Sample records for cu ci thin

  1. Compositional ratio effect on the surface characteristics of CuZn thin films

    NASA Astrophysics Data System (ADS)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  2. Investigation of the structural, surface, optical and electrical properties of the Indium doped CuxO thin films deposited by a thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2018-03-01

    In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.

  3. Scientific Understanding of Non-Chromated Corrosion Inhibitors Function

    DTIC Science & Technology

    2013-01-01

    deposited Al - Cu thin films (left) and aged Al - Cu thin films (right). 348 Figure 7.8. Pit morphologies developed...under neat epoxy resins applied to “as- deposited ” (left) and aged Al - Cu thin films (right) at different exposure times. 349 Figure 7.9. SEM and EDS...results of “As- deposited ” Al - Cu thin film. 351 Figure 7.10. SEM and EDS results of aged Al - Cu thin films. 352 Figure 7.11. Pit

  4. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  5. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  6. Growth and characterization of sol-gel derived CuGaO2 semiconductor thin films for UV photodetector application

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Chen, Ching-Lien

    2017-06-01

    In this study, a p-type wide-bandgap oxide semiconductor CuGaO2 thin film was grown on quartz substrate by sol-gel method. The authors report the influence of annealing temperature on the phase transformation, structural features, and electrical properties of sol-gel derived Cu-Ga-O thin films. At relatively low annealing temperatures (≤900 °C), the films are a mixture of CuGa2O4, CuGaO2, and CuO phases. At relatively high annealing temperatures (≥925 °C), the majority phase in the films is delafossite CuGaO2. All as-prepared Cu-Ga-O thin films exhibited p-type conductivity, as confirmed by Hall measurements. The mean electrical resistivity of the Cu-Ga-O films decreased from 3.54×104 Ω-cm to 1.35×102 Ω-cm and then increased slightly to 3.51×102 Ω-cm when the annealing temperature was increased from 850 °C to 950 °C. We found that annealing the Cu-based oxide thin films at 925 °C produced nearly phase-pure CuGaO2 thin films with good densification. Such thin films exhibited the best electrical properties: a mean electrical resistivity of 1.35×102 Ω-cm, and a mean hole concentration of 1.60×1016 cm-3. In addition, we also fabricated and characterized MSM-type CuGaO2 UV photodetectors on quartz substrates.

  7. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  8. The effect of thin film morphology on the electrochemical performance of Cu-Sn anode for lithium rechargeable batteries.

    PubMed

    Polat, B D; Keleş, O

    2014-05-01

    We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.

  9. Structural and optical properties of ITO and Cu doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  10. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  11. Characterization of Cu buffer layers for growth of L10-FeNi thin films

    NASA Astrophysics Data System (ADS)

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-01

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.

  12. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    PubMed

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  13. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films

    NASA Astrophysics Data System (ADS)

    Murali, Dhanya S.; Aryasomayajula, Subrahmanyam

    2018-03-01

    Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu2 1+Cu2 2+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3-CuO and Cu2O by thermal annealing. The temperature-dependent (300-200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.

  14. Cu(In,Ga)S2, Thin-Film Solar Cells Prepared by H2S Sulfurization of CuGa-In Precursor

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Kulkarni, Shashank R.; Chavan, Sanjay S.; Ghongadi, Shantinath R.

    2005-01-01

    Thin-film CuInS2 solar cell is the leading candidate for space power because of bandgap near the optimum value for AM0 solar radiation outside the earth's atmosphere, excellent radiation hardness, and freedom from intrinsic degradation mechanisms unlike a-Si:H cells. Ultra-lightweight thin-film solar cells deposited on flexible polyimide plastic substrates such as Kapton(trademark), Upilex(trademark), and Apical(trademark) have a potential for achieving specific power of 1000 W/kg, while the state-of-art specific power of the present day solar cells is 66 W/kg. This paper describes the preparation of Cu-rich CuIn(sub 1-x)Ga(sub x)S(sub 2) (CIGS2) thin films and solar cells by a process of sulfurization of CuGa-In precursor similar to that being used for preparation of large-compact-grain CuIn(sub 1-x)Ga(sub x)Se2 thin films and efficient solar cells at FSEC PV Materials Lab.

  15. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  16. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  17. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    NASA Astrophysics Data System (ADS)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  18. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  19. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  20. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  1. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  2. Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge

    2018-03-01

    To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.

  3. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  4. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    PubMed

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  5. Electrochemical and physical properties of electroplated CuO thin films.

    PubMed

    Dhanasekaran, V; Mahalingam, T

    2013-01-01

    Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.

  6. Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.

  7. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    NASA Astrophysics Data System (ADS)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com; Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad; Ahmed, Naser M., E-mail: naser@usm.my

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution formore » 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.« less

  9. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  10. Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul

    2017-10-01

    For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.

  11. Influences of annealing temperature on sprayed CuFeO2 thin films

    NASA Astrophysics Data System (ADS)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  12. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application.

    PubMed

    Xie, Yian; Liu, Yufeng; Wang, Yaoming; Zhu, Xiaolong; Li, Aimin; Zhang, Lei; Qin, Mingsheng; Lü, Xujie; Huang, Fuqiang

    2014-04-28

    Low-cost and high-yield preparation of CuInSe2 films is the bottleneck for promising CuInSe2-based thin film solar cells. Here, we developed a simple, safe and cost-effective method using thioacetic acid to fabricate the absorber films of CuIn(S,Se)2 (CISSe). Dissolution of Cu2O and In(OH)3 in thioacetic acid was attributed to the strong coordination ability of S. The adhesive precursor solution can be prepared without any heating, centrifugation and inert gas protection, superior to the previously reported methods. The precursor CISSe layer was easily deposited in air by spin coating to ensure low cost. Uniform and compact CISSe thin films with well-crystallized and pure-phased CISSe grains were obtained after one step annealing. The as-prepared CISSe thin films were successfully applied to solar cells and a energy conversion efficiency of 6.75% was achieved. This facile preparation provides a low-cost and easy method to fabricate Cu-based thin film solar cells.

  13. Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments

    NASA Astrophysics Data System (ADS)

    Joo, Young-Chang

    1998-10-01

    The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.

  14. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  15. Recrystallization method to selenization of thin-film Cu(In,Ga)Se.sub.2 for semiconductor device applications

    DOEpatents

    Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.

    1995-07-25

    A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.

  16. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.

    PubMed

    Steichen, Marc; Thomassey, Matthieu; Siebentritt, Susanne; Dale, Phillip J

    2011-03-14

    The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.

  17. Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2013-08-01

    Amorphous p-type CuAlO2 thin films were grown onto n-type crystalline ZnO NWs forming a heterojunction through the combination of sol-gel process and hydrothermal growth method. The effects of temperature on structure and optoelectronic properties of CuAlO2 thin films were investigated through various measurement techniques. It was found that the derived CuAlO2 is Al-rich with thin film. UV-Vis measurements showed that the deposited CuAlO2 films are semi-transparent with maximum transmittance ∼82% at 500 nm. Electrical characterization and integration into pn junction confirms that the amorphous CuAlO2 is p-type and exhibited photovoltaic behavior.

  18. Cu2SixSn1-xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang

    2011-10-01

    We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.

  19. KF addition to Cu2SnS3 thin films prepared by sulfurization process

    NASA Astrophysics Data System (ADS)

    Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu

    2017-04-01

    Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.

  20. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  1. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  2. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  3. Investigation of thin film solar cells based on Cu2S and ternary compounds such as CuInS2

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1975-01-01

    Production and characterization in thin film form of Cu2S and related Cu compounds such as CuInS2 for photovoltaic cells are examined. The low cost process technology being reported, namely the sulfurization method, is capable of producing films on various substrates. Cathodoluminescence is being used as a diagnostic tool to identify Cu(x)S and CuInS2 compounds. Also, single crystals of CuInS2 are being prepared and it is contemplated that p-n junctions will be made in such crystals.

  4. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  5. Research progress in photolectric materials of CuFeS2

    NASA Astrophysics Data System (ADS)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  6. Growth of <111>-oriented Cu layer on thin TaWN films

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Sato, Masaru

    2017-07-01

    In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.

  7. Diketo modification of curcumin affects its interaction with human serum albumin.

    PubMed

    Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K

    2018-06-15

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Diketo modification of curcumin affects its interaction with human serum albumin

    NASA Astrophysics Data System (ADS)

    Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.

    2018-06-01

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.

  9. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less

  10. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons

    PubMed Central

    Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.

    2017-01-01

    In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377

  11. Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa

    Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.

  12. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.

    PubMed

    Lim, Yee-Fun; Chua, Chin Sheng; Lee, Coryl Jing Jun; Chi, Dongzhi

    2014-12-21

    Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol-gel spin-coating process. Sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control. Pure-phase Cu2O and CuO films were obtained by thermal annealing at 500 °C in nitrogen and ambient air, respectively. The films were successfully incorporated as photocathodes in a photoelectrochemical (PEC) cell, achieving photocurrents of -0.28 mA cm(-2) and -0.35 mA cm(-2) (for Cu2O and CuO, respectively) at 0.05 V vs. a reversible hydrogen electrode (RHE). The Cu2O photocurrent was enhanced to -0.47 mA cm(-2) upon incorporation of a thin layer of a NiOx co-catalyst. Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting.

  13. Photoexcited Carrier Dynamics of Cu 2S Thin Films

    DOE PAGES

    Riha, Shannon C.; Schaller, Richard D.; Gosztola, David J.; ...

    2014-11-11

    Copper sulfide is a simple binary material with promising attributes for low-cost thin film photovoltaics. However, stable Cu 2S-based device efficiencies approaching 10% free from cadmium have yet to be realized. In this paper, transient absorption spectroscopy is used to investigate the dynamics of the photoexcited state of isolated Cu 2S thin films prepared by atomic layer deposition or vapor-based cation exchange of ZnS. While a number of variables including film thickness, carrier concentration, surface oxidation, and grain boundary passivation were examined, grain structure alone was found to correlate with longer lifetimes. A map of excited state dynamics is deducedmore » from the spectral evolution from 300 fs to 300 μs. Finally, revealing the effects of grain morphology on the photophysical properties of Cu 2S is a crucial step toward reaching high efficiencies in operationally stable Cu 2S thin film photovoltaics.« less

  14. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  15. Optical and electrical properties of p-type transparent conducting CuAlO2 thin film synthesized by reactive radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.

    2010-10-01

    Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.

  16. Synthesis and optical characterization of ternary chalcogenide Cu3BiS3 thin film by spin coating

    NASA Astrophysics Data System (ADS)

    Rawal, Neha; Hadi, Mohammed Kamal; Modi, B. P.

    2017-05-01

    In this work, ternary Chalcogenide Cu3BiS3(CBS) thin films have been prepared and modified by using spin coating technique. Lucratively, spin coating technique is easy going and simple though it hasn't given an enclosure and extensive focus of researches for Cu3BiS3 thin films formation. The surface smoothness and the homogeneity of the obtained thin films have been optimized throughout varying the annealing temperature, concentration and rotation speed. It had been found that as prepared films the value of the energy band gap is 1.4 eV, the absorption coefficient 105 cm-1. Each values of the EBG (Energy Band Gap) and AC (Absorption coefficient) was found in quite agreement with the published work of CBS thin film formation by other methods as CBD, dip coating etc. It signifies that Cu3BiS3 films can be used as an absorber layer for thin film solar cell.

  17. Superconducting microcircuitry by the microlithographic patterning of superconducting compounds and related materials

    DOEpatents

    Coppa, N.V.

    1993-08-24

    A method is described of producing superconducting microcircuits comprising the steps of: depositing a thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x](O < x < 1) onto a substrate; depositing a thin film of a dopant onto said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x]; depositing a photoresist onto said thin film of a dopant; shining light through a mask containing a pattern for a desired circuit configuration and onto said photoresist; developing said photoresist to remove portions of said photoresist shined by the light and to selectively expose said dopant film; etching said selectively exposed dopant film from said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x] to form a pattern of dopant; and heating said substrate at a temperature and for a period of time sufficient to diffuse and react said pattern of dopant with said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x].

  18. Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique

    NASA Astrophysics Data System (ADS)

    Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei

    2017-11-01

    In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.

  19. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  20. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  1. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  2. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  3. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  4. A comparison study of Co and Cu doped MgO diluted magnetic thin films

    NASA Astrophysics Data System (ADS)

    Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.

    2017-02-01

    Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.

  5. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  6. Chalcogenide thin films deposited by rfMS technique using a single quaternary target

    NASA Astrophysics Data System (ADS)

    Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.

    2017-12-01

    Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.

  7. Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics.

    PubMed

    Riha, Shannon C; Koegel, Alexandra A; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-02-08

    Copper antimony sulfide (CuSbS 2 ) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>10 4 cm -1 ), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm -1 , as well as a hole concentration of 10 15 cm -3 . Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2 /CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.

  8. Cu-doped CdS and its application in CdTe thin film solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yi; College of Electronic and Information Engineering, Hankou University, Wuhan, Hubei 430212; Yang, Jun

    2016-01-15

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the V{sub Cd{sup −}} and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atommore » hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl{sub 2} annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.« less

  9. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  10. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  11. Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ying, E-mail: y-shuu@aist.go.jp; Shimada, Satoru; Azumi, Reiko

    Similar to other semiconductor technology, doping of carbon nanotube (CNT) thin film is of great significance for performance improvement or modification. However, it still remains a challenge to seek a stable and effective dopant. In this paper, we unitize several spectroscopic techniques and electrical characterizations under various conditions to investigate the effects of typical dopants and related methods. Nitric acid (HNO{sub 3}) solution, I{sub 2} vapor, and CuI nanoparticles are used to modify a series of ultrathin CNT networks. Although efficient charge transfer is achieved initially after doping, HNO{sub 3} is not applicable because it suffers from severe reliability problemsmore » in structural and electrical properties, and it also causes a number of undesired structural defects. I{sub 2} vapor doping at 150 °C can form some stable C-I bonding structures, resulting in relatively more stable but less efficient electrical performances. CuI nanoparticles seem to be an ideal dopant. Photonic curing enables the manipulation of CuI, which not only results in the construction of novel CNT-CuI hybrid structures but also encourages the deepest level of charge transfer doping. The excellent reliability as well as processing feasibility identify the bright perspective of CNT-CuI hybrid film for practical applications.« less

  12. Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells

    DOEpatents

    Noufi, Rommel; Gabor, Andrew M.; Tuttle, John R.; Tennant, Andrew L.; Contreras, Miguel A.; Albin, David S.; Carapella, Jeffrey J.

    1995-01-01

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

  13. Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells

    DOEpatents

    Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

    1995-08-15

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

  14. Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-01

    In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  15. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit

    PubMed Central

    Kneiβ, Max; Lorenz, Michael

    2016-01-01

    A degenerate p-type conduction of cuprous iodide (CuI) thin films is achieved at the iodine-rich growth condition, allowing for the record high room-temperature conductivity of ∼156 S/cm for as-deposited CuI and ∼283 S/cm for I-doped CuI. At the same time, the films appear clear and exhibit a high transmission of 60–85% in the visible spectral range. The realization of such simultaneously high conductivity and transparency boosts the figure of merit of a p-type TC: its value jumps from ∼200 to ∼17,000 MΩ−1. Polycrystalline CuI thin films were deposited at room temperature by reactive sputtering. Their electrical and optical properties are examined relative to other p-type transparent conductors. The transport properties of CuI thin films were investigated by temperature-dependent conductivity measurements, which reveal a semiconductor–metal transition depending on the iodine/argon ratio in the sputtering gas. PMID:27807139

  16. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  17. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  18. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    NASA Astrophysics Data System (ADS)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  19. Thin film seeds for melt processing textured superconductors for practical applications

    DOEpatents

    Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei

    1999-01-01

    A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.

  20. Thin film seeds for melt processing textured superconductors for practical applications

    DOEpatents

    Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.

    1999-02-09

    A method of fabricating bulk superconducting material such as RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate is disclosed. The powder oxides of RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 {angstrom} and 2000 {angstrom}. A construction prepared by the method is also disclosed.

  1. Low temperature fabrication of CuxO thin-film transistors and investigation on the origin of low field effect mobility

    NASA Astrophysics Data System (ADS)

    Shijeesh, M. R.; Jayaraj, M. K.

    2018-04-01

    Cuprous (Cu2O) and cupric (CuO) oxide thin films have been deposited by radio frequency magnetron sputtering with two different oxygen partial pressures. The as-deposited copper oxide films were subjected to post-annealing at 300 °C for 30 min to improve the microstructural, morphological, and optical properties of thin films. Optical absorption studies revealed the existence of a large number of subgap states inside CuO films than Cu2O films. Cu2O and CuO thin film transistors (TFTs) were fabricated in an inverted staggered structure by using a post-annealed channel layer. The field effect mobility values of Cu2O and CuO TFTs were 5.20 × 10-4 cm2 V-1 s-1 and 2.33 × 10-4 cm2 V-1 s-1, respectively. The poor values of subthreshold swing, threshold voltage, and field effect mobility of the TFTs were due to the charge trap density at the copper oxide/dielectric interface as well as defect induced trap states originated from the oxygen vacancies inside the bulk copper oxide. In order to study the distribution of the trap states in the Cu2O and CuO active layer, the temperature dependent transfer characteristics of transistors in the temperature range between 310 K and 340 K were studied. The observed subgap states were found to be decreasing exponentially inside the bandgap, with CuO TFT showing higher subgap states than Cu2O TFT. The high-density hole trap states in the CuO channel are one of the plausible reasons for the lower mobility in CuO TFT than in Cu2O TFT. The origin of these subgap states was attributed to the impurities or oxygen vacancies present in the CuO channel layer.

  2. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    NASA Astrophysics Data System (ADS)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  3. Effects of thermochemical treatment on CuSbS 2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  4. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  5. Low-temperature atomic layer deposition of CuSbS 2 for thin-film photovoltaics

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Emery, Jonathan D.; ...

    2017-01-24

    Copper antimony sulfide (CuSbS 2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>10 4 cm –1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm –1, as wellmore » as a hole concentration of 10 15 cm –3. Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.« less

  6. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  7. Facile fabrication of Cu(II)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array

    NASA Astrophysics Data System (ADS)

    La, Duong Duc; Thi, Hoai Phuong Nguyen; Kim, Yong Shin; Rananaware, Anushri; Bhosale, Sheshanath V.

    2017-12-01

    Herein, we report a facile synthetic protocol to grow thin films of Cu(II) tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) metal-organic frameworks (MOF) from a tetrakis(4-carboxyphenyl)porphyrin (H2TCPP) solution and the copper hydroxide (Cu(OH)2) nanoneedle array formed on a Cu substrate at room temperature. The formations of Cu-centered TCPP ligands and crystalline platelet-like Cu MOFs were successfully probed by SEM, XRD, FTIR, UV-vis and XPS. The formation process from Cu(OH)2 was monitored by using SEM images obtained at different reaction times during the first 24 h, thus suggesting the reaction pathway of Cu(OH)2 dissolution followed by the reprecipitation of CuTCPP MOFs at a near surface. In addition, the CuTCPP MOFs exhibited a high specific surface area of 408 m2/g.

  8. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from basic lactate solution with a large lactate/Cu2+ molar ratio, are sodium-free. This finding stands in contrast to the observation that films grown in basic solution contain a significant amount of sodium impurity at their top surfaces. Therefore, it is concluded that the sodium impurities present in films grown from basic lactate solutions are detrimental to overall photovoltaic device performance by introducing interface traps and recombination centers for charge carriers, which suggests that removing these impurities may be a promising strategy for improving Cu2O based solar cells. It has been found that impurities at the surface of electrodeposited p-Cu2O films can be efficiently removed through the use of concentrated aqueous ammonia solution as a wet etching agent. The performance of Cu 2O homojunction photovoltaic devices incorporating etched p-Cu 2O as the bottom layer is higher compared to devices with as-deposited p-Cu2O layers due to an improvement of the homojunction interface quality. Reducing the density of defect states that act as carrier recombination centers is found to lead to larger open circuit voltages. Zinc-doped cuprous oxide (Zn:Cu2O) thin films have also been prepared via single step electrodeposition from an aqueous solution containing sodium perchlorate. The Zn/Cu molar ratio in the Cu2O films can be tuned by adjusting the magnitude of the applied potential and the sodium perchlorate concentration. Electrical characterization reveals that zinc dopants increase the Fermi level in Zn:Cu2O films, enabling a three-fold improvement in the power conversion efficiency of a fully electrodeposited Cu2O homojunction photovoltaic device. Complementary to the development of Cu2O based photovoltaic devices, the use of solution deposited cupric oxide (CuO) thin films for capacitive energy storage has also been investigated. A seed layer-assisted chemical bath deposition (SCBD) method has been developed to create high quality CuO thin films on transparent conductive electrode (ITO)/glass substrates. A CuO seed layer is formed by the electrodeposition of Cu2O on ITO electrode for 10 s, followed by a brief (15 min) heating step to convert the Cu 2O to CuO. The seed layer is found to be essential for the growth of micrometer-thick, adherent CuO thin films on ITO-coated glass, as no films were observed to form on substrates without a seed layer. The addition of sodium lactate to the SCBD solution can be used to tune the morphology and relative crystallinity of the CuO films. A highly crystalline CuO film has been deposited from a solution without sodium lactate, while a largely amorphous CuO film was realized using lactate/Cu2+ molar ratio equal to 1.0. The CuO film with greater amorphous character exhibited a significantly larger specific capacitance as a redox active electrode compared to the crystalline film (2700 mF/g vs. 96 mF/g).

  9. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  10. The influence of sequence of precursor films on CZTSe thin films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping

    2017-02-01

    The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).

  11. Basic Operating Mode | Materials Science | NREL

    Science.gov Websites

    indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron

  12. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).

    PubMed

    Schneider, Nathanaelle; Bouttemy, Muriel; Genevée, Pascal; Lincot, Daniel; Donsanti, Frédérique

    2015-02-06

    Two new processes for the atomic layer deposition of copper indium sulfide (CuInS₂) based on the use of two different sets of precursors are reported. Metal chloride precursors (CuCl, InCl₃) in combination with H2S imply relatively high deposition temperature (Tdep = 380 °C), and due to exchange reactions, CuInS₂ stoechiometry was only achieved by depositing In₂S3 layers on a CuxS film. However, the use of acac- metal precursors (Cu(acac)₂, In(acac)₃) allows the direct deposition of CuInS₂ at temperature as low as 150 °C, involving in situ copper-reduction, exchange reaction and diffusion processes. The morphology, crystallographic structure, chemical composition and optical band gap of thin films were investigated using scanning electronic microscope, x-ray diffraction under grazing incidence conditions, x-ray fluorescence, energy dispersive spectrometry, secondary ion mass spectrometry, x-ray photoelectron spectroscopy and UV-vis spectroscopy. Films were implemented as ultra-thin absorbers in a typical CIS-solar cell architecture and allowed conversion efficiencies up to 2.8%.

  13. The Influence of channel length to the characteristics of CuPc based OFET thin films

    NASA Astrophysics Data System (ADS)

    Sujarwata; Handayani, L.; Mosik; Fianti

    2018-03-01

    The main focus of this research is to characterize organic field effect transistor (OFET) thin films based on CuPc with a bottom-contact structure and varied channel length. OFET was prepared by Si substrate cleaning in the ultrasonic cleaner first, then deposition of the source and drain electrodes on the substrate with vacuum evaporation at room temperature, and finally CuPc thin film deposition among the source, drain, and gate electrodes. The distance between source anddrain electrodes is the channel length of the CuPc thin film. In this research, the channel length was varied; 100 μm, 200 μm and 300 μm, with the same active areas of 2.9-3.42 V and different current, IDS. The result showed that the shorter channel length causes, the bigger IDS flowing on the OFET

  14. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  15. Plasma impact on structural, morphological and optical properties of copper acetylacetonate thin films

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.

    2018-06-01

    The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.

  16. Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template

    NASA Astrophysics Data System (ADS)

    Kim, Youngkwang; Lee, Hyunjoon; Lim, Taeho; Kim, Hyun-Jong; Kwon, Oh Joong

    2017-10-01

    With emerging stability issues in fuel cell technology, a non-conventional catalyst not supported on carbon materials has been highlighted because it can avoid negative influences of carbon support materials on the stability, such as carbon corrosion. The nanostructured thin film catalyst is representative of non-conventional catalysts, which shows improved stability, enhanced mass specific activity, and fast mass transfer at high current densities. However, the nanostructured thin film catalyst usually requires multi-step processes for fabrication, making its mass production complex and irreproducible. We introduce a Pt-Cu alloy nanostructured thin film catalyst, which can be simply prepared by electrodeposition. By using hydrogen bubbles as a template, a three-dimensional free-standing foam of Cu was electrodeposited directly on the micro-porous layer/carbon paper and it was then displaced with Pt by simple immersion. The structure characterization revealed that a porous thin Pt-Cu alloy catalyst layer was successfully formed on the micro-porous layer/carbon paper. The synthesized Pt-Cu alloy catalyst exhibited superior durability compared to a conventional Pt/C in single cell test.

  17. Influence of the morphology of the copper(II) phthalocyanine thin film on the performance of organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Xueqiang; Wang, Hailong; Hou, Wenlong; Zhao, Lele; Zhang, Haiquan

    2017-01-01

    Organic thin-film transistors (OTFTs) with high crystallization copper phthalocyanine (CuPc) active layers were fabricated. The performance of CuPc OTFTs was studied without and with treatment by Solvent Vapor Annealing on CuPc film. The values of the threshold voltage without and with solvent-vapor annealing are -17 V and -10.5 V respectively. The field-effect mobility values in saturation region of CuPc thin-film transistors without and with Solvent Vapor Annealing are 0.00027 cm2/V s and 0.0025 cm2/V s respectively. Meanwhile, the high crystallization of the CuPc film with a larger grain size and less grain boundaries can be observed by investigating the morphology of the CuPc active layer through scanning electron microscopy and X-ray diffraction. The experimental results showed the decreased of the resistance of the conducting channel, that led to a performance improvement of the OTFTs.

  18. Sulvanite (Cu 3VS 4) nanocrystals for printable thin film photovoltaics

    DOE PAGES

    Chen, Ching -Chin; Stone, Kevin H.; Lai, Cheng -Yu; ...

    2017-09-21

    Copper Vanadium Sulfide (Cu 3VS 4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu 3VS 4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu 3VS 4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing ofmore » as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu 3VS 4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu 3VS 4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.« less

  19. Sulvanite (Cu 3VS 4) nanocrystals for printable thin film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching -Chin; Stone, Kevin H.; Lai, Cheng -Yu

    Copper Vanadium Sulfide (Cu 3VS 4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu 3VS 4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu 3VS 4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing ofmore » as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu 3VS 4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu 3VS 4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.« less

  20. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    PubMed

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  1. Room-temperature Domain-epitaxy of Copper Iodide Thin Films for Transparent CuI/ZnO Heterojunctions with High Rectification Ratios Larger than 109

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Kneiß, Max; Schein, Friedrich-Leonhard; Lorenz, Michael; Grundmann, Marius

    2016-02-01

    CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm2 V-1 s-1 in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices. Herein, room-temperature heteroepitaxial growth of CuI on various substrates with well-defined in-plane epitaxial relations is realized by reactive sputtering technique. In such heteroepitaxial growth the formation of rotation domains is observed and hereby systematically investigated in accordance with existing theoretical study of domain-epitaxy. The controllable epitaxy of CuI thin films allows for the combination of p-type CuI with suitable n-type semiconductors with the purpose to fabricate epitaxial thin film heterojunctions. Such heterostructures have superior properties to structures without or with weakly ordered in-plane orientation. The obtained epitaxial thin film heterojunction of p-CuI(111)/n-ZnO(00.1) exhibits a high rectification up to 2 × 109 (±2 V), a 100-fold improvement compared to diodes with disordered interfaces. Also a low saturation current density down to 5 × 10-9 Acm-2 is formed. These results prove the great potential of epitaxial CuI as a promising p-type optoelectronic material.

