Science.gov

Sample records for cu nb ta

  1. A new RHQT Nb3Al superconducting wire with a Ta/Cu/Ta three-layer filament-barrier structure

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao; Tsuchiya, Kiyosumi; Nakagawa, Kazuhiko; Nimori, Shigeki; Banno, Nobuya; Iijima, Yasuo; Kikuchi, Akihiro; Nakamoto, Tatsushi

    2012-06-01

    To suppress the low-magnetic-field instability (flux jumps in low magnetic fields) of a rapid-heating, quenching and transformation (RHQT) processed Nb3Al superconductor, we had previously modified the cross-sectional design of an RHQT Nb3Al by adopting a Ta filament-barrier structure. Unlike Nb barriers, Ta barriers are not superconducting in magnetic fields at 4.2 K so that they electromagnetically decouple filaments. However, small flux jumps still occurred at 1.8 K, which is a typical operating temperature for the magnets used in high-energy particle accelerators. Furthermore, poor bonding at the Ta/Ta interface between neighboring Ta-coated jelly-roll (JR) filaments frequently caused precursor wires to break during drawing. To overcome these problems, we fabricated a new RHQT Nb3Al wire with a Ta/Cu/Ta three-layer filament-barrier structure for which an internal stabilization technique (Cu rods encased in Ta are dispersed in the wire cross section) was extended. Removing the Ta/Ta interface in the interfilamentary barrier (JR filament/Ta/Cu/Ta/JR filament) allowed precursor wires to be drawn without breaking. Furthermore, the Cu filament barrier electromagnetically decoupled filaments to suppress flux jumps at 1.8 K. The ductile Cu layer also improved the bending strain tolerance of RHQT Nb3Al.

  2. Competing interactions in metallic superlattices. [Cu/Nb; Mo/Ta

    SciTech Connect

    Falco, C.M.; Makous, J.L.; Bell, J.A.; Bennett, W.R.; Zanoni, R.; Stegeman, G.I.; Seaton, C.T.

    1987-01-01

    Metallic superlattices provide an excellent system to study in a controlled manner a variety of physical phenomena, including superconductivity, magnetism, and electrical transport properties. As will be discussed in this paper, changes in certain of these properties as a function of superlattice modulation wavelength ..lambda.. are found to be correlated with structural changes and elastic property anomalies. The propeties of two particular metallic superlattices, Cu/Nb and Mo/Ta, are discussed in this paper, as examples of how competing interactions manifest themselves in the physical properties of these superlattices. 15 refs., 3 figs.

  3. Synthesis and Characterization of Cu 3NbSe 4 and KCu 2TaSe 4

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Jie; Ibers, James A.

    1993-11-01

    Cu 3NbSe 4 has been synthesized from a stoichiometric reaction of the elements at 950°C. The material, which has the sulvanite (Cu 3VS 4) structure, crystallizes in space group T 1d- P4¯3 m of the cubic system with one formula unit in a cell with a = 5.638(1) Å at - 165°C. Cu 3NbSe 4 has a three-dimensional structure with edge-sharing of CuSe 4 and NbSe 4 tetrahedra and corner-sharing among CuSe 4 tetrahedra extending equally in all directions. KCu 2TaSe 4 was prepared from a reaction of K 2Se 5, Cu, Ta, and Se in the ratio 1:4:2:3 at 850°C. KCu 2TaSe 4 crystallizes in space group C43 - Cc of the monoclinic system with four formula units in a cell of dimensions a = 5.660(1), b = 18.829(4), c = 7.662(2) Å, β = 90.04(3)° at - 165°C. In this structure the Ta and two independent Cu atoms are in tetrahedral sites. The CuSe 4 and TaSe 4 tetrahedra share edges and corners to make up two-dimensional layers. These layers are separated from one another by K + ions. KCu 2TaSe 4 is not isostructural with KCu 2NbSe 4, although the structures are similar.

  4. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-05

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  5. Electrical Properties and Superconductivity of MSr2Nd2-xCexCu2O10-δ (M=Ta, Nb)

    NASA Astrophysics Data System (ADS)

    Zhu, Yingjie; Qian, Yitai; Li, Rukang; Wang, Shiwei; Chen, Zuyao; Chen, Zhaojia; Wang, Nanling; Zhou, Guien

    1992-09-01

    A new series of layered cuprate compounds MSr2Nd2-xCexCu2O10-δ (M=Ta, Nb) have been synthesized. The structure of the compounds is similar to that of T1-1222. A peak in the R-T curve for the sample of TaSr2Nd1.3Ce0.7Cu2O10-δ has been observed at about 50 K. For the sample of NbSr2Nd1.45Ce0.55Cu2O10-δ, metal-like conductivity behaviour has been observed. We have found superconductivity at about 13.2 K in the samples of NbSr2Nd2-xCexCu2O10-δ (x=0.49, 0.50, 0.51, 0.52).

  6. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

    PubMed

    Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami

    2017-04-01

    This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. "Engineered dual NbTa barriers for higher Jc Nb3Sn superconductors"

    SciTech Connect

    Robert E. Barber; Karl T. Hartwig

    2012-07-07

    The tantalum (Ta) diffusion barrier in advanced Nb3Sn superconductors often develops a failure mode during wire drawing where the Nb and Ta layers deform non-uniformly leading to a rough interface with adjacent copper. The non-uniform deformation of these layers can lead to premature wire breakage and breaches in the barrier, and contamination of the copper stabilizer by tin (Sn). The objective of the proposed work was to demonstrate that a dual NbTa layer made from severely deformed Nb and Ta exhibits improved co-deformation behavior with pure Cu in advanced Nb3Sn superconductors. This phase I project demonstrated improved microstructural uniformity and superior mechanical property characteristics of equal channel angular extrusion (ECAE) processed and rolled Nb and Ta sheets. The results of this work point to a method for fabrication of higher field and lower cost superconducting magnets for high energy physics applications.

  8. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

  9. Modelling potential photovoltaic absorbers Cu3 MCh 4 (M  =  V, Nb, Ta; Ch  =  S, Se, Te) using density functional theory

    NASA Astrophysics Data System (ADS)

    Kehoe, Aoife B.; Scanlon, David O.; Watson, Graeme W.

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured \\text{C}{{\\text{u}}3}MC{{h}4} (M  =  V, Nb, Ta; Ch  =  S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials’ suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  10. Large pinning forces and matching effects in YBa2Cu3O(7-δ) thin films with Ba2Y(Nb/Ta)O6 nano-precipitates.

    PubMed

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L; Hänisch, Jens

    2016-02-18

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O(7-δ) (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m(3) at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

  11. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    PubMed Central

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-01-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291

  12. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    NASA Astrophysics Data System (ADS)

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-02-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7‑δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

  13. Vibrational properties of Cu3XY4 sulvanites (X = Nb, Ta, and V; and Y = S, and Se) by ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Peralta, Joaquín; Valencia-Balvín, Camilo

    2017-09-01

    In this work, we present a structural and dynamic characterisation of six different types of sulvanites Cu3 X Y 4 with X = Nb, V and Ta, and Y = S and Se. These materials have been the subject of intense study in recent times primarily as potential candidates for solar cell devices, as well as for their enhanced opto-electrical properties. Here, by means of first-principles calculations, we study the structural and dynamic behaviour of these materials at different temperatures, which is important for use of these materials in high-temperature conditions. In this work the dynamic and structural properties are studied using the Density Functional Theory technique. The simulations were performed at four different temperatures, ranging from room temperature to 1500 K. By using first-principles molecular dynamics in the microcanonical ensemble, we are able to determine the vibrational spectra of these sulvanites. With this information we report for the first time the partial vibrational density of states of these structures at different temperatures. With these results we determine the vibrational properties of the basic building blocks of those sulvanites and their dynamic behaviour under temperature effects. We also show that the building blocks that which make up these structures, remain stable as the temperature increases.

  14. S = 1/2 Square-Lattice Antiferromagnets: (CuX)LaB_2O_7 and (CuCl)A_2B_3O10 (X = Cl, Br; A = Ca, Sr; B = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Kageyama, H.; Kitano, T.; Nakanishi, R.; Yasuda, J.; Oba, N.; Baba, Y.; Nishi, M.; Ueda, Y.; Ajiro, Y.; Yoshimura, K.

    A series of magnetic compounds with the formula (CuX)LaB_2O_7 and (CuCl)A_2B_3O10 (X = Cl, Br; A = Ca, Sr; B = Nb, Ta) have been prepared through a low-temperature topochemical route starting from nonmagnetic double- (n = 2) and triple- (n = 3) layered perovskites, respectively. The magnetic susceptibility of these compounds typically exhibits a broad maximum at low temperatures, characteristic of low-dimensional antiferromagnetic compounds. However, depending on the choice of the parameters, X, A, B and n, physical quantities such as the Weiss temperature and the temperature at a maximum susceptibility vary to a great extent, which enables us to study the phase diagram of the S = 1/2 frustrated square-lattice antiferromagnets (the so-called J_1-J_2 model). In particular, (CuCl)LaNb_2O_7, possibly having a ferromagnetic J_1 and an antiferromagnetic J_2, shows a spin-liquid behavior with the spin gap of 27 K.

  15. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.

    PubMed

    Kim, Eun-Sil; Choe, Han-Cheol

    2014-11-01

    The purpose of this study was to investigate the biocompatibility of Ti-30Nb-7Ta alloy surface decorated with TiO2 nanotubes by anodization in an electrolyte containing 1 M H3PO4 and 0.8 wt.% NaF with an applied voltage of 10 V for 2 h. The anodization was carried out using a scanning potentiostat. The microstructures of alloys and morphology of the nanotubes were investigated by optical microscopy, field emission scanning electron microscopy, and X-ray diffractometry. In comparison to the Ti-30Nb-3Ta alloy, the Ti-30Nb-7Ta alloy contained a lower amount of α" phase, while the β phase was higher. In this study, we observed the formation of a spongy porous layer on the Ti-30Nb-7Ta alloy, while the Ti-30Nb and Ti-30Nb-3Ta alloys showed an absence of such a spongy layer.

  16. Enhanced 77 K vortex-pinning in Y Ba2Cu3O7-x films with Ba2Y TaO6 and mixed Ba2Y TaO6 + Ba2Y NbO6 nano-columnar inclusions with irreversibility field to 11 T

    NASA Astrophysics Data System (ADS)

    Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J. L.; Meledin, A.; Van Tendeloo, G.; Celentano, G.

    2016-06-01

    Pulsed laser deposited thin Y Ba2Cu3O7-x (YBCO) films with pinning additions of 5 at. % Ba2Y TaO6 (BYTO) were compared to films with 2.5 at. % Ba2Y TaO6 + 2.5 at. % Ba2Y NbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10 T (YBCO-BYTO) and 11 T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.

  17. (Ln = Pr, Nd, M = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Noked, O.; Melchior, A.; Shuker, R.; Steininger, R.; Kennedy, B. J.; Sterer, E.

    2014-06-01

    High-pressure X-ray diffraction measurements have demonstrated that the cation-deficient perovskites Pr1/3NbO3, Pr1/3TaO3, Nd1/3NbO3, and Nd1/3TaO3 undergo irreversible pressure-induced amorphization (PIA). This occurs near 14.5 GPa for the niobates and 18.5 GPa for the tantalates. The unit cell volumes of the four oxides show an almost linear decrease as the pressure is increased. It is concluded that the PIA transition occurs at higher pressures in the tantalates due to the lower MO6 initial tilting at ambient conditions, which is associated with the larger atomic mass of the tantalum. The behavior of these oxides is compared to that of CaTiO3, and the role of both the weakening of the M-O-M π-bonding and the cation vacancies on the observed structural changes is discussed.

  18. Magnetic properties: M{umlt o}ssbauer, x-ray absorption spectroscopy, and specific-heat studies of Pr{sub 1.5}Ce{sub 0.5}{ital M}Sr{sub 2}Cu{sub 2}O{sub {ital z}} ({ital M}=Ta, In, Nb, Nb+Ga) compounds

    SciTech Connect

    Asaf, U.; Felner, I.; Schmitt, D.; Barbara, B.; Godart, C.; Alleno, E. |

    1996-12-01

    We have investigated Pr{sub 1.5}Ce{sub 0.5}{ital M}Sr{sub 2}Cu{sub 2}O{sub {ital z}} ({ital z}=9 or 10) materials ({ital M}=Ta, In, and Nb+Ga) by complementary experimental techniques. All materials studied are not superconducting. Magnetic susceptibility studies for {ital M}=Ta reveal one magnetic anomaly at 23 K and irreversibility phenomena at higher temperatures. The presence of 0.5{percent} {sup 57}Fe dramatically affects the positions of the anomalies, and M{umlt o}ssbauer spectroscopy studies (MS) reveal that the Cu(2) sites are magnetically ordered below {ital T}{sub {ital N}}(Cu)=130 K. This low {ital T}{sub {ital N}}(Cu) obtained is discussed. No specific heat anomaly was observed at 23 K, suggesting that the Pr sublattice does not order magnetically, and the anomalies in the susceptibility originate from the Cu moments. No anomalies in the susceptibility curves are found for {ital M}=In and Nb+Ga compounds. However, MS indicate that for the mixed compound, the Cu sites are magnetically ordered at low temperatures. The magnetic behavior of {ital M}=Ta is compared to similar systems with two anomalies for {ital M}=Nb at 11 and 52 K, and three anomalies for {ital M}=Ga at 12, 52, and 94 K. X-ray absorption spectroscopy (XAS) indicates that in all materials studied, the Pr has a mixed valence close to 3. The Pr valence does not change with temperature. {copyright} {ital 1996 The American Physical Society.}

  19. (Nb,Ta,Ti) 3Sn multifilamentary wires using Osprey bronze with high tin content and NbTa/NbTi composite filaments

    NASA Astrophysics Data System (ADS)

    Abächerli, V.; Uglietti, D.; Seeber, B.; Flükiger, R.

    2002-08-01

    Several (Nb,Ta,Ti) 3Sn multifilamentary wires with different Ti contents (up to 0.6 wt.%), but identical configuration have been processed using the bronze route and NbTa/NbTi composite filaments. The wires were manufactured by a sequence of three extrusion steps using a Cu 15.4 Sn Osprey bronze as matrix. The wires of 1.06 mm diameter with 14641 filaments of 4.4 μm size were reacted by various heat treatments, ranging from 600 to 730 °C. Critical current density ( Jc) measurements on samples in a coil geometry have been performed up to 17 T at 4.2 K, yielding to 195 A mm -2 at 17 T. Upper critical magnetic fields ( Bc2) up to 28.2 T were estimated by Kramer extrapolation. The variation of the critical temperature ( Tc) as well as of the n factor were determined. The effect of various Ti contents was analyzed with respect to the various superconducting parameters, especially in view of applications at fields >20 T.

  20. First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys

    NASA Astrophysics Data System (ADS)

    Ravi, C.; Panigrahi, B. K.; Valsakumar, M. C.; van de Walle, Axel

    2012-02-01

    In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining the total energies of 40-50 configurations for each system (obtained using density functional theory) with the cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional cluster expansion shows a miscibility gap with consolute temperature Tc=1250 K. Including the constituent strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers Tc to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For bcc V-Ta alloy, this calculation predicts a miscibility gap with Tc=1100 K. For this alloy, both the constituent strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition occurs at 1583 K from bcc solid solution phase to the V2Ta Laves phase due to the dominant chemical interaction associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the V2Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in agreement with experiment.

  1. First principles calculation of phase diagrams of V-Nb, V-Ta and Nb-Ta alloys

    SciTech Connect

    Ravi, C.; Panigrahi, B. K.; Valsakumar, M. C.; Walle, A. Van de

    2012-06-05

    We report the solid state phase diagram of V-Nb, V-Ta and Nb-Ta alloys computed by combining the density functional theory total energies with the cluster expansion and Monte Carlo techniques. From the computed phase diagrams, we find that V-Nb and Nb-Ta alloys form continuous series of solid solutions and the solid solution phase is stable down to ambient temperatures, consistent with experiments. The calculated bcc V-Ta phase diagram exhibits complete miscibility. Since the current cluster expansion ignore V{sub 2}Ta phase, the chemical interaction due to relatively large electronegativity difference, which cause the ordering of V{sub 2}Ta phase from the bcc solid solution, appears to manifest by making the solid solution phase remain stable for the complete concentration range, down to ambient temperatures, perhaps with some short-range-order. This work further demonstrates the dominant role of constituent strains in the accurate calculation of phase diagram of alloys of constituents with significant size mismatches.

