si, Ge, Sn) set of compositions. Using high-temperature X-ray diffraction, resonant ultrasound spectroscopy, and transport properties, we uncover the critical role of the antisite defects HgCu and CuHg on phonon transport within the Hg-containing systems. Despite the differences in chemistry between Hg and Cu, the high concentration of these antisite defects emerges from the energetic proximity of the kesterite and stannite cation motifs. Our phonon calculations reveal that heavier groupmore » IIB elements not only introduce low-lying optical modes, but the subsequent antisite defects also possess unusually strong point defect phonon scattering power. The scattering strength stems from the fundamentally different vibrational modes supported by the constituent elements (e.g., Hg and Cu). Despite the significant impact on the thermal properties, antisite defects do not negatively impact the mobility (>50 cm2/(Vs) at 300 degrees C) in Hg-containing systems, leading to predicted zT > 1.5 in Cu2HgGeTe4 and Cu2HgSnTe4 under optimized doping. In addition to introducing a potentially new p-type thermoelectric material, this work provides (1) a strategy to use the proximity of phase transitions to increase point defect phonon scattering, and (2) a means to quantify the power of a given point defect through inexpensive phonon calculations.« less

  11. Trace element levels in mollusks from clean and polluted coastal marine sites in the Mediterranean, Red and North Seas

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava

    1999-12-01

    The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.

  12. Superconductivity at different T{sub c} in CdBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balchev, N.; Lovchinov, V.; Gattef, E.

    1995-06-01

    A Cd analogue of the Tl and Hg n=3 series with nominal composition CdBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} has been synthesized. The samples were superconducting according to magnetic susceptibility measurements. The critical temperature was 103 or 107 K depending on the preparation conditions. The EDX analysis revealed the presence of Cd-1111, Cd-1121, and Cd-2333 as minor phases. The observed diamagnetic effects were attributed to the different T{sub c} of these phases.

  13. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  14. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland.

    PubMed

    Chowdhury, Ranju; Favas, Paulo J C; Jonathan, M P; Venkatachalam, Perumal; Raja, P; Sarkar, Santosh Kumar

    2017-11-30

    The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (I geo ) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Soil-Plant Metal Relations in Panax notoginseng: An Ecosystem Health Risk Assessment

    PubMed Central

    Ou, Xiaohong; Wang, Li; Guo, Lanping; Cui, Xiuming; Liu, Dahui; Yang, Ye

    2016-01-01

    This study features a survey of the content of heavy metals (Pb, Cd, Cr, As, Hg and Cu) in root and cultivation soils of Panax notoginseng (P. notoginseng), carried out in China’s Yunnan Province. The average contents of Pb, Cd, Cr, As, Hg, and Cu in the soil were 61.6, 0.4, 102.4, 57.1, 0.3, and 35.1 mg·kg−1, respectively. The heavy metals’ pollution indexes can be ranked as follows: As > Cd > Hg > Cu > Cr > Pb. The proportion of soil samples at slight, middle, strong, very strong, and extremely strong levels of potential environmental risk had values of 5.41%, 21.62%, 35.14%, 10.81%, and 27.03%, respectively. The potential environment risk index (RI) showed that 29.73% out of the total sample sites were above the level of strong and extremely strong. The ranges of Pb, Cd, Cr, As, Hg, and Cu content in tuber were 0.04–3.26, 0.04–0.33, 0.22–5.4, 0.10–1.8, 0.00–0.02, and 5.0–20.9 mg·kg−1, respectively. In combination with P. notoginseng consumption data, the estimated heavy metal daily intakes (EDIs) were 0.08–0.23, 0.006–0.019, 0.17–0.52, 0.04–0.12, 0.001–0.002, and 0.59–1.77 μg·kg−1·bw/day. All target hazard quotients (THQs) of individual elements and hazard indexes (HI) were less than one. The present study indicates that most of the P. notoginseng cultivation soil in the province of Yunnan presented slight and moderate ecological risk. Thus, more attention should be given to the heavy metals As, Cd, and Hg when selecting planting areas for the cultivation of P. notoginseng. Health risks associated with the intake of a single element or consumption of the combined metals through P. notoginseng are absent. PMID:27827951

  16. Heavy metals in waters and suspended sediments affected by a mine tailing spill in the upper San Lorenzo River, Northwestern México.

    PubMed

    Páez-Osuna, F; Bojórquez-Leyva, H; Bergés-Tiznado, M; Rubio-Hernández, O A; Fierro-Sañudo, J F; Ramírez-Rochín, J; León-Cañedo, J A

    2015-05-01

    Concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), silver (Ag) and zinc (Zn) were evaluated in water and suspended sediments of the upper waters of San Lorenzo River in NW Mexico following a mine tailing spill. Except As (6.64-35.9 µg L(-1)), dissolved metal concentrations were low (Ag <0.06-0.22; Cd 0.01-0.34; Cu 4.71-10.2; Hg 0.02-0.24; Pb <0.15-0.65; Zn 86-1,080 µg L(-1)) and were less than the upper limits established by UNEP (Water quality for ecosystem and human health, 2nd edn. United Nations Environment Programme Global Environment Monitoring System/Water Programme, Burlington, 2008), EPA (2014) and the Mexican regulation (NOM 1994). In contrast, the suspended metal concentrations were high (As 91.4-130; Ag 22.1-531; Cd 3.14-6.30; Cu 65-123; Hg 0.47-1.09; Pb 260-818; Zn 742-1,810 mg kg(-1)) and most of samples exceeded the probable effect level of the Canadian Sediment Quality Guidelines for the Protection of Aquatic Life.

  17. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China

    PubMed Central

    Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing

    2016-01-01

    Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956

  18. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia).

    PubMed

    Vukosav, Petra; Mlakar, Marina; Cukrov, Neven; Kwokal, Zeljko; Pižeta, Ivanka; Pavlus, Natalija; Spoljarić, Ivanka; Vurnek, Maja; Brozinčević, Andrijana; Omanović, Dario

    2014-03-01

    An evaluation of the quality status of the pristine karst, tufa depositing aquatic environment of the Plitvice Lakes National Park based on the analysis of heavy (ecotoxic) metals was examined for the first time. Analyses of trace metals in water, sediment and fish (Salmo trutta, Oncorhynchus mykiss, Squalius cephalus) samples were conducted either by stripping voltammetry (Zn, Cd, Pb and Cu) or cold vapour atomic absorption spectrometry (Hg). The concentration of dissolved trace metals in water was very low revealing a pristine aquatic environment (averages were, in ng/L: 258 (Zn), 10.9 (Cd), 11.7 (Pb), 115 (Cu) and 1.22 (Hg)). Slightly enhanced concentrations of Cd (up to 50 ng/L) and Zn (up to 900 ng/L) were found in two main water springs and are considered as of natural origin. Observed downstream decrease in concentration of Cd, Zn and Cu in both water and sediments is a consequence of the self-purification process governed by the formation and settling of authigenic calcite. Anthropogenic pressure was spotted only in the Kozjak Lake: Hg concentrations in sediments were found to be up to four times higher than the baseline value, while at two locations, Pb concentrations exceeded even a probable effect concentration. The increase of Hg and Pb was not reflected on their levels in the fish tissues; however, significant correlations were found between Cd level in fish tissues (liver and muscle) and in the water/sediment compartments, while only partial correlations were estimated for Zn and Cu. A high discrepancy between values of potentially bioavailable metal fraction estimated by different modelling programs/models raised the question about the usefulness of these data as a parameter in understanding/relating the metal uptake and their levels in aquatic organism. The aquatic environment of the Plitvice Lakes National Park is characterized, in general, as a clean ecosystem.

  19. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir.

    PubMed

    Liang, Ao; Wang, Yechun; Guo, Hongtao; Bo, Lei; Zhang, Sheng; Bai, Yili

    2015-10-01

    To assess the heavy metal pollution in Changshou Lake, sediments were collected from nine sites at three periods (dry, normal, and wet) in 2013. The Hg, As, Cr, Cd, Pb, Cu, and Zn levels were then determined. The index of geoaccumulation (I geo) and the sediment pollution index (SPI) were applied to the sediment assessment, and Pearson's correlation analysis and factor analysis (FA) were performed to identify common pollution sources in the basin. The results showed that heavy metals presented significant spatial variations with Cr, Cd, Pb, Cu, Zn, Hg, and As concentrations of 29.66~42.58, 0.62~0.91, 24.91~37.96, 21.18~74.91, 41.65~86.86, 0.079~0.152, and 20.17~36.88 mg kg(-1), respectively, and no obvious variations were found among the different periods. The average contents of the metals followed the order Zn > Cu > Cr > Pb > As > Cd > Hg, which showed a high pollution in the sediments collected from open water and at the river mouth. The assessment results indicated that toxic heavy metals presented obvious pollution with I Hg of 0.64~1.36 (moderately polluted), I Cd of 1.66~2.22 (moderately to heavily polluted), and I As of 1.21~2.07 (moderately to heavily polluted). The heavy metal pollution states followed the order Cd > As > Hg > Cu > Pb > Zn > Cr, and the SPI showed that the sediment collected from open water area was more polluted than those obtained from the tributaries and the river mouth. Cr, Cd, Hg, Pb, Cu, As, and Zn were mainly attributed to sediment weathering with Hg, Pb, and Cu and partially due to domestic sewage from the upper reaches. These results indicate that the more attention should be paid to the inner loads of sediment in order to achieve improvements in reservoir water quality after the control of external pollution.

  20. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China.

    PubMed

    Feng, Jingjing; Chen, Xiaolin; Jia, Lei; Liu, Qizhen; Chen, Xiaojia; Han, Deming; Cheng, Jinping

    2018-04-10

    Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher's exact test.

  1. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    PubMed

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  2. Joint Services Electronics Program

    DTIC Science & Technology

    1991-07-01

    Associates HgCdTe infrared detector for our earlier Ge:Cu detector . The samples studied were obtained from Professor J. Schetzina at North Carolina State...such delicate structures. Since such effects may well limit their utility in actual devices we have begun an investigation of noise processes in...superlattices 3 was initially motivated by practical interest in infrared detectors like HgTe/CdTe. The III-V superlattices (SLs) are being considered

  3. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  4. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  5. Heavy metals in Tuskegee Lake crayfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrationsmore » of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.« less

  6. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.

    2015-06-01

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.

  7. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.

  8. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China.

    PubMed

    Briki, Meryem; Ji, Hongbing; Li, Cai; Ding, Huaijian; Gao, Yang

    2015-12-01

    Mining and smelting have been releasing huge amount of toxic substances into the environment. In the present study, agricultural soil and different agricultural products (potato, Chinese cabbage, garlic bolt, corn) were analyzed to examine the source, spatial distribution, and risk of 12 elements (As, Be, Bi, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in agricultural soil near mine fields, smelting fields, and mountain field around Hezhang County, west of Guizhou Province, China. Multivariate statistical analysis indicated that in mining area, As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn were generated from anthropogenic sources; in smelting area, As, Be, Cd, Co, Cu, Pb, Sb, and Zn were derived from anthropogenic sources through zinc smelting ceased in 2004. The enrichment factors (EFs) and ecological risk index (RI) of soil in mining area are the most harmful, showing extremely high enrichment and very high ecological risk of As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn. Zinc is the most significant enriched in the smelting area; however, mountain area has a moderate enrichment and ecological risk and do not present any ecological risk. According to spatial distribution, the concentrations depend on the nearby mining and smelting activities. Transfer factors (TFs) in the smelting area and mountain are high, implying a threat for human consumption. Therefore, further studies should be carried out taking into account the harm of those heavy metals and potential negative health effects from the consumption of agricultural products in these circumstances.

  9. A Simple Qualitative Analysis Scheme for Several Environmentally Important Elements

    ERIC Educational Resources Information Center

    Lambert, Jack L.; Meloan, Clifton E.

    1977-01-01

    Describes a scheme that uses precipitation, gas evolution, complex ion formation, and flame tests to analyze for the following ions: Hg(I), Hg(II), Sb(III), Cr(III), Pb(II), Sr(II), Cu(II), Cd(II), As(III), chloride, nitrate, and sulfate. (MLH)

  10. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  11. Concentrations of trace elements in Pacific and Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  12. Distribution of metal concentrations in sediments of the coastal zone of the Gulf of Riga and open part of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Seisuma, Z.; Kulikova, I.

    2012-11-01

    The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.

  13. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of themore » same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).« less

  14. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  15. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    PubMed

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  16. Trace metals in sediments of two estuarine lagoons from Puerto Rico.

    PubMed

    Acevedo-Figueroa, D; Jiménez, B D; Rodríguez-Sierra, C J

    2006-05-01

    Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.

  17. Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran.

    PubMed

    Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J

    2014-06-01

    This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.

  18. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  19. Culiseta subochrea as a Bioindicator of Metal Contamination in Shadegan International Wetland, Iran (Diptera: Culicidae)

    PubMed Central

    Nasirian, Hassan; Vazirianzadeh, Babak; Taghi Sadeghi, Sayyed Mohammad; Nazmara, Shahrokh

    2014-01-01

    Abstract The quantity of some trace metals of mosquito larvae in Shadegan International Wetland from Iran was evaluated. Water, waterbed sediment, and mosquito larvae samplings were carried out from an urban site in the east of the wetland, using standard methods in December 2011. The identified Culiseta subochrea (Edwards) and Aedes caspius s.l. (Pallas) larvae, water, and waterbed sediment samples were analyzed for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, and Zn trace metals using standard preparation and isolation procedure. Result showed that the waterbed sediment and Cu. subochrea larvae are polluted with all trace metals investigated except As and Hg. The trace metals bioaccumulated in the Cu. subochrea larvae range from 31.78 at the lowest level for Cr to 3822.7 at the highest level for Cd. In a conclusion, this is the first report confirmed that Cu. subochrea likely used as a bioindicator to trace metal pollution in marine ecosystems in the world, especially wetlands. PMID:25550357

  20. A novel method for the sequential removal and separation of multiple heavy metals from wastewater.

    PubMed

    Fang, Li; Li, Liang; Qu, Zan; Xu, Haomiao; Xu, Jianfang; Yan, Naiqiang

    2018-01-15

    A novel method was developed and applied for the treatment of simulated wastewater containing multiple heavy metals. A sorbent of ZnS nanocrystals (NCs) was synthesized and showed extraordinary performance for the removal of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The removal efficiencies of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ were 99.9%, 99.9%, 90.8% and 66.3%, respectively. Meanwhile, it was determined that solubility product (K sp ) of heavy metal sulfides was closely related to adsorption selectivity of various heavy metals on the sorbent. The removal efficiency of Hg 2+ was higher than that of Cd 2+ , while the K sp of HgS was lower than that of CdS. It indicated that preferential adsorption of heavy metals occurred when the K sp of the heavy metal sulfide was lower. In addition, the differences in the K sp of heavy metal sulfides allowed for the exchange of heavy metals, indicating the potential application for the sequential removal and separation of heavy metals from wastewater. According to the cumulative adsorption experimental results, multiple heavy metals were sequentially adsorbed and separated from the simulated wastewater in the order of the K sp of their sulfides. This method holds the promise of sequentially removing and separating multiple heavy metals from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of several heavy metals in wild edible mushrooms from regions of China.

    PubMed

    Chen, Xin-Hua; Zhou, Hong-Bo; Qiu, Guan-Zhou

    2009-08-01

    The metal (Cu, Ni, Cd, Hg, As, Pb) contents in wild edible mushrooms collected from three different sites in China were determined by atomic absorption spectrometry and atomic fluorescence spectrometry. All element concentrations were determined on a dry weight basis. A total of 11 species was studied, five being from the urban area and six from rural areas in China. The As content ranged from 0.44 to 1.48 mg/kg. The highest As content was seen in Macrolepiota crustosa from the urban area, and the lowest in Russula virescens from rural areas. A high Ni concentration (1.35 mg/kg) was found in Calvatia craniiformis from the urban area. The lowest Ni level was 0.11 mg/kg, for the species R. virescens and Cantharellus cibarius. The Cu content ranged from 39.0 to 181.5 mg/kg. The highest Cu content was seen in Agaricus silvaticus and the lowest in C. cibarius. The Pb content ranged from 1.9 to 10.8 mg/kg. The highest Pb value was found in C. craniiformis. The Cd content ranged from 0.4 to 91.8 mg/kg. The highest Cd value was found in M. crustosa. The Hg content ranged from 0.28 to 3.92 mg/kg. The highest Hg level was found in Agaricus species. The levels of the heavy metals Cd, Pb, and Hg in the studied mushroom species from urban area can be considered high. The metal-to-metal correlation analysis supported they were the same source of contamination. High automobile traffic was identified as the most likely source of the contamination. Based upon the present safety standards, consumption of those mushrooms that grow in the polluted urban area should be avoided.

  2. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa

    2011-07-15

    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Trace element concentrations in livers of polar bears from two populations in Northern and Western Alaska.

    PubMed

    Kannan, Kurunthachalam; Agusa, Tetsuro; Evans, Thomas J; Tanabe, Shinsuke

    2007-10-01

    Concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of polar bears (Ursus maritimus) collected from Northern and Western Alaska from 1993 to 2002 to examine differences in the profiles of trace metals between the Beaufort Sea (Northern Alaska) and the Chukchi Sea (Western Alaska) subpopulations in Alaska. Among the trace elements analyzed, concentrations of Cu (50-290 microg/g, dry wt) in polar bear livers were in the higher range of values that have been reported for marine mammals. Concentrations of Hg in polar bears varied widely, from 3.5 to 99 microg/g dry wt, and the mean concentrations in polar bears were comparable to concentrations reported previously for several other species of marine mammals. Mean concentrations of Pb and Cd were 0.67 and 1.0 microg/g dry wt, respectively; these concentrations were lower than levels reported elsewhere for polar bears from Greenland and Canada. Age- and gender-related variations in the concentrations of trace elements in our polar bears were minimal. Concentrations of Hg decreased slowly in samples collected during 1993-2002, whereas Cd and Pb concentrations were found to be stable or slowly increasing, in the livers of Alaskan polar bears. Concentrations of Ag, Bi, Ba, Cu, and Sn were significantly higher in the Chukchi Sea subpopulation than in the Beaufort Sea subpopulation. Concentrations of Hg were significantly higher in the Beaufort Sea subpopulation than in the Chukchi Sea subpopulation. Differences in the profiles and concentrations of Hg, Ag, Bi, Ba, Cu, and Sn suggest that the sources of exposure to these trace elements between Western and Northern Alaskan polar bears are different, in agreement with findings reported earlier for several organic contaminants.

  4. Trace Metals' abnormalities in hemodialysis patients: relationship with medications.

    PubMed

    Lee, S H; Huang, J W; Hung, K Y; Leu, L J; Kan, Y T; Yang, C S; Chung Wu, D; Huang, C L; Chen, P Y; Chen, J S; Chen, W Y

    2000-11-01

    A multicenter collaborative study was performed to investigate the prevalence of abnormal blood contents of 6 trace metals, copper (Cu), zinc (Zn), aluminum (Al), lead (Pb), cadmium (Cd), and mercury (Hg), in hemodialysis (HD) patients and to analyze their relationship with the medications, such as CaCO3, Ca acetate, Al containing phosphate-binding agents, 1,25-dihydroxy vitD3, 1-hydroxy vitD3, and erythropoietin (EPO), as well as hematocrit level, by chi-square statistics. From 6 medical centers in Taiwan, we included 456 patients in maintenance HD for more than 4 months for this study, and they had continued the previously mentioned medications for at least 3 months. Blood samples were collected before initiating HD, and atomic absorption spectrophotometry was used to measure plasma levels of Cu, Zn, and Al as well as whole blood levels of Pb, Cd, and Hg. Three hundred seventy-five (78%) of the HD patients had low plasma Zn levels, that is, <800 microg/L, and the mean (+/-SD) concentration was 705.8 (+/-128.23) microg/L in all subjects. One hundred forty-one (31%) of the HD patients had high plasma Al, that is, >50 microg/L, and the mean (+/-SD) was 44.30 (+/-28.28) microg/L in all subjects. Three hundred thirty-three (73%) of the dialysis patients had high Cd levels, that is, >2.5 microg/L, and the mean (+/-SD) was 3.32 (+/-1.49) microg/L in all subjects. The majority of HD patients had normal blood levels of Cu, PB, and Hg. Only 21 (4. 6%), 5 (1.1%), and 3 (0.06%) patients had elevated blood levels of Cu, Pb, and Hg, respectively. Their mean (+/-SD) blood concentration of Cu, Pb, and Hg were 1,049.78 (+/-233.25) microg/L, 7.45 (+/-3.95) microg/dL, and 3.17 (+/-25.56) microg/L, respectively. Three patients had elevated plasma Hg concentrations, that is, 546, 12.6, and 24.0 microg/L, respectively. In the 152 normal healthy age and sex matched control group, the blood levels of Al, Cd, and Pb were all significantly lower than the HD patients. However, the levels of Cu and Zn were higher in the control group. The Hg level was not significantly different in both groups. There was no statistical difference between patients with normal and abnormal blood levels of trace metals in various medications except Al containing phosphate binder. The Al containing phosphate binder users had significantly higher plasma Al levels (54.71 +/- 26.70 versus 41.15 +/- 28.03 microg/L, p < 0.001) and hematocrit levels (29.61 +/- 4.61 versus 27. 81 +/- 3.91, p < 0.0005). There was no statistical correlation between erythropoietin (EPO) dose and hematocrit level in these patients. In conclusion, the blood level of trace metals of these HD patients except Al was not related to their medications. However, caution must be exercised in interpreting this result as dose and duration of medication; efficiency of HD and water treatment may play an important role. Otherwise, environmental factors, diet, and the aging process may contribute to the trace metal burden in uremia. Thus, Zn and Cu are abundant in seafood, and Cd is abundant in contaminated plants such as rice.

  5. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment.

    PubMed

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Gu, Xiaowen Sophie

    2018-02-01

    The phytoremediation efficiency of various metals by Ficus microcarpa was evaluated through a real scale experiment in the present study. The root biomass production of the species varied significantly from 3.68 to 5.43 g because of the spatial heterogeneity of different metals. It would take 4-93 years to purify the excess Cd of the experimental site. Mercury was the most inflexible element which can barely be phytoremediated by F. microcarpa. After the species transplanted from the polluted soil to the clean site, Cd and Cu were transferred to the rhizosphere soil to different extent while the bulk soil was barely influenced. Relative to Cd and Cu, significantly fewer amounts of Pb and Hg were released. The highest concentrations of Cd, Cu, Hg and Pb in the clean soil were far below their corresponding safe thresholds for agricultural land after 3 months of the polluted plants were cultivated and metal concentrations of plant leaves were negligible, both indicated the low ecological risk of transplantation. Results from this study suggested a feasible disposal method for metal rich plants after phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chelation, spectroscopic characterization, biological activity and crystal structure of 2,3-butanedione isonicotinylhydrazone: Determination of Zr4+ after flotation separation

    NASA Astrophysics Data System (ADS)

    Al-Fulaij, O. A.; Jeragh, B.; El-Sayed, A. E. M.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-02-01

    New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]ṡnH2O (Mdbnd Co(II), Ni(II), Cu(II), Zn(II); n = 0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]ṡnH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through Cdbnd Oketonic, Csbnd Oamedic and Cdbnd Nhy and as a neutral bidentate through Cdbnd Oketonic and Cdbnd Nhy in [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10 ppm) of Zr4+ using 10 ppm of BINH and 1 × 10-5 mol L-1 of oleic acid at pH 6 with efficiency of 98% with no interferences.

  7. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  8. Tissue partition and risk assessments of trace elements in Indo-Pacific Finless Porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast, China.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Yu, Ri-Qing; Sun, Xian; Ding, Yulong; Chen, Hailiang; Chen, Xi; Wu, Yuping

    2017-10-01

    Throughout the last few decades, an increased number of stranded marine mammals, particularly the Indo-Pacific Finless Porpoises (Neophocaena phocaenoides), were observed in the Pearl River Estuary (PRE). As long-lived, apex predators vulnerable to bioaccumulation of contaminants, the tissue residue levels and health risk of trace elements (TEs) in N. phocaenoides from the PRE have been little studied. Eleven typical TEs distributed in skin, liver and kidney tissues were investigated from 25 specimens stranded along the PRE from 2007 to 2015 in the present study. It revealed that most TEs were highly accumulated in internal organs (liver and kidney), except for Zn with high residue levels in external skin. Compared with the TEs in prey items, the residue levels of Hg, Se, Zn, Cu, Cd and Cr in N. phocaenoides increased 4-618 times, indicating a potentially significant biomagnification. Sex-related differences of TE accumulation were not obvious, except for renal Mn, in which the females showed lower mean concentrations than males. Significantly positive correlations between body length and TE levels were found for Hg, Se and Cd. Results of the calculated risk quotients (RQ) suggested that the risks to N. phocaenoides from consumption of prey items were generally low, but further attentions should be paid to Cd, Cr, Cu, Hg and As due to the elevated RQ values. The concentrations of Hg, Cd and Se in the epidermis were positively correlated with the levels found in internal organs. Our investigation provides evidence to support the use of skin as one biomonitoring approach on Hg, Cd and Se contamination of internal tissues in this species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cumulative Effects of Short-Term Polymetal Contamination on Soil Bacterial Community Structure

    PubMed Central

    Ranjard, L.; Lignier, L.; Chaussod, R.

    2006-01-01

    In this study we evaluated the short-term effects of copper, cadmium, and mercury, added singly or in combination at different doses, on soil bacterial community structure using the bacterial automated ribosomal intergenic spacer analysis (B-ARISA) fingerprinting technique. Principal-component analysis of B-ARISA profiles allowed us to deduce the following order of impact: (Cu + Cd + Hg) >> Hg ≥ Cd > Cu. These results demonstrated that there was a cumulative effect of metal toxicity. Furthermore, the trend of modifications was consistent with the “hump-backed” relationships between biological diversity and disturbance described by Giller et al. (K. E. Giller, E. Witler, and S. P. McGrath, Soil Biol. Biochem. 30:1389-1414, 1998). PMID:16461728

  10. Data of heavy metals biosorption onto Sargassum oligocystum collected from the northern coast of Persian Gulf.

    PubMed

    Delshab, Sedigheh; Kouhgardi, Esmaeil; Ramavandi, Bahman

    2016-09-01

    This data article presents a simple method for providing a biosorbent from Sargassum oligocystum harvested from the northern coast of Persian Gulf, Bushehr, Iran. The characterization data of Sargassum oligocystum biochar (SOB) were analyzed using various instrumental techniques (FTIR and XPS). The kinetics, isotherms, and thermodynamics data of Hg(2+), Cd(2+), and Cu(2+) ions onto SOB were presented. The maximum biosorption capacity of SOB to uptake Hg(2+), Cd(2+), and Cu(2+) ions from aqueous solution was obtained 60.25, 153.85, and 45.25 mg/g, respectively. The experimental data showed that biochar prepared from Sargassum oligocystum is an efficient and promising biosorbent for the treatment of heavy metals-bearing wastewaters.

  11. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  13. Tidal river sediments in the Washington, D.C. area. 1. Distribution and sources of trace metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velinsky, D.J.; Wade, T.L.; Schlekat, C.E.

    1994-06-01

    Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Crk Cd, Hg, Pb, and Zn) exhibited a wide range in values in the study area. Sediment concentrations of Pb ranged from 32.0{mu}g Pb g {sup -1} to 3,630 {mu}g Pb g{sup -1}, Cd from 0.24more » {mu}g Cd g{sup -1} to 4.1 {mu}g Cd g{sup -1}, and Hg from 0.13 {mu}g g{sup -1} to 9.2 {mu}g Hg g{sup -1}, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River measurements indicate that numerous storm and combined sewers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadmium and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N{sub 2}-purged 1N HCI leach. On average, {le}40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect moderate to highly contaminated area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase containing these metals indicates potential mobility of the sediment-bound metals during either storm events or dredging. 39 refs., 5 figs., 6 tabs.« less

  14. Potential risk assessment of metals in edible fish species for human consumption from the Eastern Aegean Sea.

    PubMed

    Pazi, Idil; Gonul, L Tolga; Kucuksezgin, Filiz; Avaz, Gulsen; Tolun, Leyla; Unluoglu, Aydın; Karaaslan, Yakup; Gucver, S Mine; Koc Orhon, Aybala; Siltu, Esra; Olmez, Gulnur

    2017-07-15

    The levels of Hg, Cd, Pb, Cr, Cu and Zn were measured in the tissues of four edible fish species namely: Diplodus annularis, Pagellus erythrinus, Merluccius merluccius and Mullus barbatus, collected from the Turkish Coast of the Aegean Sea. Except for D. annularis, the levels of Cd and Pb in all fish tissues sampled in Aliaga Bay in 2009 were above the tolerable limits according to the Food and Agriculture Organization of the United Nations (FAO). Hg in P. erythrinus and M. barbatus were higher than the maximum permitted limits (FAO), while D. annularis and M. merluccius were lower than the limit for biota in the district of Aliaga. Although the Target Hazard Quotient (THQ) values for Cd, Pb, Cu, Cr, Zn in all fish samples were lower than 1.0, the THQ for Hg levels were higher than 1.0 for most of the samples. According to the THQ values, M. merluccius may be consumed in moderation from Aliaga Bay, while the consumption of M. barbatus and P. erythrinus collected from Aliaga Bay are potentially hazardous to human health due to the Hg concentrations. Fish collected from Izmir Bay can be consumed safely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  16. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    USGS Publications Warehouse

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  17. Hyperspectral estimation of soil heavy metals in Guanzhong area, Shaanxi province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Cheng, Jie; Wang, Huanyuan; Tong, Wei; Ma, Zenghui

    2017-10-01

    In this study, the contents of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pub in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD Field Spec HR (350 ˜ 2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal hyper spectral estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb was established by regression method. Comparing the reflection characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results show that: (1) the reflectance spectrum improves the signal-to-noise ratio of the reflectance spectrum after the transformation of NOR, MSC and SNV. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb by PLSR method were 0.7002, 0.7852, 0.687, 0.8036, 0.8619, 0.5765, 0.5451, 0.9912, and 0.6182.

  18. Epidemiological Study on Metal Pollution of Ningbo in China

    PubMed Central

    Li, Zhou; Su, Hong; Wang, Li; Hu, Danbiao; Zhang, Lijun; Fang, Jian; Jin, Micong; Song, Xin; Shi, Hongbo; Mao, Guochuan

    2018-01-01

    Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), chromium (Cr), nickel (Ni), zinc (Zn), and mercury (Hg) in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS). Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1) Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2) The pollution index (PI) of Cd and Zn in soil (1.069, 1.584, respectively) suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3) A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4) Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5) Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China. PMID:29495631

  19. Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China.

    PubMed

    Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin

    2018-03-01

    The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."

  20. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran.

    PubMed

    Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah

    2017-04-01

    This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  2. HgCdTe liquid phase epitaxy - An overview

    NASA Astrophysics Data System (ADS)

    Castro, C. A.; Korenstein, R.

    1982-08-01

    Techniques and results of using liquid phase epitaxy (LPE) to form crystalline thin HgCdTe films for industrial-scale applications in IR detectors and focal plane arrays are discussed. Varying the mole fraction of CdTe in HgCdTe is noted to permit control of the bandwidth. LPE-grown films are noted to have a low carrier concentration, on the order of 4 x 10 to the 14th to 5 x 10 to the 15th/cu cm, a good surface morphology and be amenable to production scale-up. Details of the isothermal, equilibrium cooling, and supersaturation cooling LPE growth modes are reviewed, noting the necessity of developing a reliable method for determining the liquidus temperature for all modes to maintain uniformity of film growth from batch to batch. Mechanical steps can be either dipping the substrate into the melt or the slider boat approach, which is used in the production of compound semiconductors.

  3. Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai.

    PubMed

    Bai, Yang; Wang, Min; Peng, Chi; Alatalo, Juha M

    2016-03-01

    We investigated the horizontal and vertical distribution of heavy metals (Hg, Pb, Zn, Cu, Cd, As, Ni, and Cr) in soils in the water source protection zone for Shanghai to study the origins of these metals, their connections with urbanization, and their potential risk posed on the ecosystem. Determination of metal concentrations in 50 topsoil samples and nine soil profiles indicated that Hg, Pb, Zn, and Cu were present in significantly higher concentrations in topsoil than in deep soil layers. The spatial distributions of Hg, Pb, Zn, and Cu and contamination hotspots for these metals in the study area were similar to those near heavy industries and urban built-up areas. Emissions from automobiles resulted in increased soil concentrations of Cu, Pb, and Zn along roadsides, while high concentrations of Hg in the soil resulted from recent atmospheric deposition. Calculation of the potential ecological risk indicated that the integrative risk of these heavy metals in most areas was low, but a few sites surrounding high density of factories showed moderate risks.

  4. Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues.

    PubMed

    Binkowski, Łukasz J; Rogoziński, Paweł; Błaszczyk, Martyna; Semla, Magdalena; Melia, Patrick M; Stawarz, Robert

    2016-12-05

    We aimed to check the relationships between levels of metals (Ca, Cd, Cu, Fe, Hg and Zn) in cancerous and non-cancerous lung tissues and their link to air pollution, expressed as particulate matter (PM) concentrations. The study also examines the influence on metal concentration in the lung tissue of patients' sex and the distance of their homes from the nearest emitter. We found that the general pattern of ascending concentrations in tumor tissue was as follows: Hg < Cd < Cu < Ca < Zn < Fe. In non-affected lung tissue the order of concentrations of Ca and Fe was reversed. With the exception of Cd and Cu, levels of metals were found in higher accumulations in non-cancerous tissue (e.g., Fe 326.423 and Ca 302.730 μg/g d.w) than in tumorous tissue (Fe 150.735 and Ca 15.025 μg/g d.w). Neither the PM10 (PM of a diameter of 10 μm) concentration nor sex revealed any connection with metal concentrations. The shorter the distance from the emitter, the higher the metal concentrations that tended to be observed for almost all metals, but a statistically significant (but weak) relationship was noted only for Cu in tumor tissue (r s : -0.4869).

  5. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus) Culled off Ishigaki Island, Japan: Changes with Growth

    PubMed Central

    Endo, Tetsuya; Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Fujii, Yukiko; Haraguchi, Koichi

    2016-01-01

    We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle samples from silvertip sharks (Carcharhinus albimarginatus) in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed. PMID:26859569

  6. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area.

    PubMed

    Liu, Haiwei; Wang, Haiyun; Zhang, Yan; Yuan, Jumin; Peng, Yaodong; Li, Xiuchun; Shi, Yi; He, Kuanxin; Zhang, Qiming

    2018-06-01

    The heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the surface soils of tobacco (Nicotiana tabacum L.) fields in Jiangxi Province were analyzed, and the mean heavy metal concentrations were 3.55, 0.19, 25.89, 14.96, 0.25, 10.89, 27.80, and 44.00 mg/kg, respectively. Spatial distribution analysis showed that the highest concentrations were recorded in the north-western, south-western, and mid-eastern parts of the study area. The index of geo-accumulation and pollution index indicated modest enrichment with Cd and Hg, which were the only two metals posing a potentially high ecological risk to the local agricultural environment. The health risk assessment showed no considerable non-carcinogenic or carcinogenic risks for children and adults from these elements. The principal component analysis (PCA) and cluster analysis (CA) found that the variations in the Cr and Ni concentrations were largely on account of the soil parent rocks, but the As, Cd, Cu, and Hg variations in the soil were largely owing to agricultural practices of years. However, the main factor influencing Pb and Zn was atmospheric deposition.

  7. Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

    PubMed Central

    Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.

    2006-01-01

    A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.

  8. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    PubMed

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng

    2016-04-15

    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.