  2. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  3. Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-23

    In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  4. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  5. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    NASA Astrophysics Data System (ADS)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-02-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  6. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    NASA Astrophysics Data System (ADS)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-05-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  7. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    NASA Astrophysics Data System (ADS)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  8. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    NASA Astrophysics Data System (ADS)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  9. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  10. Abundances of Copper and Zinc in Stars of the Galactic Thin and Thick Disks

    NASA Astrophysics Data System (ADS)

    Gorbaneva, T. I.; Mishenina, T. V.; Basak, N. Yu.; Soubiran, C.; Kovtyukh, V. V.

    The spectra of studied stars were obtained with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France). The determination of Cu and Zn abundances was carried out in LTE assumption by model atmosphere method, for Cu the hyperfine structure was taken into account. Cu and Zn abundance trends for thin and thick disk's stars are presented.

  11. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Vapour phase techniques for deposition of CZTS thin films: A review

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Kumar, Sandeep; Singh, Sukhpal

    2018-05-01

    With the surge of thin film photovoltaic technologies in recent years, for cost reduction and increased production there is a need for earth abundant and non-toxic raw materials. Existing thin film solar cells comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe contain elements that are rare in earth's crust and in case of CdTe toxic. Cu2ZnSnS4 (CZTS), having Kesterite structure, a direct band gap of 1.4 - 1.5 eV and an absorption coefficient of 104 cm-1 makes a promising candidate for absorber layer in thin film solar cells. So far many physical and chemical techniques have been employed for deposition of CZTS thin films. This review focuses on various vapour phase techniques used for fabrication of films, recent advances in these techniques and their future outlook.

  13. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  14. Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal J.; Vinod, Vijay; Subrahmanyam, A.; Malar, P.

    2017-10-01

    Bulk copper antimony selenide was synthesized using mechanical alloying from the elemental precursors. Phase formation in milled powders was studied using x-ray diffraction (XRD) and Raman spectroscopy studies. The synthesized bulk source after cold compaction was used as source material for thin film deposition by e-beam evaporation. Thin film deposition was carried out at various e-beam current values (Ib ∼30, 40 and 50 mA) and at a substrate temperature of 200 °C. Near stoichiometric CuSbSe2 thin films were obtained for Ib values closer to 50 mA and post annealing at a temperature of 380 °C for 1 h. Thin films deposited using above conditions were found to exhibit an absorption coefficient (α) values of >105 cm-1 and a band gap value ∼1.18 eV that is closer to the reported band gap for CuSbSe2 compound.

  15. Synthesis and characterization of structural, morphological and photosensor properties of Cu0.1Zn0.9S thin film prepared by a facile chemical method

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.

  16. Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke

    2018-05-01

    Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.

  17. Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time

    NASA Astrophysics Data System (ADS)

    Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan

    2017-10-01

    Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.

  18. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.

    1994-04-05

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.

  19. Pulsed Laser Deposition Growth of Delafossite (CuFeO2) thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath; Ferrari, Piero; Borisov, Pavel; Cabrera, Alejandro; Lederman, David

    2014-03-01

    Owing to its narrow band gap (<2 eV) and p-type conductivity delafossite CuFeO2 is attractive for applications in the field of solar energy conversion. Obtaining pure phase CuFeO2 thin films, however, is relatively difficult. It is necessary to maintain the lowest possible Cu valency (+1) in order to avoid forming the comparably stable spinel compound CuFe2O4. We present a systematic study of the pulsed laser deposition (PLD) growth conditions for epitaxial (00.1) oriented CuFeO2 thin films on Al2O3 (00.1) substrates. The secondary impurity phase, CuFe2O4, was removed completely by optimizing the growth conditions. RHEED, XRD and TEM showed that the pure phase delafossite films are highly epitaxial to the substrate. The chemical purity was verified by Raman and XPS. The indirect bandgap of 1.15 eV was measured using infrared reflectivity, and is in agreement with the CuFeO2 bulk value. Finally, we discuss the growth and structural characterization of delafossite multilayers, CuFeO2/CuGaO2. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract # 2013-MA-2382) at WVU.

  20. Pulsed laser micro-scribing of copper thin films on polyimide substrate in NaCl solution

    NASA Astrophysics Data System (ADS)

    Shiby, Sooraj; Nammi, Srinagalakshmi; Vasa, Nilesh J.; Krishnan, Sivarama

    2018-02-01

    Recently, there is an increasing interest to create micro-channels on metal thin films for diverse applications, such as biomedical, micro channel heat exchangers, chemical separation processes and microwave antenna. Nanosecond (ns) Nd3+:YAG laser has been studied for generating micro-channels on Cu thin film (35 μm) deposited on polyimide substrate (50 μm). A pulsed Nd3+:YAG laser (532 nm / 355 nm) based scribing was performed in air and water ambiancePlasma shielding phenomenon is observed to influence the depth of microchannel at higher energies. A novel pump-probe experiment has been conducted for verifying the plasma shielding effect in air. In underwater scribing the recast layer was reduced significantly as compared to that in air. Laser scribing of Cu thin film followed by chemical etching using FeCl3 was studied. However, the approach of chemical etching resulted in undercut and thinning of Cu film. Alternatively, laser material processing in NaCl solution was studied. Cl- ions present in the solution reacts with Cu which is removed from the sample via laser ablation and forms CuCl2. Formation of CuCl2 in turn improved the surface morphology of the channel through localized etching. The surface roughness parameter Ra was less than 400 nm for NaCl solution based scribing which is smaller compared to air and underwater based methods which are typically around 800 nm or above. Preliminary studies using femtosecond (fs) laser based Cu scribing in air with the fluence of 0.5 J/cm2 resulted in a crated depth of 3 μm without any recast layer.

  1. Plasma impact on structural, morphological and optical properties of copper acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-06-15

    The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac) 2 thin film to atmospheric plasma for 5min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac) 2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5min, but, when the exposure time reaches 10min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35nm to ~1nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac) 2 thin films were studied using spectrophotometric method. The exposure of cu(acac) 2 thin films to plasma produced the indirect energy gap decrease from 3.20eV to 2.67eV for 10min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se)2 Thin Film Solar Cell through Interface Engineering.

    PubMed

    Park, Gi Soon; Chu, Van Ben; Kim, Byoung Woo; Kim, Dong-Wook; Oh, Hyung-Suk; Hwang, Yun Jeong; Min, Byoung Koun

    2018-03-28

    An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se) 2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a CIGS thin film suitable for interface engineering, we designed a novel "3-step chalcogenization process" for Cu 2- x Se-derived grain growth and a double band gap grading structure. Considering S-rich surface of the CIGS thin film, an alternative ternary (Cd,Zn)S buffer layer is adopted to build favorable "spike" type conduction band alignment instead of "cliff" type. Suppression of interface recombination is elucidated by comparing recombination activation energies using a dark J- V- T analysis.

  3. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  4. Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.

    1990-01-01

    Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation, and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.

  5. Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.

    1991-01-01

    Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching, and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation; and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.

  6. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.

  7. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  8. Fabrication of solar cells based on Cu2ZnSnS4 prepared from Cu2SnS3 synthesized using a novel chemical procedure

    NASA Astrophysics Data System (ADS)

    Correa, John M.; Becerra, Raúl A.; Ramírez, Asdrubal A.; Gordillo, Gerardo

    2016-11-01

    Solar cells based on kesterite-type Cu2ZnSnS4 (CZTS) thin films were fabricated using a chemical route to prepare the CZTS films, consisting in sequential deposition of Cu2SnS3 (CTS) and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere. The CTS compound was prepared in a one-step process using a novel chemical procedure consisting of simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition) technique. Diffusion membranes were used to optimize the kinetic growth through a moderate control of release of metal ions into the work solution. As the conditions for the formation in one step of the Cu2SnS3 compound have not yet been reported in literature, special emphasis was put on finding the parameters that allow growing the Cu2SnS3 thin films by simultaneous precipitation of Cu2S and SnS2. For that, we propose a methodology that includes numerical solution of the equilibrium equations that were established through a study of the chemical equilibrium of the system SnCl2, Na3C6H5O7·2H2O, CuCl2 and Na2S2O3·5H2O. The formation of thin films of CTS and CZTS free of secondary phases grown with a stoichiometry close to that corresponding to the Cu2SnS3 and Cu2ZnSnS4 phases, was verified through measurements of X-ray diffraction (XRD) and Raman spectroscopy. Solar cell with an efficiency of 4.2%, short circuit current of 16.2 mA/cm2 and open-circuit voltage of 0.49 V was obtained.

  9. The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Rudisch, Katharina; Davydova, Alexandra; Platzer-Björkman, Charlotte; Scragg, Jonathan

    2018-04-01

    Cu-Zn disorder in Cu2ZnSnS4 (CZTS) may be responsible for the large open circuit voltage deficit in CZTS based solar cells. In this study, it was investigated how composition-dependent defect complexes influence the order-disorder transition. A combinatorial CZTS thin film sample was produced with a cation composition gradient across the sample area. The graded sample was exposed to various temperature treatments and the degree of order was analyzed with resonant Raman spectroscopy for various compositions ranging from E- and A-type to B-, F-, and C-type CZTS. We observe that the composition has no influence on the critical temperature of the order-disorder transition, but strongly affects the activation energy. Reduced activation energy is achieved with compositions with Cu/Sn > 2 or Cu/Sn < 1.8 suggesting an acceleration of the cation ordering in the presence of vacancies or interstitials. This is rationalized with reference to the effect of point defects on exchange mechanisms. The implications for reducing disorder in CZTS thin films are discussed in light of the new findings.

  10. Strong temperature-dependent crystallization, phase transition, optical and electrical characteristics of p-type CuAlO2 thin films.

    PubMed

    Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng

    2015-01-07

    We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals.

  11. The influence of different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, J.; He, Y. X.

    2014-01-01

    The influence of two different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)Se2 (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga)3Se5 or Cu(In,Ga)2Se3.5 at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.

  12. Composite CuFe1 - xSnxO2/p-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Al-Sehemi, Abdullah G.; Mensah-Darkwa, K.; Al-Ghamdi, Ahmed A.; Soylu, M.; Gupta, R. K.; Yakuphanoglu, F.

    2017-06-01

    CuFe1 - xSnxO2 composite thin film/p-type silicon diodes were prepared on substrate by sol-gel method (x = 0.00, 0.01, 0.03, 0.05, 0.07). The structure of CuFe1 - xSnxO2 composite thin films was studied using XRD analysis and films exhibited amorphous behavior. The elemental compositions and surface morphology of the films were characterized using SEM and EDX. EDX results confirmed the presence of the compositional elements. The optical band gap of CuFe1 - xSnxO2 composite thin films was determined using the optic spectra. The optical band gaps of the CuFe1 - xSnxO2 composite thin films were calculated using optical data and were found to be 3.75, 3.78, 3.80, 3.85 and 3.83 eV for x = 0.00, 0.01, 0.03, 0.05 and 0.07, respectively. The photoresponse and electrical properties of the Al/CuFe1 - xSnxO2/p-Si/Al diode were studied. The barrier height and ideality factor were determined to be averagely 0.67 eV and 2.6, respectively. The electrical and photoresponse characteristics of the diodes have been investigated under dark and solar light illuminations, respectively. The interface states were used to explain the results obtained in present study. CuFe1 - xSnxO2 photodiodes exhibited a high photoresponsivity to be used in optoelectronic applications.

  13. Preparation and characterization of Cu2SnS3 thin films by electrodeposition

    NASA Astrophysics Data System (ADS)

    Patel, Biren; Narasimman, R.; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    Cu2SnS3 thin films were electrodeposited on F:SnO2/Glass substrates at room temperature by using aqueous solution. Copper and tin were first electrodeposited from single bath and post annealed in the presence of sulphur atmosphere to obtain the Cu2SnS3 phase. The Cu2SnS3 phase with preferred orientation along the (112) crystal direction grows to greater extent by the post annealing of the film. Raman analysis confirms the monoclinic crystal structure of Cu2SnS3 with principle mode of vibration as A1 (symmetric breathing mode) corresponding to the band at 291 cm-1. It also reveals the benign coexistence of orthorhombic Cu3SnS4 and Cu2SnS7 phases. Optical properties of the film show direct band gap of 1.25 eV with a high absorption coefficient of the order of 104 cm-1 in the visible region. Photo activity of the electrodeposited film was established in two electrode photoelectro-chemical cell, where an open circuit voltage of 91.6 mV and a short circuit current density of 10.6 µA/cm2 were recorded. Fabrication of Cu2SnS3 thin film heterojunction solar cell is underway.

  14. Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique

    NASA Astrophysics Data System (ADS)

    Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee

    2017-08-01

    Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.

  15. Copper and liquid crystal polymer bonding towards lead sensing

    NASA Astrophysics Data System (ADS)

    Redhwan, Taufique Z.; Alam, Arif U.; Haddara, Yaser M.; Howlader, Matiar M. R.

    2018-02-01

    Lead (Pb) is a highly toxic and carcinogenic heavy metal causing adverse impacts on environment and human health, thus requiring its careful monitoring. In this work, we demonstrate the integration of copper (Cu) film-based electrodes toward Pb sensing. For this, we developed a direct bonding method for Cu thin film and liquid crystal polymer (LCP) substrate using oxygen plasma treatment followed by contact and heat at 230 °C. The oxygen plasma activation forms hydroxyl groups (OH-) on Cu and LCP. The activated surfaces further adsorb water molecules when exposed to clean room air during contact. After contact, hydrogen bonds are formed between the OH- groups. The interfacial water is removed when the contacted films are heated, leading to shrinkage of OH- chain. This results in an intermediate oxide layer linking the Cu and C sites of Cu and LCP respectively. A strong adhesion (670 N·m-1) is obtained between Cu/LCP that may offer prolonged use of the electrode without delamination in wet sensing applications. Anodic stripping voltammetry of Pb using Cu thin film electrode shows a stronger current peak than sputtered Cu electrode, which implies the significance of the direct bonding approach to integrate thin films. We also studied the electrochemical impedance that will enable modeling of integrated environmental sensors for on-site monitoring of heavy metals.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, B. D.; Eryilmaz, O. L.; Keles, O

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g-1 capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g-1 (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g-1 as the first discharge capacity with 78% Coulombic efficiency but the cycle life ofmore » this film degraded very quickly, delivering only 250 mAh g-1 capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.« less

  17. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  18. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    NASA Astrophysics Data System (ADS)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  19. Structure and photoelectrochemistry of silver-copper-indium-diselenide ((AgCu)InSe2) thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Lin Rui; Li, Tong; Wang, Hao; Pang, Wei; Chen, Yi Chuan; Song, Xue Mei; Zhang, Yong Zhe; Yan, Hui

    2018-02-01

    In this work, silver (Ag) precursors with different thicknesses were sputtered on the surfaces of CuIn alloys, and (AgCu)InSe2 (ACIS) films were formed after selenization at 550 °C under nitrogen condition using a rapid thermal process furnace. The structure and electrical properties of the ACIS films were investigated. The result showed that the distribution of Ag+ ion was more uniform with increasing the thickness of Ag precursor, and the surface of the thin-film became more homogeneous and denser. When Ag/Cu ratio ≥0.249, the small grain particles disappeared. The band gap can be rationally controlled by adjusting Ag content. When (Ag + Cu)/In ratio ≥ 1.15, the surface of the ACIS thin-film mainly exhibited n-type semiconductor. Through the photoelectrochemistry measurement, it was observed that the incorporation of Ag+ ions could improve photocurrent by adjusting the band gap. With the Ag precursor thickness increased, the dark current decreased at the more negative potential.

  20. An experimental investigation of localised surface plasmon resonance (LSPR) for Cu nanoparticles depending as a function of laser pulse number in Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Copper is a low cost metal and its nanoparticles have a unique optical properties such as LSPR. The location of LSPR wavelength can be tuned by controlling nanoparticles sizes and size distributions of nanoparticles, shapes and interparticle distances. This morphological changes are provided by controlling system parameters in PLD. For this work, 48000 and 36000 laser pulses from Nd:YAG laser were applied to produce Cu nanoparticle thin films. These thin films were characterised by performing UV-VIS absorption spectroscopy, Atomic Force Microscopy (AFM) analysis. When the number of laser pulse decreases, the size of Cu nanoparticles and the number of nanoparticles arriving on the substrate are reduced, and LSPR peak of thin films are red shifted depending on the geometrical shapes of the Cu nanoparticles. We have driven a conclusion in this work that LSPR properties of Cu nanoparticles can be tuned by proposed method.

  1. Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Films for Optical Detection.

    PubMed

    Banimuslem, Hikmat; Hassan, Aseel; Basova, Tamara; Durmuş, Mahmut; Tuncel, Sinem; Esenpinar, Aliye Asli; Gürek, Ayşe Gül; Ahsen, Vefa

    2015-03-01

    Thin films of non-covalently hybridized single-walled carbon nanotubes (SWCNT) and tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced from their solutions in dimethylformamide (DMF). FTIR spectra revealed the 7π-7π interaction between SWCNTs and CuPcR4 molecules. DC conductivity of films of acid-treated SWCNT/CuPcR4 hybrid has increased by more than three orders of.magnitude in comparison with conductivity of CuPcR4 films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements have shown that films obtained from the acid-treated SWCNTs/CuPcR4 hybrids demonstrated more homogenous surface which is ascribed to the highly improved solubility of the hybrid powder in DMF Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new hybrid have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in water to demonstrate the sensing properties of the hybrid.

  2. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film

    PubMed Central

    Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.

    2017-01-01

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity. PMID:28681842

  3. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.

    PubMed

    Yang, C; Souchay, D; Kneiß, M; Bogner, M; Wei, H M; Lorenz, M; Oeckler, O; Benstetter, G; Fu, Y Q; Grundmann, M

    2017-07-06

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity.

  4. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.

    PubMed

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-03

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.

  5. Amorphization reaction in thin films of elemental Cu and Y

    NASA Astrophysics Data System (ADS)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  6. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  7. Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Hermastuti, R.; Purwaningsih, H.; Atmono, T. M.

    2018-04-01

    Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.

  8. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    NASA Astrophysics Data System (ADS)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  9. Elaboration et caracterisation de couches minces de CuInS2 deposees par la pyrolyse par pulverisation ultrasonique a base de transducteur

    NASA Astrophysics Data System (ADS)

    Petuenju, Eric Nguwuo

    The present thesis study is part of the work of The Laboratory of New Materials for Energy and Electrochemistry systems (LaNoMat) that search new techniques to elaborate new materials for photovoltaic solar applications. This aims contribute to the development of the exploitation of solar energy into electrical energy by the maximum of the population throughout the world. This work deals with the determination of CuInS2 thin film deposition parameters by ultrasonic spray pyrolysis method for applications in the technology of three dimensional (3D) solar cells. The structure of the band gap of CuInS2 (a semiconductor material with a direct bandgap of 1.55 eV) makes it an excellent candidate for the role of the absorber in thin film technology for solar photovoltaic applications. 3D solar photovoltaic technology requires the production of a p-n junction with n and p-type semiconductors to make networks. The production and growth of such networks depends on the creation of thin films which have the characteristics of an ultrathin nanocomposite or extremely thin absorber (typically a few tens of nanometers) or which act as a quantum dot. To allow the emergence of 3D photovoltaic technology, it is important to develop methods for the growth of thin layers of materials such as CuInS 2, which are potentially interesting for this purpose. But the development of methods for thin film deposition, for the reasons of competition and accessibility, must be considered as an important factor in the context of the development of three-dimensional photovoltaic solar cells at low cost (production costs: of the order of 0,5 a 0,3$US/Watt-peak) (Beard et al., 2014). To do this it is necessary to use materials manufacturing technology readily available and inexpensive, and allowing to have materials on large surface, such as pyrolysis which allows to reduce costs by a factor of 100 compared to the crystallogenesis. Pyrolysis is defined as a process for decomposing one or more compounds by heat to obtain the formation of a new compound. The main objective of this thesis focuses on the use of ultrasonic spray pyrolysis technique to grow CuInS2 thin films and characterize them by different techniques. This choice is linked to the fact that the CuInS2 is a direct gap semiconductor material, which can act as absorber in solar photovoltaic technology. However, the growth of thin films of this material is subject to a problem of creation of interpenetrating networks of different types of semiconductors (n and p-type), which implies a suitable choice of deposition technique. It should be noted that the interest in existing methods, the ALCVD (Atomic Layer Vapor Deposition) and ILGAR (Ion Layer Gas Reaction) developed in paragraphs 2.4.1 and 2.4.2, is confronted with time limits of these methods. Indeed these two methods, owing to the principle of sequential production process, take place very slowly; and we showed that the thickness of the obtained thin film is proportional to the deposition time. In this work, spray pyrolysis is carried out in two different ways, namely ultrasonic and pneumatic spraying. Of these two methods, we showed that the transducer based ultrasonic spray pyrolysis is the method that can be used to grow thin films of CuInS2 a good homogeneity of the crystallites size (of the order of 110 A) and the morphology of the layers. Ultrasonic spraying was done with a piezoelectric system using a transducer. This system consists of a cylindrical container made of Teflon 5 cm diameter and 15 cm long in which is introduced the solution containing the precursor. The container is mounted on an ultrasonic transducer, component of the piezoelectric system TDK nebulizer unit NB-80E-01, which transforms the solution in aerosol. The aerosol is transported through a teflon tube by a carrier gas, the nitrogen, into a floating motion to the substrate. The substrate is placed on a heating plate whose temperature is controlled by a control monitor. The supply in solution of the container is done with the aid of an electric pump. The nature of the samples obtained is dependent of the supporting electrolyte for the deposition of the precursors. We showed that the use of precursors in an aqueous solution leads to the production of thin layers of indium sulfide In 2S3 clusters while the use of the precursors in alcoholic solution leads to the production of thin layers of CuInS2. The precursors ratio for deposition of CuInS2 is Cu: In: S = 1: 1: 4. The thickness of thin films of In2S3 is of the order of 812 nm. These layers are composed of microaggregates with size ranging from 3 to 20 microns. The particle size in the thin films of In2S 3 is of about 220 A. The thickness of the thin film of CuInS 2 is of the order of 600 nm. Spectrophotometry has identified that all obtained CuInS2 thin films have an average band gap value of 1.40 eV. This indicates the presence of intermediate states, such as copper vacancies in the material band gap. The absorption spectra also allowed us to distinguish peaks that can be attributed to the contribution of sub-bands corresponding to the indium-sulfur bond and the sulfur 3s-band. The samples were characterized by X-ray Diffraction to identify crystalline structure while their surface morphology as well as their semi-quantitative chemical composition were determined using the energy-dispersive x-ray spectroscopy. The ensuing results show that the thin films obtained are homogeneous, transparent and polycrystalline with the crystallites size of the order of 110 A. The thin films obtained by this method do not require annealing to improve their crystallinity. The growth of thin films depends on the substrate humidification period. For a wetting time of about 3 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.81: 3.18. The obtained samples are indexed as CIS1. For a wetting time of about 7 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.23: 2.07. The obtained samples are indexed as CIS2. Contrary to layers CIS1, the layers CIS2 also contain chlorine. The obtained thin films are p-type and, under illumination of 100 mW/cm 2 by a xenon lamp, an increase of the density of charge carriers of about 62% is obtained, but this value does not account the recombination phenomena. In the case of the pneumatic spraying method, the spraying principle is based on the application of Venturi effect, which allows to spray the solution of precursors using a carrier gas. This method is called gas blasting spray pyrolysis. The gas used here is nitrogen. The sprayer is an airbrush - Iwata hp-eclipse bcs - which aspires the solution through a tube connected to the bottle containing the precursor solution, and sprays it through a nozzle according to the principle of the Venturi effect. The precursors ratio is Cu:In:S=1:1:4. The obtained thin films are CuInS2. They are heterogeneous, dense, opaque, and polycrystalline with a crystallites size of the order of 550 A. The stoichiometry of the obtained layers is of order of 1:1.45:2.28. The thin films obtained by this method require annealing (heating of the samples in an oven for one hour at a temperature of 300 ° C) to improve their crystallinity. The thickness of the obtained thin film of CuInS2 is of the order of 1190 nm. The comparative analysis of the samples obtained by the two types of spray pyrolysis is then performed. It shows that ultrasonic aerosol spray would provide CuInS2 thin films for solar applications both in the roles of nanocomposite ultra-thin absorber and extremely thin absorber as in that of quantum dot absorber. In conclusion, transducer based ultrasonic spray pyrolysis is therefore a method that would allow the deposition of CuInS2 on TiO 2 and contribute to resolve a major limitation in three-dimensional photovoltaic solar cells technology, namely the realization of interpenetrating networks of n-type and p-type semiconductors, on a large scale and without time constraint.

  10. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  11. Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses

    NASA Astrophysics Data System (ADS)

    Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.

    2012-06-01

    Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.

  12. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  13. In situ codoping of a CuO absorber layer with aluminum and titanium: the impact of codoping and interface engineering on the performance of a CuO-based heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, Saeid; Radhakrishnan, K.; Ru, Tan Hui; Yi, Ren; Wong, Ten It; Dalapati, Goutam Kumar

    2016-09-01

    Aluminum-doped cupric oxide (CuO:Al) was prepared via an out-diffusion process of Al from an Al-coated substrate into the deposited CuO thin film upon thermal treatment. The effect of the annealing temperature on the structural and optical properties of CuO:Al was investigated in detail. The influence of Al incorporation on the photovoltaic properties was then investigated by preparing a p-CuO:Al/n-Si heterojunction solar cell. A significant improvement in the performance of the solar cell was achieved by controlling the out-diffusion of Al. A novel in situ method to co-dope CuO with Al and titanium (Ti) has been proposed to demonstrate CuO-based solar cells with the front surface field (FSF) design. The FSF design was created by depositing a CuO:Al layer followed by a Ti-doped CuO (CuO:Ti) layer. This is the first successful experimental demonstration of the codoping of a CuO thin film and CuO thin film solar cells with the FSF design. The open circuit voltage (V oc), short circuit current density (J sc) and fill factor (FF) of the fabricated solar cells were significantly higher for the FSF device compared to devices without FSF. The FF of this device improved by 68% through the FSF design and a record efficiency ɳ of 2% was achieved. The improvement of the solar cell properties is mainly attributed to the reduction of surface recombination, which influences the charge carrier collection.

  14. Wireless digital pressure gauge based on nanomaterials

    NASA Astrophysics Data System (ADS)

    Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar

    2018-03-01

    In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.

  15. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  16. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, Darrel R.; Michael, Joseph R.; Romig, Jr., Alton D.

    1994-01-01

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200.degree. C. to 300.degree. C. for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H.sub.2 in N.sub.2 by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200.degree. C. and 300.degree. C. have .theta.-phase Al.sub.2 Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of .theta.-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the .theta.-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process.

  17. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  18. Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films

    NASA Astrophysics Data System (ADS)

    Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang

    2017-12-01

    Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.

  19. Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition

    NASA Astrophysics Data System (ADS)

    Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao

    2006-09-01

    Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.

  20. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions

    PubMed Central

    Xie, Ting; Hasan, Md Rezaul; Qiu, Botong; Arinze, Ebuka S.; Nguyen, Nhan V.; Motayed, Abhishek; Thon, Susanna M.; Debnath, Ratan

    2017-01-01

    We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated. PMID:28729741

  1. Stimulated Emission and Optical Properties of Solid Solutions of Cu(In,Ga)Se2 Direct Band Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Svitsiankou, I. E.; Pavlovskii, V. N.; Lutsenko, E. V.; Yablonskii, G. P.; Mudryi, A. V.; Borodavchenko, O. M.; Zhivulko, V. D.; Yakushev, M. V.; Martin, R.