  2. Excitation of Nb, Ta, and W atoms in sputtering processes

    SciTech Connect

    Vasil`eva, E.K.; Morozov, S.N.

    1995-12-01

    Optical emission spectra of sputtered atoms that arise under the bombardment of Nb, Ta, and W surfaces by xenon ions with an energy of 40 keV are studied in the wavelength range of 380 - 600 nm. The properties and mechanisms of the formation of excited atomic states in sputtering processes are discussed. 12 refs., 3 figs.

  3. Nb-Ta, Nb-Mo and Nb-V oxides prepared from hybrid organic-inorganic precursors

    SciTech Connect

    Deligne, N.; Bayot, D.; Degand, M.; Devillers, M.

    2007-07-15

    New hybrid organic-inorganic materials based on group 5 elements and a well-defined polymeric matrix have been prepared and used as precursors for Nb-Ta and Nb-Mo mixed oxides. In this non-conventional but easily accessible route to multimetallic oxides, a copolymer of N,N-diallyl-N-hexylamine and maleic acid was synthesised and used as matrix to stabilise inorganic species generated in solution from (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}.4H{sub 2}O, NH{sub 4}VO{sub 3} (gu){sub 3}[Nb(O{sub 2}){sub 4}] and (gu){sub 3}[Ta(O{sub 2}){sub 4}]. Solid-state studies indicate that the homogeneity of the blends can be kept up to about 0.5 mol Nb{sup V} and Ta{sup V} and 0.25 mol V{sup V} per mol of repeat units of the copolymer. The calcination conditions of these homogeneous hybrid precursors were optimised to produce Nb-Mo, Nb-Ta and Nb-V oxides. While the thermal treatment of the Nb-V hybrid blends led only to a mixture of different phases, the characterisation of the final phases by X-ray diffraction (XRD) proved the formation of pure Nb{sub 2}Mo{sub 3}O{sub 14} and showed that Nb-Ta oxides could be synthesised as single phases corresponding to a continuous series of solid solutions. - Graphical abstract: An alternative route based on hybrid organic-inorganic materials was implemented to synthesise Nb-Ta, Nb-Mo and Nb-V oxides. The hybrid materials were prepared by incorporation of inorganic salts based on Nb{sup V}, Ta{sup V}, V{sup V} and Mo{sup VI} in an organic polymer bearing cationic as well as anionic moieties. A thermal treatment of these hybrid blends has allowed the formation of multimetallic oxides.

  4. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.

    PubMed

    Zhu, Yongfeng; Wang, Liqiang; Wang, Minmin; Liu, Zhongtang; Qin, Jining; Zhang, Di; Lu, Weijie

    2012-08-01

    The microstructure and phase constitutions of TixNb3Zr2Ta alloys (x=35, 31, 27, 23) (wt%) were studied. With a lower niobium content the grain size of β phase in TixNb3Zr2Ta alloys increased significantly, and the TixNb3Zr2Ta system was more likely to form α″ phase and even α phase. Tensile tests showed that UTS of TixNb3Zr2Ta alloys improved as the Nb content was decreased. Cyclic loading-unloading tensile tests were carried on TixNb3Zr2Ta alloys. Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys featured the best superelasticity among the alloys studied. The pseudoelastic strain ratio of Ti35Nb3Zr2Ta alloy decreased a lot as the cycle number increased. Ti31Nb3Zr2Ta alloy showed only minimum superelasticity. This is because Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys had higher yield strength than Ti31Nb3Zr2Ta did, which allowed martensite phase to be induced. On the contrary, Ti31Nb3Zr2Ta alloy exhibited better shape memory property than Ti27Nb3Zr2Ta, Ti23Nb3Zr2Ta and Ti35Nb3Zr2Ta titanium alloys. β phase, α phase and α″ phase were found in Ti23Nb3Zr2Ta alloy by TEM observation. The dislocation density of α phase was much lower than that of β phase due to their crystal structure difference. This may explained why Ti23Nb3Zr2Ta with α phase possessed higher tensile strength. The incomplete shape recovery of Ti23Nb3Zr2Ta alloy after unloading resulted from two sources. Plastic deformation occurred in β phase, α phase and even α″ phase under dislocation slip mechanism, and incomplete decomposition of α″ martensitic phase resulted in unrecovered strain as well.

  5. Atomically engineering Cu/Ta interfaces.

    SciTech Connect

    Webb, Edmund Blackburn, III; Zhou, Xiao Wang

    2007-09-01

    This report summarizes the major research and development accomplishments for the late start LDRD project (investment area: Enable Predictive Simulation) entitled 'Atomically Engineering Cu/Ta Interfaces'. Two ultimate goals of the project are: (a) use atomistic simulation to explore important atomistic assembly mechanisms during growth of Cu/Ta multilayers; and (b) develop a non-continuum model that has sufficient fidelity and computational efficiency for use as a design tool. Chapters 2 and 3 are essentially two papers that address respectively these two goals. In chapter 2, molecular dynamics simulations were used to study the growth of Cu films on (010) bcc Ta and Cu{sub x}Ta{sub 1-x} alloy films on (111) fcc Cu. The results indicated that fcc crystalline Cu films with a (111) texture are always formed when Cu is grown on Ta. The Cu films are always polycrystalline even when the Ta substrate is single crystalline. These polycrystalline films are composed of grains with only two different orientations, which are separated by either orientational grain boundaries or misfit dislocations. Periodic misfit dislocations and stacking fault bands are observed. The Cu film surface roughness was found to decrease with increasing adatom energy. Due to a Cu surface segregation effect, the Cu{sub x}Ta{sub 1-x} films deposited on Cu always have a higher Cu composition than that used in the vapor mixture. When Cu and Ta compositions in the films are comparable, amorphous structures may form. The fundamental origins for all these phenomena have been studied in terms of crystallography and interatomic interactions. In chapter 3, a simplified computational method, diffusional Monte Carlo (dMC) method, was developed to address long time kinetic processes of materials. Long time kinetic processes usually involve material transport by diffusion. The corresponding microstructural evolution of materials can be analyzed by kinetic Monte Carlo simulation methods, which essentially

  6. Ordering Effects in NbC and TaC

    NASA Technical Reports Server (NTRS)

    Venables, J. D.; Meyerhoff, M. H.

    1972-01-01

    By means of transmission electron microscopy and electron diffraction, evidence has been obtained for the existence of long range carbon atom ordering in single-crystal niobium carbide that has a carbon-to-metal ratio close to the integral composition Nb6C5. The ordering, which gives rise to superlattice and domain structures similar to those observed in V6C5, appears, however, only in samples that have been cooled slowly through the order-disorder temperature of 1025 C. In TaC of similar composition, the ordering, although present, remains very imperfect even after the crystals are subjected to the same thermal treatment. The results are interpreted in terms of the electronic structure of the transition metal carbides as it is currently understood, and their relevance to the mechanical properties of NbC and TaC are discussed.

  7. Boron site preference in ternary Ta and Nb boron silicides

    SciTech Connect

    Khan, Atta U.; Nunes, Carlos A.; Coelho, Gilberto C.; Suzuki, Paulo A.; Grytsiv, Andriy; Bourree, Francoise; Rogl, Peter F.

    2012-06-15

    X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta{sub 3}Si{sub 1-x}B{sub x} (x=0.112(4)) crystallizes with the Ti{sub 3}P-type (space group P4{sub 2}/n) with B-atoms sharing the 8g site with Si atoms. Ta{sub 5}Si{sub 3-x} (x=0.03(1); Cr{sub 5}B{sub 3}- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.568(3), and Nb{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.59(2), are part of solid solutions of M{sub 5}Si{sub 3} with Cr{sub 5}B{sub 3}-type into the ternary M-Si-B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D8{sub 8}-phase in the Nb-Si-B system crystallizes with the Ti{sub 5}Ga{sub 4}-type revealing the formula Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn{sub 5}Si{sub 3} parent type. - Graphical abstract: The crystal structures of a series of compounds have been solved from X-ray single crystal diffractometry revealing details on the boron incorporation. Highlights: Black-Right-Pointing-Pointer Structure of a series of compounds have been solved by X-ray single crystal diffractometry. Black-Right-Pointing-Pointer Ta{sub 3}(Si{sub 1-x}B{sub x}) (x=0.112) crystallizes with the Ti{sub 3}P-type, B and Si atoms randomly share the 8g site. Black-Right-Pointing-Pointer Structure of Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292; Ti{sub 5}Ga{sub 4}-type) was solved from NPD.

  8. Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2016-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, and Vickers hardness- and alloy phases of the dental cast alloys Ti-6%Nb-4%Cu, Ti-18%Nb-2%Cu, and Ti-24%Nb-1%Cu were investigated. Ti-6%Nb-4%Cu consisted of a single α-phase, while Ti-18%Nb-2%Cu and Ti-24%Nb-1%Cu consisted of α- and β-phases. The tensile strengths, yield strengths, and hardnesses of these alloys were higher than those of Ti-5%Cu and Ti-30%Nb; however, their breaking elongations were smaller. These differences in the mechanical properties are attributable to solid-solution strengthening or to precipitation strengthening by the dual-phase (α+β) structure. Thus, Ti-Nb-Cu alloys are suitable for use in high-strength dental prostheses, such as implantretained superstructures and narrow-diameter implants.

  9. Influence of Ta and Ti Doping on the High Field Performance of (Nb, Ta, Ti)3Sn Multifilamentary Wires based on Osprey Bronze with High Tin Content

    NASA Astrophysics Data System (ADS)

    Abächerli, V.; Uglietti, D.; Lezza, P.; Seeber, B.; Flükiger, R.; Cantoni, M.; Buffat, P.-A.

    2006-06-01

    Ta and Ti are the most widely used additions for technical Nb3Sn multifilamentary superconductors. These elements are known to influence grain growth, grain morphology and chemical composition in the A15 layer, hence the current carrying properties of the wires over a wide magnetic field range. So far only few studies tried to compare systematically Ta and Ti doped and undoped Nb3Sn wires in the frame of the same work, down to a nanometric scale. We present an investigation on several multifilamentary (Nb, Ta, Ti)3Sn bronze route wires, fabricated at a laboratory scale, with various amounts of additives. The wires consist of fine filaments embedded in a Cu-Sn or Cu-Sn-Ti Osprey bronze with > 15 wt.% Sn and an external Cu stabilization. Microstructural observations are compared with the results of Jc and n values measured up to 21 T at 4.2 and 2.2 K, and for longitudinal strains up to 0.5%. Non-Cu Jc values up to 300 Amm-2 and n values up to 50 at 17 T and 4.2 K show clearly that wires with Ti addition to the bronze have a better performance with respect to wires with Ti additions to the filaments.

  10. Supporting data for senary refractory high-entropy alloy Cr x MoNbTaVW.

    PubMed

    Zhang, B; Gao, M C; Zhang, Y; Guo, S M

    2015-12-01

    This data article is related to the research paper entitled "senary refractory high-entropy alloy Cr x MoNbTaVW [1]". In this data article, the pseudo-binary Cr-MoNbTaVW phase diagram is presented to show the impact of Cr content to the senary Cr-MoNbTaVW alloy system; the sub-lattice site fractions are presented to show the disordered property of the Cr-MoNbTaVW BCC structures; the equilibrium and Scheil solidification results with the actual sample elemental compositions are presented to show the thermodynamic information of the melted/solidified Cr x MoNbTaVW samples; and the raw EDS scan data of the arc-melted Cr x MoNbTaVW samples are also provided.

  11. Supporting data for senary refractory high-entropy alloy CrxMoNbTaVW

    PubMed Central

    Zhang, B.; Gao, M.C.; Zhang, Y.; Guo, S.M.

    2015-01-01

    This data article is related to the research paper entitled “senary refractory high-entropy alloy CrxMoNbTaVW [1]”. In this data article, the pseudo-binary Cr-MoNbTaVW phase diagram is presented to show the impact of Cr content to the senary Cr-MoNbTaVW alloy system; the sub-lattice site fractions are presented to show the disordered property of the Cr-MoNbTaVW BCC structures; the equilibrium and Scheil solidification results with the actual sample elemental compositions are presented to show the thermodynamic information of the melted/solidified CrxMoNbTaVW samples; and the raw EDS scan data of the arc-melted CrxMoNbTaVW samples are also provided. PMID:26693172

  12. Synthesis and characterization of Ti-Ta-Nb-Mn foams.

    PubMed

    Aguilar, C; Guerra, C; Lascano, S; Guzman, D; Rojas, P A; Thirumurugan, M; Bejar, L; Medina, A

    2016-01-01

    The unprecedented increase in human life expectancy have produced profound changes in the prevailing patterns of disease, like the observed increased in degenerative disc diseases, which cause degradation of the bones. Ti-Nb-Ta alloys are promising materials to replace the damaged bone due to their excellent mechanical and corrosion resistance properties. In general metallic foams are widely used for medical application due to their lower elastic moduli compare to bulk materials. In this work we studied the synthesis of 34Nb-29Ta-xMn (x: 2, 4 and 6 wt.% Mn) alloy foams (50% v/v) using ammonium hydrogen carbonate as a space holder. Alloys were produced through mechanical alloying in a planetary mill for 50h. Green compacts were obtained by applying 430 MPa pressure. To remove the space holder from the matrix the green compacts were heated to 180 °C for 1.5h and after sintered at 1300 °C for 3h. Foams were characterized by x-ray diffraction, scanning, transmission electron microscopy and optical microscopy. The elastic modulus of the foam was measured as ~30 GPa, and the values are almost equal to the values predicted using various theoretical models. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Failure mechanism of Ta diffusion barrier between Cu and Si

    NASA Astrophysics Data System (ADS)

    Laurila, Tomi; Zeng, Kejun; Kivilahti, Jorma K.; Molarius, Jyrki; Suni, Ilkka

    2000-09-01

    The reaction mechanisms in the Si/Ta/Cu metallization system and their relation to the microstructure of thin films are discussed on the basis of experimental results and the assessment of the ternary Si-Ta-Cu phase diagram at 700 °C. With the help of sheet resistance measurements, Rutherford backscattering spectroscopy, x-ray diffraction, a scanning electron microscope, and a transmission electron microscope, the Ta barrier layer was observed to fail at temperatures above 650 °C due to the formation of TaSi2, the diffusion of Cu through the silicide layer, and the resulting formation of Cu3Si precipitates. However, in order for the TaSi2 phase to form first, the Ta diffusion barrier layer must be thick enough (e.g., 50-100 nm) to prevent Cu diffusion into the Si substrate up to the temperature of TaSi2 formation (˜650 °C). Independent of the Ta layer thickness, Cu3Si was present as large nodules, whereas the TaSi2 existed as a uniform layer. The resulting reaction structure was found to be in local equilibrium on the basis of the assessed Si-Ta-Cu phase diagram at 700 °C, and therefore no further reactions were expected. The role of oxygen was also found to be important in the reactions and it seems to have a strong effect on the thermal stability of the barrier layer.

  14. Crystal Structure, Transformation Strain, and Superelastic Property of Ti-Nb-Zr and Ti-Nb-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Hee Young; Fu, Jie; Tobe, Hirobumi; Kim, Jae Il; Miyazaki, Shuichi

    2015-06-01

    The composition dependences of transformation strain and shape memory, and superelastic properties were extensively investigated in Ti-Nb-Zr and Ti-Nb-Ta alloys in order to establish the guidelines for alloy design of biomedical superelastic alloys. The effects of composition on the crystal structure of the parent (β) phase and the martensite (α″) phase were also investigated. Results showed that not only transformation temperature but also transformation strain is tunable by alloy design, i.e., adjusting contents of Nb, Zr, and Ta. The lattice constant of the β phase increased linearly with increasing Zr content, while it was insensitive to Nb and Ta contents. On the other hand, the lattice constants of the α″ phase are mainly affected by Nb and Ta contents. The increase of Zr content exhibited a weaker impact on the transformation strain compared with Nb and Ta. The addition of Zr as a substitute of Nb with keeping superelasticity at room temperature significantly increased the transformation strain. On the other hand, the addition of Ta decreased the transformation strain at the compositions showing superelasticity. This study confirmed that the crystallography of martensitic transformation can be the main principal to guide the alloy design of biomedical superelastic alloys.