  9. Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California).

    PubMed

    Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F

    2013-02-01

    The Tobari Lagoon, located in the central-east coast of the Gulf of California, receives effluents from the Yaqui Valley, one of the most extensive agricultural areas of México. The Tobari Lagoon also receives effluents from nearby shrimp farms and untreated municipal sewage. Surface sediment samples and six different species of filter feeders (Crassostrea corteziensis, Crassostrea gigas, Chione gnidia, Anadara tuberculosa, Chione fluctifraga, and Fistulobalanus dentivarians) were collected during the dry and the rainy seasons and analyzed to determine concentrations of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn). Seasonal variations in metal concentrations in sediment were evident, especially for Cd, Cu, Hg, and Zn. The total and bioavailable concentrations of the five metals are not elevated in comparison to other areas around the world. The percentages of bioavailable respect to total concentrations of the metals varied from 0.6 % in Hg to 50.2 % for Cu. In the organisms, Hg showed the lowest concentrations (ranged from 0.22 to 0.65 μg/g) while Zn showed the highest (ranged from 36.6 to 1,702 μg/g). Linear correlations between the levels of Cu, Pb, and Zn in the soft tissues of C. fluctifraga and C. gnidia, and A. tuberculosa and C. gnidia were found. Seasonal and interspecies variations in the metal levels in filter feeders were found; F. dentivarians, C. corteziensis, and C. gigas exhibited the highest levels, could be used as biomonitors of metals contamination in this area.

  10. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.

    PubMed

    Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M

    2016-03-01

    Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.

  11. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China.

    PubMed

    Li, Junhui; Lu, Ying; Yin, Wei; Gan, Haihua; Zhang, Chao; Deng, Xianglian; Lian, Jin

    2009-06-01

    The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.

  12. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta.

    PubMed

    Kerr, Jason G; Cooke, Colin A

    2017-10-15

    Erosion is important in the transport of heavy metals from terrestrial to fluvial environments. In this study, we investigated riverine heavy metal (Cd, Cu, Hg and Pb) dynamics in the Red Deer River (RDR) watershed at sites upstream (n=2) and downstream (n=7) of the Alberta badlands, an area of naturally high erosion. At sites draining the badlands, total water column Cd, Cu, Hg and Pb concentrations frequently exceeded guidelines for the protection of freshwater biota. Furthermore, peak concentrations of total Cd (9.8μgL -1 ), Cu (212μgL -1 ), Hg (649ngL -1 ) and Pb (361μgL -1 ) were higher than, or comparable to, values reported for rivers and streams heavily impacted by anthropogenic activities. Total suspended solids (TSS) explained a large proportion (r 2 =0.34-0.83) of the variation in total metal concentrations in the RDR and tributaries and metal fluxes were dominated by the particulate fraction (60-98%). Suspended sediment concentrations (C sed ) and metal to aluminum ratios were generally not indicative of substantial sediment enrichment. Rather, the highly variable and elevated metal concentrations in the RDR watershed were a function of the high and variable suspended sediment fluxes which characterize the river system. While the impact of this on aquatic biota requires further investigation, we suggest erosion in the Alberta badlands may be contributing to Hg-based fish consumption advisories in the RDR. Importantly, this highlights a broader need for information on contaminant dynamics in watersheds subject to elevated rates of erosion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. [Synthesis and Spectroscopic Study of a Chemosensor for Naked Eye Recognition of Cu2+ and Hg2+].

    PubMed

    Cao, Li; Qian, Ya-ao; Huang, Yan; Cao, Juan; Jia, Chun-man; Liu, Chun-ling; Zhang, Qi; Lu, Zheng-rong

    2015-07-01

    Compound L, as the procedural sensor for the detection of Cu2+ and Hg2+, was designed and synthesized based on the coumarin-modified rhodamine derivative. The structure of compound L was characterized by NMR, high resolution mass spectrometry and infrared method. Its sensing behavior toward various metal ions was investigated with absorbance methods. The study found that L had good selectivity and sensitivity for Cu2+. When addition of various metal ions (Zn2+, Hg2+, Cu2+, Fe3+, Cd2+, CO2+, Ni2+, Mg2+, Ca2+, Al3+, La3+, K+, Na+, Mn2+, Pb2+ and Ag+), only Cu2+ could induce a visible change of solution from colourless to pink and a new absorption band centered at 534 nm appear, which indicated that compound L could be used for the naked eye detection of Cu2+. From UV titration, the detection limit was about 1.9 X 10(-8) mol x L(-1). Test strips based on L were fabricated, and this test strips could act as a convenient and efficient Cu2+ test kit. The binding ratio of the complex of L-Cu2+ was 1:1 according to the Job's plot and high resolution mass spectrometer (HRMS) experiments. Moreover, Upon addition of 1 equiv. EDTA to the mixture of L and Cu2+ in DMSO solution, colour changed from pink to almost colourless, indicating that the EDTA replaced the receptor L to coordinate with Cu2+. Therefore, L could be classified as a reversible sensor for Cu2+. In addition, when adding Hg2+ to L-Cu2+ complexes, a visible change of solution from pink to colourless was observed, while other metal ions didn't cause this change. Thus, L-Cu2+ complex also could be used for the naked eye recognition of Hg2+, and the detection limit was calculated about 2.9 x 10(-1) mol x L(-1) according to the UV titration. Consequently, this procedural sensor L could be use for the orderly naked eye recognition of Cu2+ and Hg2+.

  14. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    PubMed

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  16. Heavy metal concentrations in cocoa beans (Theobroma cacao L.) originating from East Luwu, South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Assa, A.; Noor, A.; Yunus, M. R.; Misnawi; Djide, M. N.

    2018-03-01

    Concentrations of some heavy metals (Pb, Cu, Cd, As and Hg) were assessed for cocoa beans (Theobroma cacao L) originating from East Luwu, South Sulawesi, Indonesia after five-day fermentation. Consisting of PB 123, BR 25, and MCC 02 cocoa clones, the spectrophotometric analysis showed that concentrations of Pb, Cd, As and Hg in the cocoa beans over the three clones was below the detection limits of 0.100; 0.050, 0.010 and 0.005 mg/kg. For Cu, they were 19.343; 10.391, and 18.594 mg/kg respectively, but still below the maximum critical levels, established by the European Food Safety Authority (EFSA). Concentrations of those five heavy metals in the bean shells were found to be parallel to those in the cocoa beans, except for Pb.

  17. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  18. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  19. Quantification of chemical elements in blood of patients affected by multiple sclerosis.

    PubMed

    Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni

    2005-01-01

    Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).

  20. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method.

    PubMed

    Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun

    2015-06-01

    Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China.

    PubMed

    Zhang, Zhaoyong; Juying, Li; Mamat, Zulpiya; QingFu, Ye

    2016-04-01

    The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia.

    PubMed

    Zarcinas, Bernhard A; Ishak, Che Fauziah; McLaughlin, Mike J; Cozens, Gill

    2004-12-01

    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).

  3. Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

    PubMed Central

    Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.

    2018-01-01

    The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904

  4. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    PubMed

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  5. Metal concentrations of common freshwater and marine fish from the Pearl River Delta, south China.

    PubMed

    Cheung, K C; Leung, H M; Wong, M H

    2008-05-01

    Sediments and fish, including tilapia (Oreochromis mossambicus), bighead carp (Aristichthys nobilis), grass carp (Ctenopharyngodon idellus), and mandarin fish (Siniperca chuatsi) were collected from different fish ponds in the Pearl River Delta (Tanzhou, Sanjiao, Guangzhou, Shipai, Changan, and Mai Po) for the analysis of metalloids and heavy metals [arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb)]. The pollution of As in pond sediments was great; however, As in the edible parts of pond fish were within the international permissible safety levels for human consumption. Axial muscles from 10 species each of freshwater and marine fish purchased from markets in Hong Kong were also analyzed for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. Freshwater fish contained 0.24 to 2.13 mg/kg As, 0.10 to 0.17 mg/kg Cd, 0.09 to 0.36 mg/kg Cr, 0.06 to 0.35 mg/kg Cu, 0.07 to 0.34 mg/kg Hg, 0.04 to 0.36 mg/kg Ni, 0.11 to 0.52 mg/kg Pb, and 2.67 to 19.1 mg/kg Zn (wet weight). Marine fish had higher Hg and lower Pb concentrations than freshwater fish. A few fish species had average concentrations greater than the international standards for Cd and Pb established by the European Union and the China National Standard Management Department. Total Hg concentrations in 10 of 20 market fish species were generally greater than those of the World Health Organization's recommended limit of 0.2 mg/kg for at-risk groups, such as children and pregnant women. Daily intake through fish consumption of these metals were compared with the Provisional Tolerable Weekly Intake proposed by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives. There appears to be potential threat to local people from Hg contamination because of the high marine fish consumption rate (142 g/d/person).

  6. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    PubMed

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg and Cd in central Urumqi-Akesu section and that of As in western Zhaosu-Tekesi section were relatively high.

  7. Essential and toxic elements in honeys from a region of central Italy.

    PubMed

    Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L

    2015-01-01

    Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.

  8. Heavy metals in edible seaweeds commercialised for human consumption

    NASA Astrophysics Data System (ADS)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  9. Ecological risk of heavy metals in sediments of the Luan River source water.

    PubMed

    Liu, Jingling; Li, Yongli; Zhang, Bao; Cao, Jinling; Cao, Zhiguo; Domagalski, Joseph

    2009-08-01

    Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security.

  10. Bioaccumulation of trace element concentrations in common dolphins (Delphinus delphis) from Portugal.

    PubMed

    Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina

    2016-12-15

    The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China.

    PubMed

    Mamat, Zulpiya; Haximu, Sadiguli; Zhang, Zhao Yong; Aji, Rouzi

    2016-04-01

    Bosten Lake, a typical rump lake in an oasis in northwest China, was chosen to evaluate the distribution, sources, pollution status, and potential ecological risk of heavy metals. Sediment samples were collected from the lake, and results showed that the values of the eight heavy metals all fell within the Second Soil National Standard, while the average and maximum values of the metals were higher than the background values of the study. Multivariate statistical analysis showed that sediment concentrations of Cd, Pb, Hg, and Zn were mainly influenced by man sources. In comparison, Cu, Ni, Cr, and As were primarily natural in origin. Enrichment factor analysis (EF) and the geo-accumulation index evaluation method (I geo) showed that Cd, Hg, and Pb fell under low and partial serious pollution levels, while Zn, As, Cr, Ni, and Cu mainly were characterized under no pollution and low pollution levels. The potential ecological hazards index (RI) showed that among the eight heavy metals, Pb, Hg, and Cd posed the highest potential ecological risk, with potential ecological hazards indices (RI) of 29.06, 27.71, and 21.54 %, respectively. These findings demonstrated that recent economic development in the area of the basin has led to heavy metal accumulation in the surface sediments of the lake.

  12. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  13. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    PubMed Central

    Gao, Bo; Zhou, Huaidong; Huang, Yong; Wang, Yuchun; Gao, Jijun; Liu, Xiaobo

    2014-01-01

    The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg) in sediments from the Three Gorges Reservoir (TGR) tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process), and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries. PMID:24624045

  14. Monitoring programme on toxic metal in bluefish (Pomatomus saltatrix), anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) from Istanbul, Turkey: levels and estimated weekly intake.

    PubMed

    Özden, Özkan

    2013-05-01

    Toxic metal (Hg, Cd, Pb, Cu and Zn) concentrations of small-medium bluefish, anchovy and sardine in Istanbul, Turkey, were determined using inductively coupled plasma-mass spectrometry (ICP-MS) throughout 1 year. The concentrations of pollutants were found to vary according to season and species. Estimates of weekly intake levels of the metals were calculated and compared to recommended safe limits for fish consumption by humans. The levels of Cd, Pb, Cu and Zn in the fillets of all species resulted in estimates of weekly intake levels that were lower than the recommended safe limits. The concentrations of Hg of small bluefish in September, of medium bluefish in June and September, of anchovy in March, and of sardine in August and September resulted in estimates of weekly intake levels that were higher than the recommended safe limits for human consumption.

  15. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast).

    PubMed

    Jonathan, M P; Aurioles-Gamboa, David; Villegas, Lorena Elizabeth Campos; Bohórquez-Herrera, Jimena; Hernández-Camacho, Claudia J; Sujitha, S B

    2015-10-15

    Concentrations of 11 trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, As, Hg) in 40 fish species from Santa Maria Bay, Baja California Sur, Mexico, the strategically important area for marine mammals and organisms were analyzed. Based on their concentrations the ranking of metals Fe>Zn>Ni>Cr>Mn>Pb>Cu>Co>As>Cd>Hg suggests that organism size, metabolism and feeding habits are correlated with metal concentrations. Local geological formations affect the concentrations of different metals in the aquatic environment and are subsequently transferred to fishes. The correlation analysis suggests that metabolism and nurturing habits impact the concentration of metals. Concentrations of Fe and Mn appear to be influenced by scavenging and absorption processes, which vary by species. The considerable variability in the metal concentrations obtained in different species underscores the importance of regular monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China.

    PubMed

    Zhao, Weituo; Ding, Lei; Gu, Xiaowen; Luo, Jie; Liu, Yunlang; Guo, Li; Shi, Yi; Huang, Ting; Cheng, Shenggao

    2015-11-01

    Due to the high threat to human health and the ecosystem from metals, the levels and distribution of As, Hg, Cr, Co, Ni, Cu, Zn, Cd, Pb, Mn, V, Sn, Sb, Li and Be in various layers of soil from an e-waste recycling area in Guiyu, China were investigated. The extent of pollution from the metals in soil was assessed using enrichment factors (EFs) and the Nemerow pollution index (P N ). To determine the metals' integrated potential ecological risks, the potential ecological risk index (RI) was chosen. The concentrations of Hg, Ni, Cu, Cd, Pb, Sn and Sb were mainly enriched in the topsoil. EF values (2-5) of the elements Hg, Co, Ni, Zn, Sn, Li and Be revealed their moderate enrichment status in the topsoil, derived from e-waste recycling activities. P N presented a decreasing trend in different layers in the order topsoil (0-20 cm) > deep soil (100-150 cm) > middle soil (50-100 cm) > shallow soil (20-50 cm). With higher potential ecological risk factor (E(i)), Hg and Cd are the main contributors to the potential ecological risk. With respect to the RI, all the values in soil from the study area exceeded 300, especially for the soil at sites S2, S4, S5, S7 and S8, where RI was greater than 600. Therefore, immediate remediation of the contaminated soil is necessary to prevent the release of metals and potential ecological harm.

  17. Bioaccumulation of elements in three selected mushroom species from southwest Poland.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz

    2015-01-01

    The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.

  18. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China.

    PubMed

    Zhou, Jie; Feng, Ke; Li, Yinju; Zhou, Yang

    2016-08-01

    The objectives of this study are to analyse the pollution status and spatial correlation of soil heavy metals and identify natural and anthropogenic sources of these heavy metals at different spatial scales. Two hundred and twenty-four soil samples (0-20 cm) were collected and analysed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn and Ni) in soils of different land-use types in the Yangtze River Delta of Eastern China. The multivariate methods and factorial Kriging analysis were used to achieve the research objectives. The results indicated that the human and natural effects of different land-use types on the contents of soil heavy metals were different. The Cd, Hg, Cu, Pb and Zn in soils of industrial area were affected by human activities, and the pollution level of these heavy metals in this area was moderate. The Pb in soils of traffic area was affected by human activities, and eight heavy metals in soils of residential area and farmland area were affected by natural factor. The ecological risk status of eight heavy metals in soils of the whole study area was light. The heavy metals in soils showed three spatial scales (nugget effect, short range and long range). At the nugget effect and short range scales, the Cd, Hg, Cu, Pb and Zn in soils were affected by human and natural factors. At three spatial scales, the As, Cr and Ni in soils were affected by soil parent materials.

  19. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    PubMed

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  1. The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt.

    PubMed

    El Nemr, Ahmed; El-Said, Ghada F; Ragab, Safaa; Khaled, Azza; El-Sikaily, Amany

    2016-12-01

    Zn, Cu, Ni, V, Al, Pb, Cd, Hg, lipid and water contents were determined in the soft tissues of different shellfish species collected along the Red Sea shoreline. Metal contents showed a descending order of Zn > Cu > Ni > Al > V > Pb > Cd > Hg. The leachable concentrations found in the sediments gathered from the studied locations gave another descending order: Al > Zn > Ni > Pb > V > Cu > Cd. The determined leachable heavy metal contents in the sediment did not exceed the NOAA and CCME (Anonymous 1999) sediment quality guidelines. Accordingly, the sediments along the Egyptian Red Sea area did not pose any adverse impacts on the biological life. According to the hazard quotient (HQ) calculations for heavy metal contents in the soft tissue of shellfish, mercury did not pose any risk on human health; whereas, the other determined heavy metals gave HQ values of 1 < HQ < 10 and showed a possibility of risk on the long term. Cu is above the desirable levels in mussels. The RQ calculations of toddlers and adults reflected that Cu was the only heavy metal that had an adverse effect on toddlers' health. Based on the human organizations (EPA, BOE, MAFF, and NHMRC) that proposed safety concentrations of heavy metals, the studied shellfish were somewhat safe for human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake.

    PubMed

    Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin

    2016-05-01

    The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.

  3. Wintering greater scaup as biomonitors of metal contamination in federal wildlife refuges in the Long Island Region

    USGS Publications Warehouse

    Cohen, J.B.; Barclay, J.S.; Major, A.R.; Fisher, J.P.

    2000-01-01

    Tissues of greater scaup (Aythya marila mariloides) and components of their habitat (sediment, plankton, macroalgae, and invertebrates) were collected for heavy metal analysis in the winter of 1996-97 from US Department of the Interior wildlife refuges in the Long Island region. Geographic and temporal relationships between the concentration of nine metals in tissue and in habitat components were examined. In greater scaup tissues and habitat components, concentrations of As and Se were highest in Branford, Connecticut; Pb values were greatest in Oyster Bay, New York; and Hg concentrations were largest in Sandy Hook, New Jersey. Over the course of the winter, the concentration of Hg in liver increased, and concentrations of Cd, Cr, Cu, Hg, Pb, Se, and Zn in kidney decreased. Based on several criteria derived from geographic and temporal trends, metals were ranked using the apparent biomonitoring efficacy of greater scaup (As = Cr > Cu = Pb = Zn = Hg > Se = Cd > Ni). Although the seasonal migration and daily mobility of greater scaup are drawbacks to using this species as a sentinel for metal pollution, it was possible to demonstrate a relationship between geographic and temporal patterns of metals in habitat and greater scaup tissue. However, most metal concentrations in tissue were below thresholds known to adversely affect health of waterfowl.

  4. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.

    PubMed

    Chen, Jinlong; Zheng, Aifang; Gao, Yingchun; He, Chiyang; Wu, Genhua; Chen, Youcun; Kai, Xiaoming; Zhu, Changqing

    2008-03-01

    Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.

  5. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers.

    PubMed

    Hosseini, Mehdi; Nabavi, Seyed Mohammad Bagher; Nabavi, Seyedeh Narges; Pour, Nasrin Adami

    2015-05-01

    In this study, concentrations of Cd, Co, Cu, Ni, Pb, Fe, and Hg were determined in commercially valuable fish from Khuzestan shore, northwest of the Persian Gulf. It was also our intention to evaluate potential risks to human health associated with seafood consumption. The liver and skin showed higher metal concentrations than the muscle. The results showed that heavy metal concentrations in different food habitats increase in the following order: benthic omnivorous fish < zooplanktivore fish < phytoplanktivore fish < piscivore fish. Also, the comparison indicated that benthic species (Euryglossa orientalis, Otolithes ruber) were more contaminated than pelagic species (Liza abu and Psettodes erumei). Therefore, the concentration of heavy metals in edible part of fish species did not exceed the permissible limits proposed by Food and Agriculture Organization (FAO) (1983), WHO (1996), Regional Organization for the Protection of the Marine Environment (ROPME) (1999), and FAD (2001) which are suitable for human consumption, except for Ni and Cd in E. orientalis and Pb in O. ruber.

  6. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia.

    PubMed

    El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla

    2015-12-30

    In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Rice seed toxicity tests for organic and inorganic substances

    USGS Publications Warehouse

    Wang, W.

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species. A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr (VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>>Pb>Cd>Zn> Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>>glyphosate>bromacil.

  8. Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, Talal; El-Sorogy, Abdelbaset

    2017-05-01

    An assessment of marine pollution due to heavy metals was made to coastal sediments collected from Al-Khobar coastline, in the Arabian Gulf, Saudi Arabia by analyzing of Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Mo, Sr, Se, As, Fe, Co and Ni using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The results indicated that the distribution of most metals was largely controlled by inputs of terrigenous material and most strongly associated with distribution of Al in sediments. In general Sr, Cr, Zn, Cu, V, Hg, Mo and Se show severe enrichment factors. Average values of Cu and Hg highly exceed the ERL and the Canadian ISQG values. Average Ni was higher than the ERL and the ERM values. The severe enrichment of some metals in the studied sediment could be partially attributed to anthropogenic activities, notably oil spills from exploration, transportation and from saline water desalination plants in Al-Khobar coast, and other industrial activities in the region.

  9. Metals and their ecological impact on beach sediments near the marine protected sites of Sodwana Bay and St. Lucia, South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Rawlins, B K; Rivera-Rivera, D M

    2018-02-01

    A baseline study on metal concentrations in sediments was initiated from the Sodwana Bay and St. Lucia, adjacent to marine protected areas (MPAs) of South Africa. They were analysed to identify the acid leachable metal (ALM) (Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg) concentration pattern. Metal distribution in 65 sediment samples exhibits higher abundances of Cr, Mo, Cd and Hg compared to the Upper Continental Crust. We relate the enrichment of these metals to beach placer deposits and activities related to former gold mining. Geochemical indices affirmed that Cr and Hg caused contamination, and Hg posed ~90% harmful effect on the biological community. These beach sediments, however, host lower metal concentrations compared to many worldwide beaches and other beaches in South Africa. This study suggests that it is largely unaffected by human activities, however, the overabundance of Hg demands regular monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    PubMed

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  11. Ecological risk of heavy metals in sediments of the luan river source water

    USGS Publications Warehouse

    Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, Joseph L.

    2009-01-01

    Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security. ?? 2009 Springer Science+Business Media, LLC.

  12. Influence of complexation with chloride on the responses of a lux-marked bacteria bioassay to cadmium, copper, lead, and mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, C.; Hall, J.M.; Cotter-Howells, J.

    2000-02-01

    The toxicity of a heavy metal in solution to a microorganism depends not only on its concentration but also on pH and the concentrations of any aqueous complexing ligands in the microorganism's environment. This paper reports on the use of different inorganic resuscitation media and effect of the chloride ion, Cl{sup {minus}}, on the bioluminescence response of a bacterial biosensor, Escherichia coli HB101 (pUCD607), to four metals: Cd, Cu, Hg, and Pb. The toxicity tests were conducted at pH 4, using 0.1 M KNO{sub 3} as resuscitation medium and adding KCl to investigate effect of Cl{sup {minus}} concentration. The speciesmore » distributions of metals as a function of Cl{sup {minus}} concentration were calculated using GeoChem-PC. Resuscitation in 0.1 M KCl gave significantly higher light output than that in 0.1 M KNO{sub 3}, demonstrating that Cl{sup {minus}} ions increased the toxicity of Hg, apparently because of the formation of HgCl{sub 3}{sup {minus}}, and increased the toxicity of Pb because of PbCl{sup +} formation. The toxicity of Cu decreased at high Cl{sup {minus}} concentrations as free Cu{sup 2+} decreased, in accordance with the free ion model. Concentrations of Cl{sup {minus}} had no significant effect on the toxicity of Cd. This study clearly demonstrates that the chloro-complexes of some heavy metals can be toxic and, for Pb and Hg, more toxic than the free ion.« less

  13. Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions.

    PubMed

    Hoffman, Emma; Lyons, James; Boxall, James; Robertson, Cam; Lake, Craig B; Walker, Tony R

    2017-06-01

    A bleached kraft pulp mill in Nova Scotia has discharged effluent wastewater into Boat Harbour, a former tidal estuary within Pictou Landing First Nation since 1967. Fifty years of effluent discharge into Boat Harbour has created >170,000 m 3 of unconsolidated sediment, impacted by inorganic and organic contaminants, including metal[loid]s, polycyclic aromatic hydrocarbons (PAHs), dioxins, and furans. This study aimed to characterize metal(loid)-impacted sediments to inform decisions for a $89 million CAD sediment remediation program. The remediation goals are to return this impacted aquatic site to pre-mill tidal conditions. To understand historical sediment characteristics, spatiotemporal variation covering ~quarter century, of metal(loid) sediment concentrations across 103 Boat Harbour samples from 81 stations and four reference locations, were assessed by reviewing secondary data from 1992 to 2015. Metal(loid) sediment concentrations were compared to current Canadian freshwater and marine sediment quality guidelines (SQGs). Seven metal(loid)s, As, Cd, Cr, Cu, Pb, Hg, and Zn, exceeded low effect freshwater and marine SQGs; six, As, Cd, Cr, Pb, Hg, and Zn, exceeded severe effect freshwater SQGs; and four, Cd, Cu, Hg, and Zn, exceeded severe effect marine SQGs. Metal(loid) concentrations varied widely across three distinct temporal periods. Significantly higher Cd, Cu, Pb, Hg, and Zn concentrations were measured between 1998 and 2000, compared to earlier, 1992-1996 and more recent 2003-2015 data. Most samples, 69%, were shallow (0-15 cm), leaving deeper horizons under-characterized. Geographic information system (GIS) techniques also revealed inadequate spatial coverage, presenting challenges for remedy decisions regarding vertical and horizontal delineation of contaminants. Review of historical monitoring data revealed that gaps still exist in our understanding of sediment characteristics in Boat Harbour, including spatial, vertical and horizontal, and temporal variation of sediment contamination. To help return Boat Harbour to a tidal estuary, more detailed sampling is required to better characterize these sediments and to establish appropriate reference (background) concentrations to help develop cost-effective remediation approaches for this decades-old problem.

  14. Assessment of the Distribution, Sources and Potential Ecological Risk of Heavy Metals in the Dry Surface Sediment of Aibi Lake in Northwest China

    PubMed Central

    Abuduwaili, Jilili; Zhang, Zhao yong; Jiang, Feng qing

    2015-01-01

    The distribution, sources and potential ecological risk of heavy metals in the sediment of lakes in eastern China and other areas of the world that have undergone rapid economic development have been widely researched by scholars. However, this is not true for heavy metals in the sediment of rump lakes in the arid regions of China and world-wide. Because of this, we chose Aibi Lake to serve as a typical rump lake in an oasis in an arid area in northwest China for our study. Sediment samples were collected from the lake and then the quantities of the heavy metals Pb, Ni, Cd, Cu, Zn, Hg and Cr were measured. Then using a variety of statistical methods, we analyzed the distribution, sources, pollution status and the potential ecological risk of these metals. The results show that: (1) The amounts of the seven heavy metals all fell within the Second Soil National Standard, but the average and maximum values were all higher than the background values of Xinjiang in northwest China. (2) Multivariate statistical analysis determined that the Cd, Pb, Hg and Zn in the sediment were mainly derived from man-sources, and Cu, Ni, and Cr were mainly from the natural geological background. (3) Enrichment factor analysis and the geo-accumulation index evaluation method show that Cd, Hg and Pb in the surface sediment of the Aibi Lake were at low and partial pollution levels, while Zn, Cr, Ni and Cu were at no and low pollution levels. (4) Calculation of the potential ecological hazards index found that, among the seven tested heavy metals, Cd, Hg and Pb were the main potential ecological risk factors, and the contribution of each was 42.6%, 28.6%, and 24.0%, respectively. Cd is the main potential ecological risk factor, followed by Hg and Pb. This work revealed that recent economic development of the Aibi Lake Basin has negatively influenced the accumulation of heavy metals in the sediments of the lake, and, therefore, we should pay increasing attention to this problem and take effective measures to protect the ecology of the Aibi Lake Basin. This work can provide a scientific basis for an early warning of heavy metal pollution and for protection of the environment. Furthermore, it can serve as a reference when creating policies for the economic development in Aibi Lake Basin and environmental protection of rump lakes in arid regions of northwest China and other areas of the world. PMID:25781032

  15. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial variation distribution, uncertainties and control policies

    NASA Astrophysics Data System (ADS)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-04-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have received worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we established the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocated the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn during the period of 1949-2012, have been increased by about 22-128 times at an annual average growth rate of 5.1-8.0%, amounting to about 79 570 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metals smelting represent the dominant sources for Hg / Cd, As / Se / Pb / Cr / Ni / Mn / Co, Sb / Cu, and Zn, respectively. In terms of spatial variation, the majority of emissions were concentrated in relatively developed regions, especially for the northern, eastern and southern coastal regions. In addition, because of the flourishing nonferrous metals smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on accounting of the current and future demand of energy-saving and pollution reduction in China.

  16. Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

    PubMed Central

    Dhiman, Anju; Nanda, Arun; Ahmad, Sayeed

    2011-01-01

    The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species, Citrus sinensis and Psidium guajava. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in C. sinensis (sweet orange) fruit peel and P. guajava (guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at P < 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in C. sinensis fruit peel and P. guajava leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe. PMID:21976824

  17. A 12-Month Study of Food Crops Contaminated by Heavy Metals, Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Holden, J. A.; Malamud, B. D.; Chishala, B. H.; Kapungwe, E.; Volk, J.; Harpp, K. S.

    2009-04-01

    We investigate heavy-metal contamination of irrigation water used for urban agriculture and subsequent contamination of food crops in Chunga, NW Lusaka, the capital of Zambia. Inhabitants of the Chunga area rely on urban agriculture as both a major source of income and food. From August 2004 to July 2005, monthly samples of irrigation water used and edible portions of food crops were taken from a farmer's plot at Chunga. The food crops (cabbage, Chinese cabbage, pumpkin leaves, rape, sweet potato leaves and tomatoes) are grown using irrigation throughout the year. Irrigation water samples and digested food crop samples were analysed using ICP-MS at the Department of Geology, Colgate University, USA for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, and U. We find heavy-metal concentrations present in both irrigation water and food crop samples. Zambian sample concentrations were compared to Zambian and international legislative and guideline limits for concentrations of heavy metals in industrial effluent, heavy metals in irrigation water and heavy metals in foods. In irrigation water samples recommended national and/or international legislative limits for Al, Cr, Mn, Fe, Cu, Hg, Pb and U were exceeded. Limits for Hg were exceeded by up to 130 times. There were heavy-metal concentrations above recommended limits in food crops for Cr, Fe, Ni, Cu, Zn, Cd, Hg and Pb throughout the different food crops grown and throughout the year. In all 14 samples recommended limits for Cr, Fe and Hg were exceeded. Zambian legislated limits for food crops were exceeded by up to 16 times for Pb and 58 times for Hg. The results of this study show that heavy metal contamination is present in irrigation water used and food crops grown in urban agriculture in Chunga, Lusaka, Zambia. Recommended maximum limits for heavy metals in irrigation water and food are exceeded in some samples indicating there may be a risk to health.

  18. Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England.

    PubMed

    Wright, P; Mason, C F

    1999-02-09

    A study was made of the concentrations of the elements As, Cd, Cu, Hg, Mn, Ni, Pb and Zn in the sediments and biota of two adjacent estuaries, the Orwell and Stour, in eastern England. The Orwell Estuary, with its urbanized head, was more contaminated with heavy metals than the Stour Estuary. Generally, in both estuaries, concentrations of metals were highest towards the head and the mouth. Saltmarsh sediments accumulated higher concentrations of most metals than mudflat sediments. Metal concentrations in the biota showed marked interspecific differences; Mytilus edulis had higher concentrations of Cd, Littorina littorea higher concentrations of Cu and Mn and Arenicola marina higher concentrations of Hg. Invertebrates from the Orwell had higher metal concentrations than those from the Stour. Algae had generally lower levels of metals than invertebrates. Metal concentrations were greatest and more variable in the top 10 cm of sediment. Metals were at greatest concentrations in winter and lowest in summer in sediments, algae and invertebrates. Mercury concentration increased with size in the three invertebrate species studied, but Cd and Zn generally were at higher concentrations in younger animals. Comparisons of sediments with average shale values indicated anthropogenic enrichment with several metals but it was considered that only Pb, at some sites, and possibly Hg posed potential threats to the ecology of the estuaries.

  19. Distribution and metal contamination in the coastal sediments of Dammam Al-Jubail area, Arabian Gulf, Saudi Arabia.

    PubMed

    El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Youssef, Mohamed; Al-Kahtany, Fahd; Al-Malky, Mazen

    2018-03-01

    Present work aims to document the distribution and metal contamination in the coastal sediments of the Dammam Al-Jubail area, Saudi Arabian Gulf. Twenty-six samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co and Ni analysis. Results of enrichment factor indicated that Sr, Cd, Cu, Hg, V, As, Ni, Cr and Zn gave enrichment factors higher than 2 (98.87, 40.28, 33.20, 27.87, 26.11, 14.10, 6.15, 3.72 and 2.62 respectively) implying anthropogenic sources, while Pb, Mn and Al have very low background level (1.37, 0.71, 0.124 respectively), probably originated from natural sources. Average concentrations of Sr, V, Hg, Cd and As were mostly higher than those from the background shale and the earth crust, the Caspian Sea, the Mediterranean Sea, the sediment quality guidelines, the Red Sea, the Gulf of Aqaba and the Gulf of Oman. The higher levels of the studied metals are mostly related samples with high Al and TOM content, as well as the visible anthropogenic pollutants along the studied coastline. The most recorded anthropogenic pollutants were sewage effluent, landfilling due to coastal infrastructure development, oil spills, petrochemical industries and desalination plants in Al-Jubail industrial city. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    NASA Astrophysics Data System (ADS)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  1. Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis.

    PubMed

    Liu, Haiwei; Zhang, Yan; Zhou, Xue; You, Xiuxuan; Shi, Yi; Xu, Jialai

    2017-02-01

    Samples of surface soil from tobacco (Nicotiana tabacum L.) fields were analysed for heavy metals and showed the following concentrations (mean of 246 samples, mg/kg): As, 5.10; Cd, 0.11; Cr, 49.49; Cu, 14.72; Hg, 0.08; Ni, 19.28; Pb. 20.20 and Zn, 30.76. The values of the index of geoaccumulation (I geo ) and of the enrichment factor indicated modest enrichment with As, Cd, Cr, Hg, Ni or Pb. Principal component analysis and cluster analysis correctly allocated each investigated element to its source, whether anthropogenic or natural. The results were consistent with estimated inputs of heavy metals from fertilizers, irrigation water and atmospheric deposition. The variation in the concentrations of As, Cd, Cu, Pb and Zn in the soil was mainly due to long-term agricultural practises, and that of Cr and Ni was mainly due to the soil parent material, whereas the source of Hg was industrial activity, which ultimately led to atmospheric deposition. Atmospheric deposition was the main exogenous source of heavy metals, and fertilizers also played an important role in the accumulation of these elements in soil. Identifying the sources of heavy metals in agricultural soils can serve as a basis for appropriate action to control and reduce the addition of heavy metals to cultivated soils.

  2. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    PubMed

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  3. Intake of essential minerals and metals via consumption of seafood from the Mediterranean Sea.