    2018-05-01

    Stimulated emission, optical properties, and structural characteristics of non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films deposited on soda lime glass substrates using co-evaporation of elements in a multistage process were investigated. X-ray diffraction analysis, scanning electron microscopy, X-ray spectral analysis with energy dispersion, low-temperature photoluminescence, optical transmittance and reflectance were used to study the films. Stimulated emission at low temperatures of 20 K was found in non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films upon excitation by laser pulses of nanosecond duration with a threshold power density of 20 kW/cm2. It was shown that the appearance and parameters of the stimulated emission depend strongly on the concentration of ion-induced defects in Cu(In,Ga)Se2 thin films.

  2. Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.

    1994-09-01

    Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.

  3. Structure, morphology and Raman and optical spectroscopic analysis of In1-xCuxP thin films grown by MOCVD technique for solar cell applications

    NASA Astrophysics Data System (ADS)

    Alshahrie, Ahmed; Juodkazis, S.; Al-Ghamdi, A. A.; Hafez, M.; Bronstein, L. M.

    2017-10-01

    Nanocrystalline In1-xCuxP thin films (0 ≤ x ≤ 0.5) have been deposited on quartz substrates by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique. The effect of the copper ion content on the structural crystal lattice, morphology and optical behavior of the InP thin films was assessed using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectroscopy and spectrophotometry. All films exhibited a crystalline cubic zinc blende structure, inferring the solubility of the Cu atoms in the InP crystal structure. The XRD patterns demonstrated that the inclusion of Cu atoms into the InP films forced the nanoparticles in the films to grow along the (1 1 1) direction. The AFM topography showed that the Cu ions reduce the surface roughness of deposited films. The Raman spectra of the deposited films contain the first and second order anti-stoke ΓTO, ΓLO, ΧLO + ΧTO, 2ΓTO, and ΓLO + ΓTO bands which are characteristic of the InP crystalline structure. The intensities of these bands decreased with increasing the content of the Cu atoms in the InP crystals implying the creation of a stacking fault density in the InP crystal structure. The In1-xCuxP thin films have shown high optical transparency of 90%. An increase of the optical band gap from 1.38 eV to 1.6 eV was assigned to the increase of the amount of Cu ions in the InP films. The In0.5Cu0.5P thin film exhibited remarkable optical conductivity with very low dissipation factor which makes it a promising buffer window for solar energy applications.

  4. Specific Effects of Oxygen Molecule and Plasma on Thin-Film Growth of Y-Ba-Cu-O and Bi-Sr-(Ca)-Cu-O Systems

    NASA Astrophysics Data System (ADS)

    Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji

    1998-07-01

    Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.

  5. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0.025)2O3 thin film with a thickness of approximately 60 nm. In addition, a Voc of 0.96 V and an η of 5.4% were obtained in a MgF2/AZO/n-AGMZO/p-Cu2O:Na heterojunction solar cell.

  6. Effect of spin-orbit coupling on excitonic levels in layered chalcogenide-fluorides

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy; Kykyneshi, Robert; Kinney, Joseph; McIntyre, David H.; Schneider, Guenter; Tate, Janet

    2008-03-01

    BaCuChF (Ch=S,Se,Te) comprise a family of wide-bandgap p-type semiconductors. Due to their high transparency and conductivity, they have potential applications as components of transparent thin-film transistors, solar cells and light-emitting devices. Thin films of BaCuChF have been deposited on MgO by pulsed laser deposition (PLD). Solid solutions BaCuS1-xSexTeF and BaCuSe1-xTex have been prepared by PLD of alternating thin BaCuChF layers. All films were deposited at elevated substrate temperatures. They are preferentially c-axis oriented, conductive and transparent in the visible part of the spectrum. Double excitonic peaks have been observed in the absorption spectrum of these films in the temperature range from 80 to 300K. The separation between the peaks in the doublet increases with the increase of atomic mass of the chalcogen. It also increases with the increase of the heavy chalcogen component x in the solid solutions. This separation most likely is caused by the effect of spin-orbit coupling in the chalcogen atoms on excitonic levels in BaCuChF.

  7. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  8. Spray pyrolysis synthesized Cu(In,Al)(S,Se)2 thin films solar cells

    NASA Astrophysics Data System (ADS)

    Aamir Hassan, Muhammad; Mujahid, Mohammad; Woei, Leow Shin; Wong, Lydia Helena

    2018-03-01

    Cu(In,Al)(S,Se)2 thin films are prepared by the Spray pyrolysis of aqueous precursor solutions of copper, indium, aluminium and sulphur sources. The bandgap of the films was engineered by aluminium (Al) doping in CISSe films deposited on molybdenum (Mo) coated glass substrate. The as-sprayed thin films were selenized at 500 °C for 10 min. Cadmium sulphide (CdS) buffer layer was deposited by chemical bath deposition process. Solar cell devices were fabricated with configuration of glass/Mo/CIASSe/CdS/i-ZnO/AZO. The solar cell device containing thin film of Cu(In,Al)(S,Se)2 with our optimized composition shows j-V characteristics of Voc = 0.47 V, jsc = 21.19 mA cm-2, FF = 52.88% and power conversion efficiency of 5.27%, under AM 1.5, 100 mW cm-2 illumination.

  9. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    PubMed Central

    Firat, Y. E.; Yildirim, H.; Erturk, K.

    2017-01-01

    Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807

  10. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    PubMed

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.

  11. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound Magnetic Polaron (BMP) model. The Resistivity of ZCO sample (˜ 103 O-cm) dropped by 5 orders of magnitude (0.02 O-cm) in Co, Al co-doped samples and the carrier concentrations increases 4 orders of magnitude (˜ 1019/cm3). The Cu2+ doped ZnO thin films showed the ferromagnetic property at 300K. The p-d orbital mixing of high spin Cu2+ (d9) state with the nearest neighbor oxygen p-orbital can explain the origin of RTFM in Zn 1-xCuxO thin films. The optical transmission spectroscopy and the photoluminescence spectroscopy analysis were used to understand the electronic band structure, near band edge (NBE) transition, and the excitonic behavior in ZnO and Zn1-xTMxO thin films. We have found the reduction of NBE transition at 300K due to the substitution of Co and Cu in ZnO host lattice. This narrowing of the optical band gap (NBE) is due to the sp-d exchange interaction between the d electrons of transition metal ions and the band electrons of ZnO; the strength of this interaction strongly depends on the number of d electrons. The s-d and p-d exchanges give rise to negative and positive corrections to the conduction and valance band edges respectively, leading to the NBE narrowing. We have observed the characteristic inter atomic d-d transitions in Co doped samples; thus confirming the substitution of Co2+ in the tetrahedral site in ZnO. The low temperature (77K) PL spectrum showed the basic excitonic characteristics of pure ZnO in Zn1-xTMxO thin films. The X-ray photoelectron spectroscopy (XPS) showed that the Co and Cu are normally in 2+ oxidation state, but in the case of higher Cu concentrations (>3%), the mixed state of Cu2+ and Cu1+ were detected.

  12. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    PubMed Central

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451

  13. Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc

    2015-01-01

    The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.

  14. Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers.

    PubMed

    Kinsey, Alex H; Slusarski, Kyle; Sosa, Steven; Weihs, Timothy P

    2017-07-05

    The use of thin-foil, self-propagating thermite reactions to bond components successfully depends on the ability to suppress gas generation and avoid pore formation during the exothermic production of brazes. To study the mechanisms of vapor production in diluted thermites, thin film multilayer Al-Cu-Cu 2 O-Cu foils are produced via magnetron sputtering, where the Cu layer thickness is systematically increased from 0 to 100 nm in 25 nm increments. The excess Cu layers act as diffusion barriers, limiting the transport of oxygen from the oxide to the Al fuel, as determined by slow heating differential scanning calorimetry experiments. Furthermore, by adding excess Cu to the system, the temperature of the self-propagating thermite reactions drops below the boiling point of Cu, eliminating the metal vapor production. It is determined that Cu vapor production can be eliminated by increasing the Cu interlayer thickness above 50 nm. However, the porous nature of the final products suggests that only metal vapor production is suppressed via dilution. Gas generation via oxygen release is still capable of producing a porous reaction product.

  15. Optimized ultra-thin manganin alloy passivated fine-pitch damascene compatible bump-less Cu-Cu bonding at sub 200 °C for three-dimensional Integration applications

    NASA Astrophysics Data System (ADS)

    Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv

    2018-02-01

    Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.

  16. Thin films of the Bi2Sr2Ca2Cu3O(x) superconductor

    NASA Technical Reports Server (NTRS)

    Mei, YU; Luo, H. L.; Hu, Roger

    1990-01-01

    Using RF sputtering technique, thin films of near single phase Bi2Sr2Ca2Cu3O(x) were successfully prepared on SrTiO3(100), MgO(100), and LaAlO3(012) substrates. Zero resistance of these films occurred in the range of 90-105 K.

  17. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  18. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  19. Self-organized antireflection CuIn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CuInS2 nanocrystal precursor inks

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun

    2015-11-01

    In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.

  20. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  1. Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Xanthopoulos, Nicolas; Muralt, Paul

    2008-04-01

    Epitaxial CaCu3Ti4O12 thin films grown by pulsed laser deposition were studied in the as-deposited and oxygen annealed state. The first one exhibited the usual transition from dielectric to colossal dielectric behavior upon increasing the temperature to above 100K. This transition disappeared after annealing at 900°C in air. The two states significantly differ in their x-ray photoelectron spectra. The state of colossal dielectric constant corresponds to a bulk material with considerable amounts of Cu + and Ti3+, combined with Cu species enrichment at the surface. The annealed state exhibited a nearly stoichiometric composition with no Cu+ and Ti3+. The previously observed p-type conduction in the as-deposited state is thus related to oxygen vacancies compensated by the point defects of Cu+ and Ti3+.

  2. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    PubMed

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  3. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.

  4. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure

    PubMed Central

    2014-01-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein. PMID:25593559

  5. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  6. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  7. Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho

    2015-10-14

    A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.

  8. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  9. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  10. Thermoelectric and Transport Properties of Delafossite CuCrO2:Mg Thin Films Prepared by RF Magnetron Sputtering

    PubMed Central

    Sinnarasa, Inthuga; Thimont, Yohann; Presmanes, Lionel; Barnabé, Antoine; Tailhades, Philippe

    2017-01-01

    P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS²) was 6 µW·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed. PMID:28654011

  11. Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Guo; Sun, Jiangping; Zhang, Libin; Gan, Zhiyin

    2018-06-01

    The temperature effects on the growth of Cu thin film on Si (0 0 1) in the context of magnetron sputtering deposition were systematically studied using molecular dynamics (MD) method. To improve the comparability of simulation results at varying temperatures, the initial status data of incident Cu atoms used in all simulations were read from an identical file via LAMMPS-Python interface. In particular, crystalline microstructure, interface mixing and internal stress of Cu thin film deposited at different temperatures were investigated in detail. With raising the substrate temperature, the interspecies mixed volume and the proportion of face-centered cubic (fcc) structure in the deposited film both increased, while the internal compressive stress decreased. It was found that the fcc structure in the deposited Cu thin films was 〈1 1 1〉 oriented, which was reasonably explained by surface energy minimization and the selectivity of bombardment energy to the crystalline planes. The quantified analysis of interface mixing revealed that the diffusion of Cu atoms dominated the interface mixing, and the injection of incident Cu atoms resulted in the densification of phase near the film-substrate interface. More important, the distribution of atomic stress indicated that the compressive stress was mainly originated from the film-substrate interface, which might be attributed to the densification of interfacial phase at the initial stage of film deposition.

  12. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    NASA Astrophysics Data System (ADS)

    Das, Sayantan; Alford, T. L.

    2013-06-01

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  13. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    NASA Astrophysics Data System (ADS)

    Laughlin, Brian James

    Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150°C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and 100 mum2 analysis areas, respectively. The deposition and crystallization of BST layers on these ultra-smooth foils is demonstrated. The fully processed dielectric layers exhibited field tunability >5:1, and could withstand fields >750 kV cm-1. High field loss tangents below 0.007 were observed, making these materials excellent candidates for microwave devices. Finally, a process of lamination and contact lithography was used to demonstrate patterning of micron-scale features suitable for microwave circuit element designs.

  14. Enhancement of spin-Seebeck effect by inserting ultra-thin Fe{sub 70}Cu{sub 30} interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, D., E-mail: d.kikuchi@imr.tohoku.ac.jp; WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577; Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577

    2015-02-23

    We report the longitudinal spin-Seebeck effects (LSSEs) for Pt/Fe{sub 70}Cu{sub 30}/BiY{sub 2}Fe{sub 5}O{sub 12} (BiYIG) and Pt/BiYIG devices. The LSSE voltage was found to be enhanced by inserting an ultra-thin Fe{sub 70}Cu{sub 30} interlayer. This enhancement decays sharply with increasing the Fe{sub 70}Cu{sub 30} thickness, suggesting that it is not due to bulk phenomena, such as a superposition of conventional thermoelectric effects, but due to interface effects related to the Fe{sub 70}Cu{sub 30} interlayer. Combined with control experiments using Pt/Fe{sub 70}Cu{sub 30} devices, we conclude that the enhancement of the LSSE voltage in the Pt/Fe{sub 70}Cu{sub 30}/BiYIG devices is attributedmore » to the improvement of the spin-mixing conductance at the Pt/BiYIG interfaces.« less

  15. High-performing visible-blind photodetectors based on SnO{sub 2}/CuO nanoheterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ting, E-mail: ting.xie@nist.gov; Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742; Hasan, Md Rezaul

    2015-12-14

    We report on the significant performance enhancement of SnO{sub 2} thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO{sub 2} p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO{sub 2}-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ∼592 for the CuO/SnO{sub 2}more » PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO{sub 2} heterostructured thin films are also investigated.« less

  16. Incidence and relative risk of cutaneous squamous cell carcinoma with single-agent BRAF inhibitor and dual BRAF/MEK inhibitors in cancer patients: a meta-analysis

    PubMed Central

    Peng, Ling; Wang, Yina; Hong, Yun; Ye, Xianghua; Shi, Peng; Zhang, Junyan; Zhao, Qiong

    2017-01-01

    Background BRAF inhibitor and dual BRAF/MEK inhibitors have been approved for the treatment of BRAF-mutated melanoma. Cutaneous squamous cell carcinoma (cuSCC) is an adverse event associated with these drugs. The contribution of BRAF inhibitor and dual BRAF/MEK inhibitors to cuSCC are still unknown. We performed this meta-analysis to determine the overall incidence and relative risk of cuSCC in cancer patients treated with these drugs. Results A total of 7,442 patients from 24 primary studies were included. The incidences of all-grade and high-grade cuSCC in cancer patients treated with BRAF inhibitor were 12.5% (95% CI: 10.8–14.6%) and 11.6% (95% CI: 9.8–13.8%), and dual BRAF/MEK inhibitors were 3.0% (95% CI: 2.0–4.5%) and 2.8% (95% CI: 1.9–4.0%), respectively. On subgroup analysis and meta-regression, the incidence of cuSCC did not vary with tumor type, study design and specific drug used. The use of single agent BRAF inhibitor significantly increased the risk of developing cuSCC comparing with dual BRAF/MEK inhibitors for all-grade (RR 4.72, 95% CI: 2.42–9.20) and high-grade (RR 4.92, 95% CI: 2.64–9.16) in cancer patients. Materials and Methods The databases of PubMed, Embase and abstracts published in ASCO proceedings were searched for relevant studies from January 2000 to June 2017. Summary incidences, relative risks (RRs) and 95% confidence intervals (CIs) were calculated by using either random effects or fixed effect models according to the heterogeneity of included studies. Conclusions BRAF inhibitor significantly increases the risk of developing cuSCC compared with dual BRAF/MEK inhibitors in cancer patients. Clinicians should be aware of the risks of cuSCC with the administration of these drugs in cancer patients. PMID:29137342

  17. Thin film solar cells: research in an industrial perspective.

    PubMed

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  18. High Tc superconducting IR detectors from Y-Ba-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.

    1990-01-01

    A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.

  19. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  20. Effect of annealing on structure, morphology and optoelectronic properties of nanocrystalline CuO thin films

    NASA Astrophysics Data System (ADS)

    Jundale, D. M.; Pawar, S. G.; Patil, S. L.; Chougule, M. A.; Godse, P. R.; Patil, V. B.

    2011-10-01

    The nanocrystalline CuO thin films were prepared on glass substrates by the sol-gel method. The structural, morphological, electrical and optical properties of CuO thin films, submitted to an annealing treatment in the 400-700 °C ranges are studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe Technique and UV-visible spectroscopic. XRD measurements show that all the films are crystallized in the monoclinic phase and present a random orientation. Four prominent peaks, corresponding to the (110) phase (2θ≈32.70°), (002) phase (2θ≈35.70°), (111) phase (2θ≈38.76°) and (202) phase (2θ≈49.06°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the microstructure, electrical and optical properties. The optical band gap energy decreases with increasing annealing temperature. These mean that the optical quality of CuO films is improved by annealing.

  1. Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liu, Qi; Cai, Jing; Li, Yun; Shi, Yi; Wang, Xizhang; Hu, Zheng

    2014-06-01

    This study investigates the remarkable reduction in the threshold voltage (VT) of pentacene-based thin film transistors with pentacene/copper phthalocyanine (CuPc) sandwich configuration. This reduction is accompanied by increased mobility and lowered sub-threshold slope (S). Sandwich devices coated with a 5 nm layer of CuPc layer are compared with conventional top-contact devices, and results indicate that VT decreased significantly from -20.4 V to -0.2 V, that mobility increased from 0.18 cm2/Vs to 0.51 cm2/Vs, and that S was reduced from 4.1 V/dec to 2.9 V/dec. However, the on/off current ratio remains at 105. This enhanced performance could be attributed to the reduction in charge trap density by the incorporated CuPc layer. Results suggest that this method is simple and effectively generates pentacene-based organic thin film transistors with high mobility and low VT.

  2. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two - step process

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Gordillo, G.

    2009-05-01

    Cu3BiS3 thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu3BiS3 phase. It was also found that the Cu3BiS3 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  3. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere.

    PubMed

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-29

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.

  4. Optimization of high quality Cu2ZnSnS4 thin film by low cost and environment friendly sol-gel technique for thin film solar cells applications

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-05-01

    In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.

  5. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    NASA Astrophysics Data System (ADS)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  6. Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides

    NASA Astrophysics Data System (ADS)

    Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.; Mathew, X.

    2018-05-01

    In this work, CuSbS2 thin films were developed by annealing binary precursors deposited sequentially by rf magnetron sputtering. The recrystallization process was optimized and the films were extensively characterized using a number of tools such as XRD, Raman, SEM, energy dispersive x-ray spectroscopy, atomic force microscopy, Hall, UV–vis spectroscopy, Ellipsometry, Seebeck, and photoresponse. The influence of annealing temperature on the structure, morphology, elemental composition, optical and electrical properties are reported. Annealing below 350 °C resulted in famatinite (Cu3SbS4) and chalcostibite (CuSbS2) ternaries as well as binary phases. Phase-pure chalcostibite was obtained in the range of 350 °C–375 °C. At 400 °C, although CuSbS2 was predominant, tetrahedrite phase (Cu12Sb4S13) appeared as an additional phase. The elemental composition of the films was slightly sulfur deficient, and the atomic percentages of Cu, Sb and S showed a dependence on annealing temperature. The material properties of the phase-pure CuSbS2 thin films are: optical band gap in the range of 1.5–1.62 eV, absorption coefficient close to 105 cm‑1, atomic ratios of Cu/Sb ∼1 and (Cu + Sb)/S ∼1.2, crystal size 18.3–24.5 nm and grain size 50–300 nm. The films were photo-sensitive, showed p-type semiconductor behavior. Electrical resistivity, carrier density and hole mobility were 94–459 Ω cm, 1.6–7.0 × 1015 cm‑3 and 8.4–9.5 cm2 V‑1 s respectively.

  7. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole. In wine, significant differences between both plots were found for Cu and Zn, with greater values in the most vigorous vines and with some differences in the wines elaborated with grapes from the leaf thinning treatment and without it. Cu levels in wine ranged between 0.78 and 0.96 mg/l in plot 1 and between 0.28 and 0.44 mg/L in plot 2, respectively for the areas with and without leaf thinning. For Zn, levels ranged between 0.76 and 0.74 in plot 1and between 0.24 and 0.22 mg/L in plot 2. However, no differences were found between plots for Mn. Mn levels in wine ranged between 1 and 1.9 mg/L in plot 1 and between 1.12 and 1.2 mg/L in plot 2. This behavior was similar to that found in the skins and seed analysis.

  8. Evidence for Cu2-xSe platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Simsek Sanli, E.; Ramasse, Q. M.; Mainz, R.; Weber, A.; Abou-Ras, D.; Sigle, W.; van Aken, P. A.

    2017-07-01

    Cu(In,Ga)Se2 (CIGS)-based solar cells reach high power-conversion efficiencies of above 22%. In this work, a three-stage co-evaporation method was used for their fabrication. During the growth stages, the stoichiometry of the absorbers changes from Cu-poor ([Cu]/([In] + [Ga]) < 1) to Cu-rich ([Cu]/([In] + [Ga]) > 1) and finally becomes Cu-poor again when the growth process is completed. It is known that, according to the Cu-In-Ga-Se phase diagram, a Cu-rich growth leads to the presence of Cu2-xSe (x = 0-0.25), which is assumed to assist in recrystallization, grain growth, and defect annihilation in the CIGS layer. So far, Cu2-xSe precipitates with spatial extensions on the order of 10-100 nm have been detected only in Cu-rich CIGS layers. In the present work, we report Cu2-xSe platelets with widths of only a few atomic planes at grain boundaries and as inclusions within grains in a polycrystalline, Cu-poor CIGS layer, as evidenced by high-resolution scanning transmission electron microscopy (STEM). The chemistry of the Cu-Se secondary phase was analyzed by electron energy-loss spectroscopy, and STEM image simulation confirmed the identification of the detected phase. These results represent additional experimental evidence for the proposed topotactical growth model for Cu-Se-assisted CIGS thin-film formation under Cu-rich conditions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourlier, Yoan; Cristini Robbe, Odile; Laboratoire de Physique des Lasers, Atomes et Molécules

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layersmore » using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.« less

  10. Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance.

    PubMed

    Shinde, S K; Fulari, V J; Kim, D-Y; Maile, N C; Koli, R R; Dhaygude, H D; Ghodake, G S

    2017-08-01

    In this research article, we report hybrid nanomaterials of copper hydroxide/copper oxide (Cu(OH) 2 /CuO). A thin films were prepared by using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method. As-synthesized and hybrid Cu(OH) 2 /CuO with two different surfactants polyvinyl alcohol (PVA) and triton-X 100 (TRX-100) was prepared having distinct morphological, structural, and supercapacitor properties. The surface of the thin film samples were examined by scanning electron microscopy (SEM). A nanoflower-like morphology of the Cu(OH) 2 /CuO nanostructures arranged vertically was evidenced on the stainless steel substrate. The surface was well covered by nanoflake-like morphology and formed a uniform Cu(OH) 2 /CuO nanostructures after treating with surfactants. X-ray diffraction patterns were used to confirm the hybrid phase of Cu(OH) 2 /CuO materials. The electrochemical properties of the pristine Cu(OH) 2 /CuO, PVA:Cu(OH) 2 /CuO, TRX-100:Cu(OH) 2 /CuO films were observed by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy technique. The electrochemical examination reveals that the Cu(OH) 2 /CuO electrode has excellent specific capacitance, 292, 533, and 443Fg -1 with pristine, PVA, and TRX-100, respectively in 1M Na 2 SO 4 electrolyte solution. The cyclic voltammograms (CV) of Cu(OH) 2 /CuO electrode shows positive role of the PVA and TRX-100 to enhance supercapacitor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surface chirality of CuO thin films.

    PubMed

    Widmer, Roland; Haug, Franz-Josef; Ruffieux, Pascal; Gröning, Oliver; Bielmann, Michael; Gröning, Pierangelo; Fasel, Roman

    2006-11-01

    We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric. A detailed analysis of the experimental data using single scattering cluster calculations reveals that the films grown with l(+)-TA exhibit a CuO(1) orientation, whereas growth in the presence of d(-)-TA results in a CuO(11) surface orientation. A simple bulk-truncated model structure with two terminating oxygen layers reproduces the experimental XPD data. Deposition with alternating enantiomers of tartaric acid leads to CuO films of alternating chirality. Enantiospecifity of the chiral CuO surfaces is demonstrated by further deposition of CuO from a solution containing racemic tartaric acid. The pre-deposited homochiral films exhibit selectivity toward the same enantiomeric deposition pathway.

  12. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  13. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants.

    PubMed

    Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P

    2006-03-01

    The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.

  14. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu 1-y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications.

    PubMed

    Mazur, M; Kalisz, M; Wojcieszak, D; Grobelny, M; Mazur, P; Kaczmarek, D; Domaradzki, J

    2015-02-01

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. Copyright © 2014. Published by Elsevier B.V.

  15. Ultrahigh-Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin-Film Lithium-Ion Battery: Comparison with SnO2.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-21

    To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.

  16. Characterization of crystallographic properties of thin films using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok

    2007-12-01

    Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.

  17. Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    PubMed Central

    2011-01-01

    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646

  18. Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito

    2011-12-01

    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.

  19. Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films.

    PubMed

    Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito

    2011-02-04

    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.

  20. Prevalence of Regional Myocardial Thinning and Relationship With Myocardial Scarring in Patients With Coronary Artery Disease

    PubMed Central

    Shah, Dipan J.; Kim, Han W.; James, Olga; Parker, Michele; Wu, Edwin; Bonow, Robert O.; Judd, Robert M.; Kim, Raymond J.

    2014-01-01

    Importance Regional left ventricular (LV) wall thinning is believed to represent chronic transmural myocardial infarction and scar tissue. However, recent case reports using delayed-enhancement cardiovascular magnetic resonance (CMR) imaging raise the possibility that thinning may occur with little or no scarring. Objective To evaluate patients with regional myocardial wall thinning and to determine scar burden and potential for functional improvement. Design, Setting, and Patients Investigator-initiated, prospective, 3-center study conducted from August 2000 through January 2008 in 3 parts to determine (1) in patients with known coronary artery disease (CAD) undergoing CMR viability assessment, the prevalence of regional wall thinning (end-diastolic wall thickness ≤5.5 mm), (2) in patients with thinning, the presence and extent of scar burden, and (3) in patients with thinning undergoing coronary revascularization, any changes in myocardial morphology and contractility. Main Outcomes and Measures Scar burden in thinned regions assessed using delayed-enhancement CMR and changes in myocardial morphology and function assessed using cine-CMR after revascularization. Results Of 1055 consecutive patients with CAD screened, 201 (19% [95% CI, 17% to 21%]) had regional wall thinning. Wall thinning spanned a mean of 34% (95% CI, 32% to 37% [SD, 15%]) of LV surface area. Within these regions, the extent of scarring was 72% (95% CI, 69% to 76% [SD, 25%]); however, 18% (95% CI, 13% to 24%) of thinned regions had limited scar burden (≤50% of total extent). Among patients with thinning undergoing revascularization and follow-up cine-CMR (n=42), scar extent within the thinned region was inversely related to regional (r=−0.72, P<.001) and global (r=−0.53, P<.001) contractile improvement. End-diastolic wall thickness in thinned regions with limited scar burden increased from 4.4 mm (95% CI, 4.1 to 4.7) to 7.5 mm (95% CI, 6.9 to 8.1) after revascularization (P<.001), resulting in resolution of wall thinning. On multivariable analysis, scar extent had the strongest association with contractile improvement (slope coefficient, −0.03 [95% CI, −0.04 to −0.02]; P<.001) and reversal of thinning (slope coefficient, −0.05 [95% CI, −0.06 to −0.04]; P<.001). Conclusions and Relevance Among patients with CAD referred for CMR and found to have regional wall thinning, limited scar burden was present in 18% and was associated with improved contractility and resolution of wall thinning after revascularization. These findings, which are not consistent with common assumptions, warrant further investigation. PMID:23462787

  1. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal

    2011-01-15

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less

  2. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.