  15. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xiang; Zheng, Yong-Fei

    2015-02-01

    Extremely high Nb/Ta ratios (up to 239) occur in metamorphic titanite from ultrahigh-pressure metagranite in the Sulu orogen. This indicates significant Nb/Ta fractionation in subduction-zone fluids. By means of U-Pb dating and trace element analysis of titanite, we distinguish the metamorphic domains from the anatectic domains. Titanite U-Pb dating yields lower intercept ages of 215 ± 12 Ma to 222 ± 27 Ma for the metagranite samples, with regardless of the compositional differences between the two types of titanite domains. This indicates the two generations of titanite growth during exhumation of deeply subducted continental crust. The metamorphic titanite shows significantly elevated Nb but decreased Ta and thus higher Nb/Ta ratios than the anatectic titanite. The increase of Nb/Ta ratios for the metamorphic titanite is associated more with a decrease of Ta than an increase of Nb, suggesting the control of fluid composition on the titanite Nb/Ta ratios. Because the metamorphic titanite grew during the exhumation of deeply subducted continental crust, its unusually high Nb/Ta ratios are ascribed to the breakdown of hydrous minerals such as phengite and biotite that host much more Nb than Ta. This implies that the composition of subduction-zone fluids is primarily dictated by the geochemical property of hydrous minerals that break down during dehydration reaction at high-pressure to ultrahigh-pressure conditions. Therefore, significant Nb/Ta fractionation in Ti-rich accessory minerals such as titanite and rutile, at least on the mineral scale, during subduction-zone processes is possibly much more common than previously thought.

  16. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics.

    PubMed

    Münker, Carsten; Pfänder, Jörg A; Weyer, Stefan; Büchl, Anette; Kleine, Thorsten; Mezger, Klaus

    2003-07-04

    It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the chondritic ratio of 19.9 +/- 0.6, in contrast to Mars and asteroids. The lunar Nb/Ta constrains the mass fraction of impactor material in the Moon to less than 65%. Moreover, the Moon-forming impact can be linked in time with the final core-mantle equilibration on Earth 4.533 billion years ago.

  17. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  18. Structural studies of the metal-rich region in the ternary Ta-Nb-S system

    SciTech Connect

    Yao, Xiaoqiang.

    1991-10-07

    Six new solid solution type compounds have been prepared using high temperature techniques and characterized by means of single crystal x-ray techniques during a study of the metal-rich region of the ternary Ta-Nb-S system. The structures of Nb{sub x}Ta{sub 11-x}S{sub 4} are reminiscent of niobium-rich sulfides, rather than of tantalum-rich sulfides. The coordinations of sulfur are capped trigonal prismatic while the metal coordinations are capped distorted cubic prismatic for Nb{sub x}Ta{sub 11-x}S{sub 4}, and capped distorted cubic prismatic and pentagonal prismatic for Nb{sub 12-x}Ta{sub x}S{sub 4}. The structures of Nb{sub x}Ta{sub 5-x}S{sub 2} contain homoatomic layers sequenced S-M3-M2-M1-M2-M3-S (M is mixed Nb, Ta) generating six-layer sheets, respectively. Weak S-S interactions at 3.26 and 3.19{Angstrom} between sheets contrast with the M-M binding within and between the sheets in these two novel layered compounds. The former are presumably responsible for the observed graphitic slippage of the samples. Nb{sub 21-x}Ta{sub x}S{sub 8} and Nb{sub x}Ta{sub 2-x}S are isostructural with Nb{sub 21}S{sub 8} and Ta{sub 2}S, respectively. Extended Hueckel band calculations were carried out for two layered compounds, Nb{sub x}Ta{sub 5-x}S{sub 2} (x {approx} 1.72) and Nb{sub x}ta{sub 2-x}S (x {approx} 0.95). Based upon band calculations metallic properties can be expected for these two layered compounds. The relative preference of the metal sites for the two metal elements (Ta, Nb) in two layered compounds is explained by the results of the band calculations. 17 figs., 31 tabs., 80 refs.

  19. Nb-Ta mobility and fractionation during exhumation of UHP eclogite from southwestern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Lifei; Lü, Zeng; Bader, Thomas; Chen, Zhenyu

    2016-05-01

    In order to study the behavior of high field strength elements (HFSE) during retrograde overprint of ultrahigh-pressure (UHP) eclogites, analysis of Nb and Ta concentrations was carried out on bulk rock, rutile (in both veins and host rocks) and titanite in the host eclogite. The studied samples were collected from the UHP metamorphic belt of southwestern Tianshan, China. Petrographic observation and phase equilibria modeling show that the host eclogites have experienced UHP metamorphism and the rutile-bearing veins are thought to be originated from an internal fluid source, probably by lawsonite dehydration during exhumation. The presence of vein rutile indicates HFSE could be mobilized from host eclogites to veins, which is probably facilitated by complexation with dissolved Na-Al silicates and fluorine-rich fluids. Changes in fluid composition (e.g., F-1, X(CO2)) may trigger the precipitation of rutile. Rutile/fluid partitioning may be the key to fractionating Nb and Ta, with preference for Ta in the fluid, resulting in Nb/Ta ratio of rutile in the veins lower than that in the host eclogite. Besides, the transformation of rutile into titanite also might be an effective mechanism for fractionating Nb from Ta, resulting in the intra-grain Nb-Ta zonations in vein rutile. The Nb-Ta mobility and fractionation can happen during exhumation of the UHP eclogite, which should be very important for understanding the behavior of HFSE in subduction zone metamorphism.

  20. A study of CuZr-based bulk metallic glass composite dispersed by in-situ Ta particles

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Mu, Juan; Xie, Qingge; Xu, Haijian; Wang, Yandong; Zhang, Haifeng

    2017-05-01

    The microstructure and mechanical behavior of Cu46Zr41Al7Nb1Ta5 BMGC containing Ta-rich particles and B2 phase were investigated. The parabolic strain-hardening behavior is observed due to the martensitic transformation of the B2 phase. The stress behavior of B2 phase dominates the macro-mechanical behavior rather than the shear-banding deformation.

  1. Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys (Postprint)

    DTIC Science & Technology

    2011-05-01

    temper ature from 548 MPa at 1000 C to 405 MPa at 1600 C (Table 2).ublic release; distribution unlimited. Table 4 Composition (in wt.%) of Inconel 718 ...values of the refractory HEAs are much higher than those of Haynes 230 at all studied temperatures and higher than those of Inconel 718 at...than twice (for the Nb25Mo25 Ta25W25 alloy) or four times (for the V20Nb20Mo20Ta20W20 alloy) higher than for Inconel 718 or Haynes 230 at 1000 C. The

  2. Laser-deposited Ti-Nb-Zr-Ta orthopedic alloys.

    PubMed

    Banerjee, R; Nag, S; Samuel, S; Fraser, H L

    2006-08-01

    The complex quaternary Ti-35Nb-7Zr-5Ta orthopedic alloy has been successfully deposited from a powder feedstock consisting of a blend of elemental titanium, niobium, zirconium, and tantalum powders, using the laser engineered net-shaping (LENStrade mark) process. In the as laser-deposited form, these alloys exhibit a substantially higher tensile strength as compared with more conventionally processed counterparts of similar composition, while maintaining excellent ductility and a low modulus. Furthermore, the as-deposited alloys appear to exhibit a <001> texture, with a substantially large number of grains of the beta phase aligning one of their <001> axes nearly normal to the substrate or parallel to the growth direction. The microstructure of the as-deposited as well as tensile-tested alloys have been characterized in detail using scanning electron microscopy (SEM), orientation microscopy (OM), and transmission electron microscopy (TEM). Formation of a high density of shear bands, possibly arising from slip localization due to precipitates of the omega phase in the beta matrix, is clearly evident in the tensile-tested sample. The enhanced tensile strength and low modulus in these laser-deposited alloys coupled with the ability to form near-net shape components makes LENS an attractive processing technology for orthopedic implants.

  3. Biocompatibility of new Ti-Nb-Ta base alloys.

    PubMed

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity.

  4. [The electrochemical behavior of TiTa30 and TiNb30 alloys for implantology].

    PubMed

    Hildebrand, H F; Ralison, A; Traisnel, M; Breme, J

    1997-11-01

    The electrochemical behavior in artificial saliva of TiNb30 and TiTa30 alloys were compared with that of commercial pure titanium. The anodic potential, the current density, the passivation potential and the galvanic corrosion vs. Au were determined. Both alloys have a similar behavior to that of pure titanium. Crevace corrosion, which is very weak in pure Ti, is completely inhibited by the addition of Nb or Ta.

  5. Low Nb/Ta in the Archean Mantle: Ancient Missing Niobium in the Silicate Earth

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Polat, A.; Stoll, B.; Hofmann, A. W.

    2001-12-01

    Recent investigations of oceanic basalts (MORB, OIB) and samples of the continental crust show that the continental crust and the sources of MORB and OIB all have Nb/Ta ratios that are significantly lower than the CI-chondritic value of 17.4. The missing, complementary high-Nb/Ta reservoir has been suggested to exist in the form of Nb-rich, high-Nb/Ta refractory eclogites deep in the mantle (McDonough, 1991; Rudnick et al., 2000). Alternatively, Wade and Wood (2001) recently showed that at high pressure Nb may fractionate into the core, and thus no hidden reservoir would be required within the silicate portion of the Earth. To get further insight of the missing Nb in the silicate portion of the Earth and to test the two hypotheses, we used spark source and ICP mass spectrometry to investigate the geochemically very similar element pairs Nb-Ta and Zr-Hf in komatiitic basalts from 6 Archean greenstone belts. Samples include 3.8 Ga old rocks from Isua (Greenland), 3.4 Ga old rocks from the Onverwacht Group (South Africa) and the Pilbara Craton (Australia), and 2.7 Ga old rocks from the Abitibi (Canada) and the Norseman-Wiluna belts (Australia). Our results show that the mean Zr/Hf ratio of 37 for the Archean samples is identical within error limits with the values found in modern oceanic basalts and in chondritic meteorites. This means that Zr and Hf have not been fractionated in the Earth's mantle since at least 3.8 Ga and that the primitive mantle has a chondritic Zr/Hf ratio. In contrast, Nb and Ta behave differently. The mean Nb/Ta ratios are about 13 for the 3.8 Ga old samples from Isua, and 14 for the 3.4 Ga and 2.7 Ga old samples. These ratios are similar to those of MORB (15), OIB (about 15) (Jochum et al., 1997), and upper crustal material (13; Barth et al., 2000), but are significantly lower than the CI chondritic Nb/Ta of 17.4. This implies that there was no significant fractionation of Nb and Ta in the major reservoirs since 3.8 Ga, not even during

  6. Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

    PubMed Central

    Kim, Young-Min; Vang, Mong-Sook; Yang, Hong-So; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE The purpose of this study was to evaluate the osteoblast precursor response to titanium - 10 tantalum - 10 niobium (Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups. CONCLUSIONS It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material. PMID:21165256

  7. Ferromagnetism in chemically reduced LiNbO3 and LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Ye, Ning; Xu, Liuwei; Sang, Yuanhua; Chen, Yanxue; Song, Wei; Long, Xifa; Wang, Jiyang; Liu, Hong

    2016-05-01

    The ferromagnetism of bulk LiNbO3 and LiTaO3 at room temperature was investigated for the first time in the present work. The stoichiometric LiNbO3 is non-magnetic, while congruent LiNbO3 and LiTaO3 show very weak ferromagnetism. After chemical reduction in a mixture of zinc and lithium carbonate powders under flowing nitrogen, the ferromagnetic behavior of each sample became clear, with an increased value of magnetization. The saturation magnetization, the magnetic remanence and the coercive field of reduced congruent LiNbO3 are 7.0  ×  10-3 emu g-1, 0.65  ×  10-3 emu g-1 and 0.050 kOe, respectively. The ferromagnetism of chemically reduced LiNbO3 and LiTaO3 can be explained by considering the intrinsic Li vacancies, the appearance of Nb4+ (or Ta4+) on the surface with non-zero net spin and the oxygen vacancies at the surface.

  8. Far infrared linear response and radio frequency nonlinear response of charge density wave conductors and high T/sub c/ superconductors. [(TaSe/sub 4/)/sub 2/I; La/sub 1. 85/Sr/sub 0. 15/CuO/sub 4/; La/sub 1. 85/Ca/sub 0. 15/CuO/sub 4/; ac-dc mode lock of NbSe/sub 3/

    SciTech Connect

    Sherwin, M.S.

    1988-06-01

    The far-ir (FIR) linear response of the charge-density-wave (CDW) conductor (TaSe/sub 4/)/sub 2/I and polycrystalline La/sub 1.85/Sr/sub 0.15/CuO/sub 4/ and La/sub 1.85/Ca/sub 0.15/CuO/sub 4/ was measured at 8--350 cm/sup /minus/1/ and 5 to 300K. At low T in (TaSe/sub 4/)/sub 2/I, a mode with giant oscillator strength was found at 38 cm/sup -1/. This giant FIR mode lies between the pinned mode and the Peierls gap. It is suggested that a giant FIR mode distinct from the pinned mode is a common feature of CDW conductors. At low T in the high-T/sub c/ superconductors, a reflectance edge was observed near 2.5k/sub B/T/sub c/. The BCS-like temperature-dependence of the reflectance edge is suggestive of an energy gap. However, a simple model shows that a BCS-like temperature dependence is also consistent with an interpretation of the reflectance edge as a low-frequency plasmon. It is not yet possible to deduce the energy gap from the FIR spectra. The rf nonlinear response of the CDW conductor NbSe/sub 3/ was also measured. In combined rf- and dc-electric fields, mode-locking occurs in NbSe/sub 3/. Complete mode-locking in conventional samples dramatically suppresses sliding CDW conduction fluctuations. Combined rf and dc electric fields on switching NbSe/sub 3/ induced a large amplitude /open quotes/ac switching noise/close quotes/ for rf frequencies <1 MHz, and a period-doubling route to chaos for rf-frequencies >1 MHz. The mode-locking behavior of switching and nonswitching NbSe/sub 3/ is analyzed. A model of CDW elasticity qualitatively reproduces all of the experimental anomalies for dc-, ac- and combined ac- and dc-electric fields. It is suggested that, during mode-locking, the number of degrees of freedom active in CDW transport is reduced.

  9. Development of Ta-matrix Nb3Al Strand and Cable for High-Field Accelerator Magnet

    SciTech Connect

    Tsuchiya, K.; Ghosh, A.; Kikuchi, A.; Takeuchi, T.; Banno, N.; Iijima, Y.; Nimori, S.; Takigawa, H.; Terashima, A.; Nakamoto, T.; Kuroda, Y.; Maruyama, M.; Takao, T.; Tanaka, K.; Nakagawa, K.; Barzi, E.; Yamada, R.; Zlobin, A.

    2011-08-03

    Research and development of Nb{sub 3}Al strands and cables for a high field accelerator magnet is ongoing under the framework of the CERN-KEK collaboration. In this program, new Ta-matrix Nb{sub 3}Al strands were developed and their mechanical properties and superconducting properties were studied. The non-Cu J{sub c} values of these strands were 750 {approx} 800 A/mm{sup 2} at 15 T and 4.2 K. Using these strands, test fabrication of 27-strand Rutherford cable was carried out in collaboration with NIMS and Fermilab. The properties of the strands extracted from the cable were examined and it was found that there was no degradation of the superconducting properties of the strands. In this paper, we report the fabrication of the strands and the cable in brief and present some of the results obtained by studying their properties.

  10. Corrosion behavior of niobium and Nb-25 wt% Ta alloy in sulfuric acid solutions

    SciTech Connect

    Robin, A.; Nunes, C.A. ); de Almeida, M.E. )

    1991-06-01

    In this paper the corrosion behavior of niobium and Nb-25 wt% Ta alloy in H{sub 2} SO{sub 4} solutions has been studied. Using mass-loss techniques, the influences of H{sub 2}SO{sub 4} concentration, temperature, and exposure time have been examined. The Nb-Ta alloy is more corrosion resistant than pure niobium. The obtained corrosion data allowed the construction of iso-corrosion curves of both materials in sulfuric acid below and above the boiling point.