    PubMed

    Storelli, M M

    2009-05-01

    Edible marine species (fish and cephalopod molluscs) from the Mediterranean Sea were analyzed for their metal content (Hg, Cd, Pb, Cr, Cu, Zn, and Ni). Human health risks posed by these elements via dietary intake of seafood were assessed based on the provisional tolerable weekly intake, reference dose, and recommended dietary allowances. Metal concentrations varied widely among the different organisms, indicating species-specific accumulation. On a wet weight basis, the maximum concentrations of Hg were found in fish (1.56 microg g(-1)), and the maximum concentrations of cadmium were found in cephalopod molluscs (0.82 microg g(-1)), whereas for Pb the concentrations were generally low (fish, 0.01 to 1.18 microg g(-1); cephalopod molluscs, 0.03 to 0.09 microg g(-1)). For the essential metals, cephalopods had higher concentrations (Cr, 0.40 microg g(-1); Zn, 33.03 microg g(-1); Cu, 23.77 microg g(-1); Ni, 2.12 microg g(-1)) than did fish (Cr, 0.17 microg g(-1); Zn, 8.43 microg g(-1); Cu, 1.35 microg g(-1); Ni, 1.13 microg g(-1)). The estimated weekly intake of Cd and Pb indicated increased health risks through the consumption of various seafoods. Conversely, a health risk was ascribed to the intake of Hg from consumption of certain fish, such as albacore (10.92 microg kg(-1) body weight) and thornback ray (5.25 microg kg(-1) body weight). Concerning the essential metals, cephalopod mollusc consumption made an important contribution to daily dietary intake of Cu, Zn, and Ni.

  4. Metal concentrations and toxicity in South African snoek (Thyrsites atun) and yellowtail (Seriola lalandi).

    PubMed

    Bosch, Adina C; O'Neill, Bernadette; Kerwath, Sven E; Sigge, Gunnar O; Hoffman, Louwrens C

    2017-09-15

    The concentrations of 16 metals were assessed in snoek(Thyrsites atun; n=20) and yellowtail (Seriola lalandi; n=37) sampled from the West and South-East coasts of South Africa. Variability was observed at both small (Al, Cr, Hg, Pb, Mn and Cu) and large (As and Cu) spatial scales while inter-specific examination revealed diverse metal concentrations in snoek (Higher levels: Cr, Mn, Co, Hg and Pb) and yellowtail (higher levels: Fe and Cu). Zn, As and Hg were positively correlated with yellowtail size with no such correlations in snoek. Mean concentrations of As (0.61mg·kg -1 ; 0.98mg·kg -1 ), Cd (0.008mg·kg -1 ; 0.004mg·kg -1 ), Hg (0.27mg·kg -1 ; 0.16mg·kg -1 ) and Pb (0.009mg·kg -1 ; 0.005mg·kg -1 ) for snoek and yellowtail respectively were within regulatory guidelines. However, 10% (n=2) of snoek exceeded Hg maximum allowable limit, suggesting caution and further investigation. Overall, two meals (150g) per week of snoek or larger yellowtail (12-15kg) can be safe for human (adult) consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Environmental characterisation of sewage sludge/paper ash-based composites in relation to their possible use in civil engineering.

    PubMed

    Mladenovič, Ana; Hamler, Sandra; Zupančič, Nina

    2017-01-01

    The environmental acceptability of geotechnical composites made of treated municipal sewage sludge (SwS) and paper ash (PA) after two different curing periods has been investigated. The mineral composition of such composites, including their content of major oxides, is mainly influenced by the PA. The content of potentially toxic elements (PTEs) in the initial materials and in the composites varies considerably. In the SwS the Ba, Cd, Cr, Cu, Hg, Ni and Zn contents are above the legally permitted limits. The PTE content of PA are lower, but still somewhat above the permitted values for Ba and Cu. Mixing these two materials together resulted in a decrease in the PTE, but the Ba, Cu and Zn contents are still too high for agricultural application. However, leachates from composites that had been cured for 28 days are highly alkaline, and the As, Ba, Cd, Cr, Hg, Mo, Ni, Pb and Zn contents in them are well below the permitted values. The Cu contents (2.4 to 5.4 mg/kg) are above the permitted limit for inert material, but inside the range for non-hazardous material. In a leachate of composite which was prepared with fresh PA and a lower PA to SwS ratio, the Cu content was 1.4 mg/kg, since fresh PA is more reactive and therefore has a higher ability to immobilise Cu. Therefore, such mixtures can be utilised for covers and liners for sanitary landfills.

  6. The Applicability of the Distribution Coefficient, K D, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations

    PubMed Central

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian

    2015-01-01

    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885

  7. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Priority substances in sediments of the "Carska Bara" special nature reserve, a natural scientific research area on the UNESCO list.

    PubMed

    Grba, Nenad; Krčmar, Dejan; Isakovski, Marijana Kragulj; Jazić, Jelena Molnar; Maletić, Snežana; Pešić, Vesna; Dalmacija, Božo

    2016-11-01

    Surface sediments were subject to systematic long-term monitoring (2002-2014) in the Republic of Serbia (Province of Vojvodina). Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), mineral oils (total petroleum hydrocarbons), 16 EPA PAHs, selected pesticides and polychlorinated biphenyls (PCB) were monitored. As part of this research, this paper presents a sediment contamination spatial and temporal trend study of diverse pollution sources and the ecological risk status of the alluvial sediments of Carska Bara at three representative sampling sites (S1S3), in order to establish the status of contamination and recommend substances of interest for more widespread future monitoring. Multivariate statistical methods including factor analysis of principal component analysis (PCA/FA), Pearson correlation and several synthetic indicators were used to evaluate the extent and origin of contamination (anthropogenic or natural, geogenic sources) and potential ecological risks. Hg, Cd, As, mineral oils and PAHs (dominated by dibenzo(a,h)anthracene and benzo(a)pyrene, contributing 85.7% of the total) are derived from several anthropogenic sources, whereas Ni, Cu, Cr and Zn are convincingly of geogenic origin, and exhibit dual origins. Cd and Hg significantly raise the levels of potential ecological risk for all sampling locations, demonstrating the effect of long-term bioaccumulation and biomagnification. Pb is isolated from the other parameters, implying unique sources. This research suggests four heavy metals (Zn, Cr, Cu and As) and dibenzo(a,h)anthracene be added to the list of priority pollutants within the context of the application of the European Water Framework Directive (WFD), in accordance with significant national and similar environmental data from countries in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Occurrence of selected trace metals and their oral bioaccessibility in urban soils of kindergartens and parks in Bratislava (Slovak Republic) as evaluated by simple in vitro digestion procedure.

    PubMed

    Hiller, Edgar; Mihaljevič, Martin; Filová, Lenka; Lachká, Lucia; Jurkovič, Ľubomír; Kulikova, Tatsiana; Fajčíková, Katarína; Šimurková, Mária; Tatarková, Veronika

    2017-10-01

    A total of eighty surface soil samples were collected from public kindergartens and urban parks in the city of Bratislava, and the <150µm soil fraction was evaluated for total concentrations of five metals, Cd, Cu, Hg, Pb and Zn, their oral bioaccessibilities, non-carcinogenic and carcinogenic health risks to children, and lead isotopic composition. The mean metal concentrations in urban soils (0.29, 36.1, 0.13, 30.9 and 113mg/kg for Cd, Cu, Hg, Pb and Zn, respectively) were about two times higher compared with background soil concentrations. The order of bioaccessible metal fractions determined by Simple Bioaccessibility Extraction Test was: Pb (59.9%) > Cu (43.8%) > Cd (40.8%) > Zn (33.6%) > Hg (12.8%). Variations in the bioaccessible metal fractions were mainly related to the total metal concentrations in urban soils. A relatively wide range of lead isotopic ratios in urban soils (1.1598-1.2088 for 206 Pb/ 207 Pb isotopic ratio) indicated a combination of anthropogenic and geogenic sources of metals in the soils. Lower values of 206 Pb/ 207 Pb isotopic ratio in the city centre and similar spatial distribution of total metal concentrations, together with their increasing total concentrations in soils towards the city centre, showed that traffic and coal combustion in former times were likely the major sources of soil contamination. The non-carcinogenic and carcinogenic health risks to children due to exposure to metals in kindergarten and urban park soils were low, with hazard index and cancer risk values below the threshold values at all studied sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  12. Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey).

    PubMed

    Özkul, Cafer

    2016-05-01

    Tunçbilek, one of the major thermal power plants (TTPP) in Turkey running on coal, has capacity to generate 365 MW (per year) electricity. Fifty top soil samples were collected from a depth about 0-20 cm in the close vicinity of the TTPP from random points and at different distances. The samples were analyzed using ICP-MS for heavy metals. Heavy metal contents in soils around TTPP varied from 4.4 to 317.5 mg/kg for As, 0.03 to 0.26 mg/kg for Cd, 20.3 to 1028 mg/kg for Cr, 4.8 to 76.8 mg/kg for Cu, 0.09 to 9.3 mg/kg for Hg, 16.6 to 2385 mg/kg for Ni, 4.8 to 58.6 mg/kg for Pb, and 14.5 to 249.5 mg/kg for Zn. Geoaccumulation index (I geo) and enrichment factor (EF) have been calculated in order to evaluate heavy metal pollution in the soils. According to the I geo calculations, the surface soils around TTPP are contaminated by As, Hg, and Ni from uncontaminated to extremely contaminated. I geo values for Cr show practically uncontaminated to be heavily contaminated. The contamination of soil samples changes from practically uncontaminated to moderately contaminated degree for Pb and Zn. The soil samples were uncontaminated for Cd and Cu metals. The enrichment factors of As, Cr, Hg, and Ni in most of the sampling locations indicate significant to extremely high enrichment. The EF for Pb is also high and indicates moderate to very high enrichment of chromium in the soils. The average EF values for Cd, Cu, and Zn are showing moderate enrichment.

  13. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China.

    PubMed

    Cao, Hongbin; Chen, Jianjiang; Zhang, Jun; Zhang, Hui; Qiao, Li; Men, Yi

    2010-01-01

    Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. In this study, we investigated heavy metal (Cu, Zn, Pb, Cr, Hg and Cd) concentrations in rice and garden vegetables, as well as in cultivated soils, in a rural-industrial developed region in southern Jiangsu, China, and estimated the potential health risks of metals to the inhabitants via consumption of locally produced rice and garden vegetables. A questionnaire-based survey on dietary consumption rates of foodstuffs showed that rice and vegetables accounted for 64% of total foodstuffs consumed, and over 60% of rice and vegetables were grown in the local region. Average concentrations of Cr, Cu, Zn, Cd, Hg and Pb were 0.75, 2.64, 12.00, 0.014, 0.006 and 0.054 mg/kg dw (dry weight) in rice and were 0.67, 1.18, 4.34, 0.011, 0.002 and 0.058 mg/kg fw (fresh weight) in garden vegetables, respectively. These values were all below the maximum allowable concentration in food in China except for Cr in vegetables. Leafy vegetables had higher metal concentrations than solanaceae vegetables. Average daily intake of Cr, Cu, Zn, Cd, Hg and Pb through the consumption of rice and garden vegetables were 5.66, 16.90, 74.21, 0.10, 0.04 and 0.43 microg/(kg x day), respectively. Although Hazard Quotient values of individual metals were all lower than 1, when all six metal intakes via self-planted rice and garden vegetables were combined, the Hazard Index value was close to 1. Potential health risks from exposure to heavy metals in self-planted rice and garden vegetables need more attention.

  14. Ecological risk assessment of heavy metals in surface seawater and sediment near the outlet of a zinc factory in Huludao City, Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Yongliang; Chen, Yanzhen; Wang, Jing; Gong, Yufeng; Liu, Xigang; Mu, Gang; Tian, Hua

    2016-11-01

    At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological eff ects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals (As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refine ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index (PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single eff ects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefly, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved significantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.

  15. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  16. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River.

    PubMed

    Yi, Yu-Jun; Zhang, Shang-Hong

    2012-11-01

    The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.

  17. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  18. Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.

    Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.

  19. TRACE ELEMENTS AND BENEFICIAL USE OF ORGANIC RESOURCES

    EPA Science Inventory

    This paper summarizes information on risk assessment for metals (Cd, Pb, As, Zn, Cu, Hg) in compost products used in agriculture or horticulture, and progress in research to develop and demonstrate the use of Tailor-Made Composts to remediate metal phytotoxic soils. Research has ...

  20. Evaluation of Soil Contamination Indices in a Mining Area of Jiangxi, China

    PubMed Central

    Wu, Jin; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Jiao, Xudong

    2014-01-01

    There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals. PMID:25397401

  1. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  2. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    USGS Publications Warehouse

    Su, T.; Shu, S.; Shi, Honglan; Wang, Jingyuan; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. ?? 2008 Elsevier Ltd.

  3. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China.

    PubMed

    Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi

    2017-04-15

    In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of Soil Heavy Metal Pollution on Food Safety in China

    PubMed Central

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  5. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  6. Spatiotemporal Trends of Heavy Metals in Indo-Pacific Humpback Dolphins (Sousa chinensis) from the Western Pearl River Estuary, China.

    PubMed

    Gui, Duan; Yu, Ri-Qing; Karczmarski, Leszek; Ding, Yulong; Zhang, Haifei; Sun, Yong; Zhang, Mei; Wu, Yuping

    2017-02-07

    We assessed the spatiotemporal trends of the concentrations of 11 heavy metals (HMs) in the liver and kidney of Indo-Pacific humpback dolphins (Sousa chinensis) from western Pearl River Estuary (PRE) during 2004-2015. The hepatic levels of Cr, As, and Cu in these dolphins were among the highest reported for cetaceans globally, and the levels of Zn, Cu, and Hg were sufficiently high to cause toxicological effects in some of the animals. Between same age-sex groups, dolphins from Lingdingyang were significantly more contaminated with Hg, Se, and V than those from the West-four region, while the opposite was true for Cd. Generalized additive mixed models showed that most metals had significant but dissimilar temporal trends over a 10-year period. The concentrations of Cu and Zn increased significantly in recent years, corresponding to the high input of these metals in the region. Body-length-adjusted Cd levels peaked in 2012, accompanied by the highest annual number of dolphin stranding events. In contrast to the significant decrease in HM levels in the dolphins in Hong Kong waters (the eastern reaches of the PRE), the elevated metal exposure in the western PRE raises serious concerns.

  7. Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement.

    PubMed

    Khatua, Snehadrinarayan; Choi, Shin Hei; Lee, Junseong; Huh, Jung Oh; Do, Youngkyu; Churchill, David G

    2009-03-02

    Fluorescent dinuclear chiral zinc complexes were synthesized in a "one-pot" method in which the lysine-based Schiff base ligand was generated in situ. This complex acts as a highly sensitive and selective fluorescent ON-OFF probe for Cu(2+) in water at physiological pH. Other metal ions such as Hg(2+), Cd(2+), and Pb(2+) gave little fluorescence change.

  8. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  9. Can the origin of some metals in the seagrass Posidonia oceanica be determined by the indexes of metals pollutions?

    PubMed

    Stanković, Slavka; Jović, Mihajlo; Tanaskovski, Bojan; Mihajlović, Marija L; Joksimović, Danijela; Pezo, Lato

    2015-06-01

    To assess metal pollution, Fe, Mn, Cu, Zn, Pb, Ni, Co, As, Cd, and Hg contents in samples of the seagrass Posidonia oceanica and surface sediment, collected at eight locations along the Montenegrin coast, were determined. The metal pollution index (MPI) and metal enrichment factor (EF) were then calculated. MPI and EF were lower in sediment than in P. oceanica at the same locations. This was very evident for EF values of Hg and Cd. Based on the Pearson's correlations and EF values, it was possible to conclude that the last two metals' content in the seagrass did not originate from the crustal sources or natural weathering processes.

  10. First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis.

    PubMed

    Collin-Hansen, Christian; Pedersen, Sindre A; Andersen, Rolf A; Steinnes, Eiliv

    2007-01-01

    Some species of macromycetes (mushrooms) consistently are found to contain high concentrations of toxic metals such as cadmium (Cd) and mercury (Hg), and consumption of wild-growing mushrooms is acknowledged as a significant source for Cd and Hg in humans. Yet little is known about the speciation of Cd and Hg in mushroom tissues. Here we present the first evidence of peptides of the phytochelatin family being responsible for binding a large fraction of Cd in caps of the macromycete Boletus edulis exposed to excess metals. Concentrations of Cd, Zn, Cu and Hg, as well as cytosolic Cd-binding capacity (CCBC), glutathione (GSH) and free proline (Pro) were quantified in fruiting bodies of B. edulis differentially exposed to a wide range of metals. Metal distribution among cytosolic compounds were investigated by size exclusion chromatography (SEC), followed by metal determinations with atomic absorption chromatography (AAS) and HR-ICP-MS. Cd-binding compounds in SEC elutates were investigated further by high performance liquid chromatography-mass spectrometry (HPLC-MS). CCBC was >90 times higher in the exposed group relative to the reference group (Mann-Whitney's P < 0.001), whereas concentrations of free Pro were almost identical for the two groups. For the whole study selection, CCBC correlated positively with metal exposure (Spearman's P < 0.001 for all four metals), suggesting dose-dependent induction of Cd-binding compounds by exposure to these metals, possibly as a defense mechanism. The presence of phytochelatins (PCs), a family of cystein-rich oligopeptides, was confirmed in Cd-containing SEC fractions by HPLC-MS. The appearance of more complex PCs was coupled to declining concentrations of GSH. To our knowledge this is the first report demonstrating the presence of PCs in a macromycete.

  11. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  12. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Zaccaroni, Annalisa; Olivieri, Vincenzo; Amorena, Michele

    2014-04-01

    Heavy metal (As, Cd, Cu, Pb, Zn, Hg and Se) concentrations in the muscle and bone of four fish species (Mullus barbatus, Merluccius merluccius, Micromesistius poutassou, and Scomber scombrus) from the central Adriatic Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated. Samples were analyzed by inductively coupled plasma-atomic emission spectrophotometry with automatic dual viewing. In the muscle, results of linear regression analysis showed that, except for mercury, significant relationships between metal concentrations and fish size were negative. Only mercury levels were positively correlated with Atlantic mackerel size (p < 0.05). No significant variations of heavy metal concentrations were observed in muscles of the examined species, but a significant difference (p < 0.01) was found for As, Cd, Pb, and Se concentrations in bone. All the investigated metals showed higher values in the muscle than in bone, except for lead and zinc. Regarding cadmium, lead, and mercury maximum levels, set for the edible portion by European legislation, several samples exceeded these values, confirming the heavy metal presence in species caught near the Jabuka Pit.

  13. Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada.

    PubMed

    Laird, Brian D; Chan, Hing Man

    2013-08-01

    Fish, shellfish, wild game, and seaweed are important traditional foods that are essential to the physical and cultural well-being of Indigenous peoples in Canada. The goal of this study was to measure the concentration and bioaccessibility of As, Cd, Hg, Se, Cu and Mn in 45 commonly consumed traditional foods collected by harvested by the First Nations Food, Nutrition, and Environment Study (FNFNES) from 21 First Nations communities in British Columbia, Canada, in 2008-2009. A significant and negative correlation was observed between Hg concentration and Hg bioaccessibility. Metal bioaccessibility tended to be high; median values ranging between 52% (Mn) and 83% (Cu). The notable exceptions were observed for As in wild game organs (7-19%) and rabbit meat (4%) as well as Hg in salmon eggs (10%). Results of Principal Components Analysis confirmed the unique pattern of bioaccessibility of As and Hg in traditional foods, suggesting that, unlike other metals, As and Hg bioaccessibility are not simply controlled by food digestibility under the operating conditions of the in vitro model. These data provide useful information for dietary contaminant risk assessment and intake assessments of essential trace elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    PubMed

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.

    PubMed

    Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A

    2015-03-01

    The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.

  16. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very specific: there is a marked decontamination from 1970 to 2000, but the leakage ratio remains very high (10 to 20%) during this period. Drivers and Pressures are poorly known prior to 1985; State evolution since 1935 has been reconstructed from flood plain cores analysis; Impacts were maximum between 1950 and 1970 but remained unknown due to analytical limitation and lack of awareness. Some Responses are lagging 10 y behind monitoring and have much evolved in the past 10 y.

  17. [Use of dinoflagellates as a metal toxicity assessment tool in aquatic system].

    PubMed

    Yuan, Li-juan; He, Meng-chang

    2009-10-15

    Although dinoflagellates have been used to assess biological toxicity of contaminants, this method still lacks of corresponding toxicity assessment standard. This study appraised the toxicity of selected heavy metals to dinoflagellates based on the dinoflagellates bioluminescence with QwikLite developed by the United States Navy. The results show that single heavy metal biological toxicity is in the order: Hg2+ > Cu2+ > Cd2+ > As5+ > Pb2+ > Cr6+; Two, three and four heavy metal mixture experiments show synergism primarily, antagonism is in minority. pH has not remarkable effect on dinoflagellates, they can be applied directly in natural water, but pH influence Hg2+ and Cu2+ toxicity greatly, eliminating the influence of pH is essential when doing these two kind of ions measurements. The nutrients has little influence on dinoflagellates, change in COD has obvious effect on the response relationships between dinoflagellates and Hg2+ or CU2+. Metal toxicity assessment using dinoflagellates shows great sensitivity, narrow response scope and high stability. Dinoflagellates are good species for heavy metal biological toxicity test in aquatic system.

  18. Heavy metal distribution in blood, liver and kidneys of Loggerhead (Caretta caretta) and Green (Chelonia mydas) sea turtles from the Northeast Mediterranean Sea.

    PubMed

    Yipel, Mustafa; Tekeli, İbrahim Ozan; İşler, Cafer Tayer; Altuğ, Muhammed Enes

    2017-12-15

    The aim of the present study was to determine the concentrations of the most investigated environmentally relevant heavy metals in two highly endangered sea turtle species (Caretta caretta and Chelonia mydas) from the important nesting area on the Northeast Mediterranean Sea. The highest mean concentration was of Fe, while Hg and Pb were lowest. All tissue concentrations of Al, As, Fe and Mn were significantly different between the species. In particular, As, Cd, Cu, Mn, Ni, Se, Zn concentrations were lower in Caretta caretta and Cd, Hg, Mn, Zn concentrations were lower in Chelonia mydas than those reported in other parts of the world. Compared to studies conductud in other parts of the Mediterranean, Cd was lower. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  20. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  1. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  2. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  3. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  4. Morphological and physiological responses of plants to cadmium toxicity: A review

    USDA-ARS?s Scientific Manuscript database

    Since the dawn of industrial revolution, anthropogenic activities have accelerated release of hazardous heavy metals, such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr) and mercury (Hg) to the environment. Cadmium is toxic to animals and plants. Its bioaccumulation in food chain has surpass...

  5. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds.

    PubMed

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential concern for breeding bird populations. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Trace metals in the giant tiger prawn Penaeus monodon and mangrove sediments of the Tanzania coast: Is there a risk to marine fauna and public health?

    PubMed

    Rumisha, Cyrus; Mdegela, Robinson H; Kochzius, Marc; Leermakers, Martine; Elskens, Marc

    2016-10-01

    Mangroves ecosystems support livelihood and economic activities of coastal communities in the tropics and subtropics. Previous reports have documented the inefficiency of waste treatment facilities in Tanzania to contain trace metals. Therefore, the rapidly expanding coastal population and industrial sector is likely to threaten mangrove ecosystems with metal pollution. This study analysed trace metals in 60 sediment samples and 160 giant tiger prawns from the Tanzanian coast in order to document the distribution of trace metals and to establish if measured levels present a threat to mangrove fauna and are of public health importance. High levels of Cr, Co, Cu, Fe, Mn, Ni, and V was observed in mangroves of river Pangani, Wami, and Rufiji. Multivariate analysis showed that they originate mainly from weathering and erosion in the river catchments. Extreme enrichment of Cd was observed in a mangrove affected by municipal sewage. The distribution of Hg, Pb, and Zn was related with urbanisation and industrial activities along the coast. The metal pollution index was high at Pangani, Saadani, and Rufiji, suggesting that these estuarine mangroves are also affected by human activities in the catchment. Moderate to considerable ecological risks were observed in all sampled mangroves, except for Kilwa Masoko. It was revealed that As, Cd, and Hg present moderate risks to fauna. High levels of Cu, Fe and Zn were observed in prawns but the level of the non-essential Cd, Hg, and Pb did not exceed the maximum allowed levels for human consumption. However, based on the trends of fish consumption in the country, weekly intake of Hg is likely to exceed provisional tolerable weekly intake level, especially in fishing communities. This calls for measures to control Hg emissions and to strengthen sewage and waste treatment in coastal cities and urban centres in the basin of major rivers. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

    PubMed

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Gao, Xiang; Zhong, Minzhou; Li, Xiaodong; Li, Xin; He, Xinyue; Fang, Yilong

    2017-06-01

    In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects?

    PubMed

    Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas

    2007-01-01

    The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.

  10. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. Methods We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. Results For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose–response relationship. However, for lung AC, only Cu and Ni had a significant dose–response relationship. As for females, those achieving a statistically significant dose–response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. Conclusion The current study suggests that a dose–response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant mechanism should be explored further. PMID:23575356

  11. Distribution of organic and inorganic substances in the sediments of the "Great Bačka Canal", a European environmental hotspot.

    PubMed

    Krčmar, Dejan; Dubovina, Miloš; Grba, Nenad; Pešić, Vesna; Watson, Malcolm; Tričković, Jelena; Dalmacija, Božo

    2017-12-01

    The Great Bačka Canal in Serbia is one of the most polluted waterways in Europe. Surface sediments from the canal were subject to systematic annual monitoring between 2007 and 2014 at 33 representative sampling sites. Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), mineral oils, 16 EPA PAHs and selected pesticides and polychlorinated biphenyls (PCB) were monitored. This study aims to evaluate the quality of the sediments and determine the potential ecological risks in order to establish pollutants of interest. The spatial and temporal influence of different and intense sources of pollution are investigated. The analysis includes multivariate statistical methods (factor analysis of principal component analysis (PCA/FA)) in order to assess the extent and origin (anthropogenic or natural, geogenic sources) of the contaminants detected in the sediment samples and the risks the present to the environment. Various sources, predominantly the food industry, were found to be responsible for most of the contamination by Cd, Cu, Cr and Zn, the mineral oils and PAHs (dibenzo[a,h]anthracene and benzo[a]pyrene contributed 86.0% of the total between 2007 and 2014). In contrast, the As was convincingly of geogenic origin, and the Hg, Pb and Ni present exhibit dual origins. Cd and Cu significantly raise the levels of potential ecological risk at all sampling locations, demonstrating the long-term effects of bioaccumulation and biomagnification. Significantly, the results of this work indicate that Cu, As and dibenzo[a,h]anthracene should be added to the EU watch list of emerging contaminants. This is supported by significant national and similar environmental data from countries in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Shu, Xiaoyan; Kong, Weijun; Yang, Meihua

    2016-12-01

    Contents of twenty elements (Mg, K, Ca, Na, Fe, Al, Zn, Ba, Mn, Cu, Mo, Cr, Ni, As, Se, Cd, Hg, Tl, Pb and V) in two medical and edible plant species, Alpinia oxyphylla and Morinda officinalis were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS) method after microwave digestion with HNO 3 -H 2 O 2 (6:1, v/v) as the digestion solvent. Certified standard reference material Poplar leaf was used to assess the accuracy of the method. The greatest contents of Mg, K, Ca, Al, Fe and Na were found in dried Alpinia oxyphylla and Morinda officinalis samples. The contents of five heavy metals including Pb, Cd, As, Hg and Cu in Alpinia oxyphylla did not exceed the limits. The contents of Pb in 76.67% samples and Cd in two batches of Morinda officinalis samples exceeded the limits set by Chinese Pharmacopeia. The contents of the selected elements in different parts (leaves, stems, roots and fruits) of Alpinia oxyphylla varied considerably. The highest concentrations of Mg, Ca, Mn and Se were found in the leaves of Alpinia oxyphylla, at the same time, while, the contents of 9 elements including Cd, Cr, Cu, As, Pb in the roots were the highest. The transfer ratios of selected elements from both species of herbs into their decoctions were reduced. Especially for the heavy metals, the transfer ratios were below 30% except As (79.73%) in Morinda officinalis. The results showed that decoction of the samples may reduce the intake of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Use of human milk in the assessment of toxic metal exposure and essential element status in breastfeeding women and their infants in coastal Croatia.

    PubMed

    Grzunov Letinić, Judita; Matek Sarić, Marijana; Piasek, Martina; Jurasović, Jasna; Varnai, Veda Marija; Sulimanec Grgec, Antonija; Orct, Tatjana

    2016-12-01

    Pregnant and lactating women and infants are vulnerable population groups for adverse effects of toxic metals due to their high nutritional needs and the resultant increased gastrointestinal absorption of both, essential and toxic elements. Although breastfeeding is recommended for infants worldwide, as human milk is the best source of nutrients and other required bioactive factors, it is also a pathway of maternal excretion of toxic substances including toxic metals and thus a source of infant exposure. The aim of this research was to assess health risks in breastfeeding women in the coastal area of the Republic of Croatia and their infants (N=107) due to maternal exposure to Cd and Pb via cigarette smoking, and Hg via seafood and dental amalgam fillings, and their interaction with essential elements. Biological markers of exposure were the concentrations of main toxic metals Pb, Cd and Hg in maternal blood and three types of breast milk throughout lactation stages. Biological markers of effects were the levels of essential elements Ca, Fe, Cu, Zn and Se in maternal serum and breast milk. With regard to cigarette smoking as a source of exposure to Cd and Pb, there were effects of smoking on Cd concentration in blood and correlations between the smoking index and Cd concentrations in maternal blood (ρ=0.593; P<0.001) and mature milk (ρ=0.271; P=0.011) and Pb concentration in transitional milk (ρ=0.280; P=0.042). Regarding fish, we found correlations between weekly consumption frequency and total Hg concentrations in maternal blood (ρ=0.292; P=0.003) and mature milk (ρ=0.303; P=0.003). The number of dental amalgam fillings correlated with total Hg concentrations in colostrum (ρ=0.489; P=0.005) and transitional milk (ρ=0.309; P=0.018). As for the essential element status, only Se levels in maternal serum decreased by 10% in persons who continued smoking during pregnancy compared to non-smokers. In conclusion, the levels of main toxic metals Cd, Pb and Hg and essential elements Ca, Fe, Cu, Zn and Se in maternal blood and three types of breast milk samples in the studied area of coastal Croatia showed no risk of disrupted essential element levels with regard of toxic metal exposure in both breastfeeding women and their infants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  15. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  16. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  17. [Study on distribution of five heavy metal elements in different parts of Cordyceps sinensis by microwave digestion ICP-MS].

    PubMed

    Zhou, Li; Hao, Qing-Xiu; Wang, Sheng; Yang, Quan; Kang, Chuan-Zhi; Yang, Wan-Zhen; Guo, Lan-Ping

    2017-08-01

    The contents of five heavy metals (Cu, Pb, As, Cd, Hg) in 17 batches of Cordyceps sinensis were determined by microwave digestion-ICP-MS, and their distribution in C. sinensis were analyzed. The results showed that the contents of Cu, Pb, Cd and Hg in all batches were in accordance with the international standards of Chinese Medicine-Chinese Herbal Medicine Heavy Metal Limit, with their contents in the stroma higher than that in the caterpillar body, and the excess rate of As, which mainly concentrated in the caterpillar body part of C. sinensis, was 88.24%, as the content of As in the caterpillar body was 7 to 12 fold of that in the stroma. In this study, the distribution of five heavy metals in C. sinensis was clarified, and the existing problems of arsenic limit of heavy metal in C. sinensis were analyzed, and some suggestions were put forward. It is hoped that the reference standard can be provided for the limited standard of arsenic in C. sinensis. Copyright© by the Chinese Pharmaceutical Association.

  18. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean).

    PubMed

    Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi

    2016-03-01

    Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.

  19. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea.

    PubMed

    Gu, Yang-Guang; Huang, Hong-Hui; Liu, Yong; Gong, Xiu-Yu; Liao, Xiu-Li

    2018-04-01

    We investigated heavy metal concentrations in wild marine organisms from Maowei Sea, a significant gulf of low-latitude developing regions of the Beibu Gulf, South China Sea. Twenty species, comprising fish, cephalopods, and crustaceans were collected and analyzed for heavy metals. Heavy metal levels (mg/kg, wet weight) in the aquatic organism samples were: 0.003-1.800 for Cd, 0.02-0.14 for Pb, 0.10-0.63 for Cr, 0.20-77.50 for Cu, 9.50-64.60 for Zn, 0.006-0.066 for Hg, and 0.10-1.50 for As. Non-metric multidimensional scaling coupled with cluster analysis revealed two groupings that mainly resulted from different species of the metals in marine organisms. The highest concentrations of Cd, Pb, Cr, Ni, Cu, Zn, Hg, and As were found in species of cephalopods. Health risk assessment based on the target hazard quotients (THQ) and total THQ indicated no significant adverse health effects from consumption of marine organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    PubMed

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Determination of metal elements in Achyranthis bidentatae radix from various habitats].

    PubMed

    Tu, Wan-Qian; Zhang, Liu-Ji

    2011-12-01

    To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.

  2. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Copper Ion Detection in Drinking Water via a Fabric Nanocomposite Sensor

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang

    Excessive Cu(II) ions in drinking water are always a big threat to people's health. In this work, we developed a flexible amperometric sensor by a simple dip-coating method, which was able to rapidly, sensitively, and selectively detect the Cu(II) ions in the range of 0.65 to 39 ppm in real time. The prepared Cu(II) sensor consisted of three layers that were electrospun nylon-6 nanofibers, multiwalled carbon nanotubes (MWCNTs), and 2,2':5',2''-terthiophene molecules, respectively. When a voltage was applied to the Cu(II) sensor, the current was obviously impeded in the presence of Cu(II) ions. Interfering metal ions, including Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions, had almost no influence on the responsiveness of the Cu(II) sensor.

  4. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published literature for COGO, NSHO, and AGWT. Se concentrations in liver tissue for all 3 species were below the 10 ppm, ww threshold suggested for potential harmful effects in non-breeding ducks. Cd, Cu, and Zn concentrations in liver tissues were generally within normal background levels for all 3 species. IFPBM was inversely correlated with Se (r = -0.29) in COGO, Cu (r = -0.30) and Zn (r = -0.32) in NSHO, and with Zn (r = -0.62) in AGWT. Abdominal fat mass was inversely correlated with Se (r = -0.32) in COGO, Cu (r = -0.23) and Zn (r = -0.21) in NSHO, and with Zn (r = -0.81) in AGWT. Spleen mass was inversely correlated with Hg (r = -0.42) in COGO, and Se (r = -0.36) in AGWT. Liver mass was inversely correlated with Hg (r = -0.56) and Zn (r = -0.71) in AGWT, and with Se (r = -0.47) in NSHO. Pancreas mass was inversely correlated with Zn in (r = -0.70) AGWT. Our results indicate GSL waterfowl may experience reduced body condition due to environmental contaminants. However, these relationships should be evaluated in other annual cycle periods and GSL waterbirds. Contaminant pathways to waterfowl need to be elucidated and water quality standards for GSL should be developed. Finally, human consumption of COGO and NSHO from GSL should be limited.

  5. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations.

    PubMed

    Chouvelon, Tiphaine; Brach-Papa, Christophe; Auger, Dominique; Bodin, Nathalie; Bruzac, Sandrine; Crochet, Sylvette; Degroote, Maxime; Hollanda, Stephanie J; Hubert, Clarisse; Knoery, Joël; Munschy, Catherine; Puech, Alexis; Rozuel, Emmanuelle; Thomas, Bastien; West, Wendy; Bourjea, Jérôme; Nikolic, Natacha

    2017-10-15

    Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world's Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations' contamination state, chemical compounds can help refine foraging areas, individual flows and populations' structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals - chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead - in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (δ 13 C, δ 15 N) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some information on environmental and food web chemical contamination in the different study areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China.