    1992-09-01

    Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.

  3. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  4. Microwave response of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio

    1991-01-01

    We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.

  5. The chemisorption and reactions of formic acid on Cu films on ZnO (000 overline1)-O

    NASA Astrophysics Data System (ADS)

    Ludviksson, A.; Zhang, R.; Campbell, Charles T.; Griffiths, K.

    1994-06-01

    The adsorption and reactions of formic acid (HCOOD : HCOOH = 3:1) on the oxygen-terminated ZnO(0001¯)-O surface and on thin Cu films deposited on the ZnO(0001¯)-O surface have been studied with temperature programmed desorption (TPD) and XPS. Small amounts of formic acid dissociate at defect sites on clean ZnO(0001¯)-O to yield surface formate (HCOO). The acid D(H) from this dissociation does not reappear in TPD, and is lost to the ZnO bulk, as confirmed by nuclear reaction analysis. The surface HCOO decomposes to yield nearly simultaneous CO 2 (37%), CO (63%) and H 2 TPD peaks at 560 K. Substantial amounts of D (˜ 20%) are incorporated in this hydrogen TPD peak resulting from formate decomposition at ZnO defects, indicating that bulk D is readily accessible. Submonolayer and multilayer Cu films that are deposited at 130 K and partially cover the ZnO surface as 2D and 3D islands adsorb formic acid and decompose it into formate and hydrogen much like the Cu(110) surface. The surface formate from the Cu film decomposes at 470-500 K to give primarily CO 2 and H 2, also much like Cu(110), although atom-thin Cu islands also give ˜ 40% CO. Annealed Cu films give formate decomposition peaks at 25-50 K lower in temperature, attributed to thickening and ordering of the Cu islands to form Cu(111)-like sites. The acid D(H) atom from the formic acid is partially lost by hydrogen spillover from the Cu islands into the ZnO substrate, especially for thin Cu films. This effect partially desorbs and is enhanced upon preannealing the Cu layers, due to increased H diffusion rates across the annealed Cu islands, and/or the decrease in island size. Bulk D(H) is slowly removed as D 2, HD and H 2 above 400 K in diffusion-limited desorption, catalyzed by Cu.

  6. Enhanced quality thin film Cu(In,Ga)Se.sub.2 for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, John R.; Contreras, Miguel A.; Noufi, Rommel; Albin, David S.

    1994-01-01

    Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.2, whereas lower temperatures, such as 300.degree.-400.degree. C., result in a more Cu-poor compound, such as the Cu.sub.z (In,Ga).sub.4 Se.sub.7 phase.

  7. Enhanced quality thin film Cu(In,Ga)Se[sub 2] for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, J.R.; Contreras, M.A.; Noufi, R.; Albin, D.S.

    1994-10-18

    Enhanced quality thin films of Cu[sub w](In,Ga[sub y])Se[sub z] for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu[sub x]Se on a substrate to form a large-grain precursor and then converting the excess Cu[sub x]Se to Cu(In,Ga)Se[sub 2] by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga)[sub y]Se[sub z]. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300--600 C, where the Cu(In,Ga)Se[sub 2] remains solid, while the excess Cu[sub x]Se is in a liquid flux. The characteristic of the resulting Cu[sub w](In,Ga)[sub y]Se[sub z] can be controlled by the temperature. Higher temperatures, such as 500--600 C, result in a nearly stoichiometric Cu(In,Ga)Se[sub 2], whereas lower temperatures, such as 300--400 C, result in a more Cu-poor compound, such as the Cu[sub z](In,Ga)[sub 4]Se[sub 7] phase. 7 figs.

  8. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  9. Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.

    1991-02-01

    We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.

  10. Dilute electrodeposition of TiO2 and ZnO thin film memristors on Cu substrate

    NASA Astrophysics Data System (ADS)

    Fauzi, F. B.; Ani, M. H.; Herman, S. H.; Mohamed, M. A.

    2018-03-01

    Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO2 memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti4+, Zn2+ and O2‑ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors demonstrate comparable performances to previous studies using other methods.

  11. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application

    PubMed Central

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-01-01

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687

  12. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application.

    PubMed

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-02-05

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.

  13. Growth and optoelectronic characteristic of n-Si/p-CuIn(S 1-xSe x) 2 thin-film solar cell by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-07-01

    The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.

  14. Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-03-01

    Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohri, Maryam, E-mail: mmohri@ut.ac.ir; Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe; Nili-Ahmadabadi, Mahmoud

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure ofmore » the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.« less

  16. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material.

  17. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    NASA Astrophysics Data System (ADS)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  18. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  19. Sputter Deposition of Yttrium-Barium Superconductor and Strontium Titanium Oxide Barrier Layer Thin Films

    NASA Astrophysics Data System (ADS)

    Truman, James Kelly

    1992-01-01

    The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.

  20. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  1. In situ oxidation studies on /001/ copper-nickel alloy thin films

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1977-01-01

    High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.

  2. Growth and Magnetotransport Properties of Dirac Semimetal Candidate Cu3PdN

    NASA Astrophysics Data System (ADS)

    Quintela, C. X.; Campbell, N.; Harris, D. T.; Shao, D. F.; Xie, L.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    Since the discovery of three-dimensional Dirac semimetals (DSM) Cd3As2 and Na3Bi, many efforts have been made to identify new DSM materials. Recently, nitride antiperovskite Cu3PdN has been proposed by two different groups as a new DSM candidate. However, until now, the experimental realization of bulk Cu3PdN and the study of its electronic properties has been hindered due to the difficulty of synthesizing bulk single crystals of this material. Here, we report the first growth and magnetotransport characterization of epitaxial Cu3PdN thin films on (001) SrTiO3 substrates. Magnetotransport measurements reveal p-type metallic conduction with very low temperature coefficient of the resistance and small non-linear magnetoresistance at low temperatures. The successful growth of Cu3PdN thin films opens the path to investigating the unknown electronic properties of this material, and provides a template for further research on other antiperovskite DSM candidates such as Cu3ZnN.

  3. Effect of annealing temperature on the microstructure and optical-electrical properties of Cu-Al-O thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Liu, Z. T.; Zang, D. Y.; Che, X. S.; Feng, L. P.; Bai, X. X.

    2013-12-01

    We have successfully prepared Cu-Al-O thin films on silicon (100) and quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited Cu-Al-O film is amorphous in nature and post-annealing treatment in argon ambience results in crystallization of the films and the formation of CuAlO2. The annealing temperature plays an important role in the surface morphology, phase constitution and preferred growth orientation of CuAlO2 phase, thus affecting the properties of the film. The film annealed at 900 °C is mainly composed of CuAlO2 phase and shows smooth surface morphology with well-defined grain boundaries, thus exhibiting the optimum optical-electrical properties with electrical resistivity being 79.7 Ω·cm at room temperature and optical transmittance being 80% in visible region. The direct optical band gaps of the films are found in the range of 3.3-3.8 eV depending on the annealing temperature.

  4. Electron transport properties in fluorinated copper-phthalocyanine films: importance of vibrational reorganization energy and molecular microstructure.

    PubMed

    Wu, Fu-Chiao; Cheng, Horng-Long; Yen, Chen-Hsiang; Lin, Jyu-Wun; Liu, Shyh-Jiun; Chou, Wei-Yang; Tang, Fu-Ching

    2010-03-07

    Electron transport (ET) properties of a series of fluorinated copper-phthalocyanine (F(16)CuPc) thin films, which were deposited at different substrate temperatures (T(sub)) ranging from 30 to 150 degrees C, have been investigated by quantum mechanical calculations of the reorganization energy (lambda(reorg)), X-ray diffraction (XRD), atomic force microscopy (AFM), and microRaman spectroscopy. Density functional theory calculations were used to predict the vibrational frequencies, normal mode displacement vectors, and electron-vibrational lambda(reorg) for the F(16)CuPc molecule. The electron mobilities (mu(e)) of F(16)CuPc thin films are strongly dependent on the T(sub), and the value of mu(e) increases with increasing T(sub) from 30 to 120 degrees C, at which point it reaches its maximum value. The importance of electron-vibrational coupling and molecular microstructures for ET properties in F(16)CuPc thin films are discussed on the basis of theoretical vibrational lambda(reorg) calculations and experimental observations of resonance Raman spectra. We observed a good correlation between mu(e) and the full-width-at-half-maximum of the vibrational bands, which greatly contributed to lambda(reorg) and/or which reflects the molecular microstructural quality of the active channel. In contrast, the crystal size analysis by XRD and surface grain morphology by AFM did not reveal a clear correlation with the ET behaviours for these different F(16)CuPc thin films. Therefore, we suggest that for organic films with weak intermolecular interactions, such as F(16)CuPc, optimized microscopic molecular-scale parameters are highly important for efficient long-range charge transport in the macroscopic devices.

  5. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  6. The crystalline structure of copper phthalocyanine films on ZnO(1100).

    PubMed

    Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P

    2012-09-05

    The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

  7. Analysis of localized surface plasmon resonances in gold nanoparticles surrounded by copper oxides

    NASA Astrophysics Data System (ADS)

    Stamatelatos, A.; Sousanis, A.; Chronis, A. G.; Sigalas, M. M.; Grammatikopoulos, S.; Poulopoulos, P.

    2018-02-01

    Au-doped Cu thin films are produced by co-deposition of Au and Cu via radiofrequency magnetron sputtering in a vacuum chamber with a base pressure of 1 × 10-7 mbar. After post annealing in a furnace with air, one may obtain either Au-Cu2O or Au-CuO nanocomposite thin films. The presence of Au does not have any considerable influence on the position of the optical band gap of the oxides. Only the Au-CuO system shows well-formed localized surface plasmonic resonances with Gaussian shape. We study systematically the plasmonic behavior of the nanocomposites as a function of the gold concentration, annealing time, and film thickness. The intensity of the resonances, their position, and width are intensely affected by all these parameters. The experimental results are compared with respect to rigorous theoretical calculations. The similarities and differences between experiment and theory are discussed.

  8. Studying Structural, Optical, Electrical, and Sensing Properties of Nanocrystalline SnO2:Cu Films Prepared by Sol-Gel Method for CO Gas Sensor Application at Low Temperature

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl2ṡ2H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.

  9. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  10. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-01

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885

  11. Laser-induced voltages at room temperature in YBa{sub 2}Cu{sub 3}O{sub 7} and Pr{sub x}Y{sub 1{minus}x}Ba{sub 2}Cu{sub 3}O{sub 7} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habermeier, H.U.; Jisrawi, N.; Jaeger-Waldau, G.

    Recent reports on high transient transverse voltages at room temperature in YBa{sub 2}Cu{sub 3}O{sub 7} and Pr{sub x}Y{sub 1{minus}x}Ba{sub 2}Cu{sub 3}O{sub 7} thin films grown on SrTiO{sub 3} single crystal substrates, with a tilt angle between the [001] cubic axis and the substrate surface plane, have been interpreted by thermoelectric fields transverse to a laser-induced temperature gradient which are caused by the non-zero off diagonal elements of the Seebeck tensor. The authors have studied this effect in epitaxially grown Pr-doped, as well as undoped YBa{sub 2}Cu{sub 3}O{sub 7}, thin films and observed for a 2 mm long YBa{sub 2}Cu{sub 3}O{submore » 7} strip exposed to a UV photon fluence of 100 mJ/cm{sup 2} signals as large as 30 V. The unexpected high values for the signals and their doping dependence are discussed within the frame of a model based on a thermopile arrangement, the growth induced defect structure and the doping induced modifications of the material properties.« less

  12. Callous-Unemotional Traits, Proactive Aggression, and Treatment Outcomes of Aggressive Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Blader, Joseph C.; Pliszka, Steven R.; Kafantaris, Vivian; Foley, Carmel A.; Crowell, Judith A.; Carlson, Gabrielle A.; Sauder, Colin; Margulies, David M.; Sinha, Christa; Sverd, Jeffrey; Matthews, Thomas L.; Bailey, Brigitte Y.; Daviss, W. Burleson

    2013-01-01

    Objective Stimulant treatment improves impulse control among children with attention-deficit/hyperactivity disorder (ADHD). Decreased aggression often accompanies stimulant pharmacotherapy, suggesting that impulsiveness is integral to their aggressive behavior. However, children with high callous-unemotional (CU) traits and proactive aggression may benefit less from ADHD pharmacotherapy because their aggressive behavior seems more purposeful and deliberate. This study’s objective was to determine if pretreatment CU traits and proactive aggression affect treatment outcomes among aggressive children with ADHD receiving stimulant monotherapy. Method We implemented a stimulant optimization protocol with 160 6- to 13-year-olds (mean [SD] age of 9.31 [2.02] years; 78.75% males) with ADHD, oppositional defiant or conduct disorder, and significant aggressive behavior. Family-focused behavioral intervention was provided concurrently. Primary outcome was the Retrospective Modified Overt Aggression Scale. The Antisocial Process Screening Device and the Aggression Scale, also completed by parents, measured CU traits and proactive aggression, respectively. Analyses examined moderating effects of CU traits and proactive aggression on outcomes. Results 82 children (51%) experienced remission of aggressive behavior. Neither CU traits nor proactive aggression predicted remission (CU traits: odds ratio=0.94, 95% CI=0.80–1.11; proactive aggression, odds ratio=1.05, 95% CI=0.86–1.29). Children whose overall aggression remitted showed decreases in CU traits (effect size=−0.379, 95% CI=−0.60 to −0.16) and proactive aggression (effect size=−0.463, 95% CI=−0.69 to −0.23). Conclusions Findings suggest that pretreatment CU traits and proactive aggression do not forecast worse outcomes for aggressive children with ADHD receiving optimized stimulant pharmacotherapy. With such treatment, CU traits and proactive aggression may decline alongside other behavioral improvements. PMID:24290461

  13. CVD growth of large-grain graphene on Cu(111) thin films

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.

    2013-03-01

    Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).

  14. Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish

    NASA Astrophysics Data System (ADS)

    Chu, Ming-Hui; Liang, S. W.; Chen, Chih; Huang, Annie T.

    2012-09-01

    Organic solderable preservative (OSP) has been adopted as the Cu substrate surface finish in flip-chip solder joints for many years. In this study, the electromigration behavior of lead-free Sn-Cu solder alloys with thin-film under bump metallization and OSP surface finish was investigated. The results showed that severe damage occurred on the substrate side (cathode side), whereas the damage on the chip side (cathode side) was not severe. The damage on the substrate side included void formation, copper dissolution, and formation of intermetallic compounds (IMCs). The OSP Cu interface on the substrate side became the weakest point in the solder joint even when thin-film metallization was used on the chip side. Three-dimensional simulations were employed to investigate the current density distribution in the area between the OSP Cu surface finish and the solder. The results indicated that the current density was higher along the periphery of the bonding area between the solder and the Cu pad, consistent with the area of IMC and void formation in our experimental results.

  15. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency.

    PubMed

    Qi, Yafang; Tian, Qingwen; Meng, Yuena; Kou, Dongxing; Zhou, Zhengji; Zhou, Wenhui; Wu, Sixin

    2017-06-28

    The partial substitution of Cu + with Ag + into the host lattice of Cu 2 ZnSn(S,Se) 4 thin films can reduce the open-circuit voltage deficit (V oc,deficit ) of Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH 2 ) and 1,2-ethylenediamine (en) and used for the formation of (Cu 1-x Ag x ) 2 ZnSn(S,Se) 4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the V oc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.

  16. Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.

    2018-03-01

    Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.

  17. Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films

    NASA Astrophysics Data System (ADS)

    Khalate, S. A.; Kate, R. S.; Deokate, R. J.

    2018-04-01

    Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.

  18. Temperature dependence of superfluid density in YBa 2Cu 3O 7- δ and Y 0.7Ca 0.3Ba 2Cu 3O 7- δ thin films: A doping dependence study of the linear slope

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.

    2005-11-01

    By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.

  19. Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method.

    PubMed

    Shelke, H D; Lokhande, A C; Kim, J H; Lokhande, C D

    2017-11-15

    Cu 2 SnS 3 (CTS) thin films have been successfully deposited on a cost-effective stainless steel substrate by simple and inexpensive chemical bath deposition (CBD) method. The films are deliberated in provisos of their structural, morphological, optical and photoelectrochemical (PEC) properties before and after annealing treatment, using various physico-chemical techniques. The XRD studies showed the formation of triclinic phase of CTS films with nanocrystalline structure. Also, the crystallinity is enhanced with annealing and the secondary phase of Cu 2 S observed. Raman analysis confirmed the formation of CTS compound with secondary Cu 2 S phase. The SEM images also discovered mostly tiny spherical grains and significant progress in the size of grains after annealing. The films possess direct transitions with band gap energies of 1.35eV and 1.31eV before and after annealing, respectively. The improved photoconversion efficiency of CTS thin film based PEC cell is explained with the help of theoretical modeling of energy band diagram and correspondent circuit model of the impedance spectra. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Gauquelin, Nicolas; Zhang, Hao; Zhu, Guozhen; Wei, John Y. T.; Botton, Gianluigi A.

    2018-05-01

    We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-δ (YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity.

  1. Planarized thick copper gate polycrystalline silicon thin film transistors for ultra-large AMOLED displays

    NASA Astrophysics Data System (ADS)

    Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki

    2012-08-01

    A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.

  2. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yaxiong; Liu, Ping; Zeng, Baoqing; Liu, Liming; Yang, Jianjun

    2018-03-01

    A hydrothermal method for synthesizing ultralong and thin copper nanowires (CuNWs) with average diameter of 35 nm and average length of 100 μm is demonstrated in this paper. The concerning raw materials include copric (II) chloride dihydrate (CuCl2·2H2O), octadecylamine (ODA), and ascorbic acid, which are all very cheap and nontoxic. The effect of different reaction time and different molar ratios to the reaction products were researched. The CuNWs prepared by the hydrothermal method were applied to fabricate CuNW transparent conductive electrode (TCE), which exhibited excellent conductivity-transmittance performance with low sheet resistance of 26.23 Ω /\\square and high transparency at 550 nm of 89.06% (excluding Polyethylene terephthalate (PET) substrate). The electrode fabrication process was carried out at room temperature, and there was no need for post-treatment. In order to decrease roughness and protect CuNW TCEs against being oxidized, we fabricated CuNW/poly(methyl methacrylate) (PMMA) hybrid TCEs (HTCEs) using PMMA solution. The CuNW/PMMA HTCEs exhibited low surface roughness and chemical stability as compared with CuNW TCEs.

  3. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode

    NASA Astrophysics Data System (ADS)

    Arya, Sandeep; Sharma, Asha; Singh, Bikram; Riyas, Mohammad; Bandhoria, Pankaj; Aatif, Mohammad; Gupta, Vinay

    2018-05-01

    Copper (Cu) doped p-CdS nanoparticles have been synthesized via sol-gel method. The as-synthesized nanoparticles were successfully characterized and implemented for fabrication of Glass/ITO/n-ZnO/p-CdS/Al thin film photodiode. The fabricated device is tested for small (-1 V to +1 V) bias voltage. Results verified that the junction leakage current within the dark is very small. During reverse bias condition, the maximum amount of photocurrent is obtained under illumination of 100 μW/cm2. Electrical characterizations confirmed that the external quantum efficiency (EQE), gain and responsivity of n-ZnO/p-CdS photodiode show improved photo response than conventional p-type materials for such a small bias voltage. It is therefore revealed that the Cu-doped CdS nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.

  4. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihara, Naoya; Tanaka, Kunihiko, E-mail: tanaka@vos.nagaokaut.ac.jp; Uchiki, Hisao

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermalmore » activation energies of which were determined to be 22.9 and 24.8 meV, respectively.« less

  5. Intrinsic stress response of low and high mobility solute additions to Cu thin films

    NASA Astrophysics Data System (ADS)

    Kaub, Tyler; Anthony, Ryan; Thompson, Gregory B.

    2017-12-01

    Thin film stress is frequently controlled through adjustments applied to the processing parameters used during film deposition. In this work, we explore how the use of solutes with different intrinsic growth properties influences the residual growth stress development for a common solvent Cu film. The findings demonstrated that the addition of a high atomic mobility solute, Ag, or a low atomic mobility solute, V, results in both alloy films undergoing grain refinement that scaled with increases in the solute content. This grain refinement was associated with solute segregation and was more pronounced in the Cu(Ag) system. The grain size reduction was also associated with an increase in the tensile stresses observed in both alloy sets. These findings indicate that solutes can be used to control the grain size under the same deposition conditions, as well as alter the stress evolution of a growing thin film.

  6. Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor

    NASA Astrophysics Data System (ADS)

    Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah

    2017-10-01

    In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.

  7. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector

    NASA Astrophysics Data System (ADS)

    Chu, Hsun-Chen; Tuan, Hsing-Yu

    2017-04-01

    Cu Foil, a thin sheet of Cu, is the common anode current collector in commercial lithium ion batteries (LIBs) which accounts for ∼ 10 wt% of the total cell weight. However, thickness reduction of LIB-based Cu foils below 6 μm has been limited by the incapability of conventional rolling annealing or electrodeposition process. We here report a new type of Cu foil, so called Cu nanowire foil (CuNW foil), for use as an LIB anode current collector. We fabricate Cu NW foils by rolling press Cu nanowire fabric to reduce the thickness down to ∼1.5 μm with an areal weight down to ∼1.2 mg cm-2 and a density approximately 96% to that of bulk Cu. The rough surface and porous structure of CuNW foil enable better wetting and adhering properties of graphite slurry on foil. In full cell examination, a cell of a areal capacity of 3 mAh cm-2 exhibits 83.6% capacity retention for 600 cycles at 0.6 C that meets the standard specification of most commercial LIBs. As a proof-of-concept of demonstration, we fabricate a 700 mA pouch-type battery implemented with graphite-Cu NWs foil anodes to serve as energy supply to operate electronic devices.

  8. Development of low cost contacts to silicon solar cells

    NASA Technical Reports Server (NTRS)

    Tanner, D. P.

    1980-01-01

    The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.

  9. Direct Correlations of Grain Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu3Ti4O12 Thin Films.

    PubMed

    Cho, Ahra; Han, Chan Su; Kang, Meenjoo; Choi, Wooseok; Lee, Jihwan; Jeon, Jaecheol; Yu, Sujae; Jung, Ye Seul; Cho, Yong Soo

    2018-05-09

    Colossal dielectric constant CaCu 3 Ti 4 O 12 has been recognized as one of the rare materials having intrinsic interfacial polarization and thus unusual dielectric characteristics, in which the electrical state of the grain boundary is critical. Here, the direct correlation between the grain boundary potential and relative permittivity is proposed for the CaCu 3 Ti 4 O 12 thin films doped with Zn, Ga, Mn, and Ag as characterized by Kelvin probe force microscopy. The dopants are intended to provide the examples of variable grain boundary potentials that are driven by chemical states including Cu + , Ti 3+ , and oxygen vacancy. Grain boundary potential is nearly linearly proportional to the dielectric constant. This effect is attributed to the increased charge accumulation near the grain boundary, depending on the choice of the dopant. As an example, 1 mol % Ag-doped CaCu 3 Ti 4 O 12 thin films demonstrate the best relative permittivity as associated with a higher grain boundary potential of 120.3 mV compared with 82.6 mV for the reference film. The chemical states across grain boundaries were further verified by using spherical aberration-corrected scanning transmission electron microscopy with the simultaneous electron energy loss spectroscopy.

  10. High-Resolution AES Mapping and TEM Study of Cu(In,Ga)Se2 Thin Film Growth: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, C. L.; Yan, Y.; Jones, K.

    2001-10-01

    Presented at 2001 NCPV Program Review Meeting: TEM and high-resolution AES mapping data on CIGS samples. The chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) shows promise as an absorber layer in thin polycrystalline solar cells, however, details of the PVD growth of this complicated material remain in a developing stage. Previous workers have postulated the existence of a thin film of liquid Cu{sub x}Se on the growing CIGS film, and that this layer acts as a reservoir of copper as well as a layer in which rapid mass transport is possible. In this paper we present transmission electron microscopy (TEM) and high resolutionmore » Auger electron spectroscopy (AES) mapping data taken on samples that had their growth interrupted at a stage when Cu{sub x}Se was expected to be present. The AES maps show CIGS grains which are highly enriched in copper relative to the rest of the CIGS film, and that these same areas contain almost no indium, results consistent with the presence of CuxSe. Small-area diffraction analysis and energy dispersive spectroscopy (EDS) performed on these same samples independently confirm the presence of Cu{sub x}Se at the surface of growing CIGS films.« less

  11. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  12. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  13. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  14. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN

    NASA Astrophysics Data System (ADS)

    Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2017-09-01

    The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.

  15. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  16. A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film.

    PubMed

    Lin, Zhaoyang; Hollar, Courtney; Kang, Joon Sang; Yin, Anxiang; Wang, Yiliu; Shiu, Hui-Ying; Huang, Yu; Hu, Yongjie; Zhang, Yanliang; Duan, Xiangfeng

    2017-06-01

    A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu 2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu 2 Se thin film exhibits a power factor of 0.62 mW/(m K 2 ) at 684 K on rigid Al 2 O 3 substrate and 0.46 mW/(m K 2 ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu 2 Se thin films (<0.1 mW/(m K 2 )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K 2 )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Impact of ambient environment on the electronic structure of CuPc/Au sample

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2018-02-01

    The performances of organic devices are crucially connected with their stability in the ambient environment. The impact of 24 h. Ambient environment exposure to the electronic structures of about 12 nm thick CuPc thin film on clean Au substrate have been studied employing UV photoemission spectroscopy technique. X-ray photoemission spectroscopy (XPS) was used to find out the origin of the change of the electronic structures in the sample with the exposure. The XPS study suggests that the oxidation occurs at the CuPc thin film. Due to the adsorption of oxygen in the CuPc film from the ambient air, charge carriers are formed within the CuPc film. Moreover, the XPS results imply that the CuPc film is sufficiently thinner for diffusing oxygen molecules through it and gets physically absorbed on Au substrate during the ambient exposure. Consequently, the hole injection barrier height of pristine CuPc film, grown on Au substrate, is reduced by about 0.50 eV and work-function of the pristine CuPc sample is enhanced by around 0.25 eV in the exposure. The findings will help to understand the mechanism that governs the degradation of performance of CuPc based devices in ambient environment.

  18. Depth profile composition studies of thin film CdS:Cu2S solar cells using XPS and AES

    NASA Astrophysics Data System (ADS)

    Bhide, V. G.; Salkalachen, S.; Rastogi, A. C.; Rao, C. N. R.; Hegde, M. S.

    1981-09-01

    Studies of the surface composition and depth profiles of thin film CdS:Cu2S solar cells based on the techniques of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) are reported. Specimens were fabricated by the thermal deposition of polycrystalline CdS films onto silver-backed electrodes predeposited on window glass substrates, followed by texturization in hot HCl and chemical plating in a hot CuCl(I) bath for a few seconds to achieve the topotaxial growth of CuS films. The XPS and AES studies indicate the junction to be fairly diffused in the as-prepared cell, with heat treatment in air at 210 C sharpening the junction, improving the stoichiometry of the Cu2S layer and thus improving cell performance. The top copper sulfide layer is found to contain impurities such as Cd, Cl, O and C, which may be removed by mild Ar(+) ion beam etching. The presence of copper deep in the junction is invariably detected, apparently in the grain boundary region in the form of CuS or Cu(2+) trapped in the lattice. It is also noted that the nominal valence state of copper changes abruptly from Cu(+) to Cu(2+) across the junction.