  11. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wu, Shu-Chun; Yan, Binghai

    2015-09-01

    Very recently the topological Weyl semimetal (WSM) state was predicted in the noncentrosymmetric compounds NbP, NbAs, TaP, and TaAs and soon led to photoemission and transport experiments to verify the presumed topological properties such as Fermi arcs (unclosed Fermi surfaces) and the chiral anomaly. In this work we have performed fully ab initio calculations of the surface band structures of these four WSM materials and revealed the Fermi arcs with spin-momentum-locked spin texture. On the (001) polar surface, the shape of the Fermi surface depends sensitively on the surface terminations (cations or anions), although they exhibit the same topology with arcs. The anion (P or As) terminated surfaces are found to fit recent photoemission measurements well. Such surface potential dependence indicates that the shape of the Fermi surface can be sensitively manipulated by depositing guest species (such as K atoms), as we demonstrate. On the polar surface of a WSM without inversion symmetry, Rashba-type spin polarization naturally exists in the surface states and leads to strong spin texture. By tracing the spin polarization of the Fermi surface, one can distinguish Fermi arcs from trivial Fermi circles. The four compounds NbP, NbAs, TaP, and TaAs present an increasing amplitude of spin-orbit coupling (SOC) in band structures. By comparing their surface states, we reveal the evolution of topological Fermi arcs from the spin-degenerate Fermi circle to spin-split arcs when the SOC increases from zero to a finite value. Our work presents a comprehensive understanding of the topological surface states of WSMs, which will especially be helpful for future spin-revolved photoemission and transport experiments.

  12. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications.

    PubMed

    Braic, V; Balaceanu, M; Braic, M; Vladescu, A; Panseri, S; Russo, A

    2012-06-01

    Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear-corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2-13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10(-6)mm(3)N(-1)m(-1)), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers

    SciTech Connect

    Polyakov, M. N.; Hodge, A. M.; Courtois-Manara, E.; Wang, D.; Kuebel, C.; Chakravadhanula, K.

    2013-06-17

    Miscible (Al/Nb) and immiscible (Cu/Nb) nanometallic multilayer systems were characterized by means of transmission electron microscopy techniques, primarily by automated crystallographic orientation mapping, which allows for the resolution of crystal structures and orientations at the nanoscale. By using this technique, distinctive Nb orientations in relation to the crystallographic state of the Al and Cu layer structures can be observed. Specifically, the Al and Cu layers were found to consist of amorphous, semi-amorphous, and crystalline regions, which affect the overall multilayer microstructure.

  14. Design and fabrication of ultrathin and highly thermal-stable α-Ta/graded Ta(N)/TaN multilayer as diffusion barrier for Cu interconnects

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Wang, Y.; Liu, B.; An, Z.; Song, Z. X.; Xu, K. W.

    2011-02-01

    A one-step strategy of magnetron sputtering deposition with dynamic regulation of sputtering atmosphere was developed to prepare α-Ta/graded Ta(N)/TaN multilayer films on the Si substrate. The evolution of Ta clusters shows a significant effect on the crystal structure of the Ta film. The experimental results validate that the formation of α-Ta was attributed to the nucleation of larger Ta clusters. After being annealed at 600 °C, the α-Ta/graded Ta(N)/TaN multilayer film can still effectively block the diffusion of Cu. The mechanisms of the forming of the α-Ta and the thermal stability of the film stacks are characterized in detail.

  15. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta system.

    PubMed

    Dai, Y; Li, J H; Che, X L; Liu, B X

    2009-05-21

    An n-body potential is constructed for the Ni-Nb-Ta ternary metal system in the newly proposed form of long-range empirical potential. The constructed Ni-Nb-Ta potential can well reproduce the lattice constants, cohesive energies, and elastic modulus of the metals and some compounds as well as the equations of state of the system. Applying the constructed Ni-Nb-Ta potential, molecular dynamics simulations and Voronoi tessellations are carried out to study the issues related to the Ni-Nb-Ta metallic glasses. It is found that increasing the Ni content can obviously improve the glass-forming ability of the binary Nb-Ta system, which features a isomorphous phase diagram unfavoring for forming glass, indicating that the Ni solute plays a decisive role in forming the Nb-based or Ta-based Ni-Nb-Ta metallic glasses. Concerning the atomic structure, the Voronoi cell volume and coordination number (CN) of Ta are generally larger than those of Ni in the binary Ni-Ta metallic glasses. With increasing the Ni concentration, the fraction of icosidihedron (CN=13) increases, while the fractions of icosihexahedron (CN=15) and icosioctahedron (CN=16) decrease. Meanwhile, with increasing the Ni concentration, the dominating coordination numbers of Ta atoms increase. Interestingly, similar feature in the atomic structure with variation of Ni concentration is also observed in the Ni-Nb metallic glasses. For the ternary Ni-Nb-Ta alloys, it is observed from the CN distributions that the structure of the metallic glasses is mostly affected by the Ni concentration.

  16. Interaction of interstitial atoms and configurational contribution to their thermodynamic activity in V, Nb, and Ta

    NASA Astrophysics Data System (ADS)

    Blanter, M. S.; Dmitriev, V. V.; Mogutnov, B. M.; Ruban, A. V.

    2017-02-01

    The pairwise interaction energies of O-O and N-N in bcc metals of group VB, which were calculated earlier using first-principles methods, have been employed to analyze the effect of the interatomic interactions on the configurational contribution to the thermodynamic activity. The strong effect of interstitial- interstitial interaction has been shown. The configurational contribution grows in the row (Nb-N) → (V-N) → (Ta-N) → (Nb-O) → (V-O) → (Ta-O), which is caused by a weakening of the mutual attraction of interstitial atoms in these solid solutions. The strong repulsion that characterizes the majority of coordination shells only weakly affects the thermodynamic activity. The character of the temperature dependence of the configurational contribution is defined by the strength of the mutual attraction of the interstitial atoms, i.e., upon strong attraction, the contribution increases with increasing temperature (Nb-N, V-N, Ta-N, and Nb-O) and, upon weak attraction, it decreases (V-O and Ta-O).

  17. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.

    PubMed

    Banerjee, Rajarshi; Nag, Soumya; Stechschulte, John; Fraser, Hamish L

    2004-08-01

    The microstructural evolution and attendant strengthening mechanisms in two novel orthopaedic alloy systems, Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe, have been compared and contrasted in this paper. Specifically, the alloy compositions considered are Ti-34Nb-9Zr-8Ta and Ti-13Mo-7Zr-3Fe. In the homogenized condition, both alloys exhibited a microstructure consisting primarily of a beta matrix with grain boundary alpha precipitates and a low-volume fraction of intra-granular alpha precipitates. On ageing the homogenized alloys at 600 degrees C for 4 hr, both alloys exhibited the precipitation of refined scale secondary alpha precipitates homogeneously in the beta matrix. However, while the hardness of the Ti-Mo-Zr-Fe alloy marginally increased, that of the Ti-Nb-Zr-Ta alloy decreased substantially as a result of the ageing treatment. In order to understand this difference in the mechanical properties after ageing, TEM studies have been carried out on both alloys prior to and post the ageing treatment. The results indicate the existence of a metastable B2 ordering in the Ti-Nb-Zr-Ta alloy in the homogenized condition which is destroyed by the ageing treatment, consequently leading to a decrease in the hardness.

  18. Effect of Zr, V, Nb, Mo, and Ta substitutions on magnetic properties and microstructure of melt-spun SmCo5 magnets.

    PubMed

    Fukuzaki, Tomokazu; Iwane, Hiroaki; Abe, Kazutomo; Doi, Toshihiro; Tamura, Ryuji; Oikawa, Tadaaki

    2014-05-07

    We have investigated effects of metal substitutions on the magnetic properties and microstructure of melt-spun Sm-Co-Cu-Fe-M (M = Zr, V, Nb, Mo, Ta) magnets. We prepared melt-spun ribbons with compositions of Sm(Co1-x Cu x )5Fe0.54-y M y (x = 0.1-0.5, y = 0-0.43, M = Zr, V, Nb, Mo, Ta). For compositions of Sm(Co1-x Cu x )5Fe0.54 (x = 0.1-0.5), coercivity increased with increasing of annealing temperature, and a high coercivity of 17.6 kOe was obtained at a Cu content of x = 0.3. The coercivity was found to increase with increasing melting point of the substitution element. A high coercivity of 24.5 kOe was obtained for a composition of Sm(Co0.7Cu0.3)5Fe0.34Ta0.2.

  19. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    PubMed

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work.

  20. Bone response to a novel Ti-Ta-Nb-Zr alloy.

    PubMed

    Stenlund, Patrik; Omar, Omar; Brohede, Ulrika; Norgren, Susanne; Norlindh, Birgitta; Johansson, Anna; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2015-07-01

    Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Effects of sintering aid CuTa{sub 2}O{sub 6} on piezoelectric and dielectric properties of sodium potassium niobate ceramics

    SciTech Connect

    Yang, Song-Ling; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan

    2012-04-15

    Graphical abstract: NKN ceramics with a sintering aid CuTa{sub 2}O{sub 6} (CT) doping increased the mechanical quality factor (Q{sub m}) and electromechanical coupling factor (k{sub p}). Highlights: Black-Right-Pointing-Pointer A new sintering aid CuTa{sub 2}O{sub 6} was developed to dope into NKN ceramics. Black-Right-Pointing-Pointer Dense NKN ceramics were obtained as CuTa{sub 2}O{sub 6} compound doping. Black-Right-Pointing-Pointer We find the soluble limit of CuTa{sub 2}O{sub 6} compound incorporated into NKN ceramics. Black-Right-Pointing-Pointer The maximum Q{sub m} and k{sub p} values were more than 1500 and 42%, respectively. Black-Right-Pointing-Pointer CuTa{sub 2}O{sub 6} compound is a better sintering aid compared with K{sub 5.3}Cu{sub 1.3}Ta{sub 10}O{sub 29}. -- Abstract: In this study, the effects of a sintering aid CuTa{sub 2}O{sub 6} (CT) on (Na{sub 0.5}K{sub 0.5})NbO{sub 3} (NKN) ceramics were investigated. The diffracted angles in XRD profiles decreased because the Nb-sites were replaced by Cu and Ta ions, causing the expansion of lattice volume. SEM images showed smaller grain sizes at a low concentration of CuTa{sub 2}O{sub 6}, and grain sizes increased as the concentration of CuTa{sub 2}O{sub 6} doping increased because of a liquid phase formed. When CuTa{sub 2}O{sub 6} dopants were doped into NKN ceramics, the T{sub O-T} and T{sub c} phase transitions decreased because the replacement of Ta{sup 5+} ions in the B-site. A high bulk density (4.595 g/cm{sup 3}) and electromechanical coupling factor (k{sub p}, k{sub t}) were enhanced when CT dopants were doped into NKN ceramics. Moreover, the mechanical quality factor (Q{sub m}) also increased from 67 to 1550. NKN ceramics with sintering aid CuTa{sub 2}O{sub 6} doping showed excellent piezoelectric properties: k{sub p}: 42.5%; k{sub t}: 49.1%; Q{sub m}: 1550; and d{sub 33}: 96 pC/N.

  2. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  3. NbOsSi and TaOsSi - Two new superconducting ternary osmium silicides

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Heletta, Lukas; Heymann, Gunter; Huppertz, Hubert; Eckert, Hellmut; Pöttgen, Rainer

    2017-06-01

    The new equiatomic silicides NbOsSi and TaOsSi as well as ZrOsSi, TIrSi (T = Zr, Hf, Nb, Ta) and TPtSi (T = Nb, Ta) were prepared from the elements by arc-melting. These silicides crystallize with the orthorhombic TiNiSi type structure, space group Pnma. Irregularly shaped crystals of ZrOsSi, NbOsSi, TaOsSi, ZrIrSi and HfIrSi were separated from the annealed samples and investigated by single-crystal X-ray diffraction (a = 640.46(7), b = 404.07(5), c = 743.66(8) pm, wR2 = 0.0285, 390 F2 values, 20 variables for ZrOsSi; a = 629.78(6), b = 388.72(4), c = 727.48(7) pm, wR2 = 0.0350, 397 F2 values, 20 variables for NbOsSi, a = 626.80(6), b = 389.36(4), c = 726.22(7) pm, wR2 = 0.0501, 385 F2 values, 20 variables for TaOsSi, a = 653.48(8), b = 395.35(4), c = 739.19(8) pm, wR2 = 0.0427, 413 F2 values, 20 variables for ZrIrSi and a = 646.34(12), b = 393.57(7), c = 736.8(14) pm, wR2 = 0.0582, 371 F2 values, 20 variables for HfIrSi). The striking structural motifs in the new osmium compounds are three-dimensional [OsSi] networks (Os-Si: 240-251 pm) in which the osmium atoms have strongly distorted tetrahedral silicon coordination. High-pressure/high-temperature experiments (9.5 GPa/1520 K) on TaOsSi gave no hint for a structural phase transition. Temperature dependent measurements of the magnetic susceptibility and the electrical conductivity of NbOsSi and TaOsSi showed superconductivity below TC = 3.5 and 5.5 K, respectively. 29Si solid state MAS NMR investigations of the prepared silicides approved the structural models and showed a correlation between the observed 29Si resonance shifts and the electronegativity of the involved refractory metal.

  4. MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: haemocompatibility and its correlation with protein adsorption.

    PubMed

    Li, Xiu-Mei; Li, Hui-Zhe; Wang, Shao-Ping; Huang, Hsun-Miao; Huang, Her-Hsiung; Ai, Hong-Jun; Xu, Jian

    2014-09-01

    Nb-60Ta-2Zr is a newly developed MRI-compatible alloy used for vascular stents. In this work, its haemocompatibility was investigated, including platelet adhesion (lactate dehydrogenase activity), platelet activation (P-selectin expression), coagulation and haemolysis. For comparison, parallel assessments for these factors were performed for the niobium, tantalum, 316L stainless steel (316L SS) and L605 Co-Cr alloy (L605). In addition, albumin and fibrinogen were selected to examine the correlation of protein adsorption with platelet adhesion and metal surface properties. The propensity for platelet adhesion and activation on the Nb-60Ta-2Zr alloy was at nearly the same level as that for Nb and Ta but was slightly less than those of 316L SS and L605. The mitigated platelet adhesion and activation of the Nb-60Ta-2Zr alloy is associated with its decreased adsorption of fibrinogen. The Nb-60Ta-2Zr alloy has a longer clotting time and exhibits significantly superior thromboresistance than 316L SS and L605. Moreover, the haemolysis rate of the Nb-60Ta-2Zr alloy satisfies the bio-safety requirement of the ISO 10993-4 standard. The favourable haemocompatiblity of the Nb-60Ta-2Zr alloy provides evidence of its good biocompatibility and of its suitability as a candidate stent material.

  5. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  6. The BM5Se9 phases (B = Al, Ga, Ge, Sb, Sn; M = V, Nb, Ta): superconductors or ferromagnets?

    NASA Astrophysics Data System (ADS)

    Leblanc-Soreau, A.; Molinié, P.; Jumas, J. C.

    2004-05-01

    The dissolution of some intermetallic A15 compounds in lamellar metallic diselenides (2H-NbSe2, 2H-TaSe2 and 1T-VSe2) results in original phases. Syntheses performed in the Nb3Sn/NbSe2, Nb3Ge/NbSe2, Nb3Sn/TaSe2, V3Ga/NbSe2, Nb3Sb/NbSe2 V3Ga/VSe2 systems lead to the formation of the BM5Se9 phases ( superconductors or ferromagnets). The Tc values vary from 17.5(2) K for SnNb5Se9 to 4.5(2) K for GeNb5Se9. For the ferromagnet GaV5Se9, the ESR study shows two vanadium sites with axial symmetries. Previous results in Mössbauer and Raman studies showing the existence of B-M entities, are in agreement with the Mössbauer ones obtained on SnNb5Se9 which could be obtained without any superconducting behaviour. The comparison could be done between the 3 superconductors GaNb5Se9, SnNb5Se9, SnNb0.5Ta4.5Se9 and the 3 ferromagnets GaV5Se9, Sn0.94Ga0.05Nb4.70V0.30Se9, GaV0.15Ta4.85Se9, the presence of V probably modifies the superconducting exchanges and allows ferromagnetic couplings.