    PubMed

    Ma, Wenchao; Tai, Lingyu; Qiao, Zhi; Zhong, Lei; Wang, Zhen; Fu, Kaixuan; Chen, Guanyi

    2018-08-01

    Few studies have comprehensively taken into account the source apportionment and human health risk of soil heavy metals in the vicinity of municipal solid waste incinerator (MSWI) in high population density area. In this study, 8 elements (Cr, Pb, Cu, Ni, Zn, Cd, Hg, and As) in fly ash, soil samples from different functional areas and vegetables collected surrounding the MSWI in North China were determined. The single pollution index, integrated Nemerow pollution index, principal component analysis (PCA), absolute principle component score-multiple linear regression (APCS-MLR) model and dose-response model were used in this study. The results showed that the soils around the MSWI were moderately polluted by Cu, Pb, Zn, and Hg, and heavily polluted by As and Cd. MSWI had a significant influence on the distribution of soil heavy metals in different distances from MSWI. The source apportionment results showed that MSWI, natural source, industrial discharges and coal combustion were the four major potential sources for heavy metals in the soils, with the contributions of 36.08%, 29.57%, 10.07%, and 4.55%, respectively. MSWI had a major impact on Zn, Cu, Pb, Cd, and Hg contamination in soil. The non-carcinogenic risk and carcinogenic risk posed by soil heavy metals surrounding the MSWI were unacceptable. The soil heavy metals concentrations and health risks in different functional areas were distinct. MSWI was the predominate source of non-carcinogenic risk with the average contribution rate of 36.99% and carcinogenic risk to adult male, adult female and children with 4.23×10 -4 , 4.57×10 -4 , and 1.41×10 -4 respectively, implying that the impact of MSWI on human health was apparent. This study provided a new insight for the source apportionment and health risk assessment of soil heavy metals in the vicinity of MSWI. Copyright © 2018. Published by Elsevier B.V.

  7. Acute Toxicity, Respiratory Reaction, and Sensitivity of Three Cyprinid Fish Species Caused by Exposure to Four Heavy Metals

    PubMed Central

    Wang, Hongjun; Liang, Youguang; Li, Sixin; Chang, Jianbo

    2013-01-01

    Using 3 cyprinid fish species zebra fish, rare minnow, and juvenile grass carp, we conducted assays of lethal reaction and ventilatory response to analyze sensitivity of the fish to 4 heavy metals. Our results showed that the 96 h LC50 of Hg2+ to zebra fish, juvenile grass carp, and rare minnow were 0.14 mg L−1, 0.23 mg L−1, and 0.10 mg L−1, respectively; of Cu2+0.17 mg L−1, 0.09 mg L−1, and 0.12 mg L−1 respectively; of Cd2+6.5 mg L−1, 18.47 mg L−1, 5.36 mg L−1, respectively; and of Zn2+44.48 mg L−1, 31.37 mg L−1, and 12.74 mg L−1, respectively. Under a 1-h exposure, the ventilatory response to the different heavy metals varied. Ventilatory frequency (Vf) and amplitude (Va) increased in zebra fish, juvenile grass carp, and rare minnows exposed to Hg2+ and Cu2+ (P<0.05), and the Vf and Va of the 3 species rose initially and then declined when exposed to Cd2+. Zn2+ had markedly different toxic effects than the other heavy metals, whose Vf and Va gradually decreased with increasing exposure concentration (P<0.05). The rare minnow was the most highly susceptible of the 3 fish species to the heavy metals, with threshold effect concentrations (TEC) of 0.019 mg L−1, 0.046 mg L−1, 2.142 mg L−1, and 0.633 mg L−1 for Hg2+, Cu2+, Cd2+, and Zn2+, respectively. Therefore, it is feasible to use ventilatory parameters as a biomarker for evaluating the pollution toxicity of metals and to recognize early warning signs by using rare minnows as a sensor. PMID:23755209

  8. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    PubMed

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhar, R.; Karunasagar, D.; Ranjit, M.

    An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstratedmore » good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.« less

  10. Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries?

    NASA Astrophysics Data System (ADS)

    Tweedley, J. R.; Warwick, R. M.; Potter, I. C.

    2015-08-01

    Because estuaries are naturally stressed, due to variations in salinity, organic loadings, sediment stability and oxygen concentrations over both spatial and temporal scales, it is difficult both to set baseline reference conditions and to distinguish between natural and anthropogenic environmental stresses. This contrasts with the situation in marine coastal and offshore locations. A very large benthic macroinvertebrate dataset and matching concentrations for seven toxic heavy metals (i.e. Cr, Ni, Cu, Zn, Cd, Hg and Pb), compiled over three years as part of the UK's National Marine Monitoring Programme (NMMP) for 27 subtidal sites in 16 estuaries and 34 coastal marine sites in the United Kingdom, have been analysed. The results demonstrate that species composition and most benthic biotic indicators (number of taxa, overall density, Shannon-Wiener diversity, Simpson's index and AZTI's Marine Biotic Index [AMBI]) for sites in estuarine and coastal areas were significantly different, reflecting natural differences between these two environments. Shannon-Wiener diversity and AMBI were not significantly correlated either with overall heavy metal contaminant loadings or with individual heavy metal concentrations ('normalized' as heavy metal/aluminium ratios) in estuaries. In contrast, average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) did not differ significantly between estuarine and coastal environments, i.e. they were unaffected by natural differences between these two environments, but both were significantly correlated with overall heavy metal concentrations. Furthermore, Δ+ was correlated significantly with the Cu, Zn, Cd, Hg and Pb concentrations and Λ+ was correlated significantly with the Cr, Ni, Cu, Cd and Hg concentrations. Thus, one or both of these two taxonomic distinctness indices are significantly correlated with the concentrations for each of these seven heavy metals. These taxonomic distinctness indices are therefore considered appropriate indicators of anthropogenic disturbance in estuaries, as they allow a regional reference condition to be set from which significant departures can then be determined.

  11. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  12. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    PubMed

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Trace element concentrations in feathers and blood of Northern goshawk (Accipiter gentilis) nestlings from Norway and Spain.

    PubMed

    Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B

    2017-10-01

    Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  16. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    PubMed

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  18. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  19. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.

    PubMed

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos

    2011-10-30

    Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    PubMed Central

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  1. Weak acid extractable metals in Bramble Bay, Queensland, Australia: temporal behaviour, enrichment and source apportionment.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-02-15

    Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    PubMed

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.

  3. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect.

    PubMed

    Wang, Zhongyang; Meng, Bo; Zhang, Wei; Bai, Jinheng; Ma, Yingxin; Liu, Mingda

    2018-05-28

    There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an important role in formulating policies for soil pollution control. Lingyuan, in the west of Liaoning Province, China, is a typical low-relief terrain of a hilly area. The object of study in this research is the topsoil of farmland in this area, of which 71 soil samples are collected. In this study, research methods, such as the Nemerow Index, Potential Ecological Hazard Index, Ecological Risk Quotient, Environmental Exposure Hazard Analysis, Positive Matrix Factorization Model, and Land Statistical Analysis, are used for systematical assessment of the pollution scale, pollution level, and source of PTEs, as well as the ecological environmental risks and health risks in the study area. The main conclusions are: The average contents of As, Cd, Cr, Cu, Hg, Zn, Ni, and Pb of the soil are 5.32 mg/kg, 0.31 mg/kg, 50.44 mg/kg, 47.05 mg/kg, 0.03 mg/kg, 79.36 mg/kg, 26.01 mg/kg, and 35.65 mg/kg, respectively. The contents of Cd, Cu, Zn, and Pb exceed the background value of local soil; Cd content of some study plots exceeds the National Soil Environmental Quality Standard Value (0.6 mg/kg), and the exceeding standard rate of study plots is 5.63%; the comprehensive potential ecological hazard assessment in the study area indicates that the PTEs are at a slight ecological risk; probabilistic hazard quotient assessment indicates that the influence of PTEs on species caused by Cu is at a slight level ( p = 10.93%), and Zn, Pb, and Cd are at an acceptable level. For the ecological process, Zn is at a medium level ( p = 25.78%), Cu is at a slight level (19.77%), and the influence of Cd and Pb are acceptable; human health hazard assessment states that the Non-carcinogenic comprehensive health hazard index HI = 0.16 < 1, indicating that PTEs in soil have no significant effect on people's health through exposure; the PMF model (Positive Matrix Factorization) shows that the contribution rates of agricultural source, industrial source, atmospheric dust source, and natural source are 13.15%, 25.33%, 18.47%, and 43.05%, respectively.

  4. Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China.

    PubMed

    Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui

    2016-08-01

    Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents.

  5. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran.

    PubMed

    Najmeddin, Ali; Keshavarzi, Behnam; Moore, Farid; Lahijanzadeh, Ahmadreza

    2017-10-28

    This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.

  6. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  7. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    PubMed

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  8. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China.

    PubMed

    Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie

    2017-01-01

    In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources.

  9. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China

    PubMed Central

    Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie

    2017-01-01

    In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources. PMID:29253896

  10. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.

    PubMed

    Coynel, Alexandra; Blanc, Gérard; Marache, Antoine; Schäfer, Jörg; Dabrin, Aymeric; Maneux, Eric; Bossy, Cécile; Masson, Matthieu; Lavaux, Gilbert

    2009-05-01

    The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.

  11. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    PubMed

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  12. Metal Toxicity at the Synapse: Presynaptic, Postsynaptic, and Long-Term Effects

    PubMed Central

    Sadiq, Sanah; Ghazala, Zena; Chowdhury, Arnab; Büsselberg, Dietrich

    2012-01-01

    Metal neurotoxicity is a global health concern. This paper summarizes the evidence for metal interactions with synaptic transmission and synaptic plasticity. Presynaptically metal ions modulate neurotransmitter release through their interaction with synaptic vesicles, ion channels, and the metabolism of neurotransmitters (NT). Many metals (e.g., Pb 2+, Cd 2+, and Hg +) also interact with intracellular signaling pathways. Postsynaptically, processes associated with the binding of NT to their receptors, activation of channels, and degradation of NT are altered by metals. Zn 2+, Pb 2+, Cu 2+, Cd 2+, Ni 2+, Co 2+, Li 3+, Hg +, and methylmercury modulate NMDA, AMPA/kainate, and/or GABA receptors activity. Al 3+, Pb 2+, Cd 2+, and As 2 O 3 also impair synaptic plasticity by targeting molecules such as CaM, PKC, and NOS as well as the transcription machinery involved in the maintenance of synaptic plasticity. The multiple effects of metals might occur simultaneously and are based on the specific metal species, metal concentrations, and the types of neurons involved. PMID:22287959

  13. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  14. Stabilization of heavy metals in soil using two organo-bentonites.

    PubMed

    Yu, Kai; Xu, Jian; Jiang, Xiaohong; Liu, Cun; McCall, Wesley; Lu, Jinlong

    2017-10-01

    Stabilization of Cu, Zn, Cd, Hg, Cr and As in soil using tetramethylammonium (TMA) and dodecyltrimethylammonium (DTMA) modified bentonites (T-Bents and D-Bents) as amendments was investigated. Toxicity characteristic leaching procedure (TCLP) was used to quantify the metal mobility after soil treatment. The structural parameters of modified bentonites, including the BET surface area, basal spacing and zeta potential were obtained as a function of the TMA and DTMA loading at 40, 80, 120, 160 and 200% of the bentonite's cation exchange capacity, respectively. The results indicated that the characteristics of the organo-bentonites fundamentally varied depending on the species and concentration of modifiers loaded on bentonite. T-Bents and D-Bents manifested distinct immobilization effectiveness towards various metals. In association with the organo-bentonite characteristics, the main interactive mechanisms for Cu, Zn and Cd proceeded via cation exchange, Hg proceeded via physical adsorption and partitioning, Cr and As proceeded via specific adsorption and electrostatic attraction, respectively. This study provided operational and mechanistic basis for optimizing the organic clay synthesis and selecting as the appropriate amendment for remediation of heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    PubMed

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  16. An Integrated H-G Scheme Identifying Areas for Soil Remediation and Primary Heavy Metal Contributors: A Risk Perspective.

    PubMed

    Zou, Bin; Jiang, Xiaolu; Duan, Xiaoli; Zhao, Xiuge; Zhang, Jing; Tang, Jingwen; Sun, Guoqing

    2017-03-23

    Traditional sampling for soil pollution evaluation is cost intensive and has limited representativeness. Therefore, developing methods that can accurately and rapidly identify at-risk areas and the contributing pollutants is imperative for soil remediation. In this study, we propose an innovative integrated H-G scheme combining human health risk assessment and geographical detector methods that was based on geographical information system technology and validated its feasibility in a renewable resource industrial park in mainland China. With a discrete site investigation of cadmium (Cd), arsenic (As), copper (Cu), mercury (Hg) and zinc (Zn) concentrations, the continuous surfaces of carcinogenic risk and non-carcinogenic risk caused by these heavy metals were estimated and mapped. Source apportionment analysis using geographical detector methods further revealed that these risks were primarily attributed to As, according to the power of the determinant and its associated synergic actions with other heavy metals. Concentrations of critical As and Cd, and the associated exposed CRs are closed to the safe thresholds after remediating the risk areas identified by the integrated H-G scheme. Therefore, the integrated H-G scheme provides an effective approach to support decision-making for regional contaminated soil remediation at fine spatial resolution with limited sampling data over a large geographical extent.

  17. Seasonal assessment of trace element contamination in intertidal sediments of the meso-macrotidal Hooghly (Ganges) River Estuary with a note on mercury speciation.

    PubMed

    Mondal, Priyanka; de Alcântara Mendes, Rosivaldo; Jonathan, M P; Biswas, Jayanta Kumar; Murugan, Kadarkarai; Sarkar, Santosh Kumar

    2018-02-01

    The spatial and seasonal distribution of trace elements (TEs) (n=16) in surficial sediment were examined along the Hooghly River Estuary (~175km), India. A synchronous elevation of majority of TEs concentration (mgkg -1 ) was encountered during monsoon with the following descending order: Al (67070); Fe (31300); Cd (5.73); Cr (71.17); Cu (29.09); Mn (658.74); Ni (35.89). An overall low and homogeneous concentration of total Hg (T Hg =17.85±4.98ngg -1 ) was recorded in which methyl mercury (MeHg) shared minor fraction (8-31%) of the T Hg . Sediment pollution indices, viz. geo-accumulation index (I geo ) and enrichment factor (EF) for Cd (I geo =1.92-3.67; EF=13.83-31.17) and Ba (I geo =0.79-5.03; EF=5.79-108.94) suggested high contamination from anthropogenic sources. From factor analysis it was inferred that TEs primarily originated from lithogenic sources. This study would provide the latest benchmark of TE pollution along with the first record of MeHg in this fluvial system which recommends reliable monitoring to safeguard geochemical health of this stressed environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  19. Metal complexes of the nanosized ligand N-benzoyl-N‧-(p-amino phenyl) thiourea: Synthesis, characterization, antimicrobial activity and the metal uptake capacity of its ligating resin

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Eldissouky, Ali; Al-Hamza, Ahmed M.; Hassan, Hammed H. A. M.

    2015-11-01

    The new nanosized N-benzoyl-N‧-(p-amino phenyl) thiourea ligand H2L was synthesized by nanoprecipitation method. The [Cu (H2L)2 Cl]·2H2O, [Zn (H2L)2(OAc)2], [Cd (H2L)2Cl2] and [Hg (H2L)2Cl2] complexes were synthesized and characterized by various physicochemical methods. Results revealed that the ligand act as hypodentate and bonded to the metal ion via the sulfur atom forming mononuclear non-electrolyte diamagnetic complex. Magnetic moment results indicated a reduction of Cu (II) to Cu (I) during the coordination process. Thermal studies demonstrated variable stabilities of the complexes and [Zn (H2L)2(OAc)2] exhibited the highest thermal stability while [Hg (H2L)2Cl2] was volatile. The prepared compounds were screened against different pathogenic microorganisms. The ligand performed high antibacterial activity against certain bacterial strain compared to its complexes, and the standard bacteriocide in use. The ligand was successfully immobilized on modified Amberlite XAD-16 forming the hypodentate ligating resin PS-SO2-H2L. The new resin was characterized and the extent of metal adsorption reached maximum at pH 6.0 for Cu (II), Cd (II) and Ag (I), with an adsorption amount of 4.3, 4.0 and 3.7 mmol g-1 respectively. The nanosized H2L represents a new category of promising adsorbent that would have a practical impact on biological and water treatment applications.

  20. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China

    PubMed Central

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-01-01

    To compare the human health risk of heavy metals and As in sewage sludge between adults and children, samples were collected from five wastewater treatment plants (WWTPs) located in the urban district of Taiyuan, the capital of Shanxi. Heavy metals and As in sewage sludge can be ranked according to the mean concentration in the following order: Cu > Cr > Zn > Pb > As > Hg > Cd. Compared with the concentration limit set by different countries, the heavy metals contents in sewage sludge were all within the standard limits, except for the content of As, which was higher than the threshold limit established by Canada. A health risk assessment recommended by the United States Environmental Protection Agency (USEPA) was used to compare the non-cancer risk and cancer risk between adults and children. Based on the mean and 95% upper confidence limit (UCL) of the average daily dose (ADD), heavy metals and As can be ranked in the order of Cu > Cr > Zn > Pb > As > Hg > Cd for adults, and Cu > Cr > Zn > Pb > Hg > As > Cd for children. Moreover, results of ADDingest and ADDinhale indicated that ingestion was the main pathway for heavy metals and As exposure for both adults and children, and the sum of ADD implied that the exposure to all heavy metals and As for children was 8.65 and 9.93 times higher, respectively, than that for adults according to the mean and 95% UCL. For the non-carcinogenic risk, according to the hazard quotient (HQ), the risk of Cu, Hg and Cr was higher than the risk of Zn and Pb. The hazard index (HI) for adults was 0.144 and 0.208 for the mean and 95% UCL, which was less than the limit value of 1; for children, the HI was 1.26 and 2.25, which is higher than the limit value of 1. This result indicated that children had non-carcinogenic risk, but adults did not. Furthermore, ingestion was the main pathway for non-carcinogenic risk exposure by the HQingest and HQinhale. For the carcinogenic risk, Cd and As were classified as carcinogenic pollutants. The values of RISK for the mean and 95% UCL for adults and children all exceeded the limit value of 1 × 10−5, which implied that adults and children had a carcinogenic risk, and this risk was higher for children than for adults. The results of RISK for As and Cd implied that As was the main pollutant for carcinogenic risk. Moreover, the results of RISKingest and RISKinhale indicated that ingestion was the main pathway. Uncertainty analysis was performed, and the risk ranges of it were greater than certainty analysis, which implied that uncertainty analysis was more conservative than certainty analysis. A comparison of the non-carcinogenic risk and carcinogenic risk for adults and children indicated that children were more sensitive and vulnerable than adults when exposed to the same pollutant in the environment. PMID:28991185

  1. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China.

    PubMed

    Hu, Bifeng; Jia, Xiaolin; Hu, Jie; Xu, Dongyun; Xia, Fang; Li, Yan

    2017-09-10

    Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10 -3 ) was the largest among three age groups, followed by adults (6.998 × 10 -4 ) and seniors (5.488 × 10 -4 ). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni (0.018) > Hg (0.011) > Cr (0.010) > Pb (0.001). Therefore, Cd was most easily absorbed by crops, and different crops had different capacities to absorb HMs. The hazard quotient (HQ) represents the potential non-carcinogenic risk for an individual HM and it is an estimation of daily exposure to the human population that is not likely to represent an appreciable risk of deleterious effects during a lifetime. All the HQs of the HMs for the different age groups were significantly less than the alert value of 1.0 and were at a safe level. This indicated that citizens in the study area face low potential non-carcinogenic risk caused by HMs. The total carcinogens risks (TCRs) for children, adults, and seniors were 5.24 × 10 -5 , 2.65 × 10 -5 , and 2.08 × 10 -5 , respectively, all of which were less than the guideline value but at the alert level. Ingestion was the main pathway of carcinogen risk to human health.

  2. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China.

    PubMed

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-10-08

    Abstract : To compare the human health risk of heavy metals and As in sewage sludge between adults and children, samples were collected from five wastewater treatment plants (WWTPs) located in the urban district of Taiyuan, the capital of Shanxi. Heavy metals and As in sewage sludge can be ranked according to the mean concentration in the following order: Cu > Cr > Zn > Pb > As > Hg > Cd. Compared with the concentration limit set by different countries, the heavy metals contents in sewage sludge were all within the standard limits, except for the content of As, which was higher than the threshold limit established by Canada. A health risk assessment recommended by the United States Environmental Protection Agency (USEPA) was used to compare the non-cancer risk and cancer risk between adults and children. Based on the mean and 95% upper confidence limit (UCL) of the average daily dose (ADD), heavy metals and As can be ranked in the order of Cu > Cr > Zn > Pb > As > Hg > Cd for adults, and Cu > Cr > Zn > Pb > Hg > As > Cd for children. Moreover, results of ADD ingest and ADD inhale indicated that ingestion was the main pathway for heavy metals and As exposure for both adults and children, and the sum of ADD implied that the exposure to all heavy metals and As for children was 8.65 and 9.93 times higher, respectively, than that for adults according to the mean and 95% UCL. For the non-carcinogenic risk, according to the hazard quotient (HQ), the risk of Cu, Hg and Cr was higher than the risk of Zn and Pb. The hazard index (HI) for adults was 0.144 and 0.208 for the mean and 95% UCL, which was less than the limit value of 1; for children, the HI was 1.26 and 2.25, which is higher than the limit value of 1. This result indicated that children had non-carcinogenic risk, but adults did not. Furthermore, ingestion was the main pathway for non-carcinogenic risk exposure by the HQ ingest and HQ inhale . For the carcinogenic risk, Cd and As were classified as carcinogenic pollutants. The values of RISK for the mean and 95% UCL for adults and children all exceeded the limit value of 1 × 10 -5 , which implied that adults and children had a carcinogenic risk, and this risk was higher for children than for adults. The results of RISK for As and Cd implied that As was the main pollutant for carcinogenic risk. Moreover, the results of RISK ingest and RISK inhale indicated that ingestion was the main pathway. Uncertainty analysis was performed, and the risk ranges of it were greater than certainty analysis, which implied that uncertainty analysis was more conservative than certainty analysis. A comparison of the non-carcinogenic risk and carcinogenic risk for adults and children indicated that children were more sensitive and vulnerable than adults when exposed to the same pollutant in the environment.

  3. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China.

    PubMed

    Qiutong, Xu; Mingkui, Zhang

    2017-08-01

    Vegetable production in China is suffering increasingly heavy metal damages from various pollution sources including agricultural, industrial and other activities. It is of practical significance to understand the effects of human activities on the accumulation and exchangeability of soil heavy metals in vegetable fields. In this study, seventy-two arable layer samples of vegetable soils were collected from the Shaoxing coastal plain, a representative region of the coastal plain of eastern Zhejiang province, China for characterizing the effects of fertilization methods on accumulation and exchangeable heavy metals in soils (Exchangeable heavy metals in the soil samples were extracted by 0.01molL -1 CaCl 2 ). The different origins of heavy metals in the vegetable soils were investigated by multivariate statistical techniques, including principal component analysis (PCA) and cluster analysis (CA). Marked increases were noted for soil heavy metals due to long-term manure or chemical fertilizer application. Three significant components were extracted by PCA, explaining 78.86% of total variance. Mn, Co, Ni, Fe, and Al were associated in lithogenic components, while an anthropogenic origin was identified for Cu, Cr, Pb, Zn, Cd, Hg. However, As level was due to the geochemical background and was not linked to soil management. The results obtained by cluster analysis elucidated individual relationships between metals and agreed with PCA. Cu, Cr, Pb, and Zn in the soils that were mainly associated with the application of chemical fertilizers, organic manures or other activities regarding soil management. Although the origin of Cd, Hg, and As was also attributed to soil management, other sources like vehicle exhaust or aerial depositions were not discarded as possible contributors. Soil amended with organic fertilizer contained more Cu, Pb, Zn and Cr; whereas the soil amended with chemical fertilizer had more Cd. Application of fertilizers also had significant effect on the concentrations of exchangeable heavy metals. Higher mean concentrations of exchangeable Cd and Pb were found in the soils amended with chemical fertilizers, while those of exchangeable Cu and Zn were found in the soils amended with organic fertilizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China

    PubMed Central

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-01-01

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781

  5. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China.

    PubMed

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-07-13

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.

  6. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    PubMed

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  7. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    PubMed

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  8. [Enrichment and toxicity effect of heavy metals in soil ecosystem].

    PubMed

    Wang, Zhenzhong; Zhang, Youmei; Deng, Jifu; Li, Zhongwu

    2006-10-01

    The study on the heavy metals-polluted soil of Qingshuitang District, Zhuzhou City showed that the main enriched heavy metals in the soil were Cd, Hg, As, Zn, Pb and Cu, among which, the former three had strong biotoxicity while the others had definite toxicity, with the average integrative pollution index being 6.40. The heavy metals enrichment in soil animals increased with increasing pollution degree. Especially for some species of Megascoiecidae, they had a high enrichment of Cd, with the enrichment index being 11.96. The species and quantity of soil animals decreased with increasing Cd concentration. Cd had an obvious biotoxic effect on Megsacoiecidae' s isozyme activity. The heavy metals enrichment in vegetables also increased with increasing pollution degree, but there existed obvious interspecies difference in Cd enrichment.

  9. [Determination and correlation analysis of trace elements in Boletus tomentipes].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao

    2011-07-01

    The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.

  10. [Health risk assessment of heavy metals in atmospheric dust of Qingdao City].

    PubMed

    Zhang, Chun-Rong; Wu, Zheng-Long; Yao, Chun-Hui; Gao, Zong-Jun

    2014-07-01

    Based on the 89 atmospheric dust samples and soil samples that were collected around Qingdao, we tested and analyzed the contents of Cd, Cr, Cu, Hg, Ni, Pb, Zn. Based on these analysis results, the risk of heavy metals in atmospheric dusts to human health were assessed by using the US EPA Health Risk Assessment Model. Analysis showed that the average contents of Cd, Cr, Cu, Hg, Pb, Zn in the atmospheric dust of Shinan, Shibei and Laoshan districts were the highest. Therefore, the air pollution of these districts was more serious than the districts of Licang, Chengyang and Huangdao. Comparing the average contents of heavy metals in atmospheric dust with those in soil, we found that only the content of Hg in atmospheric dust collected from the districts of Shinan, Shibei and Laoshan was lower than that in the corresponding soil. All the contents of other heavy metals in atmospheric dust were higher than those in corresponding soil. As a whole, the heavy metals in atmospheric dust of Qingdao City showed slight difference and were less harmful to human health. However, it was harmful in some samples to human health if the contents of Cr and Pb in atmospheric dusts of Shinan, Laoshan and Chengyang districts were always kept at such high densities. Besides, the accumulation of heavy metals in atmospheric dust through various approaches and categories may obviously increase the risk of damaging human health.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayigit, A.I.; Bulut, Y.; Karayigit, G.

    A total of 48 samples, feed coals (FCs), fly ashes (FAs) and bottom ashes (BAs), which were systematically collected once a week over an eight-week period from boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity from Soma power plant, have been evaluated for major and trace elements (Al, Ca, Fe, K, Mg, Mn, Na, Ti, S, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Ge, Hf, Hg, Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, Tl, U, V, Y, Zn, Zr, and REEs) to get information onmore » behavior during coal combustion. This study indicates that some elements such as Hg, Bi, Cd, As, Pb, Ge, Tl, Sn, Zn, Sb, B show enrichments in FAs relative to the BAs in both group boiler units. In addition to these, Cs, Lu, Tm, and Ga in Units B1-4 and S in Units B5-6 also have enrichments in FAs. Elements showing enrichments in BAs in both group boiler units are Ta, Mn, Nb. In addition to these, Se, Ca, Mg, Na, Fe in Units B1-4 and Cu in Units B5-6 also have enrichments in BAs. The remaining elements investigated in this study have no clear segregation between FAs and BAs. Mass balance calculations with the two methods show that some elements, S, Ta, Hg, Se, Zn, Na, Ca in Units B1-4, and Hg, S, Ta, Se, P in Units B5-6, have volatile behavior during coal combustion in the Soma power plant. This study also implies that some elements, Sb and Tb in Units B1-4 and Sb in Units B5-6, have relatively high retention effects in the combustion residues from the Soma power plant.« less

  12. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    PubMed

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  13. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  14. Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan.

    PubMed

    Horai, Sawako; Minagawa, Mikiko; Ozaki, Hirokazu; Watanabe, Izumi; Takeda, Yasuo; Yamada, Katsushi; Ando, Tetsuo; Akiba, Suminori; Abe, Shintaro; Kuno, Katsuji

    2006-10-01

    Concentrations of 22 elements (Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, total Hg (T-Hg), Pb) and organic Hg (O-Hg) were examined in the liver, kidney and brain of the Javan mongoose (Herpestes javanicus) and in liver of the Amami rabbit (Pentalagus furnessi) from Amamioshima Island in Japan. Relatively high levels of T-Hg levels (from 1.75 to 55.5 microg g-1 wet wt.) were found in the Javan mongoose. As for a comparison of hepatic T-Hg concentrations between the two areas, there was no significant difference between the Javan mongoose in Amamioshima and those in the Okinawa islands. In addition, T-Hg levels in the livers of the Amami rabbit were the same as in the livers of other herbivorous mammals. Taken together, it suggested that T-Hg accumulation in the livers of the Javan mongoose was not affected by the environment but by a specific physiological mechanism. The comparison of Hg and other heavy metal accumulations between terrestrial mammals (13 species, 61 individuals) including the Javan mongoose and marine mammals (18 species, 508 individuals) were also discussed.

  15. Paper-Based Heavy Metal Sensors from the Concise Synthesis of an Anionic Porphyrin: A Practical Application of Organic Synthesis to Environmental Chemistry

    ERIC Educational Resources Information Center

    Prabpal, Jutamat; Vilaivan, Tirayut; Praneenararat, Thanit

    2017-01-01

    Tetrakis(4-sulfonatophenyl)porphyrin (TSPP) was immobilized on patterned paper and used as a sensor for heavy metal ions in an advanced organic chemistry course. The resulting sensor could detect Hg[superscript 2+] and Cd[superscript 2+] ions colorimetrically, while Cu[superscript 2+] ion resulted in fluorescence quenching, thus demonstrating a…

  16. Bioaccumulation of trace elements in Ruditapes philippinarum from China: public health risk assessment implications.

    PubMed

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-04-02

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1-38.0, 49.5-168.3, 42.0-68.0, 4.19-8.71, 4.76-14.32, 0.41-1.11, 0.94-4.74, 0.32-2.59, 0.03-0.23 and 0.46-11.95 mg·kg(-1) dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption.

  17. Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia.

    PubMed

    Cheng, Wan Hee; Yap, Chee Kong

    2015-09-01

    Samples of mangrove snails Nerita lineata and surface sediments were collected from nine geographical sampling sites in Peninsular Malaysia to determine the concentrations of eight metals. For the soft tissues, the ranges of metal concentrations (μg g(-1) dry weight (dw)) were 3.49-9.02 for As, 0.69-6.25 for Cd, 6.33-25.82 for Cu, 0.71-6.53 for Cr, 221-1285 for Fe, 1.03-50.47 for Pb, and 102.7-130.7 for Zn while Hg as 4.00-64.0 μg kg(-1) dw(-1). For sediments, the ranges were 21.81-59.49 for As, 1.11-2.00 for Cd, 5.59-28.71 for Cu, 18.93-62.91 for Cr, 12973-48916 for Fe, 25.36-172.57 for Pb, and 29.35-130.34 for Zn while for Hg as 2.66-312 μg kg(-1) dw(-1). To determine the ecological risks on the surface habitat sediments, sediment quality guidelines (SQGs), the geochemical indices, and potential ecological risk index (PERI) were used. Based on the SQGs, all the metals investigated were most unlikely to cause any adverse effects. Based on geoaccumulation index and enrichment factor, the sediments were also not polluted by the studied metals. The PERI values based on As, Cd, Cu, Cr, Hg, Pb and Zn in this study were found as 'low ecological risk'. In order to assess the potential health risks, the estimated daily intakes (EDI) of snails were found to be all lower than the RfD guidelines for all metals, except for Pb in some sites investigated. Furthermore, the calculated target hazard quotients (THQ) were found to be less than 1. However, the calculated total target hazard quotients (TTHQ) from all sites were found to be more than 1 for high level consumers except KPPuteh. Therefore, moderate amount of intake is advisable to avoid human health risks to the consumers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure.

    PubMed

    Pignotti, Emanuela; Guerra, Roberta; Covelli, Stefano; Fabbri, Elena; Dinelli, Enrico

    2018-09-01

    Sediments from the Pialassa Piomboni coastal lagoon (NE Italy) were studied to assess the degree of contamination and ecological risk related to trace metals by combining a geochemical characterization of bulk sediments with the assessment of the bioavailable forms of trace metals. With this purpose, sediment contamination (Cd, Cu, Hg, Ni, Pb, and Zn) was assessed by Enrichment Factors (EFs), and potential bioavailability by the Simultaneously Extracted Metals and Acid Volatile Sulfides (SEM-AVS) approach (Cd, Cu, Ni, Pb, and Zn), and by Sequential Extraction Procedure (Co, Cr, Cu, Ni, Pb, and Zn). On average, Cr and Ni exhibited no contamination (EF ≤1.5), and a predominance in the residual fraction of the sediment, indicating natural origin for these metals. Cu, Pb and Zn displayed a local contamination, which resulted in a higher proportion of Cu bound to the reducible and oxidizable fractions (~30% and ~40% as median, respectively), and Pb mostly associated with the reducible phase (~60% as median). Hence, Cu and Pb could be mobilized when environmental conditions become reducing or oxidizing. Zn resulted mainly partitioned into the reducible and residual fractions (~50% as median, in both fractions). The Risk Assessment Code (RAC) indicated that approximately 30% of samples had >10% of total Zn weakly bound to the sediment, suggesting a medium risk of exposure for aquatic organisms. RAC results were consistent with the ∑SEM-AVS findings, pointing to possible adverse effects for aquatic biota in ~30% of samples, with Zn mostly accounting for the total metal bioavailability. Hg showed a moderate to very severe enrichment, indicating that a substantial amount of this metal derives from anthropogenic sources and may pose adverse effects on the aquatic biota of the Pialassa Piomboni lagoon. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds—synthesis, X-Ray studies and magnetic properties

    NASA Astrophysics Data System (ADS)

    Machura, B.; Świtlicka, A.; Zwoliński, P.; Mroziński, J.; Kalińska, B.; Kruszynski, R.

    2013-01-01

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH)4Hg(SCN)4]n (1) [Cu(indH)4Hg(SCN)4]n (2) and [Cu(ampy)2Hg(SCN)4]n (3), have one-dimensional coordination structure. Two compounds [Cu(pzH)2Hg(SCN)4]n (4) and [Cu(abzimH)Hg(SCN)4]n (5) form two-dimensional nets, whereas the complexes [Cu(pyCN)2Hg(SCN)4]n (6) and [Cu(pyCH(OH)(OMe))2Hg(SCN)4]n (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net. In 2 the N-H•••S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H•••N and N-H•••S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net.

  20. [15]aneN4S: synthesis, thermodynamic studies and potential applications in chelation therapy.