  19. Cu(In,Ga)Se2 thin films annealed using a continuous wave Nd:YAG laser (λ0 = 532 nm): Effects of laser-annealing time

    NASA Astrophysics Data System (ADS)

    Yoo, Myoung Han; Ko, Pil Ju; Kim, Nam-Hoon; Lee, Hyun-Yong

    2017-12-01

    Preparation of Cu(In,Ga)Se2 (CIGS) thin films has continued to face problems related to the selenization of sputtered Cu-In-Ga precursors when using H2Se vapor in that the materials are highly toxic and the facilities extremely costly. Another obstacle facing the production of CIGS thin films has been the required annealing temperature, as it relates to the decomposition temperature of a typical flexible polymer substrate. A novel laser-annealing process for CIGS thin films, which does not involve the selenization process and which can be performed at a lower temperature, has been proposed. Following sputtering with a Cu0.9In0.7Ga0.3Se2 target, the laser-annealing of the CIGS thin film was performed using a continuous 532-nm Nd:YAG laser with an annealing time of 200 - 1000 s at a laser optical power of 2.75 W. CIGS chalcopyrite (112), (220/204), and (312/116) phases, with some weak diffraction peaks corresponding to the Cu-Se- or the In-Se-related phases, were successfully obtained for all the CIGS thin films that had been laser-annealed at 2.75 W. The lattice parameters, the d-spacing, the tetragonal distortion parameter, and the strain led to the crystallinity being worse and grain size being smaller at 600 s while better crystallinity was obtained at 200 and 800 s, which was closely related to the deviations from molecularity and stoichiometry, which were greatest at 600 s while the values exhibited near-stoichiometric compositions at 200 and 800 s. The band gaps of the laser-annealed CIGS thin films were within a range of 1.765 - 1.977 eV and depended on the internal stress. The mean absorbance of the laser-annealed CIGS thin films was within a range of 1.598 - 1.900, suggesting that approximately 97.47 - 98.74% of the incident photons in the visible spectral region were absorbed by this 400-nm film. The conductivity types exhibited the same deviations (Δ m > 0 and Δ s < 0) in all the laser-annealed CIGS thin films. After laser-annealing, the resistivity fell abruptly to a range of 3.551 × 10 -2 - 1.022 × 10 -1 Ω·cm. The carrier concentration was on the order of 1019 - 1021 cm -3, and the carrier mobility was 5.7 × 10 -2 - 5.7 × 100 cm2/V·s.

  20. Synthesis and microstructural TEM investigation of CaCu{sub 3}Ru{sub 4}O{sub 12} ceramic and thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brize, Virginie; STMicroelectronics, 16 rue P and M Curie, 37001 Tours; Autret-Lambert, Cecile, E-mail: cecile.autret-lambert@univ-tours.fr

    2011-10-15

    CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulkmore » CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).« less

  1. Optimization of vertical and lateral distances between target and substrate in deposition process of CuGaSe 2 thin films using one-step sputtering

    DOE PAGES

    Park, Jae -Cheol; Al-Jassim, Mowafak; Kim, Tae -Won

    2017-02-01

    Here, copper gallium selenide (CGS) thin films were fabricated using a combinatorial one-step sputtering process without an additional selenization process. The sample libraries as a function of vertical and lateral distance from the sputtering target were synthesized on a single soda-lime glass substrate at the substrate temperature of 500 °C employing a stoichiometric CGS single target. As we increased the vertical distance between the target and substrate, the CGS thin films had more stable and uniform characteristics in structural and chemical properties. Under the optimized conditions of the vertical distance (150 mm), the CGS thin films showed densely packed grainsmore » and large grain sizes up to 1 μm in scale with decreasing lateral distances. The composition ratio of Ga/[Cu+Ga] and Se/[Cu+Ga] showed 0.50 and 0.93, respectively, in nearly the same composition as the sputtering target. X-ray diffraction and Raman spectroscopy revealed that the CGS thin films had a pure chalcopyrite phase without any secondary phases such as Cu–Se or ordered vacancy compounds, respectively. In addition, we found that the optical bandgap energies of the CGS thin films are shifted from 1.650 to 1.664 eV with decreasing lateral distance, showing a near-stoichiometric region with chalcopyrite characteristics.« less

  2. Influence of substrate temperature and post annealing of CuGaO{sub 2} thin films on optical and structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie

    A transparent p-type thin film CuGaO{sub 2} was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10{sup −2} Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. Themore » details of the results will be discussed in the conference.« less

  3. Formation of 4H-closely packed structure in thin films of metastable nanocrystalline Co 13Cu 87 alloy

    NASA Astrophysics Data System (ADS)

    Khalyapin, D. L.; Kim, J.; Stolyar, S. V.; Turpanov, I. A.; Kim, P. D.; Kim, I.

    2003-11-01

    The crystal structure of the thin films of metastable Co 13Cu 87 alloy prepared by magnetron sputtering was investigated by transmission electron microscope. As-deposited films have a nanocrystal structure with an fcc lattice. As a result of the prolonged ion polishing with a beam of Ar ions with the energy of 4.7 keV, the four-layer 4H dhcp structure was formed.

  4. Influence of Cu-Ti thin film surface properties on antimicrobial activity and viability of living cells.

    PubMed

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sequentially evaporated thin film YBa2Cu3O(7-x) superconducting microwave ring resonator

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; To, Hing Y.; Valco, George J.; Bhasin, Kul B.; Chorey, Chris; Warner, Joseph D.

    1990-01-01

    There is great interest in the application of thin film high temperature superconductors in high frequency electronic circuits. A ring resonator provides a good test vehicle for assessing the microwave losses in the superconductor and for comparing films made by different techniques. Ring resonators made of YBa2Cu3O(7-x) have been investigated on LaAlO3 substrates. The superconducting thin films were deposited by sequential electron beam evaporation of Cu, Y, and BaF2 with a post anneal. Patterning of the superconducting film was done using negative photolithography. A ring resonator was also fabricated from a thin gold film as a control. Both resonators had a gold ground plane on the backside of the substrate. The ring resonators' reflection coefficients were measured as a function of frequency from 33 to 37 GHz at temperatures ranging from 20 K to 68 K. The resonator exhibited two resonances which were at 34.5 and 35.7 GHz at 68 K. The resonant frequencies increased with decreasing temperature. The magnitude of the reflection coefficients was in the calculation of the unloaded Q-values. The performance of the evaporated and gold resonator are compared with the performance of a laser ablated YBa2Cu3O(7-x) resonator. The causes of the double resonance are discussed.

  6. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  7. Effect of inserting a hole injection layer in organic light-emitting diodes: A numerical approach

    NASA Astrophysics Data System (ADS)

    Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung

    2015-01-01

    For investigating the effect of inserting a hole injection layer (HIL), we carried out a computational study concerning organic light-emitting diodes (OLEDs) that had a thin CuPc layer as the hole injection layer. We used S-TAD (2, 2', 7, 7'-tetrakis-(N, Ndiphenylamino)-9, 9-spirobifluoren) for the hole transfer layer, S-DPVBi (4, 4'-bis (2, 2'-diphenylvinyl)-1, 1'-spirobiphenyl) for the emission layer and Alq3 (Tris (8-hyroxyquinolinato) aluminium) for the electron transfer layer. This tri-layer device was compared with four-layer devices. To this tri-layer device, we added a thin CuPc layer, which had a 5.3 eV highest occupied molecular orbital (HOMO) level and a 3.8 eV lowest unoccupied molecular orbital (LUMO) level, as a hole injection layer, and we chose this device for Device A. Also, we varied the LUMO level or the HOMO level of the thin CuPc layer. These two devices were identified as Device C and Device D, respectively. In this paper, we simulated the carrier injection, transport and recombination in these four devices. Thereby, we showed the effect of the HIL, and we demonstrated that the characteristics of these devices were improved by adding a thin layer of CuPc between the anode and the HTL.

  8. Potential of thin-film solar cell module technology

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  9. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  10. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  11. Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films

    PubMed Central

    Cho, Joon Hyong; Gorman, Jason J.; Na, Seung Ryul; Cullinan, Michael

    2017-01-01

    Growth of high quality and monolayer graphene on copper thin films on silicon wafers is a promising approach to massive and direct graphene device fabrication in spite of the presence of potential dewetting issues in the copper film during graphene growth. Current work demonstrates roles of a nickel adhesion coupled with the copper film resulting in mitigation of dewetting problem as well as uniform monolayer graphene growth over 97 % coverage on films. The feasibility of monolayer graphene growth on Cu-Ni alloy films as thin as 150 nm in total is also demonstrated. During the graphene growth on Cu-Ni films, the nickel adhesion layer uniformly diffuses into the copper thin film resulting in a Cu-Ni alloy, helping to promote graphene nucleation and large area surface coverage. Furthermore, it was found that the use of extremely thin metal catalyst films also constraint the total amount of carbon that can be absorbed into the film during growth, which helps to eliminate adlayer formation and promote monolayer growth regardless of alloying content, thus improving the monolayer fraction of graphene coverage on the thinner films. These results suggest a path forward for the large scale integration of high quality, monolayer graphene into nanoelectronic and nanomechanical devices. PMID:28669999

  12. Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection

    NASA Astrophysics Data System (ADS)

    Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.

    2018-05-01

    Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.

  13. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes.

    PubMed

    Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-03-27

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.

  14. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes

    PubMed Central

    Lu, Kuankuan; Li, Yuzhi; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-01-01

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al2O3) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al2O3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al2O3 PVL exhibited remarkable mobility of 33.5–220.1 cm2/Vs when channel length varies from 60 to 560 μm. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously. PMID:29584710

  15. Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications

    NASA Astrophysics Data System (ADS)

    Kim, Taeyun

    Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)

  16. The AMBRE project: Iron-peak elements in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Š.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Worley, C. C.; de Pascale, M.

    2017-04-01

    Context. The pattern of chemical abundance ratios in stellar populations of the Milky Way is a fingerprint of the Galactic chemical history. In order to interpret such chemical fossils of Galactic archaeology, chemical evolution models have to be developed. However, despite the complex physics included in the most recent models, significant discrepancies between models and observations are widely encountered. Aims: The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. Methods: We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and α element (Mg) chemical abundances for 4666 stars, adopting classical LTE spectral synthesis and 1D atmospheric models. Our observational data collection is composed of high-resolution, high signal-to-noise ratios HARPS and FEROS spectra, which were previously parametrised by the AMBRE project. Results: We used the bimodal distribution of the magnesium-to-iron abundance ratios to chemically classify our sample stars into different Galactic substructures: thin disc, metal-poor and high-α metal rich, high-α, and low-α metal-poor populations. Both high-α and low-α metal-poor populations are fully distinct in Mg, Cu, and Zn, but these substructures are statistically indistinguishable in Mn and Ni. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Also, both thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Yet, Mn looks very different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. The [Zn/Fe] trends look very similar to those of [α/Fe] trends. The typical dispersion of results in both discs is low (≈0.05 dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (≈0.035 dex). Conclusions: It is clearly demonstrated that Zn is an α-like element and could be used to separate thin and thick disc stars. Moreover, we show that the [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. From the comparison with Galactic chemical evolutionary models, we conclude that some recent models can partially reproduce the observed Mg, Zn, and, Cu behaviours in thin and thick discs and metal-poor sequences. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. The very low scatter (≈0.05 dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration. Based on observations collected at ESO telescopes under the AMBRE programme. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A22

  17. Stress and plasticity in Cu thin films

    NASA Astrophysics Data System (ADS)

    Weihnacht, Volker; Brückner, Winfried

    1999-11-01

    Aim of the work was to get more detailed knowledge about the processes of plasticity in thin Cu films. For this purpose, stress measurements and microstructural investigations have been done on 535nm thick Cu films on oxidized Si substrates. The film stress was measured by wafer-curvature technique using a home-made laser-optical apparatus. This apparatus allowed four-point bending experiments additionally to thermal cycling. It turned out that applied bending strains even higher than 0.5% did not leave significant plastic strains after relief of bending stress. It is concluded, that the elastic interaction of parallel dislocations at the film-substrate interface may play an important role in strain hardening even after small plastic strains.

  18. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  19. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  20. Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method

    NASA Astrophysics Data System (ADS)

    AlHammad, M. S.

    2017-05-01

    We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.

  1. Bi-Se doped with Cu, p-type semiconductor

    DOEpatents

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  2. Size-controlled growth and antibacterial mechanism for Cu:C nanocomposite thin films.

    PubMed

    Javid, Amjed; Kumar, Manish; Yoon, Seokyoung; Lee, Jung Heon; Han, Jeon Geon

    2016-12-21

    The interdependence of 'size' and 'volume-fraction' hinders the identification of their individual role in the interface properties of metal nanoparticles (NPs) embedded in a matrix. Here, the case of Cu NPs embedded in a C matrix is presented for their profound antibacterial activity. Cu:C nanocomposite thin films with fixed Cu content (≈12 atomic%) are prepared using a plasma process where plasma energy controls the size of Cu NPs (from 9 nm to 16 nm). An inverse relationship between the size-effect on antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria is established through the real time monitoring of an aliquot by inductively coupled plasma mass spectrometry, which confirmed the inverse relationship of Cu ion release from the nanocomposite with varied Cu NP sizes. It was found that enhancing the total power density increases the plasma density as well as effective kinetic energy of the plasma species, which in turn creates a large number of nucleation sites and restricts the island kind of growth of Cu NPs. The mechanism of NP size-control is illustrated on the basis of ion density and nucleation and the growth regime of plasma species. This physical approach to NP size reduction anticipates a contamination-free competitive recipe of size-control to capping based chemical methods.

  3. Biopsy applications of Ti50Ni41Cu9 shape memory films for wireless capsule endoscope

    NASA Astrophysics Data System (ADS)

    Du, Hejun; Fu, Yongqing; Zhang, S.; Luo, Jack K.; Flewitt, Andrew J.; Milne, William I.

    2004-02-01

    Wireless capsule endoscopy (WCE) is a new technology to evaluate the patient with obscure gastrointestinal bleeding. However, there is still some deficiency existing in the current WCE, for example, lack of ability to biopsy and precisely locate the pathology. This study aimed to prepare and characterize TiNiCu shape memory alloy thin films for developing microgripper for biopsy (tissue sampling and tagging) applications. Ti50Ni41Cu9 thin films were prepared by co-sputtering of TiNi and Cu targets, and their transformation temperatures were slightly above that of human body. Results from differential scanning calorimetry, in-situ X-ray diffraction, curvature and electrical resistance measurement revealed clearly martensitic transformation of the deposited TiNiCu films upon heating and cooling. The biocompatibility of the TiNiCu films in the simulated gastric and intestinal solutions was also studied. Results showed the release of Ni and Cu ions is much less than the toxic level and the film did not lose shape memory effect even after 10-day immersion in the simulated solutions. TiNiCu/Si micro-cantilevers with and without electrodes were fabricated using the conventional micromachining methods and apparent shape memory effect upon heating and cooling was demonstrated.

  4. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    PubMed

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  5. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    PubMed

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  6. X-ray absorption spectroscopy study of annealing process on Sr1-xLaxCuO2 electron-doped cuprate thin films

    NASA Astrophysics Data System (ADS)

    Galdi, A.; Orgiani, P.; Sacco, C.; Gobaut, B.; Torelli, P.; Aruta, C.; Brookes, N. B.; Minola, M.; Harter, J. W.; Shen, K. M.; Schlom, D. G.; Maritato, L.

    2018-03-01

    The superconducting properties of Sr1-xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1-xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.

  7. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  8. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining a wide surface band gap, as seen in Cu-poor films. A novel absorber was prepared Cu-rich with a final In-Se treatment to produce a Cu-poor surface, and compared directly to Cu-poor and Cu-rich produced samples. Despite reduced Cu at the surface, the novel absorber was found to have a surface band gap similar to that of traditional, Cu-poor grown absorbers. Furthermore, estimation of the near-surface bulk band gap suggests a narrowing of the band gap away from the surface, similar to highly efficient, Cu-poor grown absorbers. Long-term degradation is another concern facing solar cells, as heat and moistures stress can result in reduced efficiencies over time. The interface of the back contact material and absorber layer in (Au/Cu)/CdTe/CdS thin-film structures from the University of Toledo were investigated after a variety of accelerated stress treatments with the aim of further understanding the chemical and/or electronic degradation of this interface. Sulfur migration to the back contact was observed, along with the formation of Au-S and Cu-S bonds. A correlation between heat stress under illumination and the formation of Cu-Cl bonds was also found. Nanocomposite materials hold promise as a next-generation photovoltaic material and for use in LED devices, due in part to the unique ability to tune the absorption edge of the film by adjusting the semiconductor particle size, and the prospective for long-range charge-carrier (exciton) transport through the wide band gap matrix material. Thin films of CdTe were sputter deposited onto ZnO substrates at the University of Arizona and studied before and after a short, high temperature annealing to further understand the effects of annealing on the CdTe/ZnO interface. A clumping of the CdTe layer and the formation of Cd- and Te-oxides was observed using surface microscopy and photoelectron spectroscopy techniques. These findings help to evaluate post-deposition annealing as a treatment to adjust the final crystallinity and optoelectronic properties of these films. Through publication and/or discussion with collaborators, each project presented in this dissertation contributed to the understanding of the chemical and electronic properties of the material surface, near-surface bulk, and/or interfaces formed. The information gained on these unique chalcogenide materials will assist in designing more efficient and successful optoelectronic devices for the next generation of solar cells and LEDs.

  9. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  10. ThinPrep Pap-smear and cervical intraepithelial neoplasia in reproductive-aged Thai women.

    PubMed

    Rugpao, S; Koonlertkit, S; Ruengkrist, T; Lamlertkittikul, S; Pinjaroen, S; Limtrakul, A; Werawatakul, Y; Sinchai, W

    2009-06-01

    To estimate the incidence of abnormal cervical cytology by ThinPrep Pap-tests and cervical intraepithelial neoplasia (CIN) in young adult reproductive-aged Thai women. A total of 1254 women distributed in all regions of Thailand were monitored from 2002 through 2004. Women were screened for abnormal cervical cytology using the ThinPrep method every 6 months. Interpretation of cervical cytology was based on the Bethesda system, version 2001. Women who had the ThinPrep Pap results as atypical squamous cells of undetermined significance or worse underwent colposcopic examination. The ThinPrep and all cervical tissue samples obtained from diagnostic or therapeutic procedures were analyzed and reviewed by Covance Central Laboratory Service, Inc., Indianapolis, USA. The cumulative incidence of abnormal ThinPrep Pap-tests was as follows: 15.3 per 100 woman years (WY) (95% confidence interval [CI] 12.3, 18.9) at 6 months; 12.3 per 100 WY (95% CI 10.3, 14.6) at 12 months; and 11.6 per 100 WY (95% CI 10.0, 13.5) at 18 months. Of 1448.6 woman years of follow up, the incidence of CIN1 was 4.1 per 100 WY (95% CI 3.2, 5.3); CIN2 0.8 per 100 WY (95% CI 0.4, 1.4); and CIN3 0.6 per 100 WY (95% CI 0.3, 1.2). The incidence of abnormal ThinPrep Pap-test and CIN in young adult Thai women had been reported. No comparable data is available.

  11. Role of copper/vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan

    2018-04-01

    In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.

  12. Physical Characterization of Cu-Ni-P Thin Films aiming at Cu/Cu-Ni-P Thermocouples

    NASA Astrophysics Data System (ADS)

    Tomachevski, F.; Sparvoli, M.; dos Santos Filho, S. G.

    2015-03-01

    Cu-Ni-P thin films have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this work, (100) silicon surfaces were pre-activated in a diluted hydrofluoric acid solution containing PdCl2. Following, Cu-Ni-P thin films were chemically deposited using an alkaline chemical bath containing 15 g/l NiSO4.6H2O; 0.2 g/l CuSO4.5H2O; 15 g/l Na2HPO2.H2O and 60 g/l Na3C6H5O7.2H2O at temperature of 80 °C where NH4OH was added until pH was 8.0. It was noteworthy that the stoichiometric percentages of Ni and Cu vary substantially for immersion times in the range of 1 to 3 min and they become almost stable at 50% and 35%, respectively, when the immersion time is higher than 3 min. In addition, the percentage of P remains almost constant around 1718 % for all the immersion times studied. On the other hand, the sheet resistance also varies substantially for immersion times in the range of 1 to 3 min. Based on the surface morphology, smaller grains with size in the range of 0.02 to 0.1 μm are initially grown on the silicon surface and exposed regions of silicon without deposits are also observed for immersion times in the range of 1 to 3min. Therefore, the discontinuities and non uniformities of the films are promoting, respectively, the observed behaviours of sheet resistance and stoichiometry.

  13. Grain Growth in Cu2ZnSnS4 Thin Films Using Sn Vapor Transport for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Konishi, Takafumi; Seo, Yuichi; Tsuji, Ryotaro; Terai, Kengo; Nakashima, Yuto; Okamoto, Hiroaki; Tsutsumi, Yasuo

    2013-07-01

    Cu2ZnSnS4 thin films containing grains grown using Sn vapor transport (TVT) were investigated. Structural characterization revealed that the grain sizes were equal to or larger than the film thickness (1-4 µm) and significantly larger than those in the case of growth without TVT (60 nm). Furthermore, no phase separation was detected. Photothermal diffraction spectroscopy revealed that the optical absorption coefficient was very low in the subgap region, 7×101 cm-1, suggesting the suppression of defect formation. Finally, a TVT-processed thin film was used as an absorber in a solar cell, and a conversion efficiency of 6.9% was achieved.

  14. Temperature dependent fabrication of cost-effective and nontoxic Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films for solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Digraskar, Renuka, E-mail: renukad120@gmail.com; Sathe, Bhaskar, E-mail: bhaskarsathe@gmail.com; Gattu, Ketan

    2016-05-06

    In the present work, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been fabricated onto the glass substrate by simple and economic chemical bath deposition technique{sup 1}, and the effect of deposition temperature is reported. The deposition temperatures used were 50°C and 60°C for a deposition time of 60 min, which are significantly lower than earlier reports. These CZTS thin films were characterized for optical, electrical, morphological and elemental properties using, UV-Vis spectrophotometer, I-V system for photosensitivity, two probe resistivity system for resistivity, scanning electron microscopy, energy dispersive spectroscopy and Raman spectroscopy.

  15. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  16. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    DOEpatents

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  17. Anomalous creep in Sn-rich solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay

    2002-03-15

    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.

  18. Investigation on Structural and Optical Properties of Copper Telluride Thin Films with Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.

    The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.

  19. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Woong; Min, Byoung Koun

    2012-07-05

    A CuInS₂ (CIS) nanocrystal ink was applied to thin film solar cell devices with superstrate-type configuration. Monodispersed CIS nanocrystals were synthesized by a colloidal synthetic route and re-dispersed in toluene to form an ink. A spray method was used to coat CIS films onto conducting glass substrates. Prior to CIS film deposition, TiO₂ and CdS thin films were also prepared as a blocking layer and a buffer layer, respectively. We found that both a TiO₂ blocking layer and a CdS buffer layer are necessary to generate photoresponses in superstrate-type devices. The best power conversion efficiency (∼1.45%) was achieved by the CIS superstrate-type thin film solar cell device with 200 and 100 nm thick TiO₂ and CdS films, respectively.

  20. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    PubMed

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willian de Souza Lucas, Francisco; Peng, Haowei; Johnston, Steve

    Copper antimony disulfide (CuSbS 2) has several excellent bulk optoelectronic properties for photovoltaic absorber applications. Here, we report on the defect properties in CuSbS 2thin film materials and photovoltaic devices studied using several experimental methods supported by theoretical calculations.

  2. Optoelectrical, structural and morphological characterization of Cu2ZnSnSe4 compound used in photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Leguizamon, A.; Dussan, A.; Gordillo, G.

    2016-10-01

    In this work, results are reported concerning the effect of the deposition parameters on the structural properties of Cu2ZnSnSe4 (CZTSe) thin films, grown through a chemical reaction of the metallic precursors by co-evaporation in a two-stage process. XRD measurements revealed that the samples deposited by selenization of Cu and Sn grow in the kesterite phase (CZTSe), respectively. Effect of the deposition temperature and mass ratio Cu/ZnSe on the transport properties of CZTSe films were analyzed. It was also found that the electrical conductivity of the thin films is affected by the transport of free carriers in extended states of the conduction band as well as for variable range hopping transport mechanisms, each one predominating in a different temperature range. The molecular and morphological effect on the compound through Raman and AFM measurements was studied.

  3. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  4. Hall effect of copper nitride thin films

    NASA Astrophysics Data System (ADS)

    Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.

    2005-08-01

    The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.

  5. Internal structure of copper(II)-phthalocyanine thin films on SiO2/Si substrates investigated by grazing incidence x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Strössner, F.; Evans, D. A.; Clark, G. F.

    2006-04-01

    The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO2/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the α form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO2/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.

  6. Preparation of TlBa2Ca2Cu3O9±δ high Tc thin films by laser ablation in combination with thermal evaporation of thallium oxide

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Löw, R.; Betz, J.; Schönberger, R.; Renk, K. F.

    1993-11-01

    TlBa2Ca2Cu3O9±δ high Tc thin films were prepared on MgO <100> surfaces by a combination of laser ablation from a stoichiometric Ba2Ca2Cu3Ox target and the thermal evaporation of thallium oxide. X-ray diffraction measurements showed that the films consisted of predominantly c axis oriented TlBa2Ca2Cu3O9±δ, and scanning electron microscopy revealed that the surfaces had a flat, platelike morphology. The ac inductive measurements indicated that the onset of superconductivity occurred at 117 K with a transition width (10%-90%) of ˜3 K. Zero resistivity was reached at 120 K. The critical current density was ˜3×104 A/cm2 at 110 K.

  7. Influence of support electrolytic in the electrodeposition of CuGaSe thin films

    DOE PAGES

    Fernandez, A. M.; Turner, J. A.; Lara-Lara, B.; ...

    2016-11-02

    CuGaSe 2 is an important thin film electronic material that possesses several attributes that make it appealing for solar energy conversion. Because of its properties it can be incorporated in to various devices, among the greatest highlights are photovoltaic cells, as well as its potential use as photocathodes for hydrogen production, via the photoelectrolysis. There are several methods of its preparation, most notably electrodeposition that has the potential for large areas and high volumes. Electrodeposition of ternary and/or quaternary semiconductors generally proceeds via the formation of a binary, which is subsequently reacted to form the ternary compound. Several conditions mustmore » be controlled to form binary compounds that include the use of complexing agents, buffers, temperature, etc. Here, we discuss the effect of anion composition in the electrolytic bath and the type of lithium salts, in order to manipulate the atomic concentration of CuGaSe 2 during the electrodeposition of thin films, yielding copper-rich, gallium-rich or stoichiometric thin films. Finally, we present the results of a study on the morphology and structure obtained using two types of substrates both before and after performing a heat treatment.« less

  8. Influence of support electrolytic in the electrodeposition of CuGaSe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, A. M.; Turner, J. A.; Lara-Lara, B.