  7. Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-07-01

    AFRL-RX-WP-TP-2011-4292 MICROSTRUCTURE AND ROOM TEMPERATURE PROPERTIES OF A HIGH-ENTROPY TaNbHfZrTi ALLOY (PREPRINT) O.N. Senkov, J.M...TEMPERATURE PROPERTIES OF A HIGH- ENTROPY TaNbHfZrTi ALLOY (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...article submitted to the Journal of Alloys and Compounds. 14. ABSTRACT A refractory alloy , Ta20Nb20Hf20Zr20Ti20, was produced by vacuum arc-melting

  8. Purification of (NB/sub 1-x/TA/sub x/)/sub 2/O/sub 5/

    SciTech Connect

    Pastor, R.C.; Gorre, L.E.

    1988-07-12

    A process for purifying compounds of the form (Nb/sub 1-x/Ta/sub x/)/sub 2/O/sub 5/, where x ranges from 0 to 1 is described, comprising the steps of: furnishing the (Nb/sub 1-x/Ta/sub x/)/sub 2/O/sub 5/ in a finely divided form; contacting a liquid extraction phase containing a source of halide ions, and separating the liquid extraction phase and the reacted impurities contained therein from the finely divided (Nb/sub 1-x/Ta/sub x/)/sub 2/O/sub 5/.

  9. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.

    PubMed

    Wang, Huifeng; Li, Jing; Yang, Hailin; Liu, Chao; Ruan, Jianming

    2014-07-01

    Porous Ta-Nb alloys were fabricated using the sponge impregnation technique and the powder metallurgy technique (P/M) in combination. All porous Ta-Nb alloys displayed interconnected open cell structures with porosities around 64% and pore sizes in the range of 300-500 μm. No carbide, oxide, or intermetallic-related phases were detected by the X-ray diffraction (XRD). Porous Ta-Nb alloys displayed sintering neck growth, smoother surface of the particles and more shrinkage of the micropores, with Nb contents increasing from 5% to 15%. The compressive strength and Young's modulus of the Ta-Nb alloys agreed well with the requirements of trabecular bone. The normalized compressive plateau stress and Young's modulus increased from 52.27 MPa to 85.43 MPa and from 1.850 GPa to 2.540 GPa, respectively, with Nb contents increasing from 5% to 15%. Porous Ta-Nb alloys had no cytotoxicity and possessed the excellent biocompatibility similar to porous Ta scaffolds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structural Stabilities of Ordered Nb4 Clusters on the Cu(111) and Cu(100) Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Chun; Zhu, Zi-Zhong

    2007-01-01

    Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.

  11. Electrochemical synthesis of Nb3Sn coatings on Cu substrates

    DOE PAGES

    Franz, S.; Barzi, E.; Turrioni, D.; ...

    2015-09-11

    This study aims at contributing to the development of superconducting Nb3Sn thin films for possible applications, as for instance in superconducting radio frequency (SRF) cavities. The synthesis of Nb-Sn coatings was carried out on copper substrates by electrodeposition from 1-Butyl-3-methylimidazolium chloride (BMIC) ionic liquids containing SnCl2 and NbCl5. Cyclic voltammetric curves were recorded to identify the reduction potentials of Nb and Sn ionic species. Electrodeposition was performed at 40 and 400 mA/cm2 and 130°C. The CV demonstrated that BMIC has a suitable potential window for co-deposition of Nb and Sn. The electrodeposited coatings showed a cubic Nb3Sn phase with (211)more » preferred orientation, a disordered orthorhombic NbSn2 phase and Sn-Cu phases. Film thickness was from 200 to 750 nm. These results suggest that electrodeposition of Nb-Sn coatings on copper substrates could be a suitable route to one day replace the current expensive Nb SRF cavities.« less

  12. Intergrowth of hexagonal tungsten bronze and perovskite-like structures: The oxides ACu 3M7O 21 ( A = K, Rb, Cs, TI; M = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Benmoussa, A.; Groult, D.; Studer, F.; Raveau, B.

    1982-02-01

    Seven oxides ACu 3M7O 21 have been isolated with A = K, Rb, Tl, Cs for M = Ta and A = K, Rb, Cs for M = Nb. These phases are orthorhombic: a ⋍ 28 Å, b ⋍ 7.50 Å, and c ⋍ 7.55 Å, probable space group Cmmm. Their structure has been established from an X-ray diffraction study and from high-resolution microscopy observations. The structure consists of an intergrowth of single hexagonal tungsten bronze AM3O 9 slices and double distorted perovskite Cu 3M4O 12 slabs ( M = Nb, Ta) in which copper has a square coordination. The host lattice of these compounds can be considered as the member " n = 1; n' = 2" of a series of intergrowths corresponding to the formulation | M3O 9| Hn| M2O 6| Pn' .

  13. Senary refractory high-entropy alloy HfNbTaTiVZr

    SciTech Connect

    Gao, Michael C.; Zhang, B.; Yang, S.; Guo, S. M.

    2015-09-03

    Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. Here, the microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported by both simulation and experimental results, the HEA formation rules are discussed.

  14. Senary refractory high-entropy alloy HfNbTaTiVZr

    DOE PAGES

    Gao, Michael C.; Zhang, B.; Yang, S.; ...

    2015-09-03

    Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. Here, the microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported bymore » both simulation and experimental results, the HEA formation rules are discussed.« less

  15. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Neufeld, S.; Rüsing, M.; Berth, G.; Zrenner, A.; Schmidt, W. G.

    2015-06-01

    LiTaO3 and LiNbO3 crystals are investigated here in a combined experimental and theoretical study that uses Raman spectroscopy in a complete set of scattering geometries and corresponding density-functional theory calculations to provide microscopic information on their vibrational properties. The Raman scattering efficiency is computed from first principles in order to univocally assign the measured Raman peaks to the calculated eigenvectors. Measured and calculated Raman spectra are shown to be in qualitative agreement and confirm the mode assignment by Margueron et al. [J. Appl. Phys. 111, 104105 (2012), 10.1063/1.4716001], thus finally settling a long debate. While the two crystals show rather similar vibrational properties overall, the E-TO9 mode is markedly different in the two oxides. The deviations are explained by a different anion-cation bond type in LiTaO3 and LiNbO3 crystals.

  16. Senary Refractory High-Entropy Alloy HfNbTaTiVZr

    NASA Astrophysics Data System (ADS)

    Gao, M. C.; Zhang, B.; Yang, S.; Guo, S. M.

    2016-07-01

    Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. The microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported by both simulation and experimental results, the HEA formation rules are discussed.

  17. Atomic layer deposition of (K,Na)(Nb,Ta)O{sub 3} thin films

    SciTech Connect

    Sønsteby, Henrik Hovde Nilsen, Ola; Fjellvåg, Helmer

    2016-07-15

    Thin films of complex alkali oxides are frequently investigated due to the large range of electric effects that are found in this class of materials. Their piezo- and ferroelectric properties also place them as sustainable lead free alternatives in optoelectronic devices. Fully gas-based routes for deposition of such compounds are required for integration into microelectronic devices that need conformal thin films with high control of thickness- and composition. The authors here present a route for deposition of materials in the (K,Na)(Nb,Ta)O{sub 3}-system, including the four end members NaNbO{sub 3}, KNbO{sub 3}, NaTaO{sub 3}, and KTaO{sub 3}, using atomic layer deposition with emphasis on control of stoichiometry in such mixed quaternary and quinary compunds.

  18. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    NASA Astrophysics Data System (ADS)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  19. STRUCTURE AND HIGH-FIELD PERFORMANCE OF JELLY ROLL PROCESSED Nb{sub 3}Sn WIRES USING Sn-Ta AND Sn-Ti BASED ALLOY SHEET

    SciTech Connect

    Tachikawa, K.; Tsuyuki, T.; Hayashi, Y.; Nakata, K.; Takeuchi, T.

    2008-03-03

    Sn-Ta based alloy buttons of different compositions were prepared by the melt diffusion process among constituent metal powders, and then pressed into plates. Meanwhile Sn-Ti based alloy plates were sliced from the melt and cast ingot. Resulting Sn-based alloy plates were rolled into thin sheets. The Sn-based alloy sheet was laminated with a Nb sheet, and wound into a Jelly Roll (JR) composite. The composite was encased in a sheath, and fabricated into a thin wire followed by the heat treatment. The application of hydrostatic extrusion is useful at the initial stage of the fabrication. The JR wires using Sn-Ta and Sn-Ti based alloy sheets show a non-Cu J{sub c} of {approx}250 A/mm{sup 2} and {approx}150 A/mm{sup 2} at 20 T and 22 T, respectively, at 4.2 K. It has been found that the Nb impregnates into the Sn-based alloy layers during the reaction, and Nb{sub 3}Sn layers are synthesized by the mutual diffusion between the Nb sheet and the Sn-based alloy sheet without formation of voids. Sn-Ti based alloy sheets are attractive due to their easiness of mass production. Structure and high-field performance of JR processed Nb{sub 3}Sn wires prepared from Sn-based alloy sheets with different compositions are compared in this article.

  20. Assessment of relative Ti, Ta, and Nb (TITAN) enrichments in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Peters, Bradley J.; Day, James M. D.

    2014-11-01

    The sensitivity of trace element concentrations to processes governing solid-melt interactions has made them valuable tools for tracing the effects of partial melting, fractional crystallization, metasomatism, and similar processes on the composition of a parental melt. Recent studies of ocean island basalts (OIB) have sought to correlate Ti, Ta, and Nb (TITAN) anomalies to isotopic tracers, such as 3He/4He and 187Os/188Os ratios, which may trace primordial deep mantle sources. A new compilation of global OIB trace element abundance data indicates that positive TITAN anomalies, though statistically pervasive features of OIB, may not be compositional features of their mantle sources. OIB show a range of Ti (Ti/Ti* = 0.28-2.35), Ta (Ta/Ta* = 0.11-93.4), and Nb (Nb/Nb* = 0.13-17.8) anomalies that show negligible correlations with 3He/4He ratios, indicating that TITAN anomalies are not derived from the less-degassed mantle source traced by high-3He/4He. Positive TITAN anomalies can be modeled using variable degrees (0.1-10%) of nonmodal batch partial melting of garnet-spinel lherzolite at temperatures and pressures considered typical for OIB petrogenesis, and subjecting this partial melt to fractional crystallization and assimilation of mid-ocean ridge basalt-like crust (AFC). Correlations of TITAN anomalies with modal abundances of olivine and clinopyroxene in porphyritic Canary Islands lavas provide empirical support for this process and indicate that high abundances of these phases in OIB may create misleading trace element anomalies on primitive mantle-normalized spider diagrams. Because partial melting and AFC are common to all mantle-derived magmas, caution should be used when attributing TITAN anomalies to direct sampling of recycled or deep mantle sources by hotspots.

  1. Resistivity plateau and extremely large magnetoresistance in NbAs2 and TaAs2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Yan; Yu, Qiao-He; Guo, Peng-Jie; Liu, Kai; Xia, Tian-Long

    2016-07-01

    In topological insulators (TIs), metallic surface conductance saturates the insulating bulk resistance with decreasing temperature, resulting in resistivity plateau at low temperatures as a transport signature originating from metallic surface modes protected by time reversal symmetry (TRS). Such a characteristic has been found in several materials including Bi2Te2Se , SmB6 etc. Recently, similar behavior has been observed in metallic compound LaSb, accompanying an extremely large magnetoresistance (XMR). Shubnikov-de Hass (SdH) oscillation at low temperatures further confirms the metallic behavior of the plateau region under magnetic fields. LaSb [Tafti et al., Nat. Phys. 12, 272 (2015), 10.1038/nphys3581] has been proposed by the authors as a possible topological semimetal (TSM), while negative magnetoresistance is absent at this moment. Here, high quality single crystals of NbAs2/TaAs2 with inversion symmetry have been grown, and the resistivity under magnetic field is systematically investigated. Both of them exhibit metallic behavior under zero magnetic field, and a metal-to-insulator transition occurs when a nonzero magnetic field is applied, resulting in XMR (1.0 ×105% for NbAs2 and 7.3 ×105% for TaAs2 at 2.5 K and 14 T). With temperature decreased, a resistivity plateau emerges after the insulatorlike regime, and SdH oscillation has also been observed in NbAs2 and TaAs2.

  2. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW

    NASA Astrophysics Data System (ADS)

    Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas

    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.

  3. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  4. Upper critical fields of periodic and quasiperiodic Nb-Ta superlattices

    SciTech Connect

    Cohn, J.L.; Lin, J.J.; Lamelas, F.J.; He, H.; Clarke, R.; Uher, C.

    1988-08-01

    Upper critical fields have been studied for two series of Nb-Ta superlattices grown by molecular-beam epitaxy with both periodic and quasiperiodic (Fibonacci sequence) layering. X-ray results are presented to characterize the nature and quality of the layering. Positive curvature in the perpendicular upper critical field (H/sub c//sub 2//sub perpendicular/), pronounced negative curvature near T/sub c/ in the parallel upper critical field (H/sub c//sub 2//sub X/), and dimensional crossover are observed in both types of samples. For quasiperiodic samples two upturns are observed in H/sub c//sub 2//sub X/ with decreasing temperature. These are shown to be associated with dimensional crossover occurring twice as the superconducting coherence length in the growth direction, xi/sub perpendicular/, samples the two length scales, 2d/sub Nb/ and d/sub Nb/, that are present in these structures.

  5. Upper critical fields of periodic and quasiperiodic Nb-Ta superlattices

    NASA Astrophysics Data System (ADS)

    Cohn, J. L.; Lin, J. J.; Lamelas, F. J.; He, H.; Clarke, R.; Uher, C.

    1988-08-01

    Upper critical fields have been studied for two series of Nb-Ta superlattices grown by molecular-beam epitaxy with both periodic and quasiperiodic (Fibonacci sequence) layering. X-ray results are presented to characterize the nature and quality of the layering. Positive curvature in the perpendicular upper critical field (Hc2⊥), pronounced negative curvature near Tc in the parallel upper critical field (Hc2), and dimensional crossover are observed in both types of samples. For quasiperiodic samples two upturns are observed in Hc2 with decreasing temperature. These are shown to be associated with dimensional crossover occurring twice as the superconducting coherence length in the growth direction, ξ⊥, samples the two length scales, 2dNb and dNb, that are present in these structures.

  6. Synthesis, crystal structures and magnetic properties of fluorite-related compounds Ce3MO7 (M = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto; Hinatsu, Yukio

    2017-10-01

    Ternary oxides Ce3NbO7 and Ce3TaO7 were successfully synthesized by the solid state reaction under flowing hydrogen atmosphere. The structures were determined by the powder X-ray diffraction. Both the compounds were crystallized in the orthorhombic space groups Pnma (for Ce3NbO7) and Cmcm (for Ce3TaO7). Both the structures have similar features: two kinds of infinite chains formed by corner-sharing NbO6 (TaO6) octahedra and edge-sharing Ce(1)O8 cubes, the slabs consisting of alternate chains, and 7-coordinated Ce(2) ions existing between the slabs. In the structure of Ce3NbO7, the NbO6 octahedra running along the a-axis are titled towards the 0 0 1 direction, while in the Ce3TaO7 structure, the TaO6 octahedra running along the c-axis are titled towards the 0 1 0 direction. Magnetic susceptibility measurements for Ce3NbO7 and Ce3TaO7 show that both compounds are paramagnetic down to 1.8 K, and confirm that the Ce ion is in the trivalent state. From specific heat (Cp) measurements, a rapid increase of Cp/T has been observed below 3 K for both the compounds, indicating the onset of magnetic ordering between Ce3+ ions at further lower temperatures.

  7. MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution.

    PubMed

    Li, Hui-Zhe; Zhao, Xu; Xu, Jian

    2015-11-01

    Using revised simulated body fluid (r-SBF), the electrochemical corrosion behavior of an Nb-60Ta-2Zr alloy for MRI compatible vascular stents was characterized in vitro. As indicated by XPS analysis, the surface passive oxide film of approximately 1.3nm thickness was identified as a mixture of Nb2O5, Ta2O5 and ZrO2 after immersion in the r-SBF. The Nb-60Ta-2Zr alloy manifests a low corrosion rate and high polarization resistance similar to pure Nb and Ta, as shown by the potentiodynamic polarization curves and EIS. Unlike 316L stainless steel and the L605 Co-Cr alloy, no localized corrosion has been detected. Semiconducting property of passive film on the Nb-60Ta-2Zr alloy was identified as the n-type, with growth mechanism of high-field controlled growth. The excellent corrosion resistance in simulated human blood enviroment renders the Nb-60Ta-2Zr alloy promising as stent candidate material. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Optimization of in situ Nb3Sn-Cu wire

    NASA Astrophysics Data System (ADS)

    Sue, J. J.; Verhoeven, J. D.; Gibson, E. D.; Ostenson, J. E.; Finnemore, D. K.