    PubMed

    Torres, Nuno; Gonçalves, Sandrina; Fernandes, Ana S; Machado, J Franco; de Brito, Maria J Villa; Oliveira, Nuno G; Castro, Matilde; Costa, Judite; Cabral, Maria F

    2014-01-03

    The purpose of this work was to synthesize and characterize the thiatetraaza macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S). Its acid-base behaviour was studied by potentiometry at 25 °C and ionic strength 0.10 M in KNO3. The protonation sequence of this ligand was investigated by 1H-NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of [15]aneN4S with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ metal ions were further performed under the same experimental conditions. The results demonstrated that this compound has a higher selectivity and thermodynamic stability for Hg2+ and Cu2+, followed by Ni2+. The UV-visible-near IR spectroscopies and magnetic moment data for the Co(II) and Ni(II) complexes indicated a tetragonal distorted coordination geometry for both metal centres. The value of magnetic moment and the X-band EPR spectra of the Cu(II) complex are consistent with a distorted square pyramidal geometry.

  1. The impact of mining activities on agriculture

    NASA Astrophysics Data System (ADS)

    Saghatelyan, A.; Sahakyan, L.

    2009-04-01

    The present study was designed to assess environmental status of the territory of the city of Kapan and neighboring agricultural farms with an emphasis on the impact of the tailing repository and operation of the Kapan copper plant on soil, water and plant pollution. The region has long been known for its abundant copper and polymetallic deposits with vein- and stockwork-type mineralization. Moreover, historically Kapan was the miners' city and a powerful copper mining and dressing plant has been operating there since 1846. The performed geochemical survey and a sanitary-hygienic assessment of pollution of the Kapan's soils have indicated high contents of Cu, Pb, Ni, Mo and As vs. the background and Maximum Acceptable Concentrations (MAC). The assessment of pollution levels of surface water, including natural and industrial streams, has indicated that unlike natural stream waters, mining waters from the adit and industrial stream waters were high in a number of toxic (Cd, As, Hg) and ore (Cu, Zn) elements. Activation of most chemical elements and particularly of heavy metals in water environment rapidly brings to pollution of environmental components (soils, plants, etc.), and as a result heavy metals enter the human organism via trophic chains. So, in the frame of the research eco-toxicological studies were performed on accumulation of heavy metals (Cu, Ni, Cr, Zn, Sn, Mo), including high toxic elements (As, Hg, Pb, Cd) in agricultural soils and in the basic assortment of agricultural crops. The research covered agricultural lands within the bounds of the city and private plots in neighboring villages. Wholly, 24 vegetable, melon field, cereal (corn), oil-bearing (sunflower) species adding spicy herbs and fruits were studied. It should be stressed that agricultural crops growing on the study sites are used provide food products not only by the population of this particular city and neighboring villages, but of other cities, too. It means that the average number of people exposed to a probable risk of eating contaminated food is some 55-60 thousand. The performed pilot eco-toxicological studies enabled us to conclude that 1. Mining waters from adits and industrial waters contained high concentrations of toxic (Cd, As, Hg) and ore elements (Cu, Zn). Mixing of these waters with surface streams (used for irrigation) brings to the increase in concentration of a number of compounds and heavy metals. Chemical element concentrations in the waters did not reach MAC, nevertheless there exists a real ecological risk factor stepping from high coefficients of their cumulation in bio-environments. 2.The soils of the city and neighboring villages are polluted by a number of heavy metals (Ni, Mo, Cu, Cr, As). 3.Agricultural crop pollution is dominated by Cr, Ni, Pb, Cu. In some species Mo, Zn and Hg were determined, too. The obtained data evidenced the hazard of crops use for dietary purposes. With regard for such pollution level and extension that threatens sustainable development of the territory, we consider it reasonable to execute some additional prior organizational, research and diagnostic, technological actions.

  2. "Naked-eye" colorimetric and "turn-on" fluorometric chemosensors for reversible Hg2+ detection.

    PubMed

    Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat

    2014-01-24

    Two new Hg(2+)-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg(2+), the sensors exhibited highly sensitive "turn-on" fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu(2+), Ag(+), Pb(2+), Ca(2+), Cd(2+), Co(2+), Fe(2+), Mn(2+), Na(+), Ni(2+), K(+), Ba(2+), Li(+) and Zn(2+), with a low detection limit of 1.7 ppb toward Hg(2+). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. “Naked-eye” colorimetric and “turn-on” fluorometric chemosensors for reversible Hg2+ detection

    NASA Astrophysics Data System (ADS)

    Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat

    2014-01-01

    Two new Hg2+-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg2+, the sensors exhibited highly sensitive “turn-on” fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu2+, Ag+, Pb2+, Ca2+, Cd2+, Co2+, Fe2+, Mn2+, Na+, Ni2+, K+, Ba2+, Li+ and Zn2+, with a low detection limit of 1.7 ppb toward Hg2+.

  4. Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; Elkin, B; Armstrong, F A J; Muir, D C G

    2003-06-20

    Arctic fox (Alopex lagopus) and wolverine (Gulo gulo) tissues were collected in the Canadian Arctic from 1998 to 2001 and analyzed for various essential and non-essential elements. Several elements (Ag, Al, As, B, Ba, Be, Co, Cr, Mo, Ni, Sb, Sn, Sr, Tl, U and V) were near or below the detection limits in >95% arctic fox and wolverine samples. Concentrations of Cd, Cu, Fe, total Hg (THg), Mn, Pb, Se and Zn were quantifiable in >50% of the samples analyzed and reported herein. Hepatic elemental concentrations were not significantly different among arctic foxes collected at Ulukhaqtuuq (Holman), NT (n=13) and Arviat, NU (n=50), but were significantly greater than concentrations found in wolverine liver from Kugluktuk (Coppermine), NU (n=12). The mean (+/-1 S.E.) concentrations of Cd in kidney were also significantly greater in arctic fox (1.08+/-0.19 microg g(-1) wet wt.) than wolverine (0.67+/-0.18 microg g(-1) wet wt.). However, mean hepatic Cu concentrations (Ulukhaqtuuq: 5.5+/-0.64; Arviat: 7.1+/-0.49 microg g(-1) wet wt.) in arctic foxes were significantly lower than in wolverines (32+/-3.3 microg g(-1) wet wt.). Hepatic total Hg (THg) concentrations in arctic fox from this study were not significantly different from specimens collected in 1973, suggesting that THg concentrations have not changed dramatically over the past 30 years. The mono-methylmercury (MeHg) concentrations in selected (n=10) arctic fox liver samples from Arviat (0.14+/-0.07 microg g(-1) wet wt.) comprised 14% of THg. While the molar concentrations of THg were correlated with Se in arctic foxes and wolverines, the hepatic Hg/Se molar ratios were consistently lower than unity; suggesting that Se-mediated detoxification pathways of Hg are not overwhelmed at current exposure.

  5. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana.

    PubMed

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson Manukure; Ephraim, James

    2017-01-01

    The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area.

  6. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana

    PubMed Central

    Greve, Klaus; Atiemo, Sampson Manukure

    2017-01-01

    The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area. PMID:29056034

  7. Cation hydrolysis and the regulation of trace metal composition in seawater

    NASA Astrophysics Data System (ADS)

    Kumar, M. Dileep

    1987-08-01

    Thermodynamic calculations have been performed for cation hydrolysis, including temperatures from 2°C to the high values of significance near Mid-Oceanic Ridge Systems (MORS). Eighteen elements with wide range of residence times ( t) in seawater (Mn, Th, Al, Bi, Ce, Co, Cr(III), Fe, Nd, Pb, Sc, Sm, Ag, Cd, Cu, Hg, Ni and Zn) have been considered. A model for the regulation of trace metal composition in seawater by cation hydrolytic processes, including those at MORS, is presented. Results show an increase in the abundance of neutral metal hydroxyl species with increase in temperature. During hydrothermal mixing, as the temperature increases, transformation from lower positive hydroxyl complexes to higher or neutral complexes would occur for Cd, Ce, Co, Cr(III), Cu, Mn, Nd, Ni, Pb, Sm and Zn. pH values for adsorption of the metal ion onto solid surfaces have direct relation with pH values of hydrolysis. Co, Mn and Pb could be oxidized to higher states (at Mn-oxide surfaces) that would occur even at MORS. Ce can also be oxidized at 25°C. Solubility calculations show that Al, Bi, Cr(III), Sc, Fe and Th are saturated while Ce, Nd and Sm are not with respect to their oxyhydroxide solids at their concentrations in seawater at 25°C. Cu, Hg, Ni and Zn reach saturation equilibrium at 250°C, whereas Co, Mn and Pb exhibit unsaturation. The results suggest an increase in scavenging capacity of a cation with rise in temperature.

  8. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    PubMed

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  9. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion.

    PubMed

    Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G

    2016-03-02

    The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.

  10. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2007-10-01

    A macrocyclic ligand, bdta (where bdta = 3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl 2 type complexes [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  11. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine.

    PubMed

    Khan, Sadaf; Nami, Shahab A A; Siddiqi, K S

    2007-10-01

    A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  12. Assessment of the Effectiveness of Environmental Dredging in South Lake, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Yu; Feng, Jiang

    2007-08-01

    Environmental dredging is a primary remedial option for removal of the contaminated material from aquatic environment. Of primary concern in environmental dredging is the effectiveness of the intended sediment removal. A 5-year field monitoring study was conducted to assess the effectiveness of the environmental dredging in South Lake, China. The concentrations of total nitrogen (TN), total phosphors, and heavy metals (Zn, Pb, Cd, Cu, Cr, Ni, Hg, and As) before and after dredging in sediment were determined and compared. Multiple ecological risk indices were employed to assess the contamination of heavy metals before and after dredging. Our results showed that the total phosphorus levels reduced 42% after dredging. Similar changes for Hg, Zn, As Pb, Cd, Cu, Cr, and Ni were observed, with reduction percentages of 97.0, 93.1, 82.6, 63.9, 52.7, 50.1, 32.0, and 23.6, respectively, and the quality of sediment improved based on the criterion of Sediment Quality Guidelines by USEPA and contamination degree values (Cd) decreased significantly (paired t-test, p < 0.05). Unexpectedly, the TN increased 49% after dredging compared to before dredging. Findings from the study demonstrated that the environmental dredging was an effective mechanism for removal of total phosphorus and heavy metals from South Lake. Nevertheless, the dredging was ineffective to remove total nitrogen from sediment. We conclude that the reason for the observed increase in TN after dredging was likely ammonia release from the sediment impairing the dredging effectiveness.

  13. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China.

    PubMed

    Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong

    2017-08-15

    Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.

  15. Concentrations and bioaccessibilities of trace elements in barbecue charcoals.

    PubMed

    Sharp, Annabel; Turner, Andrew

    2013-11-15

    Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds-synthesis, X-Ray studies and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machura, B., E-mail: basia@ich.us.edu.pl; Switlicka, A.; Zwolinski, P.

    2013-01-15

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH){sub 4}Hg(SCN){sub 4}]{sub n} (1) [Cu(indH){sub 4}Hg(SCN){sub 4}]{sub n} (2) and [Cu(ampy){sub 2}Hg(SCN){sub 4}]{sub n} (3), have one-dimensional coordination structure. Two compounds [Cu(pzH){sub 2}Hg(SCN){sub 4}]{sub n} (4) and [Cu(abzimH)Hg(SCN){sub 4}]{sub n} (5) form two-dimensional nets, whereas the complexes [Cu(pyCN){sub 2}Hg(SCN){sub 4}]{sub n} (6) and [Cu(pyCH(OH)(OMe)){sub 2}Hg(SCN){sub 4}]{sub n} (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the threemore » dimensional net. In 2 the N-H Bullet Bullet Bullet S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H Bullet Bullet Bullet N and N-H Bullet Bullet Bullet S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the three dimensional net. - Graphical abstract: Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compound-synthesis,X-Ray studies and magnetic properties. Highlights: Black-Right-Pointing-Pointer Novel heterobimetallic Cu/Hg coordination polymers were synthesised. Black-Right-Pointing-Pointer The multidimensional structures have been proved by single X-ray analysIs. Black-Right-Pointing-Pointer A variation in the crystalline architectures was observed depending on auxiliary ligands. Black-Right-Pointing-Pointer Magnetic measurements indicate weak exchange interaction between Cu(II) in the crystal lattices below 10 K.« less

  17. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  18. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  19. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc.

    PubMed

    Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na

    2016-05-01

    In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

  20. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  1. Wideband 10.6 micrometers Backscatter Range Interim Report

    DTIC Science & Technology

    1976-11-02

    oucput, a local oscillator, a radar return, and a correlation infrared detector . The unique part of this radar is the wideband chirped waveform on a...backscatter system photoconductors Ge:Cu is superior to HgCdTe photovoltaic detectors because of its superior (larger) shunt resistance which reduces...the Johnson noise of the detector and its ability to withstand higher optical powers without damage. 18 P160-908 Fig. 6. Chirp waveform

  2. Marine Chemistry in the People’s Republic of China.

    DTIC Science & Technology

    1984-08-01

    Eh, Fe, Al, Mn, Cu, Pb, Zn, Cd, Hg, Cr, and also the sedimentation rate by Pb- 210 method. (2) The effects of flow rate, eddy diffusion, axial length of...sediments, distribution, determination, radium-226, uranium-238, radon-222, polonium - 210 , bismuth- 210 , lead-206, particulates, adsorption, polonium ...sediments, distribution, radium-226, uranium-238, radon-222, polonium - 210 , bismuth- 210 , lead-206, particulates, adsorption, polonium , dating, Zhujiang

  3. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    PubMed Central

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  4. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa.

    PubMed

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-06-30

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10(-4) implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10(-4)). These carcinogenic risk values were both higher than acceptable values.

  5. Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China.

    PubMed

    Qiao, Min; Cai, Chao; Huang, Yizong; Liu, Yunxia; Lin, Aijun; Zheng, Yuanming

    2011-01-01

    Soil in metropolitan region suffers great contamination risk due to the rapid urbanization especially in developing countries. Beijing and Tianjin, together with their surrounding regions, form a mega-metropolitan region in northern China. To assess the soil environmental quality, a total of 458 surface soil samples were collected from this area. Concentrations of Cr, Cu, Pb, Zn, As, Cd, and Hg were analyzed and compared to the Chinese environmental quality standards for soil. Multivariate analysis was carried out to identify the possible sources and Geographic Information Systems techniques were applied to visualize the spatial data. It was found that the primary inputs of As were due to pedogenic sources, whereas Hg was mainly of anthropogenic source. Other elements including Cr, Cu, Pb, Zn, and Cd were from both lithogenic and anthropogenic origins. Health risk assessment based on the maximum heavy metal concentration indicated that As derived from sewage irrigation area can result in carcinogenic lifetime risk due to ingestion and/or dermal contact of soil. The potential non-carcinogenic risk for children is significant for Pb and the cumulative effect of multiple metals is of concern for children in the vicinity of mining site. The results increased our knowledge for understanding natural and anthropogenic sources as well as health risk for metals in metropolitan soil.

  6. Biomonitoring of 33 Elements in Blood and Urine Samples from Coastal Populations in Sanmen County of Zhejiang Province.

    PubMed

    Zhang, Su-jing; Luo, Ru-xin; Ma, Dong; Zhuo, Xian-yi

    2016-04-01

    To determine the normal reference values of 33 elements, Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn and Zr, in the blood and urine samples from the general population in Sanmen County of Zhejiang province, a typical coastal area of eastern China. The 33 elements in 272 blood and 300 urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The normality test of data was conducted using SPSS 17.0 Statistics. The data was compared with other reports. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County were obtained, which of some elements were found to be similar with other reports, such as Co, Cu, Mn and Sr, while As, Cd, Hg and Pb were generally found to be higher than those previously reported. There was a wide variation between the reports from different countries in blood Ba. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County are established, and successfully applied to two poisoning cases.

  7. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa

    PubMed Central

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-01-01

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >>1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10−4 implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10−4). These carcinogenic risk values were both higher than acceptable values. PMID:27376316

  8. Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM).

    PubMed

    Vrhovnik, Petra; Dolenec, Matej; Serafimovski, Todor; Tasev, Goran; Arrebola, Juan P

    2016-07-15

    The main purpose of the present study is to assess human dietary exposure to essential and non-essential trace elements via consumption of selected homegrown foodstuffs. Twelve essential and non-essential trace elements (Cd, Co, Cu, Cr, Hg, Mo, Ni, Pb, Sb, Se, Zn and As) were detected in various homegrown foodstuffs. Detailed questionnaires were also applied among a sample of the local population to collect information on sociodemographic characteristics. The results of the present study clearly indicate that the majority of the trace elements are at highly elevated levels in the studied foodstuffs, in comparison to international recommendations. The maximum measured levels of ETE and NETE are as follows [μgkg(-1)]: Cd 873, Co 1370, Cu 21700, Cr 59633, Hg 26, Mo 6460, Ni14.5, Pb 11100, Sb 181, Se 0.30, Zn 102 and As 693. Additionally, age, body mass index and gender were significantly associated with levels of dietary exposure. Further research is warranted on the potential health implication of this exposure. The study merges the accumulation of ETE and NETE in home-grown foodstuffs and reflects considerably high health risks for inhabitants. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-16

    As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

  10. Natural and anthropic effects on hydrochemistry and major and trace elements in the water mass of a Spanish Pyrenean glacial lake set.

    PubMed

    Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago

    2017-07-01

    This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.

  11. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary.

    PubMed

    Zhang, Wei; Wang, Wen-Xiong; Zhang, Li

    2013-05-01

    Arsenic speciation and concentrations were determined in mollusks and crustaceans in the intertidal zone from twelve locations in Zhanjiang estuary, South China. Metal concentrations (Ag, As, Cd, Cu, Hg, Ni, Pb, and Zn) were also concurrently determined in these species. Arsenic speciation analysis showed that the less-toxic arsenobetaine (AsB) constituted 80.6-98.8 % of all As compounds, and dimethylarsinic acid (DMA) constituted 0.47-3.44 %. Monomethylarsonic acid (MMA) and As(V) were only detected in the whelk Drupa fiscella and the crab Heteropilumnus ciliatus, respectively. Arsenite [As(III)] was not detected in any of the sampled specimens, but there were also unidentified other As species. A strong spatial variation of metals in the oyster Saccostrea cucullata was found in the estuary, confirming that oysters can be used as a good biomonitor of metal contamination in the studied area. The concentrations of eight metals in the studied mollusks and crustaceans clearly revealed that these invertebrates accumulated different metals to different degrees. Furthermore, As, Cd, Cu, Hg, and Pb contents in mollusks and crustacean samples were below the Food and Agricultural Organization (FAO) safe concentrations, thus there was no obvious health risk from the intake of the metals through marine mollusks and crustaceans consumption.

  12. Dynamics of multiple elements in fast decomposing vegetable residues.

    PubMed

    Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian

    2018-03-01

    Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Source Identification and Apportionment of Trace Elements in Soils in the Yangtze River Delta, China.

    PubMed

    Shao, Shuai; Hu, Bifeng; Fu, Zhiyi; Wang, Jiayu; Lou, Ge; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-06-12

    Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated that the trace elements in soil in the study area were mainly from natural, multi-pollutant and industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was mainly from industrial wastes and pollutants.

  14. Electrical properties of MIS devices on CdZnTe/HgCdTe

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Seok; Jeoung, Y. T.; Kim, Hyun Kyu; Kim, Jae Mook; Song, Jinhan; Ann, S. Y.; Lee, Ji Y.; Kim, Young Hun; Kim, Sun-Ung; Park, Mann-Jang; Lee, S. D.; Suh, Sang-Hee

    1998-10-01

    In this paper, we report the capacitance-voltage (C-V) properties of metal-insulator-semiconductor (MIS) devices on CdTe/HgCdTe by the metalorganic chemical vapor deposition (MOCVD) and CdZnTe/HgCdTe by thermal evaporation. In MOCVD, CdTe layers are directly grown on HgCdTe using the metal organic sources of DMCd and DiPTe. HgCdTe layers are converted to n-type and the carrier concentration, ND is low 1015 cm-3 after Hg-vacancy annealing at 260 degrees Celsius. In thermal evaporation, CdZnTe passivation layers were deposited on HgCdTe surfaces after the surfaces were etched with 0.5 - 2.0% bromine in methanol solution. To investigate the electrical properties of the MIS devices, the C-V measurement is conducted at 80 K and 1 MHz. C-V curve of MIS devices on CdTe/HgCdTe by MOCVD has shown nearly flat band condition and large hysteresis, which is inferred to result from many defects in CdTe layer induced during Hg-vacancy annealing process. A negative flat band voltage (VFB approximately equals -2 V) and a small hysteresis have been observed for MIS devices on CdZnTe/HgCdTe by thermal evaporation. It is inferred that the negative flat band voltage results from residual Te4+ on the surface after etching with bromine in methanol solution.

  15. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  16. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  17. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    PubMed

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  18. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China

    PubMed Central

    Hu, Bifeng; Jia, Xiaolin; Hu, Jie; Xu, Dongyun; Xia, Fang; Li, Yan

    2017-01-01

    Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10−3) was the largest among three age groups, followed by adults (6.998 × 10−4) and seniors (5.488 × 10−4). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni (0.018) > Hg (0.011) > Cr (0.010) > Pb (0.001). Therefore, Cd was most easily absorbed by crops, and different crops had different capacities to absorb HMs. The hazard quotient (HQ) represents the potential non-carcinogenic risk for an individual HM and it is an estimation of daily exposure to the human population that is not likely to represent an appreciable risk of deleterious effects during a lifetime. All the HQs of the HMs for the different age groups were significantly less than the alert value of 1.0 and were at a safe level. This indicated that citizens in the study area face low potential non-carcinogenic risk caused by HMs. The total carcinogens risks (TCRs) for children, adults, and seniors were 5.24 × 10−5, 2.65 × 10−5, and 2.08 × 10−5, respectively, all of which were less than the guideline value but at the alert level. Ingestion was the main pathway of carcinogen risk to human health. PMID:28891954

  19. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.

  20. [Distribution patterns and pollution assessments of heavy metals in the Spartina alterniflora salt-marsh wetland of Rudong, Jiangsu province].

    PubMed

    Zhang, Long-Hui; Du, Yong-Fen; Wang, Dan-Dan; Gao, Shu; Gao, Wen-Hua

    2014-06-01

    To understand the ecological impact of Spartina alterniflora on the coastal wetland environment, field survey was carried out in July, 2010, over the intertidal areas of Rudong coast, Jiangsu province; sediment samples were collected from a series of stations with different conditions of vegetation cover and S. alterniflora growth. The contents of eight heavy metals, together with sediment composition and total organic carbon were analyzed to reveal the distribution patterns of the heavy metals. Environmental quality status was evaluated using both the index of geoaccumulation (I(geo)) and the index of the Håkanson ecological risk. The analytical results showed that the average contents of Pb, Cd, As, Hg, Cr, Cu, Ni and Zn were below the standard for the Category I sediment quality, among which Cd, Hg, Ni and Zn exceeded the sediment background value of the region. On the whole, the contents of eight heavy metals in vegetation areas were higher than those associated with the adjacent bare flat areas. These data sets indicate a non-polluted condition in term of I(geo) estimation; however, a critical state of low to moderate degrees of pollution and a low level of risk were deduced according to the index of the Håkanson potential ecological risk. Both indices suggested that the pollution level of Hg and Cd were the highest among the eight metals measured. Along the transection from seaward to landward, the contents of As, Cu and Hg, their indices of I(geo) and Håkanson ecological risk all showed an increasing tread, in accordance with the condition of vegetation cover. Along the coastline with S. alterniflora being distributed in patchiness, all metal contents and their ecological risk level values for the marshes were higher than those for the unvegetated sediments nearby; moreover, except for Hg, other seven metals exhibited relatively low values than those in the shore-normal section with a better S. alterniflora growth. These findings indicate that S. alterniflora is one of important factors to enrich the heavy metal in tidal flat sediment. Thus, ecological risk of the heavy metal is reduced or blocked, due to the filtering effect of salt-marsh, which prevents metals from entering the open sea directly. The distribution of heavy metal is influenced by a combination of colonization time of vegetation, chemical form of metals and their origins.

  1. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs).

    PubMed

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Yohannes, Yared Beyene; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metal and metalloid contamination in food resulting from mining is of major concern due to the potential risk involved. Food consumption is the most likely route of human exposure to metals. This study was therefore to assess metals in different organs and different animal species near gold mines used for human consumption (free-range chicken, goat and sheep) in Tarkwa, Ghana, and to estimate the daily intake and health risk. The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb were measured with an inductively coupled plasma-mass spectrometer and Hg analysis was done using the mercury analyzer. Principal component analysis of the results showed a clear separation between chicken, grouped on one side, and the ruminants clustered on another side in both offal and muscle. Interestingly, As, Cd, Hg, Mn and Pb made one cluster in the offal of chicken. Chicken muscle also showed similar distribution with As, Hg and Pb clustered together. The daily intake of metals (μg/kg body weight/day) were in the following ranges; As [0.002 (kidneys of goat and sheep)-0.19 (chicken gizzard)], Cd [0.003 (chicken muscle)-0.55 (chicken liver)], Hg [0.002 (goat muscle)-0.29 (chicken liver)], Pb [0.01 (muscles and kidneys of goat and sheep)-0.96 (chicken gizzard)] and Mn [0.13 (goat kidney)-8.92 (sheep liver)]. From the results, daily intakes of As, Cd, Hg, Pb and Mn in these food animals were low compared to the provisional tolerable daily intake guidelines. The THQs although less than one, indicated that contributions of chicken gizzard and liver to toxic metal exposure in adults and especially children could be significant. Copyright © 2014. Published by Elsevier Inc.

  2. Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xia; Johs, Alexander; Zhao, Linduo

    Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less

  3. Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132

    DOE PAGES

    Lu, Xia; Johs, Alexander; Zhao, Linduo; ...

    2018-05-29

    Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less

  4. Remediation of heavy metal contaminated sites in the Venice lagoon and conterminous areas (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Maleci, Laura

    2013-04-01

    The lagoon of Venice and the conterminous land are affected by heavy contamination of anthropogenic origin, and for this reason the whole area has been classified as site of national interest, and must be restored. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and organic compounds (IPA, PCB, Dioxine) have been identified as the main contaminants at various sites, owing to agriculture and industrial wastes discharged on soils and convoyed to the lagoon. Five case studies of soil remediation are here reported. S. Giuliano is a former palustrine area reclaimed since the 60's with various human transported materials (HTM). In this area, hot spots overpassing the reference limits for residential and green areas have been recorded for Cd, Cu, Pb, Zn and IPA. Campalto is a site bordering the Venice lagoon and subjected to oscillating water level, that enhances metal mobility; diffuse contamination by heavy metals, particularly Pb, has been recorded at this site, utilized since 30 years for military and sport (skate) activities. Marghera is dramatically famous for its numerous factories and for oil refineries that affected the lagoon sediments since the 50's. Sediments proved heavily contaminated by As (up to 137 mgkg-1), Cd (57 mgkg-1), Hg (30mgkg-1), Ni, Pb (700 mgkg-1), Zn (5818 mgkg-1). Murano is a small island where many glass factories (the most famous all over the world) are running since XIII century. Glass is stained with several metals and, moreover, some substances are used to regulate fusion temperature, purity, etc., and therefore the surrounding environment is heavily contaminated by these substances. Mean concentrations of As (429 mgkg-1), Cd (1452 mgkg-1), Pb (749 mgkg-1), Zn (1624 mgkg-1), Se (341 mgkg-1), Sb (74 mgkg-1) widely overpass the reference values for both residential and industrial areas in national guidelines. Molo Serbatoi is a former oil container currently under restoration in the port of Venice. Soil contamination by As, Hg, Zn and IPA was recorded, while groundwater proved to be contaminated by As, Cd, Cr, Hg, Pb, Cu, Se, Ni, Mn, Sb, Fe. Restoration of the studied sites has been carried out by phytoremediation with native or exotic vegetation (Fragmites australis, Juncus lacustris,Puccinellia palustris, Limonium serotinum, Salicornia glauca, Spartina maritima, Pteris vittata) or cultivated plants (Heliantus annuus, Zea mais, Brassica napus, Brassica juncea). Results are somewhat contradictory. At S. Giuliano, the exotic fern (Pteris vittata), consistently with data from current literature, showed high ability to accumulate As, particularly in aerial parts. At Campalto, native vegetation proved ineffective for phytoextraction, but suitable for phytostabilization, owing to a root barrier effect. In the lagoon sediments from Marghera, Spartina proved more effective than Fragmites to uptake metals, while cultivated plants could not survive to high heavy metal concentrations. At Murano, Pteris vittata proved highly effective to accumulate As, but also resistant to elevated concentrations of co-existing metals (Cd, Pb, Se, Zn), with clear signals of growth sufference and a drastic reduction of sorption capacity only in the presence of very high Cd concentration. At Molo Serbatoi, phytoremediation could not be applied in absence of a chelating agent (e.g. EDTA), which could enhance metal mobilization: therefore, soil has been stored, selected and finally (the most contaminated part) delivered to a landfill, while groundwater will be remediated by bioremediation techniques.

  5. Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf.

    PubMed

    Dobaradaran, Sina; Soleimani, Farshid; Nabipour, Iraj; Saeedi, Reza; Mohammadi, Mohammad Javad

    2018-01-01

    In this study we report the concentration levels of heavy metals (including Pb, Cd, Hg, Cr, Ni, Fe, Mn, Cu) in ballast water of commercial ships, entering Bushehr port for the first time in the region of the Persian Gulf. The concentration levels of Cu and Fe in all samples of the ballast water were higher compared with the coastal waters of Bushehr port. In the case of Cd, 76.47% of samples had higher concentration level compared with the coastal waters of Bushehr port. Results showed that in a long term the ballast water has the potential to change the chemical quality in marine environments and also may affect the human health and marine ecosystem where ships discharge their ballast water. Therefore, permanent monitoring as well as treatment of ballast water before discharging is crucial to keep the marine environment health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    PubMed

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk.

  7. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Pleasure Boatyard Soils are Often Highly Contaminated

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Eklund, David

    2014-05-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ∑16 PAHs, and 3.8 mg/kg DW for ∑7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ∑7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ∑7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination.

  9. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-01-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.

  10. Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury.

    PubMed

    Wei, Qinguo; Yan, Jiakuo; Chen, Yao; Zhang, Lei; Wu, Xiaoyang; Shang, Shuai; Ma, Shisheng; Xia, Tian; Xue, Shuyu; Zhang, Honghai

    2018-01-01

    The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg 2+ ). In order to improve the adsorption ability of Saccharomyces cerevisiae for Hg 2+ , MerR was displayed on the surface of S. cerevisiae for the first time with an α-agglutinin-based display system in this study. The merR gene was synthesized after being optimized and added restriction endonuclease sites EcoR I and Mlu I. The display of MerR was indirectly confirmed by the enhanced adsorption ability of S. cerevisiae for Hg 2+ and colony PCR. The hydride generation atomic absorption spectrometry was applied to measure the Hg 2+ content in water. The engineered yeast strain not only showed higher tolerance to Hg, but also their adsorption ability was much higher than that of origin and control strains. The engineered yeast could adsorb Hg 2+ under a wide range of pH levels, and it could also adsorb Hg 2+ effectively with Cd 2+ and Cu 2+ coexistence. Furthermore, the engineered yeast strain could adsorb ultra-trace Hg 2+ effectively. The results above showed that the surface-engineered yeast strain could adsorb Hg 2+ under complex environmental conditions and could be used for the biosorption and bioremediation of environmental Hg contaminants.

  11. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity.

    PubMed

    Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry

    2016-10-01

    This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.

  12. Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

    PubMed Central

    Armah, Frederick Ato; Gyeabour, Elvis Kyere

    2013-01-01

    The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were 4.18 × 10−6 and 1.84 × 10−7, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments. PMID:24278631

  13. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations.

    PubMed

    Oladipo, Oluwatosin Gbemisola; Ezeokoli, Obinna Tobechukwu; Maboeta, Mark Steve; Bezuidenhout, Jacobus Johannes; Tiedt, Louwrens R; Jordaan, Anine; Bezuidenhout, Cornelius Carlos

    2018-04-15

    Response and growth kinetics of microbes in contaminated medium are useful indices for the screening and selection of tolerant species for eco-friendly bio-augmentative remediation of polluted environments. In this study, the heavy metal (HM) tolerance, bioaccumulation and growth kinetics of seven bacterial strains isolated from mining sites to 10 HMs (Cd, Hg, Ni, Al, Cr, Pb, Cu, Fe, Mn and Zn) at varied concentrations (25-600 mgL -1 ) were investigated. The isolates were phylogenetically (16S rRNA gene) related to Lysinibacillus macroides, Achromobacter spanius, Bacillus kochii, B. cereus, Klebsiella pneumoniae, Pseudomonas mosselii and P. nitroreducens. Metal tolerance, effects on lag phase duration and growth rates were assessed using the 96-well micro-titre method. Furthermore, metal bioaccumulation and quantities within cells were determined by transmission electron microscopy and electron dispersive x-ray analyses. Tolerance to Ni, Pb, Fe and Mn occurred at highest concentrations tested. Growth rates increased with increasing Fe concentrations, but reduced significantly (p < .05) with increasing Zn, Cu, Hg, Cd and Al. Significantly higher (p < .05) growth rates (compared to controls) was found with some isolates in Hg (25 mgL -1 ), Ni (100 mgL -1 ), Cr (150 mgL -1 ), Mn (600 mgL -1 ), Pb (100 mgL -1 ), Fe (600 mgL -1 ) and Al (50 mgL -1 ). Lag phase urations were isolate- and heavy metal-specific, in direct proportion to concentrations. A. spanius accumulated the most Mn and Zn, while B. cereus accumulated the most Cu. Metals accumulated intra-cellularly without cell morphology distortions. The isolates' multi-metal tolerance, intra-cellular metal bioaccumulation and growth kinetics suggest potentials for application in the synergetic biodegradation and bioremediation of polluted environments, especially HM-rich sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A novel ferrocenyl-naphthalimide as a multichannel probe for the detection of Cu(ii) and Hg(ii) in aqueous media and living cells.

    PubMed

    Dong, Junyang; Hu, Jianfeng; Baigude, Huricha; Zhang, Hao

    2018-01-02

    A novel ferrocenyl-naphthalimide multichannel probe 1 was designed and synthesized using a facile method. The color of the solution containing probe 1 changed from yellow to colorless upon the addition of Cu 2+ or Hg 2+ . Interestingly, probe 1 exhibited highly selective fluorescent turn-on for Cu 2+ and turn-off for Hg 2+ in aqueous solution. Probe 1 was an electrochemical Cu 2+ and Hg 2+ ion sensor, in which the Fc/Fc + redox couple was significantly shifted (ΔE 1/2 = 178 mV and ΔE 1/2 = 53 mV, respectively) upon complexation. Therefore, probe 1 can act as a naked-eye chemosensor, as well as an electrochemical and a fluorescent probe for Cu 2+ and Hg 2+ . Furthermore, this is the first reported probe that can be used for the bifunctional fluorescent detection of intracellular Cu 2+ and Hg 2+ by fluorescent imaging studies. These characteristics give this probe considerable potential in the study and analysis of Cu 2+ and Hg 2+ in complex biosystems.

  15. Composition dependence of the mercury vacancies energy levels in HgCdTe: Evolution of the “negative-U” property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemain, F.; Robin, I. C.; Feuillet, G.

    2013-12-07

    HgCdTe films grown by liquid phase epitaxy with different Cd compositions were post-annealed to control the Hg vacancy concentration. Then temperature-dependent Hall measurements and photoluminescence measurements allowed us to study the evolution of the Hg vacancy acceptor levels with the cadmium composition. For Cd compositions below 33% the Hg vacancies in HgCdTe present a negative-U property with the ionized state V{sup −} stabilized compared to the neutral state V{sup 0}. For Cd compositions higher than 45%, the Hg vacancies in HgCdTe present a more standard level ordering with the ionized state V{sup −} at higher energy than the neutral statemore » V{sup 0}.« less

  16. Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea.