    CuGaSe 2 is an important thin film electronic material that possesses several attributes that make it appealing for solar energy conversion. Because of its properties it can be incorporated in to various devices, among the greatest highlights are photovoltaic cells, as well as its potential use as photocathodes for hydrogen production, via the photoelectrolysis. There are several methods of its preparation, most notably electrodeposition that has the potential for large areas and high volumes. Electrodeposition of ternary and/or quaternary semiconductors generally proceeds via the formation of a binary, which is subsequently reacted to form the ternary compound. Several conditions mustmore » be controlled to form binary compounds that include the use of complexing agents, buffers, temperature, etc. Here, we discuss the effect of anion composition in the electrolytic bath and the type of lithium salts, in order to manipulate the atomic concentration of CuGaSe 2 during the electrodeposition of thin films, yielding copper-rich, gallium-rich or stoichiometric thin films. Finally, we present the results of a study on the morphology and structure obtained using two types of substrates both before and after performing a heat treatment.« less

  9. Critical current density of TlBa 2Ca 2Cu 3O 9 thin films on MgO (100) in magnetic fields

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Ströbel, J. P.; Reschauer, N.; Löw, R.; Schönberger, R.; Renk, K. F.; Kraus, M.; Daniel, J.; Saemann-Ischenko, G.

    1994-04-01

    We report on the critical current density of TlBa 2Ca 2Cu 3O 9 thin films on (100) MgO substrates in magnetic fields. Single- phase and highly c-axis oriented thin films were prepared by laser ablation in combination with thermal evaporation of Tl 2O 3. Scanning electron microscope investigations indicated a flat plate-like microstructure and DC magnetization measurements showed the onset of superconductivity at ∼ 115 K. The critical current density jc was determined from magnetization cycles. Typical values of jc were 9 × 10 5 A/cm 2 at 6 K and 2.5 × 10 5 A/cm 2 at 77 K. In a magnetic field to 1 T applied parallel to the c-axis the critical current densities were 3 × 10 5 A/cm 2 at 6 K and 3 × 10 3 A/cm 2 at 77 K. The decrease of jc at higher magnetic fields is discussed and attributed to the microstructure of the TlBa 2Ca 2Cu 3O 9 thin films.

  10. BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy

    BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.

  11. Analyte chemisorption and sensing on n- and p-channel copper phthalocyanine thin-film transistors.

    PubMed

    Yang, Richard D; Park, Jeongwon; Colesniuc, Corneliu N; Schuller, Ivan K; Royer, James E; Trogler, William C; Kummel, Andrew C

    2009-04-28

    Chemical sensing properties of phthalocyanine thin-film transistors have been investigated using nearly identical n- and p-channel devices. P-type copper phthalocyanine (CuPc) has been modified with fluorine groups to convert the charge carriers from holes to electrons. The sensor responses to the tight binding analyte dimethyl methylphosphonate (DMMP) and weak binding analyte methanol (MeOH) were compared in air and N(2). The results suggest that the sensor response involves counterdoping of pre-adsorbed oxygen (O(2)). A linear dependence of chemical response to DMMP concentration was observed in both n- and p- type devices. For DMMP, there is a factor of 2.5 difference in the chemical sensitivity between n- and p-channel CuPc thin-film transistors, even though it has similar binding strength to n- and p-type CuPc molecules as indicated by the desorption times. The effect is attributed to the difference in the analyte perturbation of electron and hole trap energies in n- and p-type materials.

  12. Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo

    2018-06-01

    Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.

  13. Changes in chemical and optical properties of thin film metal mirrors on LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.

    1995-01-01

    Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.

  14. Magnon dispersion in thin magnetic films.

    PubMed

    Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W

    2014-10-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.

  15. Study of the optical properties of CuAlS2 thin films prepared by two methods

    NASA Astrophysics Data System (ADS)

    Ahmad, S. M.

    2017-04-01

    CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.

  16. Investigation of the 66Zn(p,2pn) 64Cu and 68Zn(p,x) 64Cu nuclear processes up to 100 MeV: Production of 64Cu

    NASA Astrophysics Data System (ADS)

    Szelecsényi, F.; Steyn, G. F.; Kovács, Z.; Vermeulen, C.; van der Meulen, N. P.; Dolley, S. G.; van der Walt, T. N.; Suzuki, K.; Mukai, K.

    2005-11-01

    Cross-sections of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes were measured on highly enriched zinc targets using the stacked-foil activation technique up to 100 MeV. The new cross-sections were compared to literature data. The optimum energy range for production of 64Cu was found to be 70 → 35 MeV on 66Zn and 37 → 20 MeV on 68Zn. The thick-target yields were determined as 777 MBq/μAh (21.0 mCi/μAh) and 185 MBq/μAh (5.0 mCi/μAh), respectively. The yields of the longer-lived contaminant copper radioisotopes (i.e. 61Cu when using 66Zn as target material and both 61Cu and 67Cu in the case of 68Zn target material) were also calculated. The results obtained from the present study indicate that both reactions are suited for the production of 64Cu at a medium energy cyclotron. The optimum energy ranges are also complementary therefore the potential to utilize tandem targetry exists.

  17. Photon induced facile synthesis and growth of CuInS2 absorber thin film for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Jiu, Jinting; Suganuma, Katsuaki

    2016-04-01

    In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS2 (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In2S3 to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm2 is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  18. Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. T.; Cao, C. R.; Huang, K. Q.

    2014-08-04

    The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for themore » much better GFA of the ZrCuAl metallic glass.« less

  19. Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers

    NASA Astrophysics Data System (ADS)

    Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.

    Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.

  20. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less

  1. Role of target-substrate distance on the growth of CuInSe{sub 2} thin films by pulsed laser ablation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Dhruvashi; Department of Electronic Science, University of Delhi South Campus, Delhi 110021

    2016-05-06

    CuInSe{sub 2} thin films have been deposited on corning glass substrates by pulsed laser ablation technique. The chamber pressure and substrate temperature was maintained at 1 × 10{sup −6} torr and 550°C respectively during deposition of the films. The influence of target to substrate (T-S) distance on the structural and optical properties of thin films have been investigated by grazing incidence x-ray diffraction, Raman spectroscopy, scanning electron microscope and UV-Vis-NIR spectroscopy. The study reveals that thin films crystallized in a chalcopyrite structure with highly preferential orientation along (112) plane. Optimum T-S distance has been attained for the growth of thinmore » films with large grain size. An intense Raman peak at 174 cm{sup −1} corresponding to dominant A{sub 1} vibration mode is gradually shifted to smaller wavenumber with the increase in T-S distance. The optical bandgap energy of the films was evaluated and found to vary with the T-S distance. The bandgap tailing was observed to obey the Urbach rule and the Urbach energy was also calculated for the films. Scanning electron micrographs depicts uniform densely packed grains and EDAX studies revealed the elemental composition of CuInSe{sub 2} thin films.« less

  2. Coupled, Simultaneous Displacement and Dealloying Reactions into Fe-Ni-Co Nanowires for Thinning Nanowire Segments.

    PubMed

    Geng, Xiaohua; Podlaha, Elizabeth J

    2016-12-14

    A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

  3. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  4. Role of the copper-oxygen defect in cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.

  5. Annealing Effects on the Formation of Copper Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Marzuki, Marina; Zamzuri Mohamad Zain, Mohd; Zarul Hisham, Nurazhra; Zainon, Nooraizedfiza; Harun, Azmi; Nani Ahmad, Rozie

    2018-03-01

    This study approached the simple method of developing CuO thin films by thermal oxidation on pure Cu sheets. The effects of annealing temperature on the formation of CuO layers have been investigated. The oxide layers have been fabricated by annealing of Cu sheets for 5 hours at different temperatures of 980 ~ 1010 °C. The morphologies and optical properties of annealed Cu sheets were studied by using SEM and UV-Vis spectrophotometer respectively. It is revealed that the annealing temperature influence the grain growth and the grain size increases as the temperature increase. The highest grain size was observed on sample annealed at 1000 °C with average area per grain size of 0.023 mm2. Theoretically, larger grain size provides less barriers for electron mobility and increase the efficiency of solar devices. The optical absorption spectra of the oxide films was also measured. Interference pattern was noted at wavelength about 900 nm corresponding to the formation of CuO film. The interference noise observed could be due to the coarse surface and the presence of powdery oxide deposits that causes the scattering loses from the surface. CuO film obtained by this method may be further studied and exploited as low cost photovoltaic device.

  6. Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

    NASA Astrophysics Data System (ADS)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-02-01

    CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new “Time-Temperature-Reaction” (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS2 to appear is substantially lower than for Cu3BiS3, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation.

  7. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Meng; Nakayama, Miki; Liu, Ping

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  8. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE PAGES

    Xue, Meng; Nakayama, Miki; Liu, Ping; ...

    2017-09-13

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  9. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    PubMed

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  10. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  11. Theoretical and experimental studies on wide-band-gap p-type conductive BaCuSeF and related compounds

    NASA Astrophysics Data System (ADS)

    Sakakima, Hiroshi; Nishitani, Mikihiko; Yamamoto, Koichi; Wada, Takahiro

    2015-08-01

    BaCuSeF and related compounds, MCuQF (M = Ba, Sr; Q = Se, S), are known to show p-type conduction. The formation energies of the Cu vacancy ΔH[VCu] in a MCuQF system were computed by first-principles calculation with a generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional as an electron exchange and correlation functional. The density of states (DOS) of BaCuSeF was calculated with the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) 06. ΔH[VCu] was found to be very small under both the Cu- and Q-rich conditions, which probably contributes to p-type conduction. The electronic structure of BaCuSeF was studied by X-ray photoelectron spectroscopy (XPS) with UV photoelectron yield spectroscopy (UVPYS) and photoemission yield spectroscopy (PYS). The determined depth of the top of the valence band relative to the vacuum level was about 4.9 eV. This value is desirable for applications in compound semiconductor thin-film tandem solar cells since the absorbers of polycrystalline thin-film solar cells, such as CdTe and Cu(In,Ga)Se2, are p-type semiconductors. The DOS of BaCuSeF calculated with the HSE06 functional was almost consistent with the XPS spectrum.

  12. Multi-functional properties of CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.

    2012-09-01

    In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.

  13. Influence of vacuum annealing on the properties of Cu2SnS3 thin films using low cost ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab

    2018-05-01

    Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.

  14. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  15. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  16. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    PubMed

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  17. Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering

    NASA Astrophysics Data System (ADS)

    Perrone, A.; D'Elia, M.; Gontad, F.; Di Giulio, M.; Maruccio, G.; Cola, A.; Stankova, N. E.; Kovacheva, D. G.; Broitman, E.

    2014-07-01

    Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.

  18. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    NASA Astrophysics Data System (ADS)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  19. Encapsulation of the heteroepitaxial growth of wide band gap γ-CuCl on silicon substrates

    NASA Astrophysics Data System (ADS)

    Lucas, F. O.; O'Reilly, L.; Natarajan, G.; McNally, P. J.; Daniels, S.; Taylor, D. M.; William, S.; Cameron, D. C.; Bradley, A. L.; Miltra, A.

    2006-01-01

    γ-CuCl semiconductor material has been identified as a candidate material for the fabrication of blue-UV optoelectronic devices on Si substrates due to its outstanding electronic, lattice and optical properties. However, CuCl thin films oxidise completely into oxyhalides of Cu II within a few days of exposure to air. Conventional encapsulation of thin γ-CuCl by sealed glass at a deposition/curing temperature greater than 250 °C cannot be used because CuCl interacts chemically with Si substrates when heated above that temperature. In this study we have investigated the behaviour of three candidate dielectric materials for use as protective layers for the heteroepitaxial growth of γ-CuCl on Si substrates: SiO 2 deposited by plasma-enhanced chemical vapour deposition (PECVD), organic polysilsesquioxane-based spin on glass material (PSSQ) and cyclo olefin copolymer (COC) thermoplastic-based material. The optical properties (UV/Vis and IR) of the capped luminescent CuCl films were studied as a function of time, up to 28 days and compared with bare uncapped films. The results clearly show the efficiency of the protective layers. Both COC and the PSSQ layer prevented CuCl film from oxidising while SiO 2 delayed the effect of oxidation. The dielectric constant of the three protective layers was evaluated at 1 MHz to be 2.3, 3.6 and 6.9 for C0C, SiO 2 and PSSQ, respectively.

  20. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  1. Prevalence of overweight, obesity and thinness in 9-10 year old children in Mauritius.

    PubMed

    Caleyachetty, Rishi; Rudnicka, Alicja R; Echouffo-Tcheugui, Justin B; Siegel, Karen R; Richards, Nigel; Whincup, Peter H

    2012-07-23

    To document the prevalence of overweight, obesity and thinness in 9-10 year old children in Mauritius. 412 boys and 429 girls aged 9-10 years from 23 primary schools were selected using stratified cluster random sampling. All data was cross-sectional and collected via anthropometry and self-administered questionnaire. Outcome measures were BMI (kg/m2), prevalence of overweight, obesity (International Obesity Task Force definitions) and thinness (low BMI for age). Linear and logistic regression analyses, accounting for clustering at the school level, were used to assess associations between gender, ethnicity, school location, and school's academic performance (average) to each outcome measure. The distribution of BMI was marginally skewed with a more pronounced positive tail in the girls. Median BMI was 15.6 kg/m2 in boys and 15.4 kg/m2 in girls, respectively. In boys, prevalence of overweight was 15.8% (95% CI: 12.6, 19.6), prevalence of obesity 4.9% (95% CI: 3.2, 7.4) and prevalence of thinness 12.4% (95% CI: 9.5, 15.9). Among girls, 18.9% (95% CI: 15.5, 22.9) were overweight, 5.1% (95% CI: 3.4, 7.7) were obese and 13.1% (95% CI: 10.2, 16.6) were thin. Urban children had a slightly higher mean BMI than rural children (0.5 kg/m2, 95% CI: 0.01, 1.00) and were nearly twice as likely to be obese (6.7% vs. 4.0%; adjusted odds ratio 1.6; 95% CI: 0.9, 3.5). Creole children were less likely to be classified as thin compared to Indian children (adjusted odds ratio 0.3, 95% CI: 0.2, 0.6). Mauritius is currently in the midst of nutritional transition with both a high prevalence of overweight and thinness in children aged 9-10 years. The coexistence of children representing opposite sides of the energy balance equation presents a unique challenge for policy and interventions. Further exploration is needed to understand the specific causes of the double burden of malnutrition and to make appropriate policy recommendations.

  2. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Sappal, Ravinder; MacDougald, Michelle; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-08-01

    Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of HRO and Cu were most common in CI and II respiratory indices. Our study suggests that warm acclimation blunts sensitivity of the ETS to temperature rise and that HRO and warm acclimation impose mitochondrial changes that sensitize the ETS to Cu. Overall, our study highlights the significance of the ETS in mitochondrial bioenergetic dysfunction caused by thermal stress, HRO and Cu exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Organic/carbon nanotubes hybrid thin films for chemical detection

    NASA Astrophysics Data System (ADS)

    Banimuslem, Hikmat Adnan

    Metallophthalocyanines (MPcs) are classified as an important class of conjugated materials and they possess several advantages attributed to their unique chemical structure. Carbon nanotubes (CNT), on the other hand, are known to enhance the properties of nano-composites in the conjugated molecules, due to their one dimensional electronic skeleton, high surface area and high aspect ratio. In this thesis, work has been carried out on the investigation of different substituted metal-phthalocyanines with the aim of developing novel hybrid film structures which incorporates these phthalocyanines and single-walled carbon nanotubes (SWCNT) for chemical detection applications. Octa-substituted copper phthalocyanines (CuPcR[8]) have been characterised using UV-visible absorption spectroscopy. Obtained spectra have yielded an evidence of a thermally induced molecular reorganization in the films. Influence of the nature of substituents in the phthalocyanine molecule on the thin films conductivity was also investigated. Octa-substituted lead (II) phthalocyanines (PbPcR[8]) have also been characterized using UV-visible spectroscopy. Sandwich structures of ITO/PbPcR[8]/In were prepared to investigate the electronic conduction in PbPcR[8]. The variation in the J(V) behavior of the films as a result of heat treatment is expected to be caused by changes in the alignment inside the columnar stacking of the molecules of the films. Thin films of non-covalently hybridised SWCNT and tetra-substituted copper phthalocyanine (CuPcR[4]) molecules have been produced. FTIR, DC conductivity, SEM and AFM results have revealed the [mathematical equation]; interaction between SWCNTs and CuPCR[4] molecules and shown that films obtained from the acid-treated SWCNTs/CuPcR[4] hybrids demonstrated more homogenous surface. Thin films of pristine CuPCR[4] and CuPcR[4]/S WCNT were prepared by spin coating onto gold-coated glass slides and applied as active layers for the detection of benzo[a]pyrene, pentachlorophenol (PCP), 2-chlorophenol, diuron and simazine in water as well as amines vapours in ambient air utilizing total internal reflection spectroscopic ellipsometry (TIRE) as an optical detection method. Different concentrations of pesticides in water ranging from 1 to 25 mug/L have been examined. It was revealed that the shifts in [mathematical equation] spectra of CuPcR[4]SWCNT films were evidently larger than those produced by the pristine CuPcR[4] films, indicating largely improved films' sensitivity of the hybrid films. Adsorption of amines onto films' surfaces has been realised by monitoring changes in the phase shift [mathematical equation] of TIRE. Methylamine has shown higher sensitivity and lower response time among the studied amines. For all amines vapours, the sensitivity of SWCNT/CuPcR[4] hybrid films was higher than the sensitivity of pristine Cu[1]PCR[4] films. Further work has been carried out on hybrids of SWCNT with zinc phthalocyanines (ZnPc). Thin films of pristine SWCNT and SWCNT/ZnPc hybrids were prepared by drop casting onto interdigitated electrodes and applied as active layers to detect ammonia vapor by measuring electrical resistance changes. Influence of pyrene substituent in the phthalocyanine ring on the hybrid formation and their sensor response has also been verified.

  4. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films.

    PubMed

    Ehiasarian, A; Pulgarin, Cesar; Kiwi, John

    2012-11-01

    The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray-brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu(2)O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R (q) and R (a) were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.

  5. Characterization of defects in copper antimony disulfide

    DOE PAGES

    Willian de Souza Lucas, Francisco; Peng, Haowei; Johnston, Steve; ...

    2017-09-19

    Copper antimony disulfide (CuSbS 2) has several excellent bulk optoelectronic properties for photovoltaic absorber applications. Here, we report on the defect properties in CuSbS 2thin film materials and photovoltaic devices studied using several experimental methods supported by theoretical calculations.

  6. Effect of Substrates on the Photoelectrochemical Reduction of Water over Cathodically Electrodeposited p-Type Cu2O Thin Films.

    PubMed

    Shyamal, Sanjib; Hajra, Paramita; Mandal, Harahari; Singh, Jitendra Kumar; Satpati, Ashis Kumar; Pande, Surojit; Bhattacharya, Chinmoy

    2015-08-26

    In this study, we demonstrate development of p-Cu2O thin films through cathodic electrodeposition technique at constant current of 0.1 mA/cm(2) on Cu, Al, and indium tin oxide (ITO) substrates from basic CuSO4 solution containing Triton X-100 as the surfactant at 30-35 °C. The optical and morphological characterizations of the semiconductors have been carried out using UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The band gap energy of ∼2.1 eV is recorded, whereas SEM reveals that the surface morphology is covered with Cu2O semiconductors. XRD analyses confirm that with change in substrate, the size of Cu2O "cubic" crystallites decreases from ITO to Al to Cu substrates. Photoelectrochemical characterizations under dark and illuminated conditions have been carried out through linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopic analysis. The photoelectrochemical reduction of water (H2O → H2) in pH 4.9 aqueous solutions over the different substrates vary in the order of Cu > Al > ITO. The highest current of 4.6 mA/cm(2) has been recorded over the Cu substrate even at a low illumination of 35 mW/cm(2), which is significantly higher than the values (2.4 mA/cm(2) on Au coated FTO or 4.07 mA/cm(2) on Cu foil substrate at an illumination of 100 mW/cm(2)) reported in literature.

  7. Callous-unemotional traits, proactive aggression, and treatment outcomes of aggressive children with attention-deficit/hyperactivity disorder.

    PubMed

    Blader, Joseph C; Pliszka, Steven R; Kafantaris, Vivian; Foley, Carmel A; Crowell, Judith A; Carlson, Gabrielle A; Sauder, Colin L; Margulies, David M; Sinha, Christa; Sverd, Jeffrey; Matthews, Thomas L; Bailey, Brigitte Y; Daviss, W Burleson

    2013-12-01

    Stimulant treatment improves impulse control among children with attention-deficit/hyperactivity disorder (ADHD). Decreased aggression often accompanies stimulant pharmacotherapy, suggesting that impulsiveness is integral to aggressive behavior in these children. However, children with high callous-unemotional (CU) traits and proactive aggression may benefit less from ADHD pharmacotherapy, because their aggressive behavior seems more purposeful and deliberate. This study's objective was to determine whether pretreatment CU traits and proactive aggression affect treatment outcomes among aggressive children with ADHD receiving stimulant monotherapy. We implemented a stimulant optimization protocol with 160 children 6 to 13 years of age (mean [SD] age of 9.31 [2.02] years; 78.75% male) with ADHD, oppositional defiant or conduct disorder, and significant aggressive behavior. Family-focused behavioral intervention was provided concurrently. The primary outcome was the Retrospective Modified Overt Aggression Scale. The Antisocial Process Screening Device and the Aggression Scale, also completed by parents, measured CU traits and proactive aggression, respectively. Analyses examined moderating effects of CU traits and proactive aggression on outcomes. In all, 82 children (51%) experienced remission of aggressive behavior. Neither CU traits nor proactive aggression predicted remission (CU traits: odds ratio [OR] = 0.94, 95% CI = 0.80-1.11; proactive aggression, OR = 1.05, 95% CI = 0.86-1.29). Children whose overall aggression remitted showed decreases in CU traits (effect size = -0.379, 95% CI = -0.60 to -0.16) and proactive aggression (effect size = -0.463, 95% CI = -0.69 to -0.23). Findings suggest that pretreatment CU traits and proactive aggression do not forecast worse outcomes for aggressive children with ADHD receiving optimized stimulant pharmacotherapy. With such treatment, CU traits and proactive aggression may decline alongside other behavioral improvements. Clinical trial registration information--Medication Strategies for Treating Aggressive Behavior in Youth With Attention Deficit Hyperactivity Disorder; http://clinicaltrials.gov/; NCT00228046; and Effectiveness of Combined Medication Treatment for Aggression in Children With Attention Deficit With Hyperactivity Disorder (The SPICY Study); http://clinicaltrials.gov/; NCT00794625. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.

    2016-10-01

    Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first-principles calculations compare well, thus suggesting that such calculations have the potential to be used in screening various metal oxide heterojunction before performing the experiments thereby saving precious chemicals, time and energy. Keywords: Photoelectrochemical, Water splitting, heterojunction, Cu2O, BaTiO3 References: [1] Surbhi Choudhary, et al. Nanostructured bilayered thin films in photoelectrochemical water splitting - A review: International Journal of Hydrogen Energy, (2012). [2] Dipika Sharma, Anuradha Verma, V.R. Satsangi, Rohit shrivastav, Sahab Dass Nanostructured SrTiO3 thin films sensitized by Cu2O for Photoelectrochemical Hydrogen Generation. International journal of Hydrogen Energy;42:,4230-4241, 2014.

  9. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    PubMed

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  10. Direct observation of vortex structure in a high-{Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} thin film by Bitter decoration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Akira; Yamaguchi, Tetsuji; Iguchi, Ienari

    1999-12-01

    The Bitter decoration technique is one of the most powerful techniques to study the vortex structure of superconductor. The authors report the observation of vortex structure in a high {Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (YBCO) thin film by Bitter decoration method. The image of vortex structure was monitored by SEM, AFM and high resolution optical microscope. For magnetic field about 4--6mT, a vortex structure is seen. The vortex image varied with changing magnetic field. As compared with the vortex image of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal, the observed image appeared to be more randomly distributed.

  11. Degradation of Polymer-Coated Materials

    DTIC Science & Technology

    2013-10-01

    Al and Al - Cu alloy metallizations about 800 nm thick were deposited on glass substrates and...accumulation under corrosion resistant organic coatings. Al and Al - Cu alloy metallizations about 800 nm thick were deposited on glass substrates and then...exposed to salt spray chamber for 16 days. Figure 1.4.10 Images of corrosion sites in Al - Cu thin film at “As deposited ” condition under

  12. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  13. Spray CVD for Making Solar-Cell Absorber Layers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  14. A quick method for AlCu interconnect electromigration performance predicting and monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Yi, Leeward; Tao, Kai; Ma, Yue; Chang, Pingyi; Mao, Duli; Wu, Jin; Zou, S. C.

    2006-05-01

    The film properties and microstructures of (bottom)Si/SiO2/Ti(top) and (bottom)Si/SiO2/Ti/TiN/AlCu(top) stacks deposited by different processes were characterized. The resistivities of thin Ti films and the reflectivities of AlCu alloy films were found to correlate with the microstructure as well as the mean time to failure (MTTF) in the electromigration (EM) test. A quick-turn monitor for AlCu interconnect reliability in the semiconductor manufacturing industry was established.

  15. Surface plasmon resonance and nonlinear optical behavior of pulsed laser-deposited semitransparent nanostructured copper thin films

    NASA Astrophysics Data System (ADS)

    Kesarwani, Rahul; Khare, Alika

    2018-06-01

    In this paper, surface plasmon resonance (SPR) and nonlinear optical properties of semitransparent nanostructured copper thin films fabricated on the glass substrate at 400 °C by pulsed laser deposition technique are reported. The thickness, linear absorption coefficient and linear refractive index of the films were measured by spectroscopic ellipsometer. The average particle size as measured via atomic force microscope was in the range of 12.84-26.02 nm for the deposition time ranging from 5 to 10 min, respectively. X-ray diffraction spectra revealed the formation of Cu (111) and Cu (200) planes. All these thin films exhibited broad SPR peak. The third-order optical nonlinearity of all the samples was investigated via modified z-scan technique using cw laser at a wavelength of 632.8 nm. The open aperture z-scan spectra of Cu thin film deposited for 5 min duration exhibited reverse saturation absorption whereas all the other samples displayed saturation absorption behavior. The nonlinear refractive index coefficient of these films showed a positive sign having the magnitude of the order of 10- 4 cm/W. The real and imaginary parts of susceptibilities were also calculated from the z-scan data and found to be of the order of 10- 6 esu.

  16. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sağlam, M.; Güzeldir, B., E-mail: msaglam@atauni.edu.tr

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR)more » method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ{sub b}), series resistance (R{sub s}), leakage current (I{sub 0}), and interface states (N{sub ss}) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.« less

  18. Strategies to improve the electrochemical performance of electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Che

    Lithium-ion batteries are widely used in consumer market because of their lightweight and rechargeable property. However, for the application as power sources of hybrid electric vehicles (HEVs), which need excellent cycling performance, high energy density, high power density, capacity, and low cost, new materials still need to be developed to meet the demands. In this dissertation work, three different strategies were developed to improve the properties of the electrode of lithium batteries. First, the voltage profile and lithium diffusion battier of LiM1/2Mn 3/2O4 (M=Ti, V, Cr, Fe, Co, Ni and Cu) were predicted by first principles theory. The computation results suggest that doping with Co or Cu can potentially lower Li diffusion barrier compared with Ni doping. Our experimental research has focused on LiNixCuyMn 2-x-yO4 (0

  19. Synthesis and photosensor study of as-grown CuZnO thin film by facile chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    We have successfully deposited CuZnO thin film on a glass substrate by facile chemical bath deposition method at 85 °C for 1 hr. Structural, topographical, Optical and Electrical properties of the prepared Thin Films were investigated by XRD, Raman spectrum, AFM, UV-Visible Spectrophotometer and I-V Measurement System respectively. The X-ray diffraction (XRD) pattern confirmed the formation of the CuZnO composition when compared with standard JCPDS card (JCPDF # 75-0576 & # 36-1451). The Raman analysis shows a major peak at 458 cm-1 with E2 (High) vibrational mode. AFM images revealed uniform deposition over an entire glass substrate with 66.2 nm average roughness of the film. From the optical absorption spectrum, clear band edge around ˜407 nm was observed which results in a wide energy band gap of ˜3.04 eV. The electrical properties were measured at room temperature in the voltage range ±5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜99.9 % for 260 W.