    Efforts to optimize large scale in situ production of Nb3Sn-Cu superconductor wire are described. The as drawn Nb filament size is critical in optimizing J sub c values and depends upon the temperature of the Sn diffusion anneal. Laboratory size experiments show that utilizing carbon containers for ingot preparation results in a small C contamination and significantly lower J sub c values. Reduction of C contamination of 30 kg ingots are casted by utilizing ceramic coatings on the graphite lined Cu casting molds is described.

  9. MRI compatible Nb-Ta-Zr alloys used for vascular stents: optimization for mechanical properties.

    PubMed

    Li, Hui-Zhe; Xu, Jian

    2014-04-01

    With the increased usage of magnetic resonance imaging (MRI) as a diagnostic tool in clinic, the currently-used metals for vascular stents, such as 316L stainless steel (SS), Co-Cr alloys and Ni-Ti alloys, are challenged by their unsatisfactory MRI compatibility, due to their constituents containing ferromagnetic elements. To provide more MRI compatible vascular stents, the Nb-xTa-2Zr (30≤x≤70) series alloys were selected in the current work. Several key properties of these alloys were optimized in terms of stent requirements, including magnetic susceptibility, elastic modulus and tensile properties. In the as-cast state, a single-phase solid solution with bcc structure was formed in the alloys. The volume magnetic susceptibility (χv) and Young's modulus (E) of the alloys scaled linearly with the Ta content. Increasing the Ta content gave rise to the decreased χv and the increased E, together with the elevated yield strength but less-changed elongation. From multiple requirements for the stents, the Nb-60Ta-2Zr alloy exhibits an optimal properties, including the χv of about 3% of the 316L SS, the E of 142GPa superior to pure niobium, high mass density of 12.03g/cm(3) favored to the X-ray visibility, yield strength of ~330MPa comparable to the 316L SS and a elongation of ~24%. These remarkable advantages make it quite promising as a new candidate of stent metals.

  10. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2

    NASA Astrophysics Data System (ADS)

    Yuan, Zhujun; Lu, Hong; Liu, Yongjie; Wang, Junfeng; Jia, Shuang

    2016-05-01

    We report large magnetoresistance (MR) at low temperatures in single-crystalline nonmagnetic compounds TaAs2 and NbAs2. Both compounds exhibit parabolic-field-dependent MR larger than 5 ×103 in a magnetic field of 9 Tesla at 2 K. The MR starts to deviate from parabolic dependence above 10 T and intends to be saturated in 45 T for TaAs2 at 4.2 K. The Hall resistance measurements and band structure calculations reveal their compensated semimetal characteristics. Their large MR at low temperatures is ascribed to an effect for compensation of electrons and holes with large mobilities. After discussing the MR for different samples of TaAs2 and other semimetals, we found that the magnitudes of MR are strongly dependent on the samples' quality for different compounds.

  11. HFSE Processing During Subduction and the Consequences for Nb/Ta and Zr/Hf Ratios in the Mantle

    NASA Astrophysics Data System (ADS)

    Pfänder, J. A.; Jung, S.; Münker, C.; Stracke, A.; Mezger, K.

    2008-12-01

    High-precision (MC-ICP-MS) Nb-Ta concentration ratios in Silicate Earth reservoirs (mantle and crust) are consistently sub-chondritic (<19.9; Münker et al., 2003). Various models have been proposed to explain this observation and include hidden reservoirs in the silicate Earth or Nb fractionation into the metal core. Nb becomes siderophile at high pressure and thus the core is a potential reservoir for the missing Nb (Wade & Wood, 2001). This model implies Nb depletion of the silicate portion of the Earth soon after, or even during accretion by a selective, pressure driven partitioning of Nb into the metal phase. As a consequence the bulk-silicate Earth acquired a Nb/Ta ratio of ~14 instead of ~20 as suggested by chondrites (Münker et al., 2003). In contrast, Zr/Hf likely remained chondritic (~35). As shown by the correlated Nb/Ta - Zr/Hf array (terrestrial fractionation array), subsequent second-order silicate differentiation that generated Earth's crust and mantle fractionated Nb/Ta concomitantly with Zr/Hf and produced complementary reservoirs with respect to Nb/Ta (crust ~12-13; mantle ~16). Although the mechanisms that fractionate Nb/Ta are poorly understood, a key role is attributed to the processes taking place during subduction of oceanic lithosphere, i.e. fractionation during dehydration and partial melting of eclogite or garnet amphibolite in the presence of Ti-phases with high D-values for the HFSE. Some hotspot lavas bear signatures of eclogite derived melts in that they have slightly higher Nb/Ta but lower Lu/Hf ratios than expected from melting of primitive mantle peridotite independent of whether rutile is present in the eclogitic residue or not. Eclogite melting, however, is not suitable to explain low Nb/Ta in the continental crust. Therefore, significant portions of the continental crust may have been produced early in Earth's history by amphibolite dominated melting in subduction zones or within thickened Archean mafic crust, as melts in

  12. Electric-field-controlled optical switch using Kerr effect and gradient of the composition ratio Nb/(Ta + Nb)

    SciTech Connect

    Gong, Dewei; Liang, Yonggan; Ou, Wenjing; Wang, Jianjun; Wu, You; Liu, Bing; Zhou, Zhongxiang

    2016-03-15

    Highlights: • An abnormal laser deflection phenomenon in KTN crystals is demonstrated. • The origin of the deflection phenomenon was discussed in detail. • By exploiting the deflection, we have designed an optical switch. • The g{sub 11}/g{sub 12} ratio (>10), wavelength range(491–1064 nm), and I–V characteristics (0–800 V) were studied. • The extinction ratio (0–1) and influence of the photorefractive effect were studied. - Abstract: By exploiting the Kerr effect and the gradient of the composition ratio m, Nb/(Ta + Nb) in mol%, in KTa{sub 1−x}Nb{sub x}O{sub 3} (KTN) crystals, we have designed an electric-field-controlled optical switch. The operating principle of the switch is described. During the switching process, the incident linearly polarized beam is orthogonally deflected as it propagates through the crystals. The g{sub 11}/g{sub 12} ratio (>10), wavelength range (491–1064 nm), I–V characteristics (0–800 V), extinction ratio (0–1), gradient of Curie temperature (21–22.9 °C), response time that may be in ns order, and influence of the photorefractive effect were studied. The results show that our design provides a new kind of optical switch with macro scale (mm order), adjustable extinction ratio (0–1), wide wavelength range (491–1064 nm).

  13. Displacement of Ta-O bonds near polymorphic phase transition in Li-, Ta-, and Sb-modified (K, Na)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Huan, Yu; Wang, Xiaohui; Li, Longtu

    2014-06-01

    Excellent piezoelectric properties can be obtained near the polymorphic phase transition (PPT) region in (K, Na)NbO3 based piezoceramics. The enhanced piezoelectric properties resulted from the 18-fold spontaneous polarization directions caused by the coexistence of orthorhombic and tetragonal phases. In this study, the various polarization directions derived from frequently changing Ta-O bonds in Li-, Ta-, and Sb-modified (K, Na)NbO3 ceramic were directly observed by extended X-ray absorption fine structure. More than three peaks were observed and represented the nearest neighbor Ta-O bonds because of the coexistence of tetragonal and orthorhombic phases as well as Ta displacements along the [001]c and [110]c directions. Hence, the domains rotated easily and responded actively to an external electric or force field. Large Pr and optimized piezoelectric properties were obtained near the PPT region.

  14. Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization

    NASA Astrophysics Data System (ADS)

    Zhou, Y. M.; He, M. Z.; Xie, Z.

    2014-10-01

    Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum better than 1 × 10-3 Pa. Ti/TaN double layers were formed on SiO2/Si substrates by DC magnetron sputtering and then the properties of Cu/Ti/TaN/SiO2/Si film stacks were studied. It was found that the Ti/TaN double layers provide good diffusion barrier between Cu and SiO2/Si up to 750 °C for 30 min. The XRD, Auger and EDS results show that the Cu-Si compounds like Cu3Si were formed by Cu diffusion through Ti/TaN barrier for the 800 °C annealed samples. It seems that the improved diffusion barrier property of Cu/Ti/TaN/SiO2/Si stack is due to the diffusion of nitrogen along the grain boundaries in Ti layer, which would decrease the defects in Ti film and block the diffusion path for Cu diffusion with increasing annealing temperature. The failure mechanism of Ti/TaN bi-layer is similar to the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu3Si.

  15. Elasto-plastic properties of Cu-Nb nanolaminate

    NASA Astrophysics Data System (ADS)

    Betekhtin, V. I.; Kolobov, Yu. R.; Kardashev, B. K.; Golosov, E. V.; Narykova, M. V.; Kadomtsev, A. G.; Klimenko, D. N.; Karpov, M. I.

    2012-02-01

    The Young's modulus, internal friction, and microplastic flow stress in Cu-Nb nanolaminate has been determined by an acoustic technique. The influence of high hydrostatic compression (1 GPa) on these elasto-plastic properties of the nanolaminate has been studied.

  16. Diffusion barrier properties of amorphous and nanocrystalline Ta films for Cu interconnects

    NASA Astrophysics Data System (ADS)

    Cao, Z. H.; Hu, K.; Meng, X. K.

    2009-12-01

    In the present paper, the diffusion barrier properties of amorphous and nanocrystalline (NC) Ta films, and the interface microstructure of Ta/Cu were investigated as a function of annealing temperature. X-ray diffraction, scanning electron microscopy, cross-sectional transmission electron microscopy, and energy-dispersive spectrometer line scans were employed to study the microstructure evolution and diffusion behavior. It was found that an amorphous layer with a thickness of ˜5 nm formed at the interface of NC Ta/Cu at 450 °C annealing, while the interface of amorphous-Ta/Cu was still abrupt. Moreover, amorphous-Ta film acts as an effective diffusion barrier up to temperatures of 650 °C, which is higher than that for NC-Ta film. The fast diffusion along grain boundaries inside NC-Ta films is suggested to be responsible for the main failure of NC-Ta film.

  17. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  18. Electronic structure of the bcc transition metals: Thermoreflectance studies of bulk V, Nb, Ta, and. cap alpha. TaH/sub x/

    SciTech Connect

    Rosei, R.; Colavita, E.; Franciosi, A.; Weaver, J.H.; Peterson, D.T.

    1980-04-15

    Thermoreflectance studies of bulk samples of V, Nb, Ta, and ..cap alpha..-phase TaH/sub x/ are reported and the results interpreted in terms of recent band calculations. The first interband transition is identified as a transition involving the ..sigma.. band at E/sub F/. An M/sub 3/ critical-point transition is attributed to states at N. Significant changes induced by interstitial hydrogen in solid solution ..cap alpha..-TaH/sub x/ are observed and interpreted as due to hybridization and lowering of the N/sup prime//sub 1/ eigenenergy.

  19. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications.

    PubMed

    Biesiekierski, Arne; Lin, Jixing; Li, Yuncang; Ping, Dehai; Yamabe-Mitarai, Yoko; Wen, Cuie

    2016-03-01

    In this study, a Ti-(Ta,Nb)-Fe system was investigated with aims toward the development of high strength, biocompatible titanium alloy suitable for the development of porous orthopedic biomaterials with minimal processing. Notable findings include yield strengths of 740, 1250 and 1360 MPa for the Ti-12Nb-5Fe, Ti-7Ta-5Fe and Ti-10Ta-4Fe alloys, respectively, with elastic moduli comparable to existing Ti-alloys, yielding admissible strains of 0.9 ± 0.3, 1.2 ± 0.2 and 1.13 ± 0.02% for the Ti-12Nb-5Fe, Ti-7Ta-5Fe and Ti-10Ta-4Fe alloys, respectively; more than twice that of human bone. Observed microstructure varied significantly depending on alloy; near pure β-phase was seen in Ti-12Nb-5Fe, β with some ω precipitation in Ti-10Ta-4Fe, and a duplex α+β structure was observed throughout the Ti-7Ta-5Fe. In addition to suitable mechanical parameters, all investigated alloys exhibited promising corrosion potentials on the order of -0.24 V SCE, equalling that seen for a C.P.-Ti control at -0.25V SCE, and substantially more noble than that seen for Ti-6Al-4V. Electrochemical corrosion rates of 0.5-3 μm/year were likewise seen to agree well with that measured for C.P.-Ti. Further, no statistically significant difference could be seen between any of the alloys relative to a C.P.-Ti control regards to cell proliferation, as investigated via MTS assay and confocal microscopy. As such, the combination of high admissible strain and low corrosion indicate all investigated alloys show significant promise as potential porous biomaterials while in the as-cast state, with the Ti-10Ta-4Fe alloy identified as the most promising composition investigated. The findings of this paper are of significance to the field of metallic biomaterials as they detail the development of alloys of satisfactory biocompatibility and electrochemical behaviour, that furthermore display exceptional mechanical properties. Notably, both extremely high compressive yield strengths and admissible strains

  20. Existence of topological nontrivial surface states in strained transition metals: W, Ta, Mo, and Nb

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Rauch, Tomáš; Mirhosseini, Hossein; Henk, Jürgen; Mertig, Ingrid; Wortelen, Henry; Engelkamp, Bernd; Schmidt, Anke B.; Donath, Markus

    2016-10-01

    We show that a series of transition metals with strained body-centered cubic lattice—W, Ta, Nb, and Mo—hosts surface states that are topologically protected by mirror symmetry and, thus, exhibits nonzero topological invariants. These findings extend the class of topologically nontrivial systems by topological crystalline transition metals. The investigation is based on calculations of the electronic structures and of topological invariants. The signatures of a Dirac-type surface state in W(110), e.g., the linear dispersion and the spin texture, are verified. To further support our prediction, we investigate Ta(110) both theoretically and experimentally by spin-resolved inverse photoemission: unoccupied topologically nontrivial surface states are observed.

  1. Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy

    DTIC Science & Technology

    2012-01-24

    Compression properties of a refractory multicomponent alloy, Ta20Nb20Hf20Zr20Ti20, were determined in the temperature range of 296-1473 K and strain rate range of 10(-1)-10(-5)s(-1). The properties were correlated with the microstructure developed during compression testing. The alloy was produced by vacuum arc melting, and it was hot isostatically pressed (HIPd) and homogenized at 1473 K for 24 h prior to testing. It had a single-phase body-centered cubic structure with the

  2. Long Periodic Helimagnetic Ordering in CrM 3S6 (M = Nb and Ta)

    NASA Astrophysics Data System (ADS)

    Kousaka, Y.; Ogura, T.; Zhang, J.; Miao, P.; Lee, S.; Torii, S.; Kamiyama, T.; Campo, J.; Inoue, K.; Akimitsu, J.

    2016-09-01

    We report long periodic chiral helimagnetic orderings in ferromagnetic inorganic compounds CrM 3S6 (M = Nb and Ta) with a chiral space group of P6322. Magnetization in polycrystalline samples and high resolution powder neutron diffraction were measured. Our powder neutron diffraction measurements in CrM 3S6 successfully separated nuclear and magnetic satellite peaks, having the period of hundreds of angstroms along the c— axis. Therefore, we propose that the magnetic ordering in ferromagnetic CrM3S6 is not ferromagnetic, but long periodic chiral helimagnetic ordering.

  3. Surface phonons of the superconducting materials NbC(100) and TaC(100)

    SciTech Connect

    Oshima, C.; Souda, R.; Aono, M.; Otani, S.; Ishizawa, Y.

    1986-01-20

    The dispersion curves of both the optical and acoustical surface phonons in the superconducting compounds NbC(100) and TaC(100) have been determined over the entire Brillouin zone of the Gamma-bar-M-bar symmetry axis by use of angle-resolved high-resolution electron-energy-loss spectroscopy. In contrast to the bulk phonon, no anomalies (dip) due to the electron-phonon coupling in the dispersion curves of the longitudinal phonon have been found at these surfaces. Conversely, the in-plane force constant between carbon and metal atoms is strongly enhanced there.

  4. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young's modulus.