    PubMed

    Yun, Sung-Wook; Baveye, Philippe C; Kim, Dong-Hyeon; Kang, Dong-Hyeon; Lee, Si-Young; Kong, Min-Jae; Park, Chan-Gi; Kim, Hae-Do; Son, Jinkwan; Yu, Chan

    2018-07-01

    Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y 0  + αe -βx ). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modeling the Transport of Heavy Metals in Soils

    DTIC Science & Technology

    1990-09-01

    vii NOMENCLATURE Term Definition a aggregate radius (cm) b Freundlich parameter (dimensionless) c concentration of dissolved chemical in soil solution (mg...metals (e.g., Cu, Hg, Cr, Cd, and Zn). retention-release reactions in the soil solution have been observed to be strongly time-dependent. Recent...of the dissolved chemical in the soil solution (mg L 2 s = mount of solute retained per unit mass of the soil matrix (mg kg- )-, D = hydrodynamic

  18. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China.

    PubMed

    Pan, Libo; Ma, Jin; Hu, Yu; Su, Benying; Fang, Guangling; Wang, Yue; Wang, Zhanshan; Wang, Lei; Xiang, Bao

    2016-10-01

    A total of 128 surface soil samples were collected, and eight heavy metals, including As, Cd, Cr, Cu, Pb, Ni, Zn, and Hg, were analyzed for their concentrations, potential ecological risks, and human health risks. The mean concentrations of these eight metals were lower than the soil environmental quality standards in China, while they were slightly higher than the background values in Shanxi Province. The enrichment factor, coefficient variation, and potential ecological risk index were used to assess the pollution and eco-risk level of heavy metals, among which, Cd and Hg showed higher pollution levels and potential risks than the others in the studied area. Moreover, multivariate geostatistical analysis suggested that Hg originated mainly from point sources such as industrial emissions, while agricultural activity is the predominant factor for Cd. The human health risk assessment indicated that non-carcinogenic values were below the threshold values. The total carcinogenic risks due to As, Cr, and Ni were within the acceptable range for adults, while for children, they were higher than the threshold value (1.0E-04), indicating that children are facing higher threat to heavy metals in soils. These results provide basic information on heavy metal pollution control and human health risk assessment management in the study regions.

  19. New duel fluorescent "on-off" and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor.

    PubMed

    Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar

    2015-03-05

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. New duel fluorescent 'on-off' and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar

    2015-03-01

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.

  1. Mercury in soil and perennial plants in a mining-affected urban area from Northwestern Romania.

    PubMed

    Senilă, Marin; Levei, Erika A; Senilă, Lăcrimioara R; Oprea, Gabriela M; Roman, Cecilia M

    2012-01-01

    The mercury (Hg) concentrations were evaluated in soils and perennial plants sampled in four districts of Baia Mare city, a historical mining and ore processing center in Northwestern Romania. The results showed that the Hg concentration exceeded the guideline value of 1.0 mg kg(-1) dry weight (dw) established by the Romanian Legislation, in 24 % of the analyzed soil samples, while the median Hg concentration (0.70 mg kg(-1) dw) was lower than the guideline value. However, Hg content in soil was generally higher than typical values in soils from residential and agricultural areas of the cities all over the world. The median Hg concentration was 0.22 mg kg(-1) dw in the perennial plants, and exceeded the maximum level of Hg (0.10 mg kg(-1)) established by European Directive 2002/32/EC for plants used in animal feed in order to prevent its transfer and further accumulation in the higher levels of food chain. No significant correlations were found between soil Hg and other analyzed metals (Cd, Cu, Pb, Zn) resulted from the non-ferrous smelting activities, probably due to the different physicochemical properties, that led to different dispersion patterns.

  2. Innovative 'Artificial Mussels' technology for assessing spatial and temporal distribution of metals in Goulburn-Murray catchments waterways, Victoria, Australia: effects of climate variability (dry vs. wet years).

    PubMed

    Kibria, Golam; Lau, T C; Wu, Rudolf

    2012-12-01

    The "Artificial mussel" (AM), a novel passive sampling technology, was used for the first time in Australia in freshwater to monitor and assess the risk of trace metals (Cd, Cu, Hg, Pb, and Zn). AMs were deployed at 10 sites within the Goulburn-Murray Water catchments, Victoria, Australia during a dry year (2009-2010) and a wet year (2010-2011). Our results showed that the AMs accumulated all the five metals. Cd, Pb, Hg were detected during the wet year but below detection limits during the dry year. At some sites close to orchards, vine yards and farming areas, elevated levels of Cu were clearly evident during the dry year, while elevated levels of Zn were found during the wet year; the Cu indicates localized inputs from the agricultural application of copper fungicide. The impacts from old mines were significantly less compared 'hot spots'. Our study demonstrated that climate variability (dry, wet years) can influence the metal inputs to waterways via different transport pathways. Using the AMs, we were able to identify various 'hot spots' of heavy metals, which may pose a potential risk to aquatic ecosystems (sub-lethal effects to fish) and public (via food chain metal bioaccumulation and biomagnification) in the Goulburn-Murray Water catchments. The State Protection Policy exempted artificial channels and drains from protection of beneficial use (including protection of aquatic ecosystems) and majority of sites ('hot spots') were located within artificial irrigation channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Biological variables and health status affecting inorganic element concentrations in harbour porpoises (Phocoena phocoena) from Portugal (western Iberian Peninsula).

    PubMed

    Ferreira, Marisa; Monteiro, Silvia S; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo; Vingada, José; Eira, Catarina

    2016-03-01

    The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  5. Human health risk assessment of heavy metals in the irrigated area of Jinghui, Shaanxi, China, in terms of wheat flour consumption.

    PubMed

    Lei, Lingming; Liang, Dongli; Yu, Dasong; Chen, Yupeng; Song, Weiwei; Li, Jun

    2015-10-01

    Contamination of heavy metals (HMs) in agricultural soil has become a serious environmental problem because it poses a serious threat to human health by entering into food chains. Wheat is a staple food of the majority of the world's population; therefore, understanding the relationship between HM concentration in soils and its accumulation in wheat grain is imperative. This study assessed the concentrations of HMs (i.e., Hg, As, Cd, Cr, Pb, Cu, Zn, and Ni) in agricultural soils (a loess soil, eum-orthic anthrosol) and wheat flour in the historical irrigated area of Jinghui, Northwest China. The potential human health risks of HMs among local residents were also determined by evaluating the consumption of wheat flour. Results showed that the mean soil concentrations of HMs exceeded the corresponding natural background values of agricultural surface soil in Shaanxi: 0.07 mg kg(-1) for Hg, 15.4 mg kg(-1) for As, 0.25 mg kg(-1) for Cd, 75.5 mg kg(-1) for Cr, 27.2 mg kg(-1) for Pb, 28.1 mg kg(-1) for Cu, 81.1 mg kg(-1) for Zn, and 36.6 mg kg(-1) for Ni, respectively. However, all of the mean concentrations of HMs in soil were within the safety limits set by the Chinese regulation (HJ332-2006). The total HM concentrations in wheat flour were 0.0017 mg kg(-1) for Hg, 0.028 mg kg(-1) for As, 0.020 mg kg(-1) for Cd, 0.109 mg kg(-1) for Cr, 0.128 mg kg(-1) for Pb, 2.66 mg kg(-1) for Cu, 24.20 mg kg(-1) for Zn, and 0.20 mg kg(-1) for Ni, and they were significantly lower than the tolerance limits of Chinese standards. However, 15% of the wheat flour samples exceeded the Chinese standard (GB2762-2012) for Pb. This study highlighted the human health risks in the relationship of wheat flour consumption for both adults and children with HMs accumulated area. HMs did not cause noncarcinogenic risks in the area (HI < 1) except for children in Jingyang county; Cd generated the greatest carcinogenic risk, which poses a potential health risk to consumers. The results obtained in this study showed that the government and other institutions should implement measures to prevent and control HM contamination in agricultural soil and crops to mitigate the associated health risks.

  6. Pollution characteristics and ecological risk of heavy metals in ballast tank sediment.

    PubMed

    Feng, Daolun; Chen, Xiaofei; Tian, Wen; Qian, Qun; Shen, Hao; Liao, Dexiang; Lv, Baoyi

    2017-02-01

    This study was conducted to illustrate the contents and potential ecological risk of heavy metals in ballast tank sediment. Ballast sediment samples were collected from six ships during their stay in shipyard, and the heavy metals were determined by inductive coupled plasma emission spectrometer. Results showed that high concentrations of heavy metals were detected in all six sediment samples following the order: Zn > Cu > Pb > Cr > As > Cd > Hg. The geoaccumulation index explained the average pollution degree of heavy metals decreased as the following: Zn > Pb > Cu > As > Cr > Hg, and the environmental risk indices suggested that concentration found of Zn, Pb, and Cu might be highly toxic to aquatic organisms. Principal component and correlation analysis indicated the metal pollution in ballast tank sediment was affected by complex and different contamination mechanisms, and the corrosion of ballast tank played an important role in this process. In conclusion, this study is very useful for comprehensive consideration and efficient management of ballast tank sediment in order to protect the marine environment.

  7. Oxidation of elemental mercury vapor over gamma-Al2O3 supported CuCl2 catalyst for mercury emissions control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhouyang; Liu, Xin; Lee, Joo-Youp

    2015-09-01

    In our previous studies, CuCl2 demonstrated excellent Hg(0) oxidation capability and holds potential for Hg(0) oxidation in coal-fired power plants. In this study, the properties and performances of CuCl2 supported onto gamma-Al2O3 with high surface area were investigated. From various characterization techniques using XPS, XAFS, XRD, TPR, SEM and TGA, the existence of multiple copper species was identified. At low CuCl2 loadings, CuCl2 forms copper aluminate species with gamma-Al2O3 and is inactive for Hg(0) oxidation. At high loadings, amorphous CuCl2 forms onto the gamma-Al2O3 surface, working as a redox catalyst for Hg(0) oxidation by consuming Cl to be converted intomore » CuCl and then being regenerated back into CuCl2 in the presence of O-2 and HCl gases. The 10%(wt) CuCl2/gamma-Al2O3 catalyst showed excellent Hg(0) oxidation performance and SO2 resistance at 140 degrees C under simulated flue gas conditions containing 6%(v) O-2 and 10 ppmv HCl. The oxidized Hg(0) in the form of HgCl2 has a high solubility in water and can be easily captured by other air pollution control systems such as wet scrubbers in coal-fired power plants. The CuCl2/gamma-Al2O3 catalyst can be used as a low temperature Hg(0) oxidation catalyst. (C) 2015 Elsevier B.V. All rights reserved.« less

  8. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman.

    PubMed

    de Mora, Stephen; Fowler, Scott W; Wyse, Eric; Azemard, Sabine

    2004-09-01

    An assessment of marine contamination due to heavy metals was made in the Gulf and Gulf of Oman based on marine biota (fish and various bivalves) and coastal sediment collected in Bahrain, Oman, Qatar, and the United Arab Emirates (UAE) during 2000-2001. Sediment metal loadings were generally not remarkable, although hot spots were noted in Bahrain (Cu, Hg, Pb, Zn) and on the east coast of the UAE (As, Co, Cr, Ni). Concentrations of As and Hg were typically low in sediments and the total Hg levels in top predator fish commonly consumed in the region were < 0.5 microg g(-1) and posed no threat to public health. Very high Cd concentrations (up to 195 microg g(-1)) in the liver of some fish from southern Oman may result from food-chain bioaccumulation of elevated Cd levels brought into the productive surface waters by upwelling in the region. Very high As concentrations (up to 156 microg g(-1)) were measured in certain bivalve species from the region. Although not certain, the As is probably derived from natural origins rather than anthropogenic contamination. Copyright 2004 Elsevier Ltd.

  9. The current situation of inorganic elements in marine turtles: A general review and meta-analysis.

    PubMed

    Cortés-Gómez, Adriana A; Romero, Diego; Girondot, Marc

    2017-10-01

    Inorganic elements (Pb, Cd, Hg, Al, As, Cr, Cu, Fe, Mn, Ni, Se and Zn) are present globally in aquatic systems and their potential transfer to marine turtles can be a serious threat to their health status. The environmental fate of these contaminants may be traced by the analysis of turtle tissues. Loggerhead turtles (Caretta caretta) are the most frequently investigated of all the sea turtle species with regards to inorganic elements, followed by Green turtles (Chelonia mydas); all the other species have considerably fewer studies. Literature shows that blood, liver, kidney and muscle are the tissues most frequently used for the quantification of inorganic elements, with Pb, Cd, Cu and Zn being the most studied elements. Chelonia mydas showed the highest concentrations of Cr in muscle (4.8 ± 0.12), Cu in liver (37 ± 7) and Mg in kidney (17 μg g -1 ww), Cr and Cu from the Gulf of Mexico and Mg from Japanese coasts; Lepidochelys olivacea presented the highest concentrations of Pb in blood (4.46 5) and Cd in kidney (150 ± 110 μg g -1 ww), both from the Mexican Pacific; Caretta caretta from the Mediterranean Egyptian coast had the highest report of Hg in blood (0.66 ± 0.13 μg g -1 ww); and Eretmochelys imbricata from Japan had the highest concentration of As in muscle (30 ± 13 13 μg g -1 ww). The meta-analysis allows us to examine some features that were not visible when data was analyzed alone. For instance, Leatherbacks show a unique pattern of concentration compared to other species. Additionally, contamination of different tissues shows some tendencies independent of the species with liver and kidney on one side and bone on the other being different from other tissues. This review provides a general perspective on the accumulation and distribution of these inorganic elements alongside existing information for the 7 sea turtle species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    PubMed

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various metals. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idella and Oncorhynchus mykiss) from Beijing: implication from feed.

    PubMed

    Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei

    2016-06-01

    Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.

  12. Single crystals of the 96 K superconductor (Hg,Cu)Ba2CuO4+δ: Growth, structure and magnetism

    NASA Astrophysics Data System (ADS)

    Pelloquin, D.; Hardy, V.; Maignan, A.; Raveau, B.

    1997-02-01

    Single crystals of the 1201 (n = 1) (Hg,Cu)Ba2CuO4+δ mercury based cuprate have been grown by using a simple process without dry box. The as-synthesized crystals exhibit constant Tc(onset) of 96 K with sharp superconducting transitions. The electron microscopy coupled with EDX analyses evidence a ``1201''-type structure while a mercury deficiency is observed balanced by an excess of copper. The structural refinements based on single-crystal X-ray diffraction data confirm the electron deficiency on the Hg site (0,0,0) and show a splitting of the latter along the c axis correlated to the partial substitution of Cu for Hg. This structural study leads to the following formula Hg0.84Cu0.16Ba2CuO4.19. The magnetic study of a large crystal (1.1 × 0.38 × 0.065 mm3) shows that the (Hg,Cu)-1201 crystals exhibit an irreversibility line higher than that of the 1201 Hg0.8Bi0.2Ba2CuO4+δ crystal (Tc = 75 K). From the reversible magnetization, a λab(0) = 2470 Å value can be extrapolated. Using a 3D-2D decoupling formula, we obtain γ = 29 for the electronic anisotropy of this phase.

  13. Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure.

    PubMed

    Han, Taejun; Kong, Jeong-Ae; Kang, Hee-Gyu; Kim, Seon-Jin; Jin, Gyo-Sun; Choi, Hoon; Brown, Murray T

    2011-11-01

    The sensitivity of early life stages of the brown seaweed Saccharina japonica to six metals (Cd, Cu, Hg, Ni, Pb, Zn) and two waste-water samples were investigated and a new toxicity bioassay developed. The two endpoints used were spore germination and germ tube elongation with an exposure time of 24 h. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were darkness, pH 8, 35‰ and 15°C, respectively. The toxicity ranking of five metals was: Hg (EC(50) of 41 and 42 μg l(-1)) > Cu (120 and 81 μg l(-1)) > Ni (2,009 and 1,360 μg l(-1)) > Zn (3,024 and 3,897 μg l(-1)) > Pb (4,760 and 4,429 μg l(-1)) > Cd (15,052 and 7,541 μg l(-1)) for germination and germ tube elongation, respectively. The sensitivities to Cd, Cu and Ni were greater in germ tube elongation than in germination process. When tested against two different waste-water samples (processed animal and printed circuit board waste-water) values of EC(50) were between 21.29 and 32.02% for germination and between 5.33 and 8.98% for germ tube elongation. Despite differences in their chemical composition, the toxic effects of waste-water samples, as indicated by EC(50) values, did not differ significantly for the same endpoints. The CV range for both germination and germ tube elongation was between 4.61 and 37.69%, indicating high levels of precision of the tests. The results compare favourably with those from more established test procedures employing micro- and macroalgae. The advantages and potential limitations of the bioassay for the assessment of anthropogenic impacts on coastal ecosystems and commercial cultivation areas in near-shore environments are discussed.

  14. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    PubMed

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  15. Multiplexed analysis combining distinctly-sized CdTe-MPA quantum dots and chemometrics for multiple mutually interfering analyte determination.

    PubMed

    Bittar, Dayana B; Ribeiro, David S M; Páscoa, Ricardo N M J; Soares, José X; Rodrigues, S Sofia M; Castro, Rafael C; Pezza, Leonardo; Pezza, Helena R; Santos, João L M

    2017-11-01

    Semiconductor quantum dots (QDs) have demonstrated a great potential as fluorescent probes for heavy metals monitoring. However, their great reactivity, whose tunability could be difficult to attain, could impair selectivity yielding analytical results with poor accuracy. In this work, the combination in the same analysis of multiple QDs, each with a particular ability to interact with the analyte, assured a multi-point detection that was not only exploited for a more precise analyte discrimination but also for the simultaneous discrimination of multiple mutually interfering species, in the same sample. Three different MPA-CdTe QDs (2.5, 3.0 and 3.8nm) with a good size distribution, confirmed by the FWHM values of 48.6, 55.4 and 80.8nm, respectively, were used. Principal component analysis (PCA) and partial least squares regression (PLS) were used for fluorescence data analysis. Mixtures of two MPA-CdTe QDs, emitting at different wavelength namely 549/566, 549/634 and 566/634nm were assayed. The 549/634nm emitting QDs mixture provided the best results for the discrimination of distinct ions on binary and ternary mixtures. The obtained RMSECV and R 2 CV values for the binary mixture were good, namely, from 0.01 to 0.08mgL -1 and from 0.74 to 0.89, respectively. Regarding the ternary mixture the RMSECV and R 2 CV values were good for Hg(II) (0.06 and 0.73mgL -1 , respectively) and Pb(II) (0.08 and 0.87mg L -1 , respectively) and acceptable for Cu(II) (0.02 and 0.51mgL -1 , respectively). In conclusion, the obtained results showed that the developed approach is capable of resolve binary and ternary mixtures of Pb (II), Hg (II) and Cu (II), providing accurate information about lead (II) and mercury (II) concentration and signaling the occurrence of Cu (II). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of Cadmium Uptake by Plant Tissue 12

    PubMed Central

    Cutler, Jay M.; Rains, Donald W.

    1974-01-01

    The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants. PMID:16658840

  17. Heavy metal tolerance and removal potential in mixed-species biofilm.

    PubMed

    Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana

    2017-08-01

    The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.

  18. Is there widespread metal contamination from in-situ bitumen extraction at Cold Lake, Alberta heavy oil field?

    PubMed

    Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M

    2013-03-01

    The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy).

    PubMed

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-12-15

    The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Bioaccumulation of Trace Elements in Ruditapes philippinarum from China: Public Health Risk Assessment Implications

    PubMed Central

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-01-01

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1–38.0, 49.5–168.3, 42.0–68.0, 4.19–8.71, 4.76–14.32, 0.41–1.11, 0.94–4.74, 0.32–2.59, 0.03–0.23 and 0.46–11.95 mg·kg−1 dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption. PMID:23549229

  1. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  2. Evidence for Weakly Correlated Oxygen Holes in the Highest-Tc Cuprate Superconductor HgBa2 Ca2 Cu3 O8 +δ

    NASA Astrophysics Data System (ADS)

    Chainani, A.; Sicot, M.; Fagot-Revurat, Y.; Vasseur, G.; Granet, J.; Kierren, B.; Moreau, L.; Oura, M.; Yamamoto, A.; Tokura, Y.; Malterre, D.

    2017-08-01

    We study the electronic structure of HgBa2 Ca2 Cu3 O8 +δ (Hg1223; Tc=134 K ) using photoemission spectroscopy (PES) and x -ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2 p and Cu 3 d two-hole final states, respectively. Analyses using the experimental O 2 p and Cu 3 d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (Ud d=6.5 ±0.5 eV ) and O site (Up p=1.0 ±0.5 eV ). Cu2 O7 -cluster calculations with nonlocal screening explain the Cu 2 p core level PES and Cu L -edge XAS spectra, confirm the Ud d and Up p values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3 d -transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.

  3. Characteristics of Au Migration and Concentration Distributions in Au-Doped HgCdTe LPE Materials

    NASA Astrophysics Data System (ADS)

    Sun, Quanzhi; Yang, Jianrong; Wei, Yanfeng; Zhang, Juan; Sun, Ruiyun

    2015-08-01

    Annealing techniques and secondary ion mass spectrometry have been used to study the characteristics of Au migration and concentration distributions in HgCdTe materials grown by liquid phase epitaxy. Secondary ion mass spectrometry measurements showed that Au concentrations had obvious positive correlations with Hg-vacancy concentration and dislocation density of the materials. Au atoms migrate toward regions of high Hg-vacancy concentration or move away from these regions when the Hg-vacancy concentration decreases during annealing. The phenomenon can be explained by defect chemical equilibrium theory if Au atoms have a very large migration velocity compared with Hg vacancies. Au atoms will also migrate toward regions of high dislocation density, leading to a peak concentration in the inter-diffusion region of HgCdTe materials near the substrate. By use of an Hg and Te-rich annealing technique, different concentration distributions of both Au atoms and Hg vacancies in HgCdTe materials were obtained, indicating that Au-doped HgCdTe materials can be designed and prepared to satisfy the requirements of HgCdTe devices.

  4. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  5. Role of Dispersion in Metallophilic Hg···M Interactions (M = Cu, Ag, Au) within Coinage Metal Complexes of Bis(6-diphenylphosphinoacenaphth-5-yl)mercury.

    PubMed

    Hupf, Emanuel; Kather, Ralf; Vogt, Matthias; Lork, Enno; Mebs, Stefan; Beckmann, Jens

    2016-11-07

    The previously reported bis(6-diphenylphosphinoacenaphth-5-yl)mercury (1) was used as ligand for the preparation of the copper(I) complexes, 1·CuCl and [1·Cu(NCMe)]BF 4 , which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. DFT calculations employing topological analysis of the electron and electron pair densities within the AIM and ELI-D space-partitioning schemes revealed significant metallophilic Hg···Cu interactions. Evaluation of noncovalent bonding aspects according to the noncovalent interaction (NCI) index was applied not only for the Cu complexes 1·CuCl and [1·Cu(NCMe)]BF 4 but also for the previously reported Ag and Au complexes, namely, [1·MCl] (M = Ag, Au) and [1·M(NCMe) n ] + (M = Ag, n = 2; M = Au, n = 0), and facilitated the assignment of attractive dispersive Hg···M interactions with the Hg···Cu contacts being comparable to the Hg···Ag but weaker than the Hg···Au interactions. The localization of the attractive noncovalent bonding regions increases in the order Cu < Ag < Au.

  6. Mercury Cadmium Telluride Sputtering Research.

    DTIC Science & Technology

    1982-08-28

    originally designed for 5.7cm rather than 12.7cu diameter targets. A similar target made from poly- crystalline (Hg.8 Cd.2)Te material, which is difficult to...required 3 stainless steel pieces per dit, but provded a loM thamrl idauce for the diemspated taret power. The details of the design re given in...analyzed: 2) WDX detects and measures only one element at a time thereby ensuring better accuracy; 3) Since WDX electron microprobe is especially designed

  7. Defining appropriate methods for studying toxicities of trace metals in nutrient solutions.

    PubMed

    Li, Zhigen; Wang, Peng; Menzies, Neal W; Kopittke, Peter M

    2018-01-01

    The use of inappropriate experimental conditions for examining trace metal phytotoxicity results in data of questionable value. The present study aimed to identify suitable parameters for study of phytotoxic metals in nutrient solutions. First, the literature was reviewed to determine the concentration of six metals (Cd, Cu, Hg, Ni, Pb, and Zn) from solution of contaminated soils. Next, the effects of pH, P, Cl, NO 3 , and four Fe-chelators were investigated by using thermodynamic modelling and by examining changes in root elongation rate of soybean (Glycine max cv. Bunya). The literature review identified that the solution concentrations of metals in soils were low, ranging from (µM) 0.069-11Cd, 0.19-15.8 Cu, 0.000027-0.000079 Hg, 1.0-8.7 Ni, 0.004-0.55 Pb, and 0.4-36.3 Zn. For studies in nutrient solution, pH should generally be low given its effects on solubility and speciation, as should the P concentration due to the formation of insoluble phosphate salts. The concentrations of Cl, NO 3 , and various chelators also influence metal toxicity through alteration of metal speciation. The nutrient solutions used to study metal toxicity should consider environmentally-relevant conditions especially for metal concentrations, with concentrations of other components added at levels that do not substantially alter metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991-1999.

    PubMed

    Besada, V; Fumega, J; Vaamonde, A

    2002-04-15

    Temporal trends for heavy metals (Cd, Cu, Hg, Pb and Zn) in mussel (Mytilus galloprovincialis) from the Galician and Cantabrian areas in Spain, where samples were yearly collected from 1991 to 1999, are presented. This study was carried out by the Centro Oceanográfico de Vigo of the Instituto Español de Oceanografia (I.E.O.) as part of the Spanish contribution to the Joint Assessment and Monitoring Programme (JAMP) of the OSPAR Convention. The experimental work and subsequent statistical treatment, following OSPAR procedures and guidelines, are described. In order to carry out the statistical treatment of the data, median values of the different shell length classes were used for each contaminant, year and area. The Kendall T-b correlation coefficient was used with the purpose of demonstrating the existence of a downward significant temporal trend in the pollution levels, according to the advice of ICES Working Group on Statistical Aspects of Environmental Monitoring. A decrease of copper levels was detected in Vigo, Pontevedra and Arosa, of mercury in Pontevedra and A Coruña, of lead in Vigo, Pontevedra, A Coruña and Bilbao and of zinc in Pontevedra and A Coruña. However, a cadmium positive trend was registered at Ria de Vigo. No significant trends were detected in the other cases.

  9. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  10. Heavy metal contamination along the China coastline: A comprehensive study using Artificial Mussels and native mussels.

    PubMed

    Degger, Natalie; Chiu, Jill M Y; Po, Beverly H K; Tse, Anna C K; Zheng, Gene J; Zhao, Dong-Mei; Xu, Di; Cheng, Yu-Shan; Wang, Xin-Hong; Liu, Wen-Hua; Lau, T C; Wu, Rudolf S S

    2016-09-15

    A comprehensive study was carried out to assess metal contamination in five cities spanning from temperate to tropical environment along the coastal line of China with different hydrographical conditions. At each of the five cities, Artificial Mussels (AM) were deployed together with a native species of mussel at a control site and a polluted site. High levels of Cr, Cu and Hg were found in Qingdao, high level of Cd, Hg and Pb was found in Shanghai, and high level of Zn was found in Dalian. Furthermore, level of Cu contamination in all the five cities was consistently much higher than those reported in similar studies in other countries (e.g., Australia, Portugal, Scotland, Iceland, Korea, South Africa and Bangladesh). Levels of individual metal species in the AM showed a highly significant correlation with that in the native mussels (except for Zn in Mytilus edulis and Cd in Perna viridis), while no significant difference can be found between the regression relationships of metal in the AM and each of the two native mussel species. The results demonstrated that AM can provide a reliable time-integrated estimate of metal concentration in contrasting environments over large biogeographic areas and different hydrographic conditions, and overcome the shortcomings of monitoring metals in water, sediment and the use of biomonitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture.

    PubMed

    Seiler, Claudia; Berendonk, Thomas U

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.

  12. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    PubMed Central

    Seiler, Claudia; Berendonk, Thomas U.

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account. PMID:23248620

  13. The Asian clam Corbicula fluminea as a biomonitor of trace element contamination: Accounting for different sources of variation using an hierarchical linear model

    USGS Publications Warehouse

    Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.

    2009-01-01

    In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.

  14. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.

    PubMed

    de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun

    2007-01-01

    Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.

  15. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    PubMed

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies

    NASA Astrophysics Data System (ADS)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-09-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have caused worldwide concern due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we establish the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocate the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn, during the period of 1949-2012, increased by about 22-128 times at an annual average growth rate of 5.1-8.0 %, reaching about 526.9-22 319.6 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metal smelting represent the dominant sources of heavy metal emissions. In terms of spatial variation, the majority of emissions are concentrated in relatively developed regions, especially for the northern, eastern, and southern coastal regions. In addition, because of the flourishing nonferrous metal smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on account of the current and future demand of energy-saving and pollution reduction in China.

  17. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    NASA Astrophysics Data System (ADS)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  18. Raman study of the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ

    NASA Astrophysics Data System (ADS)

    Chang, H.; He, Z. H.; Meng, R. L.; Xue, Y. Y.; Chu, C. W.

    1995-02-01

    We studied the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ at varying laser irradiation power. Each compound has two Raman bands around 570 and 590 cm -1 which are assigned to the vibrations of the interstitial oxygen in HgO δ layers and the apical oxygen in BaO layers, respectively. The 590 cm -1 band shifts position slightly with irradiation, and both the intensity and position of the 570 cm -1 band vary significantly with the laser power. The occupation factor of the interstitial oxygen is sensitive to the annealing temperature. At higher temperatures (550-600°C), both compounds decompose into various (Ba,Cu)-oxides such as Ba 1- xCa xCuO 2.

  19. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed Central

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  20. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gold nanoparticles generated through "green route" bind Hg2+ with a concomitant blue shift in plasmon absorption peak.

    PubMed

    Radhakumary, C; Sreenivasan, K

    2011-07-21

    We discuss here a quick, simple, economic and ecofriendly method through a completely green route for the selective detection of Hg(2+) in aqueous samples. Here we exploited the ability of chitosan to generate gold nanoparticles and subsequently to act as a stabilizer for the formed nanoparticles. When chitosan stabilized gold nanoparticles (CH-Au NPs) are interacted with Hg(2+) a blue shift for its localized surface plasmon resonance absorbance (LSPR) band is observed. The blue shift is reasoned to be due to the formation of a thin layer of mercury over gold. A concentration as low as 0.01 ppm to a maximum of 100 ppm Hg(2+) can be detected based on this blue shift of the CH-Au NPs. While all other reported methods demand complex reaction steps and costly chemicals, the method we reported here is a simple, rapid and selective approach for the detection of Hg(2+). Our results also show that the CH-Au NPs have excellent selectivity to Hg(2+) over common cations namely, Pb(2+), Cd(2+), Mn(2+), Fe(2+), Ag(1+), Ce(4+), Ni(2+), and Cu(2+).

  2. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong

    2013-09-01

    An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03329e

  3. The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas.

    PubMed

    Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming

    2018-02-01

    A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .

  4. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    NASA Astrophysics Data System (ADS)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  5. Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies

    NASA Astrophysics Data System (ADS)

    Mynbaev, K. D.; Bazhenov, N. L.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Marin, D. V.; Yakushev, M. V.

    2018-05-01

    Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical "intrinsic" HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.

  6. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  7. Toxic elements and speciation in seafood samples from different contaminated sites in Europe.

    PubMed

    Maulvault, Ana Luísa; Anacleto, Patrícia; Barbosa, Vera; Sloth, Jens J; Rasmussen, Rie Romme; Tediosi, Alice; Fernandez-Tejedor, Margarita; van den Heuvel, Fredericus H M; Kotterman, Michiel; Marques, António

    2015-11-01

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94 mg kg(-1)), Pb (0.37-0.89 mg kg(-1)), Co (0.48-1.1 mg kg(-1)), Cu (4.8-8.4 mg kg(-1)), Zn (75-153 mg kg(-1)), Cr (1.0-4.5 mg kg(-1)) and Fe (283-930 mg kg(-1)) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg(-1)). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg(-1) and 43 mg kg(-1), respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant, especially in coastal areas. Furthermore, data clearly shows that the current risk assessment and legislation solely based on total As or Hg data is limiting, as elemental speciation greatly varies according to seafood species, thus playing a key role in human exposure assessment via food. Copyright © 2015. Published by Elsevier Inc.

  8. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achariya Suriyawong; Rogan Magee; Ken Peebles

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5more » {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.« less

  9. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Compositional analysis and pollution impact assessment: A case study in the Gulfs of Naples and Salerno

    NASA Astrophysics Data System (ADS)

    Menghan, Wang; Stefano, Albanese; Annamaria, Lima; Claudia, Cannatelli; Antonio, Cosenza; Wanjun, Lu; Marco, Sacchi; Angela, Doherty; Benedetto, De Vivo

    2015-07-01

    This paper presents the results of an environmental geochemical investigation of the Gulfs of Naples and Salerno, near the Campania plain (Southern Italy). Surface marine sediment samples were collected during three field campaigns: 96 from the Gulfs of Naples and Salerno (NaSa); 123 from the Bagnoli site coastal area (BaSi); and 11 from the ports around the Gulf of Naples (PoNa). Elemental concentrations were determined and their interpolated distribution maps were compiled. Three geochemical sources (or processes) were determined associating elemental distribution with the results obtained from a R-mode factor analysis: 1) geogenic, 2) water kinetics and 3) anthropogenic. The results are presented as raw data single element distributions of eight potential toxic elements (PTEs) (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn) in the forms of raw data and additive log-ratio transformed data. The latter showed advantages in revealing the actual distribution patterns. Geochemical background reference values of PTEs were determined from the median value of local background reference values. Based on these values, pollution impact analysis was carried out to both BaSi and PoNa samples, indicating most of BaSi and PoNa sediments were affected by moderate to strong Pb, Zn, Cd and Hg pollution. An ecological risk assessment was subsequently carried out on the entire database, pointing a toxic risk ranking in the order Pb > As > Ni > Cd > Hg > Cr.

  11. Heavy metal determinations in algae and clams and their possible employment for assessing the sea water quality criteria.

    PubMed

    Locatelli, C; Fabbri, D; Torsi, G

    2001-01-01

    An empirical criterion for a possible classification of sea water quality is proposed. It is based on the knowledge of metal content in algae (Ulva Rigida) and clams (Tapes Philippinarum), two species present in marine ecosystems. The elements considered are Hg, Cu, Pb, Cd, Zn. The analytical technique employed is Differential Pulse Anodic Stripping Voltammetry (DPASV) in the case of Cu, Pb, Cd, Zn, while the determination of mercury is obtained by the Cold Vapour Atomic Absorption Spectroscopy (CV-AAS) technique with SnCl2 as reducing agent. The analytical procedure has been verified on three standard reference materials: Sea Water BCR-CRM 403, Ulva Lactuca BCR-CRM 279 and Mussel Tissue BCR-CRM 278. For all the elements, in addition to detection limits, accuracy and precision are given: the former, expressed as relative error (e), and the latter, expressed as relative standard deviation (Sr), were in all cases lower than 6%.