  20. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  1. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    PubMed

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  2. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  3. The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates

    NASA Astrophysics Data System (ADS)

    Gao, J.; Tang, W. H.; Yau, C. Y.

    2001-11-01

    Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.

  4. Photoluminescence spectra of thin films of ZnTPP–C{sub 60} and CuTPP–C{sub 60} molecular complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elistratova, M. A., E-mail: marina.elistratova@mail.ioffe.ru; Zakharova, I. B.; Romanov, N. M.

    2016-09-15

    The results of studies of thin composite films of zinc and copper tetraphenylporphyrins with different fractions of fullerene C{sub 60} are reported. The photoluminescence spectra are recorded, and the composition and surface morphology are analyzed by means of scanning electron microscopy. The results show a difference in the structure of films with two types of metals (Zn, Cu) entering into the complex of the porphyrin macrocycle. An additional long-wavelength photoluminescence band at 1.4 eV is detected for the first time, which is evidence of the formation of ZnTPP–C{sub 60} molecular complexes from a gas-dynamic vapor flow upon condensation. In CuTPPmore » thin films, the processes of self-assembly into nanowires 20 nm in diameter and up to 50 µm in length and the formation of nanoheterojunctions upon the addition of fullerene C{sub 60} are observed. Quantum-chemical calculations in the context of density-functional theory are carried out to interpret the experimental data.« less

  5. A mechanism of Cu work function reduction in CsBr/Cu photocathodes

    DOE PAGES

    Halliday, M. T. E.; Hess, W. P.; Shluger, A. L.

    2016-02-15

    Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance remain poorly understood. We present density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of structure and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the work function by around 1.5 eV, which would explain the exponential increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. In conclusion, a modelmore » explaining experimentally observed laser activation of photocathode is provided whereby the photo-induced creation of di-vacancies at the surface, and their subsequent diffusion throughout the lattice and segregation at the interface leads to a further increase in QE after a period of laser irradiation.« less

  6. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  7. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    NASA Astrophysics Data System (ADS)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  8. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  9. Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Senty, Tess; Joshi, Toyanath; Trappen, Robbyn; Zhou, Jinling; Chen, Song; Ferrari, Piero; Borisov, Pavel; Song, Xueyan; Holcomb, Mikel; Bristow, Alan; Cabrera, Alejandro; Lederman, David

    2015-03-01

    Growth of pure phase delafossite CuFeO2 thin films on Al2O3 (00.1) substrates by pulsed laser deposition was systematically investigated as function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO2 films demonstrated a phase transition at TC = 15K, which agrees with the first antiferromagnetic transition at 14K in the bulk CuFeO2. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract #2013-MA-2382) at WVU. Work at PUC was supported by FONDECyT.

  10. Material Design of p-Type Transparent Amorphous Semiconductor, Cu-Sn-I.

    PubMed

    Jun, Taehwan; Kim, Junghwan; Sasase, Masato; Hosono, Hideo

    2018-03-01

    Transparent amorphous semiconductors (TAS) that can be fabricated at low temperature are key materials in the practical application of transparent flexible electronics. Although various n-type TAS materials with excellent performance, such as amorphous In-Ga-Zn-O (a-IGZO), are already known, no complementary p-type TAS has been realized to date. Here, a material design concept for p-type TAS materials is proposed utilizing the pseudo s-orbital nature of spatially spreading iodine 5p orbitals and amorphous Sn-containing CuI (a-CuSnI) thin film is reported as an example. The resulting a-CuSnI thin films fabricated by spin coating at low temperature (140 °C) have a smooth surface. The Hall mobility increases with the hole concentration and the largest mobility of ≈9 cm 2 V -1 s -1 is obtained, which is comparable with that of conventional n-type TAS. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication and characterization of Cu/sub 2/S-CdZnS solar cells. Final report. Realisation et caracterisation de cellules solaires Cu/sub 2/S-CdZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadene, M.

    Thin films of Cd sub(1-y)Zn sub y S (0 < y < 0.2) have been prepared either by thermal evaporation of the powdered solids from a single crucible, or by rapid evaporation from two crucibles. Different methods were used to characterise the films according to their structural, electrical and electron-optical properties as a function of the amount of Zn in the film. Both liquid-phase and solid-phase ion exchange processes have been used to deposit a thin film of Cu/sub 2/S on the Cd sub(1-y)Zn sub y S film to produce a p-n hetero-junction. A study of the growth of themore » Cd/sub 2/S layer has been carried out. Photocurrents and voltages have been determined for these Cu/sub 2/S-CdZnS cells.« less

  12. Epitaxial growth of YBa2Cu3O7 - delta films on oxidized silicon with yttria- and zirconia-based buffer layers

    NASA Astrophysics Data System (ADS)

    Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.

    1993-09-01

    A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.

  13. 10.3%-efficient submicron-thick Cu(In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan

    2018-06-01

    We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.

  14. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Lei, Yu; Kropf, A. Jeremy

    2014-08-01

    The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126

    The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less

  16. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  17. CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David

    2002-01-01

    CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal mask. PV parameters of a CIGS2 solar cell on 127 micrometers thick SS flexible foil measured under AM 0 conditions at NASA GRC were: V(sub oc) = 802.9 mV, J(sub sc) = 25.07 mA per square centimeters, FF = 60.06%, and efficiency 0 = 8.84%. For this cell, AM 1.5 PV parameters measured at NREL were: V(sub oc) = 788 mV, J(sub sc) = 19.78 mA per square centimeter, FF = 59.44%, efficiency 0 = 9.26%. Quantum efficiency curve showed a sharp QE cutoff equivalent to CIGS2 bandgap of approximately 1.50 eV, fairly close to the optimum value for efficient AM0 PV conversion in the space.

  18. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  20. Investigation on the growth of CaCu 3Ti 4O 12 thin film and the origins of its dielectric relaxations

    NASA Astrophysics Data System (ADS)

    Yuan, Wen-Xiang; Hark, S. K.; Xu, H. Y.; Mei, W. N.

    2012-01-01

    Using the radio frequency magnetron sputtering, CaCu 3Ti 4O 12 (CCTO) thin films were deposited on platinized silicon substrates. The influence of annealing temperature on structures and morphologies of the thin films was investigated. The high annealing temperature increased the crystallinity of the films. Temperature dependence of the dielectric constant revealed an amazing different characteristic of the dielectric relaxation at ˜10 MHz, whose characteristic frequency abnormally increased with the decrease of the measuring temperature unlike the relaxations due to extrinsic origins. Meanwhile, the dielectric constant at high frequencies was close to the value derived from the first principle calculation. All these gave the evidences to ascribe this relaxation to the intrinsic mechanism.

  1. Magnetic and structural characterization of high anisotropy cobalt-rich alloys: Thin films and patterns

    NASA Astrophysics Data System (ADS)

    Zana, Iulica

    In this dissertation the structural and magnetic characterization of high anisotropy Co-rich alloys for magnetic recording and MEMS applications has been carried out. The potential of Co78Sm22 as an ultra-high density recording medium was explored through comprehensive static and dynamic magnetic measurements. It was found out that hard magnetic properties (Hc = 4.5 kOe) can be achieved when CoSm is sputter-deposited on Cr80V 20 underlayer, comparable with those reported for state-of-the-art media at the end of 2002. Furthermore, the chemical stability and reliability of CoSm thin films was studied through combined accelerated aging and electrochemical methods. It was found out that CoSm thin films are more reactive than current recording media (CoPt), and a layer of Si3N4 of at least 6 nm provides satisfactory protection. Electrodeposition of Co80Pt20 onto highly textured Cu seed layer with either {100} or {111} orientation was studied. The influence of Cu texture and plating current density (cd) on the growth, morphology, microstructure, and magnetic properties of the CoPt films was investigated. Epitaxial CoPt thin films with uniform composition across the film thickness were deposited. The microstructure consists in fcc matrix and hcp matrix when plated on Cu(100) and Cu(111), respectively. CoPt hcp single phase films with c-axis normal to the substrate were grown on Cu(111) when plated at cd = 50 mA/cm2. As opposed to the films plated on Cu(100) which show a mostly in-plane magnetic anisotropy, the films plated on Cu(111) develop a well defined perpendicular magnetic anisotropy (PMA) due to the hcp phase with the c-axis normal to the substrate, which yields coercivities as high as 6.1 kOe. The origin of the high PMA was found to lie in the magnetocrystalline anisotropy. CoPt micromagnets have been successfully fabricated by the electrodeposition-through-mask method, which despite the small aspect ratio show a definite PMA. The PMA, together with the hard magnetic properties measured (Hc = 4.7 kOe) demonstrate a strong potential for the utilization of these materials in the MEMS area.

  2. Controllable Interfacial Coupling Effects on the Magnetic Dynamic Properties of Perpendicular [Co/Ni]5/Cu/TbCo Composite Thin Films.

    PubMed

    Tang, Minghong; Zhao, Bingcheng; Zhu, Weihua; Zhu, Zhendong; Jin, Q Y; Zhang, Zongzhi

    2018-02-07

    Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni] 5 /Cu (t Cu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength J ex , which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant α eff of a [Co/Ni] 5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin t Cu , f of the AP state is apparently higher, whereas α eff is lower than that in the P state, owing to the unidirectional exchange bias effect (H EB ) from the TbCo layer. The differences in f and α eff between the two states gradually decrease with increasing t Cu . By using a uniform precession model including an additional H EB term, the field-dependent frequency curves can be well-fitted, and the fitted H EB value is in good agreement with the experimental data. Moreover, the saturation damping constant α 0 displays a nearly linear correlation with J ex . It decreases significantly with J ex and eventually approaches a constant value of 0.027 at t Cu = 2 nm where J ex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.

  3. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  4. Phase modification of copper phthalocyanine semiconductor by converting powder to thin film

    NASA Astrophysics Data System (ADS)

    Ai, Xiaowei; Lin, Jiaxin; Chang, Yufang; Zhou, Lianqun; Zhang, Xianmin; Qin, Gaowu

    2018-01-01

    Thin films of copper phthalocyanine (CuPc) semiconductor were deposited on glass substrates by a thermal evaporation system using the CuPc powder in a high vacuum. The crystal structures of both the films and the powder were measured by the X-ray diffraction spectroscopy technique. It is observed that CuPc films only show one peak at 6.84°, indicating a high texture of α phase along (200) orientation. In comparison, CuPc powder shows a series of peaks, which are confirmed from the mixture of both α and β phases. The effects of substrate anneal temperature on the film structure, grain size and optical absorption property of CuPc films were also investigated. All the films are of α phase and the full width of half maximum for (200) diffraction peak becomes narrow with increasing the substrate temperatures. The average grain size calculated by the Scherrer's formula is 33.63 nm for the film without anneal, which is increased up to 58.29 nm for the film annealed at 200 °C. Scanning electron microscope was further measured to prove the growth of crystalline grain and to characterize the morphologies of CuPc films. Ultraviolet-visible absorption spectra were employed to study the structure effect on the optical properties of both CuPc films and powder. Fourier Transform infrared spectroscopy was used to identify the crystalline nature of both CuPc powder and film.

  5. Effect of concentration and irradiation on the optical and structural properties of ZnO thin films deposited by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Adeoye Victor, Babalola

    2017-12-01

    This study involves the preparation of ZnO thin films by spray pyrolysis and to investigate the effect of concentration of the film and irradiation on ZnO thin film deposited by spray pyrolysis method deposited at 350 ± 5 °C. The precursor for zinc oxide was produced from zinc acetate (Zn(CH3COO))2. The samples were annealed at 500 °C for 6 h and irradiated using 137Cs 90.998 mCi radiation. They were then characterised using ultra violet-visible spectrophotometry, X-ray Diffractometry (XRD) with Cu-Kα radiation to determine the structure of the film, Four-point probe for electrical properties and Rutherford Backscattering Spectrometry (RBS) were used for the composition of the film. XRD diffraction peaks observed for 0.05 M ZnO were (1 0 0), (0 0 2), (1 0 1) and (1 1 0) planes for the annealed and irradiated annealed ZnO films with no preferential orientation. The as-deposited films have low peaks belonging to (1 0 0), (0 0 2), (1 0 1), (1 1 0) plane and other peaks such as (1 1 2), (2 0 0) and (2 0 1). The results are explained with regard to the irradiation damage introduced to the samples. The as-deposited, annealed and irradiated-annealed films are highly transparent in the visible range of the electromagnetic spectrum with an average percent transmittance values of 85% and present a sharp ultraviolet cut-off at approximately 380 nm for the ZnO thin film.

  6. Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    1992-01-01

    This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.

  7. Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection.

    PubMed

    Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo

    2017-01-01

    Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  9. Fabrication of eco-friendly PNP transistor using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.

    2018-05-01

    An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.

  10. Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Chandran, Ramkumar; Mallik, Archana

    2018-03-01

    This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.

  11. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  12. Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.

  13. Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Herrmann, Ashley Ann Elizabeth

    In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and the strain is relaxed through hillock/island formation instead. The kinetics-limiting parameters for these relaxation modes are identified and used to simulate their kinetics, and a deformation map is then constructed to delineate the conditions under which each mode would prevail. Such a deformation map would prove useful when one seeks to optimize the thermal stability or other mechanical properties in any ultra-thin film system.

  14. Comparison of the agglomeration behavior of thin metallic films on SiO2

    NASA Astrophysics Data System (ADS)

    Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.

    2005-07-01

    The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.

  15. Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang

    2014-04-01

    CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.

  16. Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming

    2018-01-01

    A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.

  17. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition.

    PubMed

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-02-23

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~10(4) cm(-1)). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm(2), 0.43 and 0.59%, respectively.

  18. Effect Of Impurity On Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hu, C.-K.; Angyal, M.; Baker, B. C.; Bonilla, G.; Cabral, C.; Canaperi, D. F.; Choi, S.; Clevenger, L.; Edelstein, D.; Gignac, L.; Huang, E.; Kelly, J.; Kim, B. Y.; Kyei-Fordjour, V.; Manikonda, S. L.; Maniscalco, J.; Mittal, S.; Nogami, T.; Parks, C.; Rosenberg, R.; Simon, A.; Xu, Y.; Vo, T. A.; Witt, C.

    2010-11-01

    The impact of the existence of Cu grain boundaries on the degradation of Cu interconnect lifetime at the 45 nm technology node and beyond has suggested that improved electromigra-tion in Cu grain boundaries has become increasingly important. In this paper, solute effects of non-metallic (C, Cl, O and S) and metallic (Al, Co, In, Mg, Sn, and Ti) impurities on Cu elec-tromigration were investigated. The Cu alloy interconnects were fabricated by adjusting Cu electroplating solutions or by depositing a Cu alloy seed, a thin film layer of impurity, an alloy liner, or a metal cap. A large variation of Cu grain structure in the samples was achieved by adjusting the wafer fabrication process steps. The non-metallic impurities were found to be less than 0.1% in the electroplated Cu with no effect on Cu electromigration lifetimes. Most of the metallic impurities reduced Cu interface and grain boundary mass flows and enhanced Cu lifetime, but Al, Co, and Mg impurities did not mitigate Cu grain boundary diffusion.

  19. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  20. White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies.

    PubMed

    Lin, Huan-Ting; Tien, Ching-Ho; Hsu, Chen-Peng; Horng, Ray-Hua

    2014-12-29

    We fabricated a phosphor-conversion white light emitting diode (PC-WLED) using a thin-film flip-chip GaN LED with a roughened u-GaN surface (TFFC-SR-LED) that emits blue light at 450 nm wavelength with a conformal phosphor coating that converts the blue light into yellow light. It was found that the TFFC-SR-LED with the thin-film substrate removal process and surface roughening exhibits a power enhancement of 16.1% when compared with the TFFC-LED without a sapphire substrate. When a TFFC-SR-LED with phosphors on a Cu-metal packaging-base (TFFC-SR-Cu-WLED) was operated at a forward-bias current of 350 mA, luminous flux and luminous efficacy were increased by 17.8 and 11.9%, compared to a TFFC-SR-LED on a Cup-shaped packaging-base (TFFC-SR-Cup-WLED). The angular correlated color temperature (CCT) deviation of a TFFC-SR-Cu-WLED reaches 77 K in the range of -70° to + 70° when the average CCT of white LEDs is around 4300 K. Consequently, the TFFC-SR-LED in a conformal coating phosphor structure on a Cu packaging-base could not only increase the luminous flux output, but also improve the angular-dependent CCT uniformity, thereby reducing the yellow ring effect.

  1. Controlling particle properties in {{YBa}}_{2}{{Cu}}_{3}{{\\rm{O}}}_{7-\\delta } nanocomposites by combining PLD with an inert gas condensation system

    NASA Astrophysics Data System (ADS)

    Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.

    2017-10-01

    The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.

  2. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  3. Two-stage processed high-quality famatinite thin films for photovoltaics

    NASA Astrophysics Data System (ADS)

    Chalapathi, U.; Poornaprakash, B.; Cui, Hao; Park, Si-Hyun

    2017-11-01

    Famatinite (Cu3SbS4) thin films were prepared by annealing chemically grown Sb2S3-CuS stacks in a graphite box at 370-430 °C for 30 min under sulfur and N2 atmospheres. The films grown at 370 °C contain a minor CuSbS2 phase with dominant Cu3SbS4. Those films prepared at 400 °C and 430 °C are single-phase Cu3SbS4 with a tetragonal structure and lattice parameters a = 0.537 nm and b = 1.087 nm and a crystallite size of 25 nm. The grain size of the films increases as the annealing temperature is increased to 400 °C and subsequently decreases. The film morphology is compact and void-free with a grain size of 300-800 nm at 400 °C. The band gap of the films is 0.89 eV. The films exhibited p-type electrical conductivity and a relatively high hole mobility of 14.70 cm2V-1s-1 at 400 °C. Their attractive optoelectronic properties suggest that these films are suitable as solar cell absorber layers.

  4. Prevalence of overweight, obesity and thinness in 9–10 year old children in Mauritius

    PubMed Central

    2012-01-01

    Objective To document the prevalence of overweight, obesity and thinness in 9–10 year old children in Mauritius. Methods 412 boys and 429 girls aged 9–10 years from 23 primary schools were selected using stratified cluster random sampling. All data was cross-sectional and collected via anthropometry and self-administered questionnaire. Outcome measures were BMI (kg/m2), prevalence of overweight, obesity (International Obesity Task Force definitions) and thinness (low BMI for age). Linear and logistic regression analyses, accounting for clustering at the school level, were used to assess associations between gender, ethnicity, school location, and school's academic performance (average) to each outcome measure. Results The distribution of BMI was marginally skewed with a more pronounced positive tail in the girls. Median BMI was 15.6 kg/m2 in boys and 15.4 kg/m2 in girls, respectively. In boys, prevalence of overweight was 15.8% (95% CI: 12.6, 19.6), prevalence of obesity 4.9% (95% CI: 3.2, 7.4) and prevalence of thinness 12.4% (95% CI: 9.5, 15.9). Among girls, 18.9% (95% CI: 15.5, 22.9) were overweight, 5.1% (95% CI: 3.4, 7.7) were obese and 13.1% (95% CI: 10.2, 16.6) were thin. Urban children had a slightly higher mean BMI than rural children (0.5 kg/m2, 95% CI: 0.01, 1.00) and were nearly twice as likely to be obese (6.7% vs. 4.0%; adjusted odds ratio 1.6; 95% CI: 0.9, 3.5). Creole children were less likely to be classified as thin compared to Indian children (adjusted odds ratio 0.3, 95% CI: 0.2, 0.6). Conclusion Mauritius is currently in the midst of nutritional transition with both a high prevalence of overweight and thinness in children aged 9–10 years. The coexistence of children representing opposite sides of the energy balance equation presents a unique challenge for policy and interventions. Further exploration is needed to understand the specific causes of the double burden of malnutrition and to make appropriate policy recommendations. PMID:22823949

  5. Optical Thin Film Coatings

    DTIC Science & Technology

    1981-06-01

    implantation prevents the formation of CuO (which is thermally unstable), in favor of CuAlO2 which is a more stable oxide. This process may produce...coatings for Lambda Physik’s exclmer lasers. In-housp damage threshold tests are performed using either of two Nd:YAC lasers. One laser produces a

  6. Corrosion resistance of monolayer hexagonal boron nitride on copper

    PubMed Central

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-01-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating. PMID:28191822

  7. Perovskite CaCu3Ti4O12 thin films for capacitive applications: From the growth to the nanoscopic imaging of the permittivity

    NASA Astrophysics Data System (ADS)

    Fiorenza, P.; Lo Nigro, R.; Sciuto, A.; Delugas, P.; Raineri, V.; Toro, R. G.; Catalano, M. R.; Malandrino, G.

    2009-03-01

    The physical properties of CaCu3Ti4O12 (CCTO) thin films grown by metal organic chemical vapor deposition on LaAlO3 substrates have been investigated. The structural, compositional, and optical characteristics have been evaluated, and all the collected data demonstrated that in the obtained (001) epitaxial CCTO thin films, a low defect density is present. The electrical behavior of the deposited thin films has been studied from both micro- and nanoscopic points of view and compared with the properties reported in the literature. The electrical measurements on large area capacitors indicated that in the investigated work frequency range (102-106 Hz), the CCTO films possess dielectric constants close to the theoretically predicted "intrinsic" value and almost independent of the frequency. The nanoscopic dielectric investigation demonstrated that the deposited CCTO films possess n-type semiconducting nature and that a colossal extrinsic behavior can be locally achieved.

  8. CuInSe2-Based Thin-Film Photovoltaic Technology in the Gigawatt Production Era

    NASA Astrophysics Data System (ADS)

    Kushiya, Katsumi

    2012-10-01

    The objective of this paper is to review current status and future prospect on CuInSe2 (CIS)-based thin-film photovoltaic (PV) technology. In CIS-based thin-film PV technology, total-area cell efficiency in a small-area (i.e., smaller than 1 cm2) solar cell with top grids has been over 20%, while aperture-area efficiency in a large-area (i.e., larger than 800 cm2 as definition) monolithic module is approaching to an 18% milestone. However, most of the companies with CIS-based thin-film PV technology still stay at a production research stage, except Solar Frontier K.K. In July, 2011, Solar Frontier has joined the gigawatt (GW) group by starting up their third facility with a 0.9-GW/year production capacity. They are keeping the closest position to pass a 16% module-efficiency border by transferring the developed technologies in the R&D and accelerating the preparation for the future based on the concept of a product life-cycle management.

  9. Processing approach towards the formation of thin-film Cu(In,Ga)Se2

    DOEpatents

    Beck, Markus E.; Noufi, Rommel

    2003-01-01

    A two-stage method of producing thin-films of group IB-IIIA-VIA on a substrate for semiconductor device applications includes a first stage of depositing an amorphous group IB-IIIA-VIA precursor onto an unheated substrate, wherein the precursor contains all of the group IB and group IIIA constituents of the semiconductor thin-film to be produced in the stoichiometric amounts desired for the final product, and a second stage which involves subjecting the precursor to a short thermal treatment at 420.degree. C.-550.degree. C. in a vacuum or under an inert atmosphere to produce a single-phase, group IB-III-VIA film. Preferably the precursor also comprises the group VIA element in the stoichiometric amount desired for the final semiconductor thin-film. The group IB-IIIA-VIA semiconductor films may be, for example, Cu(In,Ga)(Se,S).sub.2 mixed-metal chalcogenides. The resultant supported group IB-IIIA-VIA semiconductor film is suitable for use in photovoltaic applications.

  10. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less

  11. Electron and lattice dynamics of transition metal thin films observed by ultrafast electron diffraction and transient optical measurements.

    PubMed

    Nakamura, A; Shimojima, T; Nakano, M; Iwasa, Y; Ishizaka, K

    2016-11-01

    We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon interaction. By using the two-temperature model, the electron-phonon coupling constant ( g ) and the electron and lattice temperatures ( T e , T l ) are evaluated from UED, with which we simulate the transient optical transmittance. The simulation well agrees with the experimentally obtained transmittance data, except for the slight deviations at the initial photoexcitation and the relaxed quasi-equilibrium state. We also present the results similarly obtained for polycrystalline Au, Cu, and Mo thin films and demonstrate the electron and lattice dynamics occurring in metals with different electron-phonon coupling strengths.

  12. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  13. Resistivity scaling due to electron surface scattering in thin metal layers

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  14. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  15. Phase-dependent ultrafast third-order optical nonlinearities in metallophthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Anil Kumar, K. V.; Dharmaprakash, S. M.; Das, Ritwick

    2016-09-01

    We present a comprehensive study on the impact of phase transformations of metallophthalocyanine thin films on their third-order nonlinear optical (NLO) properties. The metallophthalocyanine thin films are prepared by thermally evaporating the commercially available Copper(II)2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) and Zinc(II) 2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (ZnPc) powder on glass substrate. Thermal annealing causes a phase transformation which has a distinct signature in powder X-ray diffraction and UV-Vis-NIR spectroscopy. The NLO characteristics which include nonlinear refractive index n2, as well as nonlinear absorption coefficient (βeff), were measured by using a single beam Z-scan technique. An ultrashort pulsed fiber laser emitting femtosecond pulses (Δτ ≈ 250 fs) at 1064 nm central wavelength is used as a source for the Z-scan experiment. The βeff values in as prepared thin films were ascertained to be smaller as compared to the annealed one due to the smaller value of saturation intensity (Is) which, in turn, is a consequence of ground-state bleaching in the thermally unstable amorphous state of the molecule. Interestingly, the nonlinear refractive indices bear opposite sign for CuPc and ZnPc. The variations in the third-order nonlinearity in CuPc and ZnPc are discussed in terms of molecular packing and geometries of metallophthalocyanine molecules.

  16. Wafer-level hermetic vacuum packaging by bonding with a copper-tin thin film sealing ring

    NASA Astrophysics Data System (ADS)

    Akashi, Teruhisa; Funabashi, Hirofumi; Takagi, Hideki; Omura, Yoshiteru; Hata, Yoshiyuki

    2018-04-01

    A wafer-level hermetic vacuum packaging technology intended for use with MEMS devices was developed based on a copper-tin (CuSn) thin film sealing ring. To allow hermetic packaging, the shear strength of the CuSn thin film bond was improved by optimizing the pretreatment conditions. As a result, an average shear strength of 72.3 MPa was obtained and a cavity that had been hermetically sealed using wafer-level packaging (WLP) maintained its vacuum for 1.84 years. The total pressures in the cavities and the partial pressures of residual gases were directly determined with an ultra-low outgassing residual gas analyzer (RGA) system. Hermeticity was evaluated based on helium leak rates, which were calculated from helium pressures determined with the RGA system. The resulting data showed that a vacuum cavity following 1.84 years storage had a total pressure of 83.1 Pa, contained argon as the main residual gas and exhibited a helium leak rate as low as 1.67  ×  10-17 Pa · m3 s-1, corresponding to an air leak rate of 6.19  ×  10-18 Pa · m3 s-1. The RGA data demonstrate that WLP using a CuSn thin film sealing ring permits ultra-high hermeticity in conjunction with long-term vacuum packaging that is applicable to MEMS devices.

  17. Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; He, Zhangbin; Muralt, Paul

    2009-04-01

    The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.

  18. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed consideringmore » high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.« less

  19. Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan

    2011-04-01

    The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.