    PubMed

    Guo, Yongyuan; Chen, Desheng; Cheng, Mengqi; Lu, Weijie; Wang, Liqiang; Zhang, Xianlong

    2013-03-01

    Titanium (Ti) alloys of the β-type are highly attractive metallic materials for biomedical applications due to their low elastic modulus, high corrosion resistance and notable biocompatibility. A new β-type Ti35Nb2Ta3Zr alloy with a low Young's modulus of approximately 48 GPa was previously fabricated. In the present study, the biocompatibility of this alloy was evaluated. In an in vitro assay, the Ti35Nb2Ta3Zr alloy did not markedly affect the adhesion of MG63 osteoblast cells, but it increased their proliferation, alkaline phosphatase (ALP) activity, calcium deposition and mRNA expression of osteogenic genes (i.e., ALP, osteocalcin, osteopontin). In an in vivo study, no marked histological differences were observed between the new bone formed on the surface of Ti35Nb2Ta3Zr and that formed on the surface of control Ti6Al4V rods placed in the medullary canal of rabbit femurs. Additionally, no significant differences were observed in the failure load of Ti35Nb2Ta3Zr and Ti6Al4V in pull-out tests. In conclusion, the Ti35Nb2Ta3Zr alloy with a lower elastic modulus closer to that of human bone has significant bone tissue compatibility equal to that of Ti6Al4V, which has been widely used in orthopedic applications.

  5. (Ag,Cu)-Ta-O ternaries as high-temperature solid-lubricant coatings.

    PubMed

    Gao, Hongyu; Otero-de-la-Roza, Alberto; Gu, Jingjing; Stone, D'Arcy; Aouadi, Samir M; Johnson, Erin R; Martini, Ashlie

    2015-07-22

    Ternary oxides have gained increasing attention due to their potential use as solid lubricants at elevated temperatures. In this work, the tribological properties of three ternary oxides-AgTaO3, CuTaO3, and CuTa2O6-were studied using a combination of density-functional theory (DFT), molecular dynamics (MD) simulations with newly developed empirical potential parameters, and experimental measurements (AgTaO3 and CuTa2O6 only). Our results show that the MD-predicted friction force follows the trend AgTaO3 < CuTaO3 < CuTa2O6, which is consistent with the experimentally measured coefficients of friction. The wear performance from both MD and experiment exhibits the opposite trend, with CuTa2O6 providing the best resistance to wear. The sliding mechanisms are investigated using experimental characterization of the film composition after sliding, quantification of Ag or Cu cluster formation at the interface during the evolution of the film in MD, and DFT energy barriers for atom migration on the material surface. All our observations are consistent with the hypothesis that the formation of metal (or metal oxide) clusters on the surface are responsible for the friction and wear behavior of these materials.

  6. Structural evolution in Ni-Nb and Ni-Nb-Ta liquids and glasses - A measure of liquid fragility?

    SciTech Connect

    Mauro, N. A.; Johnson, M. L.; Bendert, J. C.; Kelton, K. F.

    2013-01-07

    The structures of Ni59.5Nb40.5, Ni62Nb38, and Ni60Nb30Ta10 liquids and glasses were studied using synchrotron high-energy X-ray diffraction. To avoid reactions between the liquids and their containers and to deeply supercool them below their equilibrium liquidus temperatures, the liquids were processed without a container using the beamline electrostatic levitation (BESL) technique. The total static structure factor, S(q), and the total pair-correlation function, g(r), were obtained for all liquid compositions over a temperature range of approximately 250 °C; S(q) and g(r) were measured for the corresponding glasses at room temperature. All of the S(q)s have a shoulder on the high-q side of the second peak; this becomes more pronounced as the liquid is supercooled, and is most prominent in the glass. Based on a Honeycutt–Andersen analysis of the atomic configurations obtained from Reverse Monte Carlo fits to the total structure factors obtained from the scattering data, icosahedral short-range order (ISRO) is dominant in all liquids and becomes particularly pronounced in the glasses. No correlation is noted, however, between the amount of ISRO and easy glass formability. Structural features show evidence for an acceleration of ordering in the supercooled liquid above the glass transition temperature, consistent with the behavior expected for fragile liquids. This suggests that scattering data can provide a new method to assess liquid fragility, which is typically obtained from the temperature behavior of the viscosity near the glass transition temperature.

  7. Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Jik; Suh, Bong-Seok; Kwon, Myoung Seok; Park, Chong-Ook

    1999-02-01

    Cosputtered Ta-Si-N amorphous films of ten different compositions were investigated as a barrier material for Cu interconnection. The films of relatively low nitrogen content (<47 at. %) undergo an abrupt failure with the formation of tantalum silicides and copper silicide between Si and Cu during annealing. Ta43Si4N53 thin film is readily crystallized into TaNx in spite of a remarkable chemical stability with Cu. The films containing nitrogen more than 51 at. % are sacrificial barriers which show the formation of Cu3Si phase at Ta-Si-N/Cu interface even before the films crystallize to form tantalum silicide. According to electrical tests, the barriers which show the sacrificial characteristics are most effective and show no electrical degradation even after annealing at 500 °C for an hour in Si/Cu and 525 °C for an hour in SiO2/Cu metallization.

  8. Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting

    NASA Astrophysics Data System (ADS)

    Hashibon, Adham; Lozovoi, Alexander Y.; Mishin, Yuri; Elsässer, Christian; Gumbsch, Peter

    2008-03-01

    An angle-dependent interatomic potential has been developed for the Cu-Ta system by crossing two existing potentials for pure Cu and Ta. The cross-interaction functions have been fitted to first-principles data generated in this work. The potential has been extensively tested against first-principles energies not included in the fitting database and applied to molecular dynamics simulations of wetting and dewetting of Cu on Ta. We find that a Cu film placed on a Ta (110) surface dewets from it, forming a Cu droplet on top of a stable Cu monolayer. We also observe that a drop of liquid Cu placed on a clean Ta (110) surface spreads over it as a stable monolayer, while the extra Cu atoms remain in the drop. The stability of a Cu monolayer and instability of thicker Cu films are consistent with recent experiments and first-principles calculations. This agreement demonstrates the utility of the potential for atomistic simulations of Cu-Ta interfaces.

  9. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust

    NASA Astrophysics Data System (ADS)

    Linnen, Robert L.; Keppler, Hans

    The behaviour of niobium and tantalum in magmatic processes has been investigated by conducting MnNb2O6 and MnTa2O6 solubility experiments in nominally dry to water-saturated peralkaline (aluminium saturation index, A.S.I. 0.64) to peraluminous (A.S.I. 1.22) granitic melts at 800 to 1035°C and 800 to 5000 bars. The attainment of equilibrium is demonstrated by the concurrence of the solubility products from dissolution, crystallization, Mn-doped and Nb- or Ta-doped experiments at the same pressure and temperature. The solubility products of MnNb2O6 (KspNb) and MnTa2O6 (KspTa) at 800°C and 2 kbar both increase dramatically with alkali contents in water-saturated peralkaline melts. They range from 1.2×10-4 and 2.6×10-4 mol2/kg2, respectively, in subaluminous melt (A.S.I. 1.02) to 202×10-4 and 255×10-4 mol2/kg2, respectively, in peralkaline melt (A.S.I. 0.64). This increase from the subaluminous composition can be explained by five non-bridging oxygens being required for each excess atom of Nb5+ or Ta5+ that is dissolved into the melt. The KspNb and KspTa also increase weakly with Al content in peraluminous melts, ranging up to 1.7×10-4 and 4.6×10-4 mol2/kg2, respectively, in the A.S.I. 1.22 composition. Columbite-tantalite solubilities in subaluminous and peraluminous melts (A.S.I. 1.02 and 1.22) are strongly temperature dependent, increasing by a factor of 10 to 20 from 800 to 1035°C. By contrast columbite-tantalite solubility in the peralkaline composition (A.S.I. 0.64) is only weakly temperature dependent, increasing by a factor of less than 3 over the same temperature range. Similarly, KspNb and KspTa increase by more than two orders of magnitude with the first 3 wt% H2O added to the A.S.I. 1.02 and 1.22 compositions, whereas there is no detectable change in solubility for the A.S.I. 0.64 composition over the same range of water contents. Solubilities are only slightly dependent on pressure over the range 800 to 5000 bars. The data for water-saturated sub

  10. The structural and electronic properties of cubic AgMO{sub 3} (M=Nb, Ta) by first principles calculations

    SciTech Connect

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-06

    We report the electronic structure of the AgMO{sub 3}(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O{sub 3} reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  11. The structural and electronic properties of cubic AgMO3 (M=Nb, Ta) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-01

    We report the electronic structure of the AgMO3(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O3 reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  12. Laser deposition and deformation behavior of Ti-Nb-Zr-Ta alloys for orthopedic implants.

    PubMed

    Nag, S; Banerjee, R

    2012-12-01

    Microstructure and mechanical properties of laser deposited complex quaternary Ti-34Nb-7Zr-7Ta (all wt%), an orthopedic load-bearing implant alloy, has been investigated in detail in both as-deposited as well as heat-treated (β-solutionized and quenched) conditions. The difference in stress-strain behavior of this alloy in the above conditions has been characterized using scanning electron microscopy (SEM), orientation imaging microscopy (OIM™) and transmission electron microscopy (TEM). Compared to the sample in heat-treated condition, the as-deposited sample showed evidence of strong growth related texture. Again in the as-deposited post tensile-tested condition formation of a high density of shear bands, possibly arising from slip localization due to shearing of ω precipitates in the β matrix is observed. TEM investigations also show the presence of lenticular shaped deformation induced ω phase within the shear bands. In contrast, in case of the β-solutionized sample, twinning and the formation of stress-induced plates appears to be the primary mode of deformation. The change in deformation mechanism and thus the tensile property of this alloy could be attributed to the crystallographic texture along the growth direction as well as diffusion mediated isothermal ω precipitates, that cause an enrichment of Nb and Ta in the β matrix, during the laser-deposition process. This is no longer present after the solutionizing treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion

    2012-05-01

    Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}<110>) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} < {1bar{1}0} > to {114} < {1bar{1}0} > to {112} < {1bar{1}0} > ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

  14. Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment

    SciTech Connect

    Malek, J.; Hnilica, F.; Vesely, J.; Smola, B.; Bartakova, S.; Vanek, J.

    2012-04-15

    The influence of thermo-mechanical treatment on microstructure and mechanical properties of T-35Nb-6Ta has been studied. The thermo-mechanical treatment was chosen to correspond to the production of wire with suitable mechanical properties for dental implants. After casting the alloy was hot forged (700-900 Degree-Sign C), solution treated (850 Degree-Sign C/30 min, water quenched) and cold swaged (reductions up to 91%). The annealing (700 Degree-Sign C/3 h/furnace) or aging (450 Degree-Sign C/8 h/furnace) was used as final heat treatment. The microstructure was studied by using light microscopy, scanning electron microscopy, transmission electron microscopy and XRD analysis. Cold swaging introduces microstructure consisting of highly deformed {beta}-phase grains with dislocation tangles and twins, which ensures high tensile strength about 820 MPa, low Young's modulus ({approx} 50 GPa) and good ductility {approx} 10%. Subsequent aging increases tensile strength (1000 MPa) as well as Young's modulus (75 GPa) without diminishing ductility. Annealing at 700 Degree-Sign C slightly decreases tensile strength (730 MPa) and increases the ductility and Young's modulus (17% and 62 GPa respectively). The mechanical properties attained recommend the thermo-mechanical treatment for production of wires for dental implants. - Highlights: Black-Right-Pointing-Pointer Ti35Nb6Ta alloy prepared via arc melting. Black-Right-Pointing-Pointer Thermo mechanical treatment. Black-Right-Pointing-Pointer Microstructural changes. Black-Right-Pointing-Pointer Mechanical properties.

  15. Electronic band structures of AV(2) (A = Ta, Ti, Hf and Nb) Laves phase compounds.

    PubMed

    Charifi, Z; Reshak, Ali Hussain; Baaziz, H

    2009-01-14

    First-principles density functional calculations, using the all-electron full potential linearized augmented plane wave method, have been performed in order to investigate the structural and electronic properties for Laves phase AV(2) (A = Ta, Ti, Hf and Nb) compounds. The generalized gradient approximation and the Engel-Vosko-generalized gradient approximation were used. Our calculations show that these compounds are metallic with more bands cutting the Fermi energy (E(F)) as we move from Nb to Ta, Hf and Ti, consistent with the increase in the values of the density of states at the Fermi level N(E(F)). N(E(F)) is controlled by the overlapping of V-p/d, A-d and A-p states around the Fermi energy. The ground state properties of these compounds, such as equilibrium lattice constant, are calculated and compared with the available literature. There is a strong/weak hybridization between the states, V-s states are strongly hybridized with A-s states below and above E(F). Around the Fermi energy we notice that V-p shows strong hybridization with A-p states.

  16. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.

    PubMed

    Wang, Xiaona; Meng, Xing; Chu, Shunli; Xiang, Xingchen; Liu, Zhenzhen; Zhao, Jinghui; Zhou, Yanmin

    2016-09-01

    This study aimed to evaluate the effects of Ti-Nb-Zr-Ta-Si alloy implants on mineral apposition rate and new BIC contact in rabbits. Twelve Ti-Nb-Zr-Ta-Si alloy implants were fabricated and placed into the right femur sites in six rabbits, and commercially pure titanium implants were used as controls in the left femur. Tetracycline and alizarin red were administered 3 weeks and 1 week before euthanization, respectively. At 4 weeks and 8 weeks after implantation, animals were euthanized, respectively. Surface characterization and implant-bone contact surface analysis were performed by using a scanning electron microscope and an energy dispersive X-ray detector. Mineral apposition rate was evaluated using a confocal laser scanning microscope. Toluidine blue staining was performed on undecalcified sections for histology and histomorphology evaluation. Scanning electron microscope and histomorphology observation revealed a direct contact between implants and bone of all groups. After a healing period of 4 weeks, Ti-Nb-Zr-Ta-Si alloy implants showed significantly higher mineral apposition rate compared to commercially pure titanium implants (P < 0.05), whereas there was no significant difference between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants (P > 0.05) at 8 weeks. No significant difference of bone-to-implant contact was observed between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants implants after a healing period of 4 weeks and 8 weeks. This study showed that Ti-Nb-Zr-Ta-Si alloy implants could establish a close direct contact comparedto commercially pure titanium implants implants, improved mineral matrix apposition rate, and may someday be an alternative as a material for dental implants.

  17. Temperature independent Seebeck coefficient through quantum confinement modulation in amorphous Nb-O/Ni-Ta-O multilayers

    NASA Astrophysics Data System (ADS)

    Music, Denis; Hunold, Oliver; Coultas, Sarah; Roberts, Adam

    2017-05-01

    Employing a correlative experimental and theoretical methodology, we have investigated amorphous monoxide Nb-O/Ni-Ta-O multilayers. It is feasible to obtain a temperature independent Seebeck coefficient up to 500 °C for these metallic-like conductors, attaining -25 μV K-1. While Nb and Ta strongly interact with O, Ni experiences the metallic and monoxide-like bonding. We observe a 3 eV wide region below the Fermi level convoluted through several first nearest neighbor Ni - Ni and second nearest neighbor Nb - Nb interactions resulting in many confined states. It can be proposed that by increasing temperature these modulated quantum states gradually become thermally accessible eradicating the temperature dependence of the Seebeck coefficient.

  18. TaC as a diffusion barrier between Si and Cu

    NASA Astrophysics Data System (ADS)

    Laurila, Tomi; Zeng, Kejun; Kivilahti, Jorma K.; Molarius, Jyrki; Suni, Iikka

    2002-04-01

    The reaction mechanisms and related microstructures in the Si/TaC/Cu metallization system have been studied experimentally and theoretically by utilizing ternary Si-Ta-C and Ta-C-Cu phase diagrams as well as activity diagrams calculated at 800 °C. With the help of sheet resistance measurements, Rutherford backscattering spectrometry, x-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the metallization structure with the 70 nm thick TaC barrier layer was observed to fail completely at temperatures above 725 °C because of the formation of large Cu3Si protrusions. However, the formation of amorphous Ta layer containing significant amounts of carbon and oxygen was already observed at the TaC/Cu interface at 600 °C. This layer also constituted an additional barrier layer for Cu diffusion, which occurred only after the crystallization of the amorphous layer. The formation of Ta2O5 was observed at 725 °C with x-ray diffraction, indicating that the oxygen rich amorphous layer had started to crystallize. The formation of SiC and TaSi2 occurred almost simultaneously at 800 °C. The observed reaction structure was consistent with the thermodynamics of the ternary system. The metallization structures with 7 nm and 35 nm TaC barrier layers failed above 550 °C and 650 °C, respectively, similarly because of the formation of Cu3Si. The high formation temperature of TaSi2 and SiC implies high stability of Si/TaC interface, thus making TaC layer a potential candidate to be used as a diffusion barrier for Cu metallization.