  12. Concentrations and human health implications of heavy metals in market foods from a Chinese coal-mining city.

    PubMed

    Cheng, Jiali; Zhang, Xianhui; Tang, Zhenwu; Yang, Yufei; Nie, Zhiqiang; Huang, Qifei

    2017-03-01

    Concentrations of heavy metals (As, Cd, Co, Cr, Cu, Hg, Pb and Sb) in vegetables, meat and fish purchased from traditional agri-product markets in Huainan, China, were measured. Concentrations of the eight metals in most of the measured samples were lower than their respective maximum allowable concentrations (MACs), except for Pb, Cd, Cr and Cu in some of the samples exceeded safe limits. Based on local food consumption, the intake of individual metals was estimated to be less than their respective recommended limits. However, the overall target hazard quotient (THQ) for the eight metals was 1.07 based on the digestion of leafy vegetables and 2.12 based on the consumption of all of the investigated foods. The results of this study suggest that the overall risk from exposure to multiple metals in foods should be of concern, even though low-to-moderate heavy metal pollution is present in foods from Huainan markets. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Properties Of Passivant Films On HgCdTe - Interaction With The Substrate

    NASA Astrophysics Data System (ADS)

    Davis, G. D.; Sun, T. S.; Buchner, S. P.; Byer, N. E.

    1981-12-01

    Two commonly used passivants of Hg0.8Cd0.2Te, the anodic oxide and ZnS, have been studied by x-ray photoelectron spectroscopy combined with ion sputtering. Chemical depth profiles of anodic oxide films of 360 to 1600 A showed that the oxide composition is constant with depth and independent of oxide thickness. Chemical shifts and line shape analysis of the Cd M45N45N45 Auger transition in the oxide, CdO, Cd(OH)2, and CdTeO3 demonstrate that CdTeO3 is the major constituent of the anodic oxide. The oxide composi-tion is interpreted as 44% CdTeO3, 29% CdTe2O5, 17% HgTeO3, and 10% HgTe2O5. Anodization of HgCdTe depletes the semiconductor of 30% - 40% of its Hg near the interface. The spatial extent of this Hg depletion is a function of oxide thickness for thin oxides (<1000 A) but is a constant (150-200 A) for thick films. No significant change in the Cd concentration is seen. A ZnS film deposited on a chemically etched sample forms a graded interface of a (ZnHgCd)Te alloy. In this case, no Hg depletion is seen. Deposi-tion of ZnS on an anodized substrate in high vacuum leads to a reaction of the Zn with the residual 02 in the chamber to form ZnO on the anodic oxide before the ZnS. The ZnO then diffuses throughout the anodic oxide.

  14. Subcellular distribution and potential detoxification mechanisms of mercury in the liver of the Javan mongoose (Herpestes javanicus) in Amamioshima Island, Japan.

    PubMed

    Horai, Sawako; Furukawa, Tatsuhiko; Ando, Tetsuo; Akiba, Suminori; Takeda, Yasuo; Yamada, Katsushi; Kuno, Katsuji; Abe, Shintaro; Watanabe, Izumi

    2008-06-01

    In a previous study, we showed that Hg accumulated to high levels in the liver of the Javan mongoose (Herpestes javanicus), a terrestrial mammal that lives on Amamioshima Island, Japan. This suggests a sophisticated mechanism of hepatic Hg detoxication. Assay of the subcellular localization of Hg and the expression of protective enzymes provides important clues for elucidating the mechanism of Hg detoxication. In the present study, the concentrations of 11 elements (Mg, Cr, Mn, Fe, Cu, Zn, Se, Rb, Cd, total Hg [T-Hg] and organic Hg [O-Hg], and Pb) were determined in the liver and in five liver subcellular fractions (plasma membrane, mitochondria, nuclei, microsome, and cytosol) of this species. As the T-Hg level increased, T-Hg markedly distributed to the plasma membrane. The T-Hg levels in all subcellular fractions correlated with Se levels. Although the T-Hg level in the microsomal fraction was relatively low, the ratio of O-Hg to T-Hg was significantly lower in the microsomes than in the other fractions. Significant positive correlations were found between the level of glutathione-S-transferase-pi, a marker of oxidative stress, and the O-Hg and T-Hg levels, but the correlation was better with O-Hg than with T-Hg. Western blot analysis of thioredoxin reductase 2 (TrxR2), a protein involved in protecting cells from mitochondrial oxidative stress, showed that the level of TrxR2 correlated with that of T-Hg. High TrxR2 levels may be one mechanism by which the Javan mongoose attenuates the toxicity of the high Hg levels present in the liver.

  15. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab.

    PubMed

    Maulvault, Ana Luísa; Machado, Raquel; Afonso, Cláudia; Lourenço, Helena Maria; Nunes, Maria Leonor; Coelho, Inês; Langerholc, Tomaz; Marques, António

    2011-11-01

    Regular consumption of seafood has been widely recommended by authorities. Yet, some species accumulate high levels of contaminants like Hg, Cd and As. In addition, the risks associated to the consumption of such seafood may increase if consumers use cooking practices that enhance the concentration of contaminants and their bioaccessibility. In this study, the bioaccessibility of Hg, Cd and As was assessed with in vitro human digestion of raw and cooked black scabbard fish (Hg; steamed, fried and grilled) and edible crab (Cd and As; steamed and boiled) tissues. Additionally, the toxicological hazards associated with the consumption of these products were also discussed. Generally, Hg, Cd and As bioacessibility increased throughout the digestion process. Cadmium and As revealed high bioaccessibility rates in raw and cooked samples (up to 100%), whereas lower bioaccessible fractions of Hg was observed (up to 40%). Furthermore, this study pointed out the importance of food matrix, elemental chemical properties and cooking practices in the bioaccessibility of Hg, Cd and As. The toxicological hazards revealed that edible crab brown meat (Cd) and grilled black scabbard fish (MeHg) consumption in children should be moderated. In contrast, edible crab muscle (Cd) and fried or steamed black scabbard fish (MeHg) should be consumed to minimize exposure. The use of bioaccessible contaminant data strongly reduced the toxicological risks of MeHg, whereas less risk reduction occurred with Cd and inorganic As. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Heavy metal distribution in sediment profiles of Tuul River, Mongolia

    NASA Astrophysics Data System (ADS)

    Soyol-Erdene, T. O.; Lin, S.; Tuuguu, E.; Daichaa, D.; Ulziibat, B.; Enkh-Amgalan, T.; Hsieh, I. C.

    2016-12-01

    The distribution, enrichment, and accumulation of heavy metals in the sediments of Tuul River, Mongolia were investigated. Sediment core samples with depths of 4.0-49 cm from thirteen locations along the Tuul River were collected in the period from Sept. 2013 to Aug. 2014 and characterized for metal contents (e.g., Al, Fe, Cu, Zn, Pb, Ni, Cd, Hg and Cr), water content, and grain size. Results showed that metal average concentrations in the sample cores varied from 0.02 mg kg-1 for Hg (0.01 - 0.03 mg kg-1) to 481 mg kg-1 for Mn (277 - 623 mg kg-1). Metal concentrations at the downstream of the capital city were higher than those at other locations. All heavy metals studied, had average enrichment factors less than 3.0, but some sites had relatively higher values of enrichment factors up to 18 for Cu, 4.1 for Hg, 5.9 for Zn, and 25 for Cr, especially at middle depth ( 8-12 cm) of the cores. Importantly, severe pollution of mercury (Hg) was found at the downstream of the capital city which requires immediate remediation before this metal propagates into the food chain. Metal concentrations correlated to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the nearby cities. Results of this work would help to develop strategy to remediate of Tuul river sediment and to reduce the exposure of inhabitants to toxic substances.

  17. Recent progress in MBE grown HgCdTe materials and devices at UWA

    NASA Astrophysics Data System (ADS)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  18. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China.

    PubMed

    Tang, Zhenwu; Chai, Miao; Cheng, Jiali; Jin, Jing; Yang, Yufei; Nie, Zhiqiang; Huang, Qifei; Li, Yanhua

    2017-04-01

    We collected street dust from Huainan, a typical coal-mining city in China, to investigate the contamination features and health risks of heavy metals. Concentrations of Co, Cr, Cu, Pb, As, and Sb were generally low to moderate, while pollution levels of Cd and Hg were moderate to high. Concentrations of Cd and Hg were associated with considerable health risks at 64.3% and 58.6% of sites, respectively. In particular, about a fifth of samples had associated high risks as a result of Hg contamination levels. Relative to other urban areas, the street dust from the mining area had no more severe metal pollution, which might be partly attributed to the deposition of coal dust onto street dusts. A source assessment indicated that metals in dust form Huainan were mainly derived from vehicular-related activities, industrial emissions, weathering of coal dust and natural soils, and coal combustion. Although the health risk levels from exposure to individual metals in dusts were low, the non-carcinogenic risks from multiple metals to local children exceeded the acceptable level (1.0), suggesting that the overall risk from exposure to multiple metals in dust is concerning. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Growth and Properties of MERCURY(1-X) Cadmium (x) Tellurium Alloys and Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Whan

    1990-01-01

    Photoassisted molecular beam epitaxy was employed to grow Hg-based films, which include Hg_{1-x}Cd_{x}Te alloys, modulation-doped HgCdTe, modulation-doped HgCdTe quantum well structures and HgCdTe heterostructures. The structural, electrical and optical properties of these films were studied. A series of Hg_{1 -x}Cd_{x}Te films were deposited on lattice-matched (111)B CdZnTe substrates. The rm Hg_{1-x}Cd_{x}Te films grown under the optimum growth conditions exhibited both high structural perfections and outstanding electrical properties, which can be attributed to the role played by the photons in the growth process. For the first time, conducting p-type and n-type modulation-doped HgCdTe were successfully prepared using arsenic and indium as the p-type and n-type dopants, respectively. Most of them exhibited both excellent structural qualities and very sharp interfaces. The hole concentrations of p-type samples showed no evidence of carrier freeze-out at low temperatures. The electron concentrations of n-type samples also exhibited temperature independence up to 300K. PL measurements exhibited two peaks due to the subband transitions. Many of the modulation-doped HgCdTe superlattices samples exhibited very bright and narrow PL peaks at 4.2K. Both electron and hole mobilities of modulation-doped HgCdTe superlattices increase monotonically with decreasing temperature. The electrical properties of n-type modulation-doped HgCdTe heterostructures having spacer layers were also studied. A series of p-type HgTe-Hg_ {0.15}Cd_{0.85}Te superlattices were grown on (100) CdTe substrates by MBE for an extensive study of the optical and electrical properties of such structures. The absorption coefficient versus photon energy spectra show consecutive rises and plateaus characteristic of two-dimensional quantum structures. Temperature-dependent free carrier mobilities and densities were obtained from a mixed-conduction analysis of the Hall and resistivity data as a function of magnetic field. The experimental results were compared with theoretical tight-binding calculation of the superlattice band structure. Hg-based quantum well structures were grown on (100) CdZnTe substrates at 170^circ C. Stimulated emission at 2.8 mu m was observed for the first time in these quantum well structures where the active regions are HgCdTe. A cw Nd:YAG laser was used as an optical pumping source for the laser cavities. Stimulated emission cavity modes were seen at cw laser power densities as low as 3.4 kW/cm ^2 and at temperatures >=q 60K.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teka, S.; Gaied, A.; Jaballah, N.

    Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film ofmore » the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.« less

  1. Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm

    NASA Astrophysics Data System (ADS)

    Morozov, S. V.; Rumyantsev, V. V.; Fadeev, M. A.; Zholudev, M. S.; Kudryavtsev, K. E.; Antonov, A. V.; Kadykov, A. M.; Dubinov, A. A.; Mikhailov, N. N.; Dvoretsky, S. A.; Gavrilenko, V. I.

    2017-11-01

    We report on stimulated emission at wavelengths up to 19.5 μm from HgTe/HgCdTe quantum well heterostructures with wide-gap HgCdTe dielectric waveguide, grown by molecular beam epitaxy on GaAs(013) substrates. The mitigation of Auger processes in structures under study is exemplified, and the promising routes towards the 20-50 μm wavelength range, where HgCdTe lasers may be competitive to the prominent emitters, are discussed.

  2. Reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} by Fe{sup II}/Fe{sup III} hydroxysulfate green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.

    Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopymore » indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.« less

  3. Double valley Dirac fermions for 3D and 2D Hg1-x Cd x Te with strong asymmetry

    NASA Astrophysics Data System (ADS)

    Marchewka, M.

    2017-04-01

    In this paper the possibility to bring about the double-valley Dirac fermions in some quantum structures is predicted. These quantum structures are: strained 3D Hg1-x Cd x Te topological insulator (TI) with strong interface inversion asymmetry and the asymmetric Hg1-x Cd x Te double quantum wells (DQW). The numerical analysis of the dispersion relation for 3D TI Hg1-x Cd x Te for the proper Cd (x)-content of the Hg1-x Cd x Te compound clearly shows that the inversion symmetry breaking together with the unaxial tensile strain causes the splitting of each of the Dirac nodes (two belonging to two interfaces) into two in the proximity of the Γ-point. Similar effects can be obtained for asymmetric Hg1-x Cd x Te DQW with the proper content of Cd and proper width of the quantum wells. The aim of this work is to explore the inversion symmetry breaking in 3D TI and 2D DQW mixed HgCdTe systems. It is shown that this symmetry breaking leads to the dependence of carriers energy on quasi-momentum similar to that of Weyl fermions.

  4. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    NASA Astrophysics Data System (ADS)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  5. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    PubMed

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  6. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana.

    PubMed

    Bempah, Crentsil Kofi; Ewusi, Anthony

    2016-05-01

    Gold mining has increased the prevalence and occurrence of heavy metals contamination at the Earth's surface and is causing major concern due to the potential risk involved. This study investigated the impact of gold mine on heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Fe, Mn, and Zn) pollution and evaluated the potential health risks to local residents via consumption of polluted groundwater, agricultural soils, and vegetable crops grown at three community farms surrounding the mine at Obuasi municipality of Ghana. The results showed levels of As, Cd, Cr, Hg, Fe, and Mn higher than the allowable drinking water standards. The vegetable samples analyzed showed high accumulation of As and Ni above the normal value. Bioaccumulation factors of heavy metals were significantly higher for vegetables grown in the Sanso soils. Estimated average daily intake and hazard quotient for As in drinking water as well as As, Pb, and Hg in vegetable samples exceeded permissible limit. Unacceptable non-cancer health risk levels were found in vegetable samples analyzed for As, Pb, and Hg. An unacceptable cancer risk was found via drinking of groundwater, in consumption of vegetables, and in soil. The hazard index for vegetables was higher than 1, indicating very high health risk to heavy metals contamination through consumption of vegetables grown around the sampling sites. The results recommend the need for regular monitoring of groundwater and food crops to protect consumers' health.

  7. New 1201-type (Hg,Se)-superconducting cuprate grown by sol gel and sealed quartz tube synthesis

    NASA Astrophysics Data System (ADS)

    Kandyel, Elsayed; Elsabawy, Khaled M.

    2008-12-01

    A new mercury based superconductor (Hg1-ySey)(Sr2-xLax)CuO4+δ (y = 0.25; 0.3 ⩽ x ⩽ 0.7) with a Tc(onset) of 50 K has been synthesized using sol gel process combined with the sealed quartz tube method. X-ray diffraction shows that the (Hg0.75Se0.25)(Sr2-xLax)CuO4+δ phase crystallizes in the tetragonal symmetry (space group P4/mmm) with a ≈ ap ≈ 3.8 Å and c ≈ 8.7 Å and is isostructural with the 94 K superconductor HgBa2CuO4+δ, adopting the so-called 1201-type structure. Both Se and La are necessary for the stabilization of the 1201-type Hg/Sr cuprates. EDX analysis indicated that mercury and selenium have incorporated into the structure with Se/Hg ≈ ⅓. The new high-Tc superconductor, (Hg0.75Se0.25)(Sr1.3La0.7)CuO4+δ, exhibits a current density, Jc, of 1270 KA/cm2 at (5 K and 5 T) which is higher than the estimated Jc value for (Hg,Cr)Sr2CuO4+δ.

  8. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  10. Characterization of HgCdTe Films Grown on Large-Area CdZnTe Substrates by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Arkun, F. Erdem; Edwall, Dennis D.; Ellsworth, Jon; Douglas, Sheri; Zandian, Majid; Carmody, Michael

    2017-09-01

    Recent advances in growth of Hg1- x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1- x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1- x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1- x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength ( λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be <1% over the area of a 7 cm × 7.5 cm wafer. The films are further characterized by Fourier-transform infrared spectroscopy, optical microscopy, and Hall measurements. Additionally, defect maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1- x Cd x Te films. Microdefect densities are in the low 103 cm-2 range, and void defects are below 500 cm-2. Dislocation densities less than 5 × 105 cm-2 are routinely achieved for Hg1- x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.

  11. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  12. Driving forces of heavy metal changes in agricultural soils in a typical manufacturing center.

    PubMed

    Qiu, Menglong; Li, Fangbai; Wang, Qi; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2015-05-01

    Heavy metal concentrations in 2002 and 2012 in agricultural soils in Dongguan, a manufacturing center in southern China, were analyzed to determine the impact of rapid economic development on soil pollution. The level of pollution was assessed using the Nemerow synthetic pollution index (NPI), and its changing characteristics and driving forces were analyzed using multivariate statistical and geostatistical methods. The results indicate that the mean NPI was 0.79 in 2002 and 0.84 in 2012, which indicates aggravated heavy metal contamination in the agricultural soils. The concentrations of Cd and Zn increased 54.7 and 20.8 %, respectively, whereas Hg and Pb decreased 35.3 and 24.5 %, respectively. Cr, As, Cu, and Ni remained relatively stable. The Hg and Cd concentrations were highly correlated with soil types (P < 0.01), the secondary industrial output per unit of land (P < 0.01), proportion of cereal fields (P < 0.01), proportion of vegetable fields (P < 0.01), population density (P < 0.05), and road density (P < 0.05). The Pb and As concentrations were greatly influenced by soil types (P < 0.01), river density (P < 0.01), fertilizer rate (P < 0.01), and road density (P < 0.05). Cr, Zn, Cu, and Ni concentrations were primarily driven by soil types (P < 0.01), river density (P < 0.01), and fertilizer rate (P < 0.05).

  13. Granulometric selectivity in Liza ramado and potential contamination resulting from heavy metal load in feeding areas

    NASA Astrophysics Data System (ADS)

    Pedro, Sílvia; Canastreiro, Vera; Caçador, Isabel; Pereira, Eduarda; Duarte, Armando C.; Raposo de Almeida, Pedro

    2008-11-01

    The stomach contents of thin-lipped grey mullets Liza ramado were analysed in terms of granulometric composition and compared to the sediment of potential feeding areas in the Tagus estuary. Total organic matter (TOM) content and heavy metal content were determined in the surface sediment of three areas and eight trace elements were quantified: Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. The three sampled areas did not differ in TOM; and the heavy metal content was below Effects Range-Low level for most elements. The mean observed concentrations were present in the following sequence: Zn > Pb > Cr > Cu ≈ Ni > Co > Cd > Hg. Stomach contents granulometric composition provided information about the feeding selectivity of the mullets. Sediment fractions with particle size between 20 and 50 μm are preferred, independently of the fishes' length. Smaller standard length (SL) fishes have a higher positive selection of fine grained sediments than those with a larger SL. Finer fractions usually have higher concentration of heavy metals, which makes younger specimens of the thin-lipped grey mullet potentially more exposed to heavy metal load in the estuary. Metal concentration was not independent from the sampling point, presenting higher values near the margins and the estuary tidal drainage system. This means that during the first period of each tidal cycle, the mullets will feed first on the most contaminated areas, as a consequence of their movement following the rising tide to feed on previously exposed areas.

  14. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China.

    PubMed

    Zhen, Gengchong; Li, Ying; Tong, Yindong; Yang, Lei; Zhu, Yan; Zhang, Wei

    2016-05-01

    Heavy metals are highly persistent in water and have a particular significance in ecotoxicology. Heavy metals loading from the Pearl River are likely to cause significant impacts on the environment in the South China Sea and the West Pacific. In this study, using monthly monitoring data from a water quality monitoring campaign during 2006-2012, the temporal variation and spatial transfer of six heavy metals (lead (Pb), copper (Cu), cadmium (Cd), zinc (Zn), arsenic (As), and mercury (Hg)) in the Pearl River were analyzed, and the heavy metal fluxes into the sea were calculated. During this period, the annual heavy metal loads discharged from the Pearl River into the South China Sea were 5.8 (Hg), 471.7 (Pb), 1524.6 (Cu), 3819.6 (Zn), 43.9 (Cd), and 621.9 (As) tons, respectively. The metal fluxes showed a seasonal variation with the maximum fluxes occurring from June to July. There is a close association between metal fluxes and runoff. The analysis of the heavy metal transfer from the upstream to the downstream revealed that the transfer from the upstream accounted for a major portion of the heavy metals in the Pearl River Delta. Therefore, earlier industry relocation efforts in the Pearl River watershed may have limited effect on the water quality improvement in surrounding areas. It is suggested that watershed-based pollution control measures focusing on wastewater discharge in both upstream and downstream areas should be developed and implemented in the future.

  15. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  16. Interview with Paul W. Kruse on the Early History of HgCdTe, Conducted on October 22, 1980

    NASA Astrophysics Data System (ADS)

    Reine, Marion B.

    2015-09-01

    This paper presents an interview with Dr Paul W. Kruse (1927-2012) on the early history of the semiconductor alloy mercury cadmium telluride (HgCdTe or Hg1- x Cd x Te) at the Honeywell Corporate Research Center near Minneapolis, Minnesota. Conducted on October 22, 1980, the interview covers two main areas. One area is the story of how the HgCdTe research effort came about at the Honeywell Research Center in the early 1960s, what technical choices were made and when, and what technical challenges were overcome and how. The other area is the organization, culture, environment and personnel at the Honeywell Research Center that made the early HgCdTe research programs so successful. HgCdTe has emerged as the highest-performance, most widely applicable infrared detector material. HgCdTe continues to satisfy a broad variety of advanced military and space applications. It is illustrative to look back on the early history of this remarkable semiconductor alloy to help to understand why its technological development as an infrared detector has been so successful.

  17. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia).

    PubMed

    Bavec, Špela; Gosar, Mateja; Miler, Miloš; Biester, Harald

    2017-06-01

    A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6-120 mg/kg) and slightly elevated As content (1-13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg 0 ), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006-0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9-31.5 %) in the dust samples.

  18. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China.

    PubMed

    Liang, Jie; Liu, Jiayu; Yuan, Xingzhong; Zeng, Guangming; Lai, Xu; Li, Xiaodong; Wu, Haipeng; Yuan, Yujie; Li, Fei

    2015-01-01

    Surface sediments of Dongting Lake wetland were collected from ten sites to investigate variation trend, risk and sources of heavy metal distribution in dry seasons of 2011∼2013. The three-year mean concentrations (mg/kg) of Cr, Cu, Pb, Cd, Hg and As were 91.33, 36.27, 54.82, 4.39, 0.19 and 25.67, respectively, which were all higher than the corresponding background values. Sediment quality guidelines (SQGs) and Geo-accumulation index (Igeo) were used for the assessment of pollution level of heavy metals. The pollution risk of Cd, Hg and As were great and that of Cr needed urgent attention because of its obvious increase. Pollution load index (PLI) and geographic information system (GIS) methods were conducted to assess spatial and temporal variation of heavy metal contamination. Results confirmed an increased contamination contribution inflow from Xiang River. Multivariate statistical analyses were applied to identify contribution sources of heavy metal, which showed anthropogenic origin mainly from mining, smelting, chemical industry and agricultural activity.

  19. Cadmium and mercury exposure over time in Swedish children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundh, T., E-mail: Thomas.Lundh@med.lu.se

    Purpose: Knowledge about changes in exposure to toxic metals over time remains very sparse, in particular for children, the most vulnerable group. Here, we assessed whether a reduction in environmental pollution with cadmium (Cd) and mercury (Hg) caused a change in exposure over time. In total, 1257 children (age 4–9) in two towns in Sweden were sampled once in 1986–2013. Blood concentrations of Cd (b-Cd; n=1120) and Hg (b-Hg; n=560) were determined. Results: The median b-Cd was 0.10 (geometric mean 0.10; range 0.010–0.61) μg/L and b-Hg was 0.91 (geometric mean 0.83; range 0.021–8.2) μg/L. Children living close to a smeltermore » had higher b-Cd and b-Hg than those in urban and rural areas. There was no sex difference in b-Cd or b-Hg, and b-Cd and b-Hg showed no significant accumulation by age. b-Cd decreased only slightly (0.7% per year, p<0.001) over the study period. In contrast, b-Hg did show a clear decrease over the study period (3% per year, p<0.001). Conclusions: The exposure to Cd was very low but still might increase the risk of disease later in life. Moreover, b-Cd only showed a minor decrease, indicating that Cd pollution should be further restricted. b-Hg was relatively low and decreasing, probably because of reduced use of dental amalgam and lower Hg intake from fish. The b-Cd and b-Hg levels decreased much less than the levels of lead in the blood as previously found in the same children. - Highlights: • There are few studies of time trends for exposure to toxic metals, except for lead. • 1986–2013 we studied blood levels of cadmium and mercury in 1257 Swedish children. • The median blood concentration of cadmium was 0.10 μg/L, of mercury 0.83 μg/L. • Cadmium perhaps decreased by 0.7% per year, mercury by 3% per year. • Cadmium accumulation may result in toxic levels in elderly women.« less

  20. Levels of arsenic, mercury, cadmium, copper, lead, zinc and manganese in serum and whole blood of resident adults from mining and non-mining communities in Ghana.

    PubMed

    Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam

    2016-08-01

    Human beings working or living near an industrial site where toxic chemicals such as As, Hg, Cd, Cu, Mn, Pb, Zn and or their compounds are used or indiscriminately discharged into the environment, are constantly exposed to such chemicals via ingestion (drinking or eating), dermal contact or inhalation (breathing). However, in developing countries such as Ghana, limited data on levels of the aforementioned chemicals in whole blood and serum of human beings as a result of exposure to the aforementioned chemicals from mining communities and non-mining communities is preventing effective policy formulation to protect human health. Hence, this study was undertaken to measure the levels of the aforementioned toxic chemicals in whole blood and serum of 300 resident adults from mining (Tarkwa Nsuaem Municipality Assembly (TNMA) and Prestea Huni Valley District (PHVD)) and non-mining (Cape Coast Metropolis) communities in Ghana, using neutron activation analysis (NAA). Blood samples were taken from 200 resident adults (105 males and 95 females) from mining and 100 resident adults (60 males and 40 males) from non-mining communities in the study area following the completion of an informed consent and the issuance of ethical clearance by the Ghana Health Service Ethical Committee. The mean concentrations for As, Hg, Cd, Cu, Mn, Pb and Zn in whole blood of residents from mining communities were as follows: 38 ± 320 μg/L, 63 ± 0.23 μg/L, 303 ± 117 μg/L, 3300 ± 953, 195 ± 90 μg/L, 28 ± 14 μg/L and 1405 ± 458 μg/L, respectively; while the levels of measured toxic chemicals in the serum of resident adults from mining communities were as follows: 65 ± 14 μg/L, 358 ± 22 μg/l, 134 ± 12 μg/L, 3590 ± 254 μg/L, 401 ± 113 μg/L, 58 ± 5.8 μg/L and 49 ± 31 μg/L, respectively, for As, Hg, Cd, Cu, Mn, Pb and Zn and were found to have exceeded the permissible WHO guideline values.

  1. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.

    PubMed

    Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen

    2018-05-07

    Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .

  2. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Weicheng; National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixedmore » conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.« less

  3. Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.

    2013-12-01

    Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.

  4. Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia).

    PubMed

    Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif

    2015-07-15

    Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India).

    PubMed

    Mondal, Priyanka; Reichelt-Brushett, Amanda J; Jonathan, M P; Sujitha, S B; Sarkar, Santosh Kumar

    2018-02-01

    The present work investigated the spatial distribution and ecological risk assessment of total and mild acid-leachable trace elements in surface sediments (top 0-10 cm; grain size ≤ 63 μm) along the Hooghly (Ganges) River Estuary and Sundarban Mangrove Wetland, India. The trace elements, analyzed by ICPMS, showed wide range of variations with the following descending order (mean values expressed in milligrams per kilogram): Fe (25,050 ± 4918) > Al (16,992 ± 4172) > Mn (517 ± 102) > Zn (53 ± 18) > Cu (33 ± 11) > Cr (29 ± 7) > Ni (27 ± 6) > Pb (14 ± 3) > As (5 ± 1) > Se (0.37 ± 0.10) > Cd (0.17 ± 0.13) > Ag (0.16 ± 0.19) > Hg (0.05 ± 0.10). In the acid-leachable fraction, Cd (92%) is dominated followed by Pb (81%), Mn (77%), Cu (70%), and Se (58%) indicating their high mobility, imposing negative impact on the adjacent benthos. The sediment pollution indices (both enrichment factor and contamination factor) suggested severe pollution by Ag at the sampling site Sajnekhali, a wildlife sanctuary in Sundarban. The mean probable effect level quotient indicated that surface sediments in the vicinity of the studied region have 21% probability of toxicity to biota. The result of multivariate analyses affirms lithogenic sources (e.g., weathering parent rocks, dry deposition) for As, Pb, Cr, Cu, and Ni, whereas Cd and Hg originated from anthropogenic activities (such as urban and industrial activities). Both human-induced stresses and natural processes controlled trace element accumulation and distribution in the estuarine system, and remedial measures are required to mitigate the potential impacts of these hazardous trace elements.

  6. Lifetime Measurement of HgCdTe Semiconductor Material

    DTIC Science & Technology

    2012-03-01

    long-wavelength (>15 μm) infrared spectral region. HgCdTe is a very effective infrared detector material because of its different properties. The...properties that make HgCdTe an effective infrared detector are its adjustable bandgap of 0.7 to 25 μm, its high absorption coefficient, its moderate... HgCdTe infrared detectors . Retrieved Jul. 17, 2011, from http://www.wat.edu.pl/review/optor/10(3)159.pdf Wagner, R. J. (1999 Apr. 16). In

  7. Active biomonitoring with the moss Pseudoscleropodium purum: Comparison between different types of transplants and bulk deposition.

    PubMed

    Ares, A; Varela, Z; Aboal, J R; Carballeira, A; Fernández, J A

    2015-10-01

    Active biomonitoring with terrestrial mosses can be used to complement traditional air pollution monitoring techniques. Several studies have been carried out to compare the uptake capacity of different types of moss transplants. However, until now the relationship between the uptake of elements in devitalized moss bags and in irrigated transplants has not been explored. In this study, the final concentrations of Cd, Cu, Hg, Pb and Zn were determined in irrigated and devitalized moss transplants in the surroundings of a steelworks. The concentrations were also compared with those of the same elements in the bulk deposition to determine which type of moss transplant yields the closest correlations. Devitalized moss retained higher concentrations of all of the elements (except Hg) than the irrigated moss. Both irrigated and devitalized moss transplants appear to detect the same type of contamination (i.e. particulate matter and dissolved metals rather than gaseous forms) as significant correlations were found for Cu, Hg, Pb and Zn, whereas, neither type of the moss transplant was sensitive enough to detect changes in the soluble fraction load of bulk deposition. Further studies will be needed to a better understanding of the correlation between the concentrations of elements in moss transplants with the particulate fraction of the bulk deposition. This will enable the establishment of a more robust and accurate biomonitoring tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A simple quinolone Schiff-base containing CHEF based fluorescence 'turn-on' chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility.

    PubMed

    Dong, Yuwei; Fan, Ruiqing; Chen, Wei; Wang, Ping; Yang, Yulin

    2017-05-23

    A new simple 'dual' chemosensor MQA ((E)-2-methoxy-N-((quinolin-2-yl)methylene)aniline) for distinguishing Zn 2+ and Hg 2+ has been designed, synthesized and characterized. The sensor showed excellent selectivity and sensitivity with a fluorescence enhancement to Zn 2+ /Hg 2+ over other commonly coexisting cations (such as Na + , Mg 2+ , Al 3+ , K + , Mn 2+ , Fe 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Ga 3+ , Cd 2+ , In 3+ and Pb 2+ ) in DMSO-H 2 O solution (1/99 v/v), which was reversible with the addition of ethylenediaminetetraacetic acid (EDTA). The detection limit for Zn 2+ /Hg 2+ by MQA both reached the 10 -8 M level. The 1 : 1 ligand-to-metal coordination patterns of the MQA-Zn2+ and MQA-Hg2+ were calculated through a Job's plot and ESI-MS spectra, and were further confirmed by X-ray crystal structures of complexes MQA-Zn2+ and MQA-Hg2+. This chemosensor can recognize similar metal ions by coherently utilizing intramolecular charge transfer (ICT) and different electronic affinities of various metal ions. DFT calculations have revealed that the energy gap between the HOMO and LUMO of MQA has decreased upon coordination with Zn(ii)/Hg(ii).

  9. Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard.

    PubMed

    Marquès, Montse; Sierra, Jordi; Drotikova, Tatiana; Mari, Montse; Nadal, Martí; Domingo, José L

    2017-11-01

    A combined assessment on the levels and distribution profiles of polycyclic aromatic hydrocarbons (PAHs) and trace elements in soils from Pyramiden (Central Spitsbergen, Svalbard Archipelago) is here reported. As previously stated, long-range atmospheric transport, coal deposits and previous mining extractions, as well as the stack emissions of two operative power plants at this settlement are considered as potential sources of pollution. Eight top-layer soil samples were collected and analysed for the 16 US EPA priority PAHs and for 15 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, Tl, V and Zn) during late summer of 2014. The highest levels of PAHs and trace elements were found in sampling sites located near two power plants, and at downwind from these sites. The current PAH concentrations were even higher than typical threshold values. The determination of the pyrogenic molecular diagnostic ratios (MDRs) in most samples revealed that fossil fuel burning might be heavily contributing to the PAHs levels. Two different indices, the Pollution Load Index (PLI) and the Geoaccumulation Index (Igeo), were determined for assessing soil samples with respect to trace elements pollution. Samples collected close to the power plants were found to be slightly and moderately polluted with zinc (Zn) and mercury (Hg), respectively. The Spearman correlation showed significant correlations between the concentrations of 16 PAHs and some trace elements (Pb, V, Hg, Cu, Zn, Sn, Be) with the organic matter content, indicating that soil properties play a key role for pollutant retention in the Arctic soils. Furthermore, the correlations between ∑16 PAHs and some trace elements (e.g., Hg, Pb, Zn and Cu) suggest that the main source of contamination is probably pyrogenic, although the biogenic and petrogenic origin of PAHs should not be disregarded according to the local geology. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN){sub 4}]{sup 2-}: Synthesis, crystal structure, magnetic properties and ESR studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-12-15

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less

  11. Sources of heavy metals in urban wastewater in Stockholm.

    PubMed

    Sörme, L; Lagerkvist, R

    2002-10-21

    The sources of heavy metals to a wastewater treatment plant was investigated. Sources can be actual goods, e.g. runoff from roofs, wear of tires, food, or activities, e.g. large enterprises, car washes. The sources were identified by knowing the metals content in various goods and the emissions from goods to sewage or stormwater. The sources of sewage water and stormwater were categorized to enable comparison with other research and measurements. The categories were households, drainage water, businesses, pipe sediment (all transported in sewage water), atmospheric deposition, traffic, building materials and pipe sediment (transported in stormwater). Results show that it was possible to track the sources of heavy metals for some metals such as Cu and Zn (110 and 100% found, respectively) as well as Ni and Hg (70% found). Other metals sources are still poorly understood or underestimated (Cd 60%, Pb 50%, Cr 20% known). The largest sources of Cu were tap water and roofs. For Zn the largest sources were galvanized material and car washes. In the case of Ni, the largest sources were chemicals used in the WTP and drinking water itself. And finally, for Hg the most dominant emission source was the amalgam in teeth. For Pb, Cr and Cd, where sources were more poorly understood, the largest contributors for all were car washes. Estimated results of sources from this study were compared with previously done measurements. The comparison shows that measured contribution from households is higher than that estimated (except Hg), leading to the conclusion that the sources of sewage water from households are still poorly understood or that known sources are underestimated. In the case of stormwater, the estimated contributions are rather well in agreement with measured contributions, although uncertainties are large for both estimations and measurements. Existing pipe sediments in the plumbing system, which release Hg and Pb, could be one explanation for the missing amount of these metals. Large enterprises were found to make a very small contribution, 4% or less for all metals studied. Smaller enterprises (with the exception of car washes) have been shown to make a small contribution in another city; the contribution in this case study is still unknown.