  20. Thin-target excitation functions and optimisation of NCA 64Cu and 66,67Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET

    NASA Astrophysics Data System (ADS)

    Groppi, F.; Bonardi, M. L.; Birattari, C.; Gini, L.; Mainardi, C.; Menapace, E.; Abbas, K.; Holzwarth, U.; Stroosnijder, R. M. F.

    2004-01-01

    A novel method for production of No-Carrier-Added 64Cu and 66,67Ga has been developed, based on reactions induced by deuterons up to 19 MeV on Zn target. HPGe and beta (by LSC) spectrometries proved very effective to determine radionuclidic purity of 64Cu and 66,67Ga fractions. Experimental specific activity for 64Cu was measured by ET-AAS and was of the order of 700 MBq · μg -1. Radiochemical yields for 64Cu and 66,67Ga were >80% and >99%.

  1. Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei

    The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.

  2. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se{sub 2} thin-film solar cell absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Jascha; Potsdam Institute for Climate Impact Research; Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se

    2014-12-21

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfacesmore » of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.« less

  3. Structural characteristics of the acquired optic disc pit and the rate of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma.

    PubMed

    Lee, Seung Hyen; Lee, Eun Ji; Kim, Tae-Woo

    2015-10-01

    The optic disc pit (ODP) has been considered a region of localized susceptibility to the damage of glaucoma. To determine whether the rate of retinal nerve fiber layer (RNFL) thinning differs according to the presence and structural characteristics of an ODP in primary open-angle glaucoma. We performed a prospective case-control study that included 163 eyes with primary open-angle glaucoma (83 with an ODP and 80 without an ODP) from Glaucoma Clinic of Seoul National University Bundang Hospital. Participants were enrolled from the ongoing Investigating Glaucoma Progression Study from January 1, 2012, through May 31, 2014. Mean (SD) follow-up was 3.32 (0.49) years (through May 31, 2014). Optic nerve heads underwent swept-source optical coherence tomography (OCT) to determine the presence of focal lamina cribrosa alteration and its structural characteristics. Eyes with and without photographic ODPs and corresponding microscopic laminar alterations were assigned to the ODP and non-ODP groups, respectively. The rates of progressive thinning of global and 6 sectoral spectral-domain OCT RNFL thicknesses were determined by linear regression and compared between the 2 groups. We used a general linear model to determine the factors associated with the rate of RNFL thinning; data obtained from September 21, 2009, through May 31, 2014, were used to calculate the rate of RNFL thinning. The relationship between the presence and structural characteristics of ODPs and the rate of progressive OCT RNFL thinning. Thinning of the RNFL was faster in the ODP group than in the non-ODP group in the global (mean [SD], -1.44 [1.31] vs -0.93 [1.10] [95% CI, -0.97 to -0.19] μm/y; P = .008), temporoinferior (mean [SD], -4.17 [4.15] vs -1.97 [3.26] [95% CI, -3.36 to -1.04] μm/y; P < .001), and temporal (mean [SD], -1.92 [2.62] vs -0.89 [1.62] [95% CI, -1.70 to -0.35] μm/y; P = .003) sectors. The rate of RNFL thinning was maximum in the temporoinferior sector (mean [SD], -4.17 [4.15] μm/y) and corresponded to the frequency distribution of ODPs. Regression analysis revealed that faster global RNFL thinning was related to a higher untreated intraocular pressure (β = -0.07; 95% CI, -0.11 to -0.03; P = .001), episodes of disc hemorrhage (β = -0.74; 95% CI, -1.79 to 0.31; P = .003), the presence of β-zone parapapillary atrophy (β = -0.47; 95% CI, -1.13 to 0.20; P = .02), and the presence of ODPs (β = -0.41; 95% CI, -1.14 to 0.32; P = .02). The maximum rate of RNFL thinning was associated with higher untreated intraocular pressure (β = -0.24; 95% CI, -0.35 to -0.13; P < .001), disc hemorrhage (β = -1.54; 95% CI, -2.88 to -0.19; P < .001), and the presence (β = -1.04; 95% CI, -2.14 to 0.07; P = .004), far-peripheral location (β = -1.75; 95% CI, -3.05 to -0.46; P = .008), and partial-thickness depth (β = -1.45; 95% CI, -2.75 to -0.16; P = .03) of an ODP. The presence and structural characteristics of ODPs were associated with global and focal progression as assessed by the rate of OCT RNFL thinning. The assessment of ODP structure using swept-source OCT may help to predict the location of future progression.

  4. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    PubMed Central

    Hsieh, Janghsing; Hung, Shunyang

    2016-01-01

    Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD), atomic force microscopy (AFM), FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag. PMID:28774033

  5. Exploring cued and non-cued motor imagery interventions in people with multiple sclerosis: a randomised feasibility trial and reliability study.

    PubMed

    Seebacher, Barbara; Kuisma, Raija; Glynn, Angela; Berger, Thomas

    2018-01-01

    Motor imagery (MI) is increasingly used in neurorehabilitation to facilitate motor performance. Our previous study results demonstrated significantly improved walking after rhythmic-cued MI in people with multiple sclerosis (pwMS). The present feasibility study was aimed to obtain preliminary information of changes in walking, fatigue, quality of life (QoL) and MI ability following cued and non-cued MI in pwMS. The study further investigated the feasibility of a larger study and examined the reliability of a two-dimensional gait analysis system. At the MS-Clinic, Department of Neurology, Medical University of Innsbruck, Austria, 15 adult pwMS (1.5-4.5 on the Expanded Disability Status Scale, 13 females) were randomised to one of three groups: 24 sessions of 17 min of MI with music and verbal cueing (MVMI), with music alone (MMI), or non-cued (MI). Descriptive statistics were reported for all outcomes. Primary outcomes were walking speed (Timed 25-Foot Walk) and walking distance (6-Minute Walk Test). Secondary outcomes were recruitment rate, retention, adherence, acceptability, adverse events, MI ability (Kinaesthetic and Visual Imagery Questionnaire, Time-Dependent MI test), fatigue (Modified Fatigue Impact Scale) and QoL (Multiple Sclerosis Impact Scale-29). The reliability of a gait analysis system used to assess gait synchronisation with music beat was tested. Participants showed adequate MI abilities. Post-intervention, improvements in walking speed, walking distance, fatigue, QoL and MI ability were observed in all groups. Success of the feasibility criteria was demonstrated by recruitment and retention rates of 8.6% (95% confidence interval, CI 5.2, 13.8%) and 100% (95% CI 76.4, 100%), which exceeded the target rates of 5.7% and 80%. Additionally, the 83% (95% CI 0.42, 0.99) adherence rate surpassed the 67% target rate. Intra-rater reliability analysis of the gait measurement instruments demonstrated excellent Intra-Class Correlation coefficients for step length of 0.978 (95% CI 0.973, 0.982) and step time of 0.880 (95% CI 0.855, 0.902). Results from our study suggest that cued and non-cued MI are valuable interventions in pwMS who were able to imagine movements. A larger study appears feasible, however, substantial improvements to the methods are required such as stratified randomisation using a computer-generated sequence and blinding of the assessors. ISRCTN ISRCTN92351899. Registered 10 December 2015.

  6. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    NASA Astrophysics Data System (ADS)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  7. Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.

    1991-01-01

    Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.

  8. Research Update: Emerging chalcostibite absorbers for thin-film solar cells

    DOE PAGES

    de Souza Lucas, Francisco Willian; Zakutayev, Andriy

    2018-06-04

    Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.

  9. Research Update: Emerging chalcostibite absorbers for thin-film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Souza Lucas, Francisco Willian; Zakutayev, Andriy

    Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.

  10. Growth, patterning, and weak-link fabrication of superconducting YBa2Cu3O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Hilton, G. C.; Harris, E. B.; van Harlingen, D. J.

    1988-09-01

    Thin films of the high-temperature superconducting ceramic oxides have been grown, and techniques for fabricating weak-link structures have been investigated. Films of YBa2Cu3O(7-x) grown on SrTiO3 by a combination of dc magnetron sputtering and thermal evaporation from the three sources have been patterned into microbridges with widths down to 2 microns. Evidence is found that the bridges behave as arrays of Josephson-coupled superconducting islands. Further weak-link behavior is induced by in situ modification of the coupling by ion milling through the bridge.

  11. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  12. Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters

    NASA Astrophysics Data System (ADS)

    Birkett, Martin; Penlington, Roger

    2012-08-01

    This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.

  13. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, R.; Gierlowski, P.; Kula, W.

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  14. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  15. High crystalline CuAlS2 thin films via chemical spray pyrolysis route

    NASA Astrophysics Data System (ADS)

    Naveena, D.; Logu, T.; Sethuraman, K.; Bose, A. Chandra

    2018-04-01

    High crystalline and non-toxic CuAlS2 thin films were successfully deposited on glass substrate by chemical spray pyrolysis method. The as-prepared sample was subjected to the sulphurization at 450 °C for 30 min. The structural, morphological, optical and electrical properties of the as deposited and sulphurized films have been systematically analyzed. XRD result shows that the sulphurized sample exhibited tetragonal crystal structure with increase in crystallite size. The optical band gap was found to decrease from 3.25 eV to 3.21 eV and the carrier concentration is 4.22×1015cm-3 for the as-deposited film which rises to 6.29×1015cm-3 after sulphurizing the film in nitrogen atmosphere. The results of this study provide a framework for fabricating an optimized high crystalline CuAlS2 layer in optoelectronic devices.

  16. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition

    PubMed Central

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R.; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M.; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-01-01

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~104 cm−1). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm2, 0.43 and 0.59%, respectively. PMID:26902556

  17. Multi-band magnetotransport in exfoliated thin films of Cu x Bi2Se3

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Beilsten-Edmands, J.; Čermák, P.; Drašar, Č.; Nicholas, R. J.; Coldea, A. I.

    2018-04-01

    We report magnetotransport studies in thin (<100 nm) exfoliated films of Cu x Bi2Se3 and we detect an unusual electronic transition at low temperatures. Bulk crystals show weak superconductivity with T_c∼3.5 K and a possible electronic phase transition around 200 K. Following exfoliation, superconductivity is supressed and a strongly temperature dependent multi-band conductivity is observed for T  <  30 K. This transition between competing conducting channels may be enhanced due to the presence of electronic ordering, and could be affected by the presence of an effective internal stress due to Cu intercalation. By fitting to the weak antilocalisation conductivity correction at low magnetic fields we confirm that the low temperature regime maintains a quantum phase coherence length Lφ> 100 nm indicating the presence of topologically protected surface states.

  18. Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries

    PubMed Central

    Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk

    2013-01-01

    Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452

  19. Optically induced metastability in Cu(In,Ga)Se 2

    DOE PAGES

    Jensen, S. A.; Kanevce, A.; Mansfield, L. M.; ...

    2017-10-23

    Cu(In,Ga)Se 2 (CIGS) is presently the most efficient thin-film photovoltaic technology with efficiencies exceeding 22%. An important factor impacting the efficiency is metastability, where material changes occur over timescales of up to weeks during light exposure. A previously proposed (V Se -V Cu ) divacancy model presents a widely accepted explanation. We present experimental evidence for the optically induced metastability transition and expand the divacancy model with first-principles calculations. Using photoluminescence excitation spectroscopy, we identify a sub-bandgap optical transition that severely deteriorates the carrier lifetime. This is in accordance with the expanded divacancy model, which predicts that states below themore » conduction band are responsible for the metastability change. We determine the density–capture cross-section product of the induced lifetime-limiting states and evaluate their impact on device performance. The experimental and theoretical findings presented can allow assessment of metastability characteristics of leading thin-film photovoltaic technologies.« less

  20. Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film

    NASA Astrophysics Data System (ADS)

    Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François

    2011-10-01

    CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.

  1. Electrodeposited CuGa(Se,Te)2 thin-film prepared from sulfate bath

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Minemoto, Takashi; Takakura, Hideyuki; Hamakawa, Yoshihiro

    2006-09-01

    CuGa(Se,Te)2 (CGST) thin films were prepared on a soda-lime glass substrate sputter coated with molybdenum by electrodeposition. The aqueous solution which contained CuSO4-5H2O, Ga2(SO4)3-19.3H2O, H2SeO3, H6TeO6, Li2SO4 and gelatin was adjusted to pH 2.6 with dilute H2SO4 and NaOH. It has been observed that (i) a crack-less and smooth CGST film with a composition close to the stoichiometric ratio was deposited at -600 mV (vs. Ag/AgCl) when Te was hardly included in the film and (ii) cracks and products on the surface increased with increasing Te content in the film. Annealing at 600 °C for 10 min improved the crystallinity of the as-deposited films.

  2. Micro solar concentrators: Design and fabrication for microcells arrays

    NASA Astrophysics Data System (ADS)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  3. Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.

    2018-06-01

    YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.

  4. Low-cost and eco-friendly nebulizer spray coated CuInAlS2 counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Esther Santhoshi Monica, S.; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Raj, A. Moses Ezhil

    2018-05-01

    CuInAlS2 thin films for different substrate temperatures were deposited by a novel nebulizer spray technique. The polycrystalline CIAS thin film exhibited tetragonal structure with the preferential orientation of (1 1 2) plane. Nanoflakes were observed from the surface morphology of CIAS film. The peak position of core level spectra confirms the presence of CuInAlS2 from XPS analysis. The absorbance spectra and optical band gap were observed from the optical property. The activation energy, carrier concentration, hole mobility and resistivity were determined by linear four probe and Hall effect measurements. The CIAS film was used as a counter electrode (CE) in dye-sensitized solar cells (DSSCs) and is characterized by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. DSSC fabricated with the CIAS CE achieved the photo conversion efficiency of about 2.55%.

  5. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1990-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  6. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1991-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  7. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  8. Effect of Heat and Laser Treatment on Cu2S Thin Film Sprayed on Polyimide Substrate

    NASA Astrophysics Data System (ADS)

    Magdy, Wafaa; Mahmoud, Fawzy A.; Nassar, Amira H.

    2018-02-01

    Three samples of copper sulfide Cu2S thin film were deposited on polyimide substrate by spray pyrolysis using deposition temperature of 400°C and deposition time of about 45 min. One of the samples was left as deposited, another was heat treated, while the third was laser treated. The structural, surface morphological, optical, mechanical, and electrical properties of the films were investigated. X-ray diffraction (XRD) analysis showed that the copper sulfide films were close to copper-rich phase (Cu2S). Increased crystallite size after heat and laser treatment was confirmed by XRD analysis and scanning electron microscopy. Vickers hardness measurements showed that the samples' hardness values were enhanced with increasing crystallite size, representing an inverse Hall-Petch (H-P) effect. The calculated optical bandgap of the treated films was lower than that of the deposited film. Finally, it was found that both heat and laser treatment enhanced the physical properties of the sprayed Cu2S films on polyimide substrate for use in solar energy applications.

  9. Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

    PubMed Central

    Derouiche, H.; Mohamed, A. B.

    2013-01-01

    We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation. PMID:23766722

  10. Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.

  11. The biocorrosion of copper by biopolymers as examined in situ, in real time FT-IR/CIR/ATR in conjunction with pre and post XPS/AES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianotto, A.K.; Wichlacz, P.L.; Jolley, J.G.

    1989-01-01

    Thin films of copper (2.0 nm on germanium internal reflection elements (IREs) and 3.4 nm on germanium discs) were exposed to 10% gum arabic (aqueous solution), 2% alginic acid (aqueous solution), 1% bacterial culture supernatant (BCS, simulated seawater solution) and 0.5% Pseudomonas atlantica exopolymer (simulated seawater solution). The IREs were monitored in situ, in real time using fourier transform infrared/cylindrical internal reflection/attenuated total reflection spectroscopy as a function of time at ambient conditions. The discs were characterized (pre- and post-exposure) by x-ray photoelectron and Auger electron spectroscopies. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal processmore » of the copper thin film from the germanium substrates. Results indicate that Cu was oxidized by gum arabic, alginic acid and BCS. Furthermore, Cu was removed from the Cu/Ge interface by all four polymers. The Cu was found associated with the polymer solutions. 20 refs., 6 figs., 1 tab.« less

  12. Thermal annealing effect on poly(3-hexylthiophene): fullerene:copper-phthalocyanine ternary photoactive layer.

    PubMed

    Derouiche, H; Mohamed, A B

    2013-01-01

    We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc₀.₅:C60₀.₅/BCP/Al and ITO/PEDOT:PSS/P3HT₀.₃:CuPc₀.₃:C60₀.₄/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.

  13. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  14. Ferromagnetic resonance studies of granular materials (abstract)

    NASA Astrophysics Data System (ADS)

    Rubinstein, Mark; Das, Badri; Chrisey, D. B.; Horwitz, J.; Koon, N. C.

    1994-05-01

    We have investigated the ferromagnetic resonance (FMR) spectra of several granular alloys displaying giant magnetoresistance (GMR). For this task, we have produced melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80 by rapid quenching and thin films of Co80Cu20 by pulsed laser deposition. The salient feature of the FMR spectra is the increase of the resonance linewidth as a function of increasing annealing temperature. We have deconvoluted the FMR spectra to a single-domain powder pattern and a multidomain powder pattern. As a function of annealing temperature, the GMR of these samples attains a maximum value. Near the peak of the GMR curve, the FMR spectrum reveals that the ferromagnetic particles are half mono- and half multidomain. Since the maximum size of a single-domain particle is known, this enables us to estimate the spin diffusion length of the Cu conduction electrons. We have also demonstrated, theoretically and experimentally, that the appropriate demagnetizing field to apply to the ensemble of spherical magnetic particles that comprise our granular thin film is simply the field corresponding to the average magnetization.

  15. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers

    PubMed Central

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497

  16. Electromigration Related Effects At Metal-Metal Interfaces: Application To Railguns

    DTIC Science & Technology

    2007-03-01

    found at the armature-rail contact due to local melting, to determine the kinetics of liquid flow Ga under electric current conditions. For this, a...model system comprising a bead of Ga on a Cu thin film track was devised in order to enable liquefaction and current induced movement of Ga to occur...along the Cu track. Upon application of current, Ga underwent liquefaction due to Joule heating and once liquid, it rapidly migrated along the Cu

  17. Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4 Thin Film Derived from Spray Pyrolysis.

    PubMed

    Nguyen, Thi Hiep; Kawaguchi, Takato; Chantana, Jakapan; Minemoto, Takashi; Harada, Takashi; Nakanishi, Shuji; Ikeda, Shigeru

    2018-02-14

    A silver (Ag)-incorporated kesterite Cu 2 ZnSnS 4 (CZTS) thin film was fabricated by a facile spray pyrolysis method. Crystallographic analyses indicated successful incorporation of various amounts of Ag up to a Ag/(Ag + Cu) ratio of ca. 0.1 into the crystal lattice of CZTS in a homogeneous manner without formation of other impurity compounds. From the results of morphological investigations, Ag-incorporated films had larger crystal grains than the CZTS film. The sample with a relatively low Ag content (Ag/(Ag + Cu) of ca. 0.02) had a compact morphology without appreciable voids and pinholes. However, an increase in the Ag content in the CZTS film (Ag/(Ag + Cu) ca. 0.10) induced the formation of a large number of pinholes. As can be expected from these morphological properties, the best sunlight conversion efficiency was obtained by the solar cell based on the film with Ag/(Ag + Cu) of ca. 0.02. Electrostructural analyses of the devices suggested that the Ag-incorporated film in the device achieved reduction in the amounts of unfavorable copper on zinc antisite defects compared to the bare CZTS film. Moreover, the use of a Ag-incorporated film improved band alignment at the CdS(buffer)-CZTS interface. These alterations should also contribute to enhancement of device properties.

  18. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  19. Surface modifications of chalcopyrite CuInS2 thin films for photochatodes in photoelectrochemical water splitting under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.

    2017-02-01

    Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.

  20. Thermodynamic assessment of Ag–Cu–In

    DOE PAGES

    Muzzillo, Christopher P.; Anderson, Tim

    2018-01-16

    The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.

  1. Strikingly enhanced cooling performance for a micro-cooler using unique Cu nanowire array with high electrical conductivity and fast heat transfer behavior

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan

    2017-06-01

    It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.

  2. Accurate measurements of the 63Cu(d,p)64Cu and natCu(d,x)65Zn cross-sections in the 2.77-5.62 MeV energy range

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Kreisel, A.; Hirsh, T.; Aviv, O.; Berkovits, D.; Girshevitz, O.; Eisen, Y.

    2015-01-01

    The cross sections of 63Cu(d,p)64Cu and natCu(d,x)65Zn were determined for deuteron beam energy range of 2.77-5.62 MeV at the SARAF Phase I variable energy LINAC. Thin copper foils were irradiated by a deuteron beam followed up by measurement of the produced activation at the Soreq NRC low-background γ-counting system. The results are consistent with data in the literature, but are of better accuracy. The data are important for assessment of the activation of components of Radio Frequency Quadrupole injectors and Medium Energy Beam Transport beam dumps in modern deuteron LINACs.

  3. Thermodynamic assessment of Ag–Cu–In

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Anderson, Tim

    The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.

  4. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  5. Facile Fabrication of Cu2O Nanobelts in Ethanol on Nanoporous Cu and Their Photodegradation of Methyl Orange

    PubMed Central

    Yang, Yulin; Qin, Fengxiang; Wang, Hao; Chang, Hui

    2018-01-01

    Thin cupric oxide (Cu2O) nanobelts with width of few tens of nanometers to few hundreds of nanometers were fabricated in anhydrous ethanol on nanoporous copper templates that was prepared via dealloying amorphous Ti40Cu60 ribbons in hydrofluoric acid solutions at 348 K. The Cu2O octahedral particles preferentially form in the water, and nanobelts readily undergo the growth along the lengthwise and widthwise in the anhydrous ethanol. The ethanol molecules serve as stabilizing or capping reagents, and play a key role of the formation of two-dimensional Cu2O nanobelts. Cu atoms at weak sites (i.e., twin boundary) on the nanoporous Cu ligaments are ionized to form Cu2+ cations, and then react with OH− to form Cu2O and H2O. The two-dimensional growth of Cu2O nanostructure is preferred in anhydrous ethanol due to the suppression of random growth of Cu2O nanoarchitectures by ethanol. Cu2O nanobelts have superior photodegradation performance of methyl orange, three times higher than nanoporous Cu. PMID:29562692

  6. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  7. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  8. Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

    PubMed Central

    Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.

    2006-01-01

    A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.

  9. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE PAGES

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...

    2016-04-01

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  10. Facile preparation of hierarchical nanostructured CuInS2 counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Santhoshi Monica, S. Esther; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Ezhil Raj, A. Moses

    2017-12-01

    CuInS2 (CIS) thin films have been synthesized onto the glass substrates for different solvent volumes (10, 30, 50 and 70 ml) by nebulizer spray technique. The effect of solvent volume on the structural, morphological, compositional, optical and electrical properties of CIS thin films has been investigated. X-ray diffraction patterns suggest that the obtained CIS films are polycrystalline with the tetragonal structure. The surface morphology of the prepared CIS films purely depends on the solvent volume. The elemental quantitative investigation and the stoichiometric ratio of the CIS thin films were verified from XPS and EDS. High absorbance with the optical band gap of 1.13 eV was obtained at the higher solvent volume. All the deposited CIS thin films exhibited p-type semiconducting behavior with the high electrical conductivity and carrier concentration. CIS thin films deposited onto the FTO substrate were used as a counter electrode (CE) in dye-sensitized solar cells. CIS CEs possessed high electrocatalytic behavior and fast electron charge transfer at the CE/electrolyte interface. The CIS CE prepared using 50 ml solvent volume generated high energy conversion efficiency of about 3.25%.

  11. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    NASA Astrophysics Data System (ADS)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers, compared with pure TiO2. A modified 3-element model was adopted to extract the true C-V behavior of the TiAlOx-based MOS capacitor. Extremely small equivalent oxide thickness (EOT) less than 0.5 nm with dielectric leakage 4˜5 magnitude lower than that for SiO2 has been achieved on TiAlOx layer as a result of its excellent dielectric properties.

  12. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    PubMed Central

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be

    2016-01-01

    The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366

  13. Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Hung, Chen-Jen

    This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.

  14. Synthesis and Characterization of Chalcopyrite (CuInS2 and CuhInSe2) Colloidal Nanoparticles for Optoelectronic Applications via Low-Temperature Pyrolysis of Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.

    2003-01-01

    Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.

  15. Recent advances in characterization of CaCu3Ti4O12 thin films by spectroscopic ellipsometric metrology.

    PubMed

    Lo Nigro, Raffaella; Malandrino, Graziella; Toro, Roberta G; Losurdo, Maria; Bruno, Giovanni; Fragalà, Ignazio L

    2005-10-12

    CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.

  16. Spray pyrolyzed Cu2SnS3 thin films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Patel, Biren; Waldiya, Manmohansingh; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    We report the fabrication of Cu2SnS3 (CTS) thin films by a non-vacuum and low cost spray pyrolysis technique. Annealing of the as-deposited film in the sulphur atmosphere produces highly stoichiometric, granular and crystalline CTS phase. The CTS thin films shows direct optical band gap of 1.58 eV with high absorption coefficient of 105 cm-1. Hall measurement shows the carrier concentration of the order of 1021 cm-3 and a favourable resistivity of 10-3 Ω cm. A solar cell architecture of Glass/FTO/CTS/CdS/Al:ZnO/Al was fabricated and its current-voltage characteristic shows an open circuit voltage, short circuit current density and fill-factor of 12.6 mV, 20.2 µA/cm2 and 26% respectively. A further improvement in the solar cell parameters is underway.

  17. Room temperature electrical properties of solution derived p-type Cu{sub 2}ZnSnS{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Goutam Kumar; Dixit, Ambesh, E-mail: ambesh@iitj.ac.in

    2016-05-06

    Electrical properties of solution processed Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor thin film structures on molybdenum (Mo) coated glass substrates are investigated using Mott-Schottky and Impedance spectroscopy measurements at room temperature. These measurements are carried out in sodium sulfate (Na{sub 2}SO{sub 4}) electrolytic medium at pH ~ 9.5. The inversion/depletion/accumulation regions are clearly observed in CZTS semiconductor −Na{sub 2}SO{sub 4} electrolyte interface and measured flat band potential is ~ −0.27 V for CZTS thin film electrode. The positive slope of the depletion region confirms the intrinsic p-type characteristics of CZTS thinfilms with ~ 2.5× 10{sup 19} holes/m{sup 3}. The high frequencymore » impedance measurements showed ~ 30 Ohm electrolyte resistance for the investigated configuration.« less

  18. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  19. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method resulting in a 9.7% cell (with 0.3 microm thickness) which has the highest efficiency reported for ultrathin CIGS solar cells to date. In addition, sulfized back contacts including ITO-S and MoS 2 are compared. Interface properties of different contact layers with (Ag,Cu)(In,Ga)Se2 absorber layers with various Ga/(Ga+In) and Ag/(Ag+Cu) ratios are discussed based on the XPS analysis and thermodynamics of reactions.

  20. Chemical Synthesis of ZnS:Cu Nanosheets

    NASA Astrophysics Data System (ADS)

    Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    ZnS thin films are synthesized through chemical bath deposition (CBD) technique from aqueous solution of ZnSO4 and thiourea mixing in equal volume and equimolar ratio. A 1% CuSO4 solution is mixed with the ZnSO4 solution for doping before the final chemical reaction. SEM image shows the formation of mainly nanosheets, teeth and comb like structures. Absorption studies show red shift of enhanced band gap on Cu doping. Photoluminescence of ZnS:Cu reveals the enhancement of blue luminescence at 468 nm and low intensity green emission at 493 nm which is attributed to more Cu2+ lying in the interstices. XRD shows that the prepared ZnS nanophosphors possess cubic zinc blende structures.

Top