  12. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Children's exposure to harmful elements in toys and low-cost jewelry: characterizing risks and developing a comprehensive approach.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-04-30

    Contamination problem in jewelry and toys and children's exposure possibility have been previously demonstrated. For this study, risk from oral exposure has been characterized for highly contaminated metallic toys and jewelry ((MJ), n=16) considering three scenarios. Total and bioaccessible concentrations of Cd, Cu, Ni, and Pb were high in selected MJ. First scenario (ingestion of parts or pieces) caused unacceptable risk for eight items for Cd, Ni, and/or Pb (hazard index (HI)>1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always <1. Finally, saliva mobilization scenario caused HI>1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Heavy metals, metalloids and other hazardous elements in marine plastic litter.

    PubMed

    Turner, Andrew

    2016-10-15

    Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A review on plasma-etch-process induced damage of HgCdTe

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun

    2018-05-01

    Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.

  16. Characterization of HgCdTe and HgCdSe Materials for Third Generation Infrared Detectors

    DTIC Science & Technology

    2011-12-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Arizona State University ORSPA...UNIVERSITY December 2011 i ABSTRACT HgCdTe is the dominant material currently in use for infrared (IR) focal- plane-array (FPA) technology. In...using HgCdTe have since been made, and it currently represents the dominant material used in all IR spectral bands, primarily for space and

  17. Single- and two-color infrared focal plane arrays made by MBE in HgCdTe

    NASA Astrophysics Data System (ADS)

    Zanatta, Jean-Paul; Ferret, P.; Loyer, R.; Petroz, G.; Cremer, S.; Chamonal, Jean-Paul; Bouchut, Philippe; Million, Alain; Destefanis, Gerard L.

    2000-12-01

    We present here recent developments obtained at LETI infrared laboratory in the field of infrared detectors made in HgCdTe material and using the molecular beam epitaxial growth technique (MBE). We discuss the metallurgical points (growth temperature and flux control) that lead to achieve excellent quality epitaxial layers grown by MBE. We show a run-to-run reproducibility measured on growth run of more than 15 layers. The crystalline quality, surface morphology, and composition uniformity are excellent. The etch pits density (EPD) are in the low 105.cm-2 when HgCdTe grows on a CdZnTe substrate. Transport properties reveal a low n-type carrier concentration in the 1014 to 1015.cm-3 range with a carrier mobility in excess of 105 cm2/V/sec at 77K for epilayers grown with 10 micrometers cutoff wavelength. We describe the performances of several kinds of our HgCdTe- MBE devices: single color MWIR and LWIR detectors on HgCdTe/CdZnTe operating at 77K in respectively (3-5 micrometers ) and (8-12 micrometers ) wavelength range; single color MWIR detectors on HgCdTe grown on germanium heterosubstrate operating at 77K in the (3-5 micrometers ) wavelength range; two color HgCdTe detectors operating within the MWIR (3-5 micrometers ) band.

  18. Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China.

    PubMed

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Zhong, Minzhou; Gao, Xiang; Li, Xiaodong; He, Xinyue; Li, Xin; Fang, Yilong; Mo, Dan

    2017-12-01

    Mercury (Hg) and cadmium (Cd) in the atmosphere from coal combustion emissions play an important role in soil pollution. Therefore, the purposes of this study were to quantitatively evaluate the atmospheric Hg and Cd deposition and to determine the influence of atmospheric deposition on Hg and Cd contents in surface soil in a typical coal mine city. Atmospheric deposition samples were collected from May 2015 to May 2016 at 17 sites located in industrial, agricultural and forest areas in the Lianyuan city. Atmospheric Hg and Cd deposition fluxes in the different land use types showed high variability. Curvilinear regression analysis suggested that the atmospheric Hg deposition fluxes were positively related with Hg contents in soils (R 2  = 0.86359, P < 0.001). In addition, atmospheric Cd deposition fluxes were also positively correlated with Cd contents in soils when the site LY02, LY04 and LY05 (all belong to agricultural land) were not included in the fitting (R 2  = 0.82458, P < 0.001). When they were included, there was no significant relationship between them (R 2  = 0.2039, P = 0.05). The accumulation of Hg and Cd concentration in topsoil due to the influence of atmospheric deposition will increase rapidly in the next 30 years, and the mean value of the increment will reach 2.6007 and 33.344 mg kg -1 . After 30 years, the Hg and Cd concentration will increase slowly. The present study advocates that much attention should be paid to the potential ecological hazards in soil resulting from the atmospheric Hg and Cd deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China.

    PubMed

    Falandysz, Jerzy; Zhang, Ji; Wiejak, Anna; Barałkiewicz, Danuta; Hanć, Anetta

    2017-08-01

    Yunnan Province in China is known for its high biodiversity of mushrooms and a diverse geochemistry of soil bedrock and polymetallic soils, but our knowledge of mineral compositions of mushrooms from Yunnan is scarce. The metallic trace elements, Ag, Ba, Co, Cd, Cs, Cu, Cr, Hg, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn, and the metalloids, As and Sb, have been investigated using validated methods with a dynamic reactive cell by mass spectroscopy - inductive coupled plasma and cold vapour - atomic absorption spectroscopy on three popular species of Boletus mushrooms from Southwestern China. The trace mineral profiles in caps and stipes of B. luridus (24 individuals), B. magnificus (29 individuals) and B. tomentipes (38 individuals) have been evaluated. The interspecific differences in the content of several trace elements could be attributed to known differences in the geochemistry of soils in Yunnan, but for copper a difference was observed within species. The mean values of concentrations in composite samples of caps for B. luridus, B. magnificus and B. tomentipes from three to four locations were at the ranges (mgkg -1 dry biomass): Ag (1.3-3.7), As (0.79-53), Ba (4.0-12), Co (0.68-1.2), Cd (0.79-2.2), Cs (0.67-55), Cu (37-77), Cr (5.0-7.6), Hg (2.1-5.4), Li (0.15-0.61), Mn (13-28), Ni (0.86-4.6), Pb (0.59-1.8), Rb (90-120), Sb (0.014-0.088), Sr (0.63-1.6), V (1.4-2.2), Tl (0.017-0.054), U (0.029-0.065) and Zn (130-180). Caps of Boletus mushrooms were richer in Ag, Cu, Hg and Zn than stipes, while other elements were distributed roughly equally between both morphological parts. B. luridus, B. magnificus and B. tomentipes grew in certain sites in Yunnan contained Ag, As, Ba, Cr, Hg, Ni, Sr or V at elevated concentration. A specific geochemistry of the soils type (latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China) can explain occurrence of some minerals at greater or elevated amount in mushrooms in Yunnan, while number of available research and data on mineral composition of mushrooms due to geochemical anomalies of soil parent material is so far little. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Design principles for HgTe based topological insulator devices

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard

    2013-07-01

    The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.

  1. Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey.

    PubMed

    Vural, Alaaddin

    2015-08-01

    Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulvault, Ana Luísa, E-mail: aluisa@ipma.pt; Interdisciplinary Centre of Marine and Environmental Research; MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potentialmore » risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15–0.94 mg kg{sup −1}), Pb (0.37−0.89 mg kg{sup −1}), Co (0.48–1.1 mg kg{sup −1}), Cu (4.8–8.4 mg kg{sup −1}), Zn (75–153 mg kg{sup −1}), Cr (1.0–4.5 mg kg{sup −1}) and Fe (283–930 mg kg{sup −1}) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg{sup −1}). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg{sup −1} and 43 mg kg{sup −1}, respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant, especially in coastal areas. Furthermore, data clearly shows that the current risk assessment and legislation solely based on total As or Hg data is limiting, as elemental speciation greatly varies according to seafood species, thus playing a key role in human exposure assessment via food.« less

  3. Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China.

    PubMed

    Wang, Xiaodi; Zang, Shuying

    2014-05-01

    It is necessary to estimate heavy metal concentrations and risk in surface water for understanding the heavy metal contaminations and for sustainable protection of ecosystems and human health. To investigate the anthropogenic contribution of heavy metal accumulation surrounding an industrial city in China, the concentrations of six heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), and cadmium (Cd) were examined; from four different regions of Daqing in autumn 2011 and winter 2012. The results showed heavy metals distributed in the industrial area at concentrations relatively higher than those in other three areas, while concentrations in the farming area and the protected area were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and As, Cu, Pb and Cr were lower than the cutoff values for the Class I water quality that was set as the highest standard to protect the national nature reserves. While Hg and As of lakes in industry region had a higher level than those in the agriculture and landscape water, the lowest allowed. The concentrations of all the heavy metals in winter were higher than in the autumn. Cu had a higher ecological risks level to freshwater organisms. The discharge of urban sewage and industrial wastewater might be a major pollutant source, thus these sources should identified before remediation efforts. Efforts are needed to protect the lakes from pollution and also to reduce environmental health risks. This study and the valuable data will pave the way for future research on these Lakes in Daqing.

  4. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA.

    PubMed

    Richardson, J B; Görres, J H; Friedland, A J

    2017-10-01

    Exotic earthworms are present in the forests of northeastern USA, yet few studies have documented their effects on pollutant metals in soil. The objective of this study was to identify if Cd, Hg, and Pb strong-acid extractable concentrations and pools (bulk inventories) in forest soils decreased with the presence of exotic earthworms. We compared 'Low Earthworm Abundance' (LEA) sites (≤10 g m -2 earthworms, n = 13) and 'High Earthworm Abundance' (HEA) (>10 g m -2 earthworms, n = 17) sites at five watersheds across Vermont and New Hampshire. Organic horizon Cd, Hg, and Pb concentrations were lower at HEA than LEA sites. Organic horizon and total soil pools of Cd and Hg were negatively correlated with earthworm biomass. Soil profile Cd and Hg concentrations were lower at HEA than LEA sites. Our results suggest earthworms are decreasing accumulation of Cd, Hg, and Pb in forest soils, potentially via greater mobilization through organic matter disruption or bioaccumulation.

  5. [Survey and evaluation of heavy metal in the major vegetables in Shaanxi Province].

    PubMed

    Nie, Xiaoling; Cheng, Guoxia; Wang, Minjuan; Wang, Caixia; Du, Kejun

    2015-09-01

    To evaluate the contamination condition of the Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province. The Pb and Cd contents were determined by inductively coupled plasma mass spectrometry, and the As contents were determined by hydride generation-atomic fluorescence spectrometry, and the Hg contents were determined by mercury vapourmeter. One factor contamination index was employed to evaluate the metal pollution situation of different types of vegetables. Moreover, the health risk after intake of those heavy metals through vegetables were described. In ten kinds of vegetables of Shaanxi Province, the Pb contents in cowpea reached the alertness level, while the contents of Cd, Hg and As were below the safety level. What' s more, the contents of the Pb, Cd, Hg and As were below the safety level in other nine vegetables, and the over standard rate of were Hg > Pb > Cd > As. The contamination extents of Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province were low.

  6. HgZnTe-based detectors for LWIR NASA applications

    NASA Technical Reports Server (NTRS)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  7. Heavy metal pollution in surface soils of Pearl River Delta, China.

    PubMed

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  8. Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.

    The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.

  9. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.

    PubMed

    Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis

    2005-04-01

    Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203Hg. Zinc concentrations (197-543 mg kg(-1) DM) in leaves were higher than Cu concentration (197-543 mg kg(-1) DM), Pb concentration (2.3-2.6 mg kg(-1) DM) and Hg concentration (0.9-1.7 mg kg(-1) DM). Leaves-to-sediment ratios decreased as follows: Zn > Cu > Hg > Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision makers.

  10. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  11. Distinctive phytotoxic effects of Cd and Ni on membrane functionality.

    PubMed

    Sanz, Amparo; Llamas, Andreu; Ullrich, Cornelia I

    2009-10-01

    Metal ions essential for plant growth, such as Fe, Mn, Ni, Cu or Zn, are taken up by plants from the soil solution through metal transporters at the plasma membrane, mainly of the ZIP and Nramp families. These transport systems, however, can also give entry to other metals (Al, Cd, Hg, Pb). Non-nutritive elements, as well as the essential nutrients at higher than metabolic concentrations, can cause phytotoxicity. We have studied previously the effects of an essential (Ni) and a non essential (Cd) heavy metal on root cell plasma membranes, the first selective barrier encountered when entering the plant, using rice as model plant. Distinctive effects of Cd and Ni on membrane function (i.e., Em and membrane permeability) were observed in the short term. We have now confirmed the pattern of Em changes caused by Cd and Ni using barley roots and have also followed the effects of both metals in longer term in rice. Our data indicate that the distinct effects caused by Cd and Ni are due to differences in cellular responses, triggered when entering the cytoplasm (i.e., an efficient detoxifying mechanism for Cd), more than to different direct effects on membranes.

  12. Highway increases concentrations of toxic metals in giant panda habitat.

    PubMed

    Zheng, Ying-Juan; Chen, Yi-Ping; Maltby, Lorraine; Jin, Xue-Lin

    2016-11-01

    The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.

  13. Potentially Toxic Element Uptake by Bacillus jeotgali Strain U3: A Natural Attenuation Mechanism in polluted sediments from Estero de Urías Coastal Lagoon (SE Gulf of California)?

    NASA Astrophysics Data System (ADS)

    Green-Ruiz, C. R.; Rodríguez-Tirado, V. A.; Carrasco-Valenzuela, A. C.; Gómez-Gil, B.

    2007-05-01

    In addition to an increased flux of potentially toxic elements (PTE's) into aquatic ecosystems, toxicity, bioavailability and persistency of these pollutants have led to critical localized pollution sites around the world, and the risk for the environment and the health of organism, including humans, has been increased. Clean-up technologies for the treatment of huge volumes of water, sediments and soils contaminated with these elements are needed. Use of bacteria as concentrators of PTE's can become a good tool for the remediation of man- impacted coastal ecosystems. A subtropical estuarine bacterium was isolate from surface sediments from Estero de Urías coastal lagoon, Mazatlán, Mexico, which is an aquatic ecosystem surrounded by several anthropogenic that release PTE's into the environment. This bacterial strain (U3) was ascertained (16s rRNA analysis) to belong to the Bacillus jeotgali specie. Batch experiments with different bacterial biomass and PTE (Cd, Cu, Hg, Pb and Zn) concentrations, pH and temperature were carried out in order to evaluate the biosorption capacity of Bacillus jeotgali strain U3. Except data from Zn experiments, all values were fitted to the adsorption Langmuir model. The maximum adsorption capacities (qmax) were 58 mg Cd g-1, 27 mg Cu g-1, 191 mg Hg g-1 (viable biomass), 21 mg Hg g-1 (non-viable biomass), 90 mg Pb g-1. Adsorption of Zn was 350 mg g-1, when equilibrium concentration in solution was 130 mg Zn l-1. According our data, Bacillus jeotgali strain U3 is considered as a suitable adsorbent and the presence of this microorganism in Estero de Urías coastal lagoon can produce a natural attenuation of potentially toxic elements pollution.

  14. Monitoring the impact of urban effluents on mineral contents of water and sediments of four sites of the river Ravi, Lahore.

    PubMed

    Shakir, Hafiz Abdullah; Qazi, Javed Iqbal; Chaudhry, Abdul Shakoor

    2013-12-01

    We assessed the impact of urban effluents on the concentrations of selected minerals (Cd, Cr, Cu, Fe, Pb, Zn, Mn, Ni, and Hg) in river Ravi before and after its passage through Lahore city. Water and sediment samples were collected from three lowly to highly polluted downstream sites (Shahdera (B), Sunder (C), and Balloki (D)) alongside the least polluted upstream site (Siphon (A)) during high and low river flow seasons. All the mineral concentrations increased up to site C but stabilized at site D, showing some recovery as compared to the third sampling site. The trend of mean mineral concentration was significantly higher during the low than the high flow season at all the sites. The mean Hg concentrations approached 0.14 and 0.12 mg/l at site A which increased (%) up to 107 and 25% at site B, 1,700 and 1,317% at site C, and 1,185 and 1,177% at site D during low and high river flows, respectively. All mineral concentrations were much higher in the sediment than the water samples. Mean Cd (917%), Cr (461%), Cu (300%), Fe (254%), Pb (179%), Zn (170%), Mn (723%), Ni (853%), and Hg (1,699%) concentrations were higher in riverbed sediments sampled from site C in comparison with the sample collected at site A during low flow season. The domestic and industrial discharges from Lahore city have created undesirable water qualities during the low river flow season. As majority of the mineral levels in the river Ravi were higher than the permissible and safe levels, this is of immediate concern for riverine fish consumers and the users of water for recreation and even irrigation. The use of these waters may pose health risks, and therefore, urgent intervention strategies are needed to minimize river water pollution and its impact on fish-consuming communities of this study area and beyond.

  15. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Cheng, Ke; Wu, Weidong; Tian, Hezhong; Yi, Peng; Zhi, Guorui; Fan, Jing; Liu, Shuhan

    2017-03-01

    Municipal solid waste (MSW) contains considerable hazardous components and the widely-distributed open MSW burning in heavily-populated urban areas can cause direct exposure of hazardous materials to citizens. By determining the best available representation of composition-varying and time-varying emission factors with fuzzy mathematics method and S-shape curves, a comprehensive atmospheric emission inventories of 9 typical toxic heavy metals (THMs, e.g. mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), selenium (Se), copper (Cu), zinc (Zn), and nickel (Ni)) from open MSW burning activities in China is established during the period of 2000-2013 for the first time. Further, the emissions in 2013 are allocated at a high spatial resolution of 0.5° × 0.5° grid by surrogate indexes. The results show that 9 typical THMs emissions from open MSW burning are estimated at 21.25 t for Hg, 131.52 t for As, 97.12 t for Pb, 10.12 t for Cd, 50.58 t for Cr, 81.95 t for Se, 382.42 t for Cu, 1790.70 t for Zn, and 43.50 t for Ni, respectively. In terms of spatial variation, the majority of emissions are concentrated in relatively developed and densely-populated regions, especially for the eastern, central and southern regions. Moreover, future emissions are also projected for the period of 2015-2030 based on different scenarios of the independent and collaborative effects of control proposals including minimizing waste, improving MSW incineration ratio, and enhancing waste sorting and recycling, etc. The collaborative effect of the above proposals is expected to bring the most effective reduction to THMs emissions from open MSW burning in China except for Hg. The results will be supplementary to all anthropogenic emissions and useful for relevant policy-making and the improvement of urban air quality as well as human health.

  16. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN) 4] 2-: Synthesis, crystal structure, magnetic properties and ESR studies

    NASA Astrophysics Data System (ADS)

    Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian

    2006-12-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.

  17. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    PubMed

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  18. Assessment of trace metal concentrations in muscle tissue of certain commercially available fish species from Kayseri, Turkey.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2014-07-01

    Regular consumption of fish has been widely recommended by health authorities. However, it is known that some species accumulate high levels of contaminants including heavy metals (e.g., Hg, Cd, Pb, and As). In this study, Cu, Pb, Co, Ni, Cr, Mn, Cd, and Fe were determined in the muscle tissue of 11 commercially available fish species (Sparus auratus, Dicentrarchus labrax, Mullus barbatus, Belone belone, Psetta maxima, Epinephelus aeneus, Salmothymus, Soleidae, Pomatomus saltatrix, Engraulis encrasicolus, and Sarda sarda) supplied from retailers in Kayseri, Turkey. Determinations were carried out by flame atomic absorption spectrometry after the wet digestion method. The average metal concentrations of the 11 species were determined in the range of 0.54-1.79, 0.82-1.40, 2.38-4.54, 1.23-3.67, 5.01-5.97, 0.77-3.59, 0.48-1.06, and 5.05-122.8 μg/g wet weight for Cu, Pb, Co, Ni, Cr, Mn, Cd, and Fe, respectively. The permissible tolerable daily intake (PTDI) and calculated daily intake (CDI) values were compared, and the calculated daily intake values of the samples were found to be below the established values. Correlations between the metal contents in samples were investigated by performing correlation tests with SPSS 13.0 for windows.

  19. Investigating the Electron-Phonon Coupling of Molecular Beam Epitaxy-Grown Hg1-x Cd x Se Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Peiris, F. C.; Lewis, M. V.; Brill, G.; Doyle, Kevin; Myers, T. H.

    2018-03-01

    Using spectroscopic ellipsometry, the temperature-dependence of the dielectric functions of a series of Hg1-x Cd x Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates were investigated. Initially, for each sample, room-temperature ellipsometric spectra were obtained from 35 meV to 6 eV using two different ellipsometers. Subsequently, ellipsometry spectra were obtained from 10 K to 300 K by incorporating a cryostat to the ellipsometer. Using a standard inversion technique, the spectroscopic ellipsometric data were modeled in order to obtain the temperature-dependent dielectric functions of each of the Hg1-x Cd x Se thin films. The results indicate that the E 1 critical point blue-shifts as a function of Cd-alloy concentration. The temperature-dependence of E 1 was fitted to a Bose-Einstein occupation distribution function, which consequently allowed us to determine the electron-phonon coupling of Hg1-x Cd x Se alloys. From the fitting results, we obtain a value of 17 ± 2 meV for the strength of the electron-phonon coupling for Hg1-x Cd x Se alloy system, which compares nominally with the binary systems, such as CdSe and CdTe, which have values around 38 meV and 16 meV, respectively. This implies that the addition of Hg into the CdSe binary system does not significantly alter its electron-phonon coupling strength. Raman spectroscopy measurements performed on all the samples show the HgSe-like transverse optic (TO) and longitudinal optic (LO) phonons (˜ 130 cm-1 and ˜ 160 cm-1, respectively) for all the samples. While there is a slight red-shift of the HgSe-like TO peak as a function of the Cd-concentration, HgSe-like LO peak does not significantly change with the alloy concentration.

  20. Electron Transport and Minority Carrier Lifetime in HgCdSe 2013 2-6 Workshop

    DTIC Science & Technology

    2014-03-11

    FOR PUBLIC RELEASE Alternative IR Material 0.54 0.56 0.58 0.60 0.62 0.64 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 HgSe HgTe MgS ZnS MgTe CdS...CdSe ZnSe ZnTe CdTe AlP GaP AlSb InP Ge Si GaSb InSbInAs AlAs GaAs MgSe Ba nd ga p En er gy (e V) Lattice Constant (nm) • HgCdSe is being

  1. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-06-30

    metal lattice sites using the liquid phase epitaxy. However, group V elements have not been successfully Incorporated Into MBE grown HgCdTe layer as...narrow-gap side was first Both groups used the liquid pweepitaxy (LPE) growth made with a thicknem of 2 to 3/pm before the growth condi- technique and...higher quasiequilibrium pressure than with the shutter opened. This study shows that with the particular geometry 27 used the time constant required

  2. HP-41CX Programs for HgCdTe Detectors and IR Systems.

    DTIC Science & Technology

    1987-10-01

    FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a

  3. MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry

    NASA Astrophysics Data System (ADS)

    Aqariden, F.; Elsworth, J.; Zhao, J.; Grein, C. H.; Sivananthan, S.

    2012-10-01

    Molecular beam epitaxy (MBE) growth of HgCdTe offers the possibility of fabricating multilayer device structures with an almost unlimited choice of infrared sensor designs for focal-plane array (FPA) fabrication. HgCdTe offers two major advantages that explain its dominance in the infrared photon detector marketplace. The thermal generation rate per unit volume of the material is lower and the quantum efficiency for photon absorption in the infrared is higher in HgCdTe than in any competing material—it yields devices with quantum efficiencies as high as 0.99. Recently, EPIR Technologies and DRS Infrared Technologies agreed to collaborate and examine: (i) the feasibility of employing MBE HgCdTe in the fabrication of high-density vertically interconnected photodiodes (HDVIPs), which are usually fabricated with liquid-phase epitaxy material, and (ii) the potential benefits of horizontal integration, with EPIR supplying the MBE materials to DRS for device and array fabrication. The team designed and developed passivation-absorber-passivation structures that are heavily used by DRS. This paper provides an overview of the characteristics of HDVIP devices and arrays fabricated from MBE HgCdTe and the anticipated advantages of horizontal integration in the industry. Material growth, device fabrication, and test results are presented.

  4. Characterization of HgCdTe and Related Materials For Third Generation Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Vaghayenegar, Majid

    Hg1-xCdxTe (MCT) has historically been the primary material used for infrared detectors. Recently, alternative substrates for MCT growth such as Si, as well as alternative infrared materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based infrared materials for third generation infrared detectors using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated with Shockley and Frank partial dislocations, respectively. Initial attempts to delineate individual dislocations by chemical etching revealed that while the etchants successfully attacked defective areas, many defects in close proximity to the pits were unaffected.

  5. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

    PubMed Central

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-01-01

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water. PMID:29140287

  6. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    PubMed

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  7. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler Walker, Jody; Houseman, Jan; Seddon, Laura

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in themore » collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87{mu}g/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51{mu}g/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35{mu}g/L, SD=1.60, n=92) and significantly higher than those of all other groups (P<0.0001). Of Inuit women participants, 3% (n=4) were within Health Canada's level of concern range (20-99{mu}g/L) for methylmercury (MeHg) exposure. Of Inuit and Dene/Metis cord samples, 56% (n=95) and 5% (n=4), respectively, exceeded 5.8{mu}g/L MeHg, the revised US Environmental Protection Agency lower benchmark dose. GM maternal Pb was significantly higher in Dene/Metis (30.9{mu}g/L or 3.1{mu}g/dL; SD=29.1{mu}g/L) and Inuit (31.6{mu}g/L, SD=38.3) participants compared with the Caucasian group (20.6{mu}g/L, SD=17.9) (P<0.0001). Half of all participants were smokers. GM blood Cd in moderate smokers (1-8 cigarettes/day) and in heavy smokers (>8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 {mu}g/L and 2.7{mu}g/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08{mu}g/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0.0001). There was no significant relationship between methylmercury and selenium for the range of MeHg exposures in this study. Ongoing monitoring of populations at risk and traditional food species, as well as continued international efforts to reduce anthropogenic sources of mercury, are recommended.« less

  8. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China).

    PubMed

    Chen, Haiyang; Chen, Ruihui; Teng, Yanguo; Wu, Jin

    2016-03-01

    Recognizing the pollution characteristics of trace metals in river sediments and targeting their potential sources are of key importance for proposing effective strategies to protect watershed ecosystem health. In this study, a comprehensive investigation was conducted to identify the contamination and risk characteristics of trace metals in sediments of Le'an River which is a main tributary of the largest freshwater lake in China, Poyang Lake. To attain this objective, several tools and models were considered. Geoaccumulation index and enrichment factor were used to understand the general pollution characteristic of trace metals in sediments. Discriminant analysis was applied to identify the spatial variability of sediment metals. Sediment quality guidelines and potential ecological risk index were employed for ecological risk evaluation. Multivariate curve resolution-alternating least square was proposed to extract potential pollution sources, as well as the application of Monte-Carlo simulation for uncertainty analysis of source identification. Results suggested that the sediments in Le'an River were considerably polluted by the investigated trace metals (Cd, Cr, As, Hg, Pb, Cu, Zn and Ni). Sediment concentrations of these metals showed significant spatial variations. The potential ecological risk lay in high level. Comparatively speaking, the metals of Cd, Cu and Hg were likely to result in more harmful effects. Mining activities and the application of fertilizers and agrochemicals were identified as the main anthropogenic sources. To protect the ecological system of Le'an River and Poyang Lake watershed, industrial mining and agricultural activities in this area should to be strictly regulated. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Phytoextraction of heavy metals by willows growing in biosolids under field conditions.

    PubMed

    Laidlaw, W S; Arndt, S K; Huynh, T T; Gregory, D; Baker, A J M

    2012-01-01

    Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic?

    USGS Publications Warehouse

    Reimann, C.; Englmaier, P.; Flem, B.; Gough, L.; Lamothe, P.; Nordgulen, O.; Smith, D.

    2009-01-01

    Forty soil O- and C-horizon samples were collected along a south-to-north transect extending inland for approximately 200 km from the southern tip of Norway. The elements As, Au, Bi, Cd, Cu, Ga, Ge, Hf, Hg, In, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, V, W, Zn and Zr all show a distinct decrease in concentration in soil O-horizons with increasing distance from the coast. The elements showing the strongest coastal enrichment, some by more than an order of magnitude compared to inland samples, are Au, Bi, As, Pb, Sb and Sn. Furthermore, the elements Cd (median O-/median C-horizon = 31), C, Sb, Ag, K, S, Ge (10), Hg, Pb, As, Bi, Sr (5), Se, Au, Ba, Na, Zn, P, Cu and Sn (2) are all strongly enriched in the O-horizon when compared to the underlying C-horizon. Lead isotope ratios, however, do not show any gradient with distance from the coast (declining Pb concentration). Along a 50 km topographically steep east-west transect in the centre of the survey area, far from the coast but crossing several vegetation zones, similar element enrichment patterns and concentration gradients can be observed in the O-horizon. Lead isotope ratios in the O-horizon correlate along both transects with pH and the C/N-ratio, both proxies for the quality of the organic material. Natural conditions in southern Norway, related to climate and vegetation, rather than long range atmospheric transport of air pollutants (LRT), cause the observed features. ?? 2008 Elsevier Ltd.

  12. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  13. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  14. Metals in Racomitrium lanuginosum from Arctic (SW Spitsbergen, Svalbard archipelago) and alpine (Karkonosze, SW Poland) tundra.

    PubMed

    Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J

    2018-05-01

    Arctic-alpine tundra habitats are very vulnerable to the input of relatively small amounts of xenobiotics, and thus their level in such areas must be carefully controlled. Therefore, we collected the terrestrial widespread moss Racomitrium lanuginosum (Hedw.) Brid. in Spitsbergen in the Arctic moss lichen tundra and, for comparison, in the Arctic-alpine tundra in the Karkonosze (SW Poland). Concentrations of the elements Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Na, Ni, Pb, V, and Zn in this species and in the parent rock material were measured. We tested the following hypothesis: R. lanuginosum from Spitsbergen contains lower metal levels than the species from the Karkonosze collected at altitudes influenced by long-range transport from former Black Triangle industry. Principal component and classification analysis (PCCA) ordination revealed that mosses of Spitsbergen were distinguished by a significantly higher Na concentration of marine spray origin and mosses of Karkonosze were distinguished by significantly higher concentrations of Cd, Cr, Cu, Fe, Hg, Li, Mn, Pb, V, and Zn probably from long-range atmospheric transport. The influence of the polar station with a waste incinerator resulted in significantly higher Co, Li, and Ni concentrations in neighbouring mosses in comparison with this species from other sites. This investigation contributes to the use of R. lanuginosum as a bioindicator for metal contamination in Arctic and alpine tundra regions characterised by severe climate habitats with a restricted number of species. This moss enables the control of pollution usually brought solely by long-range atmospheric transport in high mountains as well as in Arctic areas.

  15. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    PubMed Central

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-01-01

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198

  16. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities.

    PubMed

    Cabral, Lucélia; Júnior, Gileno Vieira Lacerda; Pereira de Sousa, Sanderson Tarciso; Dias, Armando Cavalcante Franco; Lira Cadete, Luana; Andreote, Fernando Dini; Hess, Matthias; de Oliveira, Valéria Maia

    2016-09-01

    Mangroves are complex and dynamic ecosystems highly dependent on diverse microbial activities. In the last decades, these ecosystems have been exposed to and affected by diverse human activities, such as waste disposal and accidental oil spills. Complex microbial communities inhabiting the soil and sediment of mangroves comprise microorganisms that have developed mechanisms to adapt to organic and inorganic contaminants. The resistance of these microbes to contaminants is an attractive property and also the reason why soil and sediment living microorganisms and their enzymes have been considered promising for environmental detoxification. The aim of the present study was to identify active microbial genes in heavy metals, i.e., Cu, Zn, Cd, Pb and Hg, and antibiotic resistomes of polluted and pristine mangrove sediments through the comparative analysis of metatranscriptome data. The concentration of the heavy metals Zn, Cr, Pb, Cu, Ni, Cd, and Hg and abundance of genes and transcripts involved in resistance to toxic compounds (the cobalt-zinc-cadmium resistance protein complex; the cobalt-zinc-cadmium resistance protein CzcA and the cation efflux system protein CusA) have been closely associated with sites impacted with petroleum, sludge and other urban waste. The taxonomic profiling of metatranscriptome sequences suggests that members of Gammaproteobacteria and Deltaproteobacteria classes contribute to the detoxification of the polluted soil. Desulfobacterium autotrophicum was the most abundant microorganism in the oil-impacted site and displayed specific functions related to heavy metal resistance, potentially playing a key role in the successful persistence of the microbial community of this site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    PubMed

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  18. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    PubMed Central

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants. PMID:26274060

  19. Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin

    NASA Astrophysics Data System (ADS)

    Azhniuk, Yu M.; Dzhagan, V. M.; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya; Valakh, M. Ya; Zahn, D. R. T.

    2008-11-01

    CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.

  20. Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection.

    PubMed

    Chao, Mu-Rong; Chang, Yan-Zin; Chen, Jian-Lian

    2013-04-15

    A hydrophilic ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA), was used as a medium for the synthesis of highly luminescent CdTe nanocrystals (NCs) capped with thioglycolic acid (TGA). The synthesis was performed for 8 h at 130 °C, was similar to nanocrystal preparation in an aqueous medium, and used safe, low-cost inorganic salts as precursors. After the reaction, the photoluminescence quantum yield of the CdTe NCs (NC(IL-130)) prepared in EMIDCA was significantly higher than that of the nanocrystals prepared in water (NC(w)) at 100 °C (86% vs. 35%). Moreover, the emission wavelength and particle size of NC(IL-130) were smaller than NC(w) (450 nm vs. 540 nm and 4.0 nm vs. 5.2 nm, respectively). The activation of NC(IL-130) was successful due to the coordinated action of two ligands, EMIDCA and TGA, in the primary steps of the NC formation pathway. An increase or decrease in the synthesis temperature, to 160 °C or 100 °C, respectively, was detrimental to the luminescence quality. However, the quenching effect of Hg²⁺ on the fluorescence signals of the NC(IL-130) was distinctively unique, whereas certain interfering ions, such as Pb²⁺, Fe³⁺, Co²⁺, Ni²⁺, Ag⁺, and Cu²⁺, could also quench the emission of the NC(w). Based on the Perrin model, the quenching signals of NC(w) and NC(IL-130) were well correlated with the Hg²⁺ concentrations in the phosphate buffer (pH 7.5, 50 mM). In comparison with the NC(w), the NC(IL-130) had a high tolerance of the interfering ions coexisting with the Hg²⁺ analyte, high recovery of Hg²⁺ spiked in the BSA- or FBS-containing medium, and high stability of fluorescence quenching signals between trials and days. The NC(IL-130) nanocrystals can potentially be used to develop a probe system for the determination of Hg²⁺ in physiological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

Top