  19. Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint)

    DTIC Science & Technology

    2014-04-01

    AND ROOM TEMPERATURE PROPERTIES OF A HIGH - ENTROPY TaNbHfZrTi ALLOY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM...is worth noting that, among all other high entropy alloys with the BCC structure produced so far, the Ta20Nb20Hf20Zr20Ti20 alloy has the highest RT...concentration of the matrix element (solvent) exceeds 60–70%, and these mechanisms may not be applicable to high - entropy alloys , where all elements are at

  20. Effects of annealing on antiwear and antibacteria behaviors of TaN-Cu nanocomposite thin films

    SciTech Connect

    Hsieh, J. H.; Cheng, M. K.; Chang, Y. K.; Li, C.; Chang, C. L.; Liu, P. C.

    2008-07-15

    TaN-Cu nanocomposite films were deposited by reactive cosputtering on Si and tool steel substrates. The films were then annealed using rapid thermal annealing (RTA) at 400 deg. C for 2, 4, and 8 min, respectively, to induce the nucleation and growth of Cu particles in TaN matrix and on film surface. Field emission scanning electron microscopy was applied to characterize Cu nanoparticles emerged on the surface of TaN-Cu thin films. The effects of annealing on the antiwear and antibacterial properties of these films were studied. The results reveal that annealing by RTA can cause Cu nanoparticles to form on the TaN surface. Consequently, the tribological behaviors, as well as the antibacterial behavior may vary depending on particle size, particle distribution, and total exposed Cu amount. For the samples with large Cu particles, the reduction of averaged friction and wear rate is obvious. Apparently, it is due to the smeared Cu particles adhered onto the wear tracks. This Cu layer may act as a solid lubricant. From the antibacterial testing results, it is found that both Cu particle size and total exposed Cu amount are critical in making short-term antibacterial effect. Overall, all the annealed TaN-Cu samples can reach >99% antibacterial efficiency in 24 h, with respect to uncoated Si substrate.

  1. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    NASA Astrophysics Data System (ADS)

    Jha, S. C.; Delagi, R. G.; Forster, J. A.; Krotz, P. D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1-to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain ( η > 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1-to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb micro-composite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains ( η > 3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct ( η ≅ 2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η > 10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet.

  2. Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces

    SciTech Connect

    Jabdaraghi, R. N.; Peltonen, J. T.; Saira, O.-P.; Pekola, J. P.

    2016-01-25

    We characterize niobium-based lateral Superconductor (S)–Normal metal (N)–Superconductor (SNS) weak links through low-temperature switching current measurements and tunnel spectroscopy. We fabricate the SNS devices in two separate lithography and deposition steps, combined with strong argon ion cleaning before the normal metal deposition in the last step. Our SNS weak link consists of high-quality sputtered Nb electrodes that have contacted with evaporated Cu. The two-step fabrication flow enables more flexibility in the choice of materials and pattern design. A comparison of the temperature-dependent equilibrium critical supercurrent with theoretical predictions indicates that the quality of the Nb-Cu interface is similar to that of evaporated Al-Cu weak links. We further demonstrate a hybrid magnetic flux sensor based on an Nb-Cu-Nb SNS junction, where the phase-dependent normal metal density of states is probed with an Al tunnel junction.

  3. Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces

    NASA Astrophysics Data System (ADS)

    Jabdaraghi, R. N.; Peltonen, J. T.; Saira, O.-P.; Pekola, J. P.

    2016-01-01

    We characterize niobium-based lateral Superconductor (S)-Normal metal (N)-Superconductor (SNS) weak links through low-temperature switching current measurements and tunnel spectroscopy. We fabricate the SNS devices in two separate lithography and deposition steps, combined with strong argon ion cleaning before the normal metal deposition in the last step. Our SNS weak link consists of high-quality sputtered Nb electrodes that have contacted with evaporated Cu. The two-step fabrication flow enables more flexibility in the choice of materials and pattern design. A comparison of the temperature-dependent equilibrium critical supercurrent with theoretical predictions indicates that the quality of the Nb-Cu interface is similar to that of evaporated Al-Cu weak links. We further demonstrate a hybrid magnetic flux sensor based on an Nb-Cu-Nb SNS junction, where the phase-dependent normal metal density of states is probed with an Al tunnel junction.

  4. Discovery of Weyl fermion semimetal and topological Fermi arc quasiparticles in TaAs, NbAs, NbP, TaP and related materials

    NASA Astrophysics Data System (ADS)

    Hasan, M. Zahid

    Topological matter can host Dirac, Majorana and Weyl fermions as quasiparticle modes on their boundaries. First, I briefly mention the basic theoretical concepts defining insulators and superconductors where topological surface state modes are robust only in the presence of a gap (Hasan & Kane; Rev. of Mod. Phys. 82, 3045 (2010)). In these systems topological protection is lost once the gap is closed turning the system into a trivial metal. A Weyl semimetal is the rare exception in this scheme which is a topologically robust metal (semimetal) whose low energy emergent excitations are Weyl fermions. In a Weyl fermion semimetal, the chiralities associated with the Weyl nodes can be understood as topological charges, leading to split monopoles and anti-monopoles of Berry curvature in momentum space. This gives a measure of the topological strength of the system. Due to this topology a Weyl semimetal is expected to exhibit 2D Fermi arc quasiparticles on its surface (Wan et.al., 2011). These arcs (``fractional'' Fermi surfaces) are discontinuous or disjoint segments of a two dimensional Fermi contour, which are terminated onto the projections of the Weyl fermion nodes on the surface we have observed experimentally in TaAs, NbAs, NbP class of materials (Xu, Belopolski et.al., Science 349, 613 (2015); Xu, Alidoust et.al., Nature Phys. (2015); Xu, Belopolski et.al., Science Adv. (2015), Belopolski, Xu et.al., arXiv (2015)) following our theoretical predictions (Huang, Xu, Belopolski et.al., Nature Commun. 6:7373 (2015), submitted in November 2014). Our theoretical predictions (Nature Commun. 2015) and experimental demonstrations (Science 2015, Nature Physics 2015, Science Advances 2015) reveal that these Fermi arc quasiparticles can only live on the boundary of a 3D crystal which collectively represents the realization of a new state of quantum matter beyond our earlier work on Fermi arcs in topological materials (Xu, Liu, Kushwaha et.al., Science 347, 294 (2015), adv

  5. A study on nuclear properties of Zr, Nb, and Ta nuclei used as structural material in fusion reactor

    NASA Astrophysics Data System (ADS)

    Sahan, Halide; Tel, Eyyup; Sahan, Muhittin; Aydin, Abdullah; Hakki Sarpun, Ismail; Kara, Ayhan; Doner, Mesut

    2015-07-01

    Fusion has a practically limitless fuel supply and is attractive as an energy source. The main goal of fusion research is to construct and operate an energy generating system. Fusion researches also contains fusion structural materials used fusion reactors. Material issues are very important for development of fusion reactors. Therefore, a wide range of fusion structural materials have been considered for fusion energy applications. Zirconium (Zr), Niobium (Nb) and Tantalum (Ta) containing alloys are important structural materials for fusion reactors and many other fields. Naturally Zr includes the 90Zr (%51.5), 91Zr (%11.2), 92Zr (%17.1), 94Zr (%17.4), 96Zr (%2.80) isotopes and 93Nb and 181Ta include the 93Nb (%100) and 181Ta (%99.98), respectively. In this study, the charge, mass, proton and neutron densities and the root-mean-square (rms) charge radii, rms nuclear mass radii, rms nuclear proton, and neutron radii have been calculated for 87-102Zr, 93Nb, 181Ta target nuclei isotopes by using the Hartree-Fock method with an effective Skyrme force with SKM*. The calculated results have been compared with those of the compiled experimental taken from Atomic Data and Nuclear Data Tables and theoretical values of other studies.

  6. Microwave Dielectric Characteristics of ZnTa1.7Nb0.3O6 Ceramics

    NASA Astrophysics Data System (ADS)

    Cheng, Chien-Min; Chen, Ying-Chung; Yang, Cheng-Fu; Meen, Teen-Hang

    2003-11-01

    ZnTa2O6 ceramic sintered at 1300°C exhibits the microwave dielectric characteristics of dielectric constant \\varepsilonr{=}36.1, quality value Q× f{=}60180 GHz, temperature coefficient of resonant frequency τf{=}9.31 ppm/°C, and density d{=}8.184 g/cm3, and 1200°C-sintered ZnNb2O6 ceramic shows the microwave dielectric characteristics of \\varepsilonr{=}23.9, Q× f{=}77270 GHz, τf{=}-58.2 ppm/°C, and d{=}5.436 g/cm3. An empirical model is used to predict that τf{=}0 ppm/°C in ZnTa1.72Nb0.28O6. Therefore, ZnTa1.7Nb0.3O6 is adopted as the main composition for developing dielectric resonators with τf values close to 0 ppm/°C, and its sintering and microwave dielectric characteristics are investigated in this study. As the sintering temperature increases, the \\varepsilonr, Q× f, and τf values of ZnTa1.7Nb0.3O6 ceramics increase and they saturate in 1300°C-sintered ceramics.

  7. On the Structural and Luminescent Properties of the ScTa(1-x)Nb(x)O(4) System.

    ERIC Educational Resources Information Center

    Brixner, L. H.

    1980-01-01

    Diagrams and tables supplement textual information regarding the structure of ScNbo-4 and its observed and calculated d-values; excitation and emission spectra and cell constants for the ScTa(1-x)NB(x)O(4) system. (CS)

  8. Diffusion of oxygen in amorphous Al2O3, Ta2O5, and Nb2O5

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Toda, T.; Tsukui, S.; Tane, M.; Ishimaru, M.; Suzuki, T.; Nakajima, H.

    2014-07-01

    The self-diffusivity of oxygen in amorphous Al2O3 (a-Al2O3), a-Ta2O5, and a-Nb2O5 was investigated along with structural analysis in terms of pair distribution function (PDF). The low activation energy, ˜1.2 eV, for diffusion in the oxides suggests a single atomic jump of oxygen ions mediated via vacancy-like defects. However, the pre-exponential factor for a-Ta2O5 and a-Nb2O5 with lower bond energy was two orders of magnitude larger than that for a-Al2O3 with higher bond energy. PDF analyses revealed that the short-range configuration in a-Ta2O5 and a-Nb2O5 was more broadly distributed than that in a-Al2O3. Due to the larger variety of atomic configurations of a-Ta2O5 and a-Nb2O5, these oxides have a higher activation entropy for diffusion than a-Al2O3. The entropy term for diffusion associated with short-range structures was shown to be a dominant factor for diffusion in amorphous oxides.

  9. On the Structural and Luminescent Properties of the ScTa(1-x)Nb(x)O(4) System.

    ERIC Educational Resources Information Center

    Brixner, L. H.

    1980-01-01

    Diagrams and tables supplement textual information regarding the structure of ScNbo-4 and its observed and calculated d-values; excitation and emission spectra and cell constants for the ScTa(1-x)NB(x)O(4) system. (CS)

  10. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic

    NASA Astrophysics Data System (ADS)

    René, Miloš; Škoda, Radek

    2011-11-01

    Nb-Ta-Ti-bearing oxide minerals (Nb-Ta-bearing rutile, columbite-group minerals) represent the most common Nb-Ta host in topaz-albite granites and related rocks from the Krásno-Horní Slavkov ore district. Tungsten-bearing columbite-(Fe), W-bearing ixiolite, wodginite and tapiolite-(Fe) are extremely rare in these rocks. Rutile contains significant levels of Ta (up to 37 wt.% Ta2O5) and Nb (up to 24 wt.% Nb2O5), with Ta/(Ta + Nb) ratio ranging from 0.04 to 0.61. Columbite-group minerals are represented mostly by columbite-(Fe) and rarely by columbite-(Mn), with Mn/(Mn + Fe) ratio ranging from 0.23 to 0.94. The exceptionally rare Fe-rich, W-bearing ixiolite occurs only as inclusions in Nb-Ta-bearing rutile from quartz-free alkali-feldspar syenites (Vysoký Kámen stock). Wodginite was found only in the topaz-albite microgranite of gneissic breccia matrix that occurs in the upper most part of the Hub topaz-albite granite stock. In wodginite, the Mn/(Mn + Fe) ratio is 0.42-0.51, whereas the coexisting tapiolite-(Fe) has a distinctly lower Mn/(Mn + Fe) ratio close to 0.06.

  11. The origin of hyperferroelectricity in LiBO3 (B = V, Nb, Ta, Os)

    PubMed Central

    Li, Pengfei; Ren, Xinguo; Guo, Guang-Can; He, Lixin

    2016-01-01

    The electronic and structural properties of LiBO3 (B = V, Nb, Ta, Os) are investigated via first-principles methods. We show that LiBO3 belong to the recently proposed hyperferroelectrics (hyperFEs), i.e., they all have unstable longitudinal optic phonon modes. Especially, the ferroelectric-like instability in the metal LiOsO3, whose optical dielectric constant goes to infinity, is a limiting case of hyperFEs. Via an effective Hamiltonian, we further show that, in contrast to normal proper ferroelectricity, in which the ferroelectric instability usually comes from long-range coulomb interactions, the hyperFE instability is due to the structure instability driven by short-range interactions. This could happen in systems with large ion size mismatches, which therefore provides a useful guidance in searching for novel hyperFEs. PMID:27694996

  12. Synthesis and characterization of nanocrystalline Co-Fe-Nb-Ta-B alloy

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Fakhraee, Morteza

    2017-09-01

    In this research work, structural and magnetic evolution of Co57Fe13Nb8Ta4B18 alloy, during mechanical alloying process, have been investigated by using, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray spectroscopy, differential thermal analysis and also vibrating sample magnetometer. It is observed that at 120 milling time, the crystallite size reaches to about 7.8 nm. Structural analyses show that, the solid solution of the initial powder mixture occurs at160 h milling time. The coercivity behavior demonstrates a rise, up to 70 h followed by decreasing tendency up to final stage of milling process. Thermal analysis of 160 h milling time sample reveals two endothermic peaks. The characterization of annealed milled sample for 160 h milling time at 427 °C shows crystallite size growth accompanied by increasing in saturation magnetization.

  13. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    NASA Technical Reports Server (NTRS)

    Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.

    1987-01-01

    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.

  14. Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W.

    PubMed

    Čák, M; Hammerschmidt, T; Rogal, J; Vitek, V; Drautz, R

    2014-05-14

    Bond-order potentials (BOPs) are based on the tight-binding approximation for determining the energy of a system of interacting atoms. The bond energy and forces are computed analytically within the formalism of the analytic BOPs. Here we present parametrizations of the analytic BOPs for the bcc refractory metals Nb, Ta, Mo and W. The parametrizations are optimized for the equilibrium bcc structure and tested for atomic environments far from equilibrium that had not been included in the fitting procedure. These tests include structural energy differences for competing crystal structures; tetragonal, trigonal, hexagonal and orthorhombic deformation paths; formation energies of point defects as well as phonon dispersion relations. Our tests show good agreement with available experimental and theoretical data. In practice, we obtain the energetic ordering of vacancy, [1 1 1], [1 1 0], and [1 0 0] self-interstitial atom in agreement with density functional theory calculations.

  15. Oxidation characteristics of Ti-33Al-6Nb-1.4Ta

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Clark, R. K.; Sankaran, S. N.; Wiedemann, K. E.

    1991-01-01

    Static oxidation kinetics of the gamma titanium-aluminide alloy Ti-33Al-6Nb-1.4Ta (wt pct) have been investigated in air from 700 to 1000 C and in oxygen from 800 to 1000 C using thermogravimetric analysis. The oxidation kinetics were controlled by the presence of alumina for all oxygen exposures and in air below 800 C, while the kinetics in air above 800 C were more complex. Oxidation products were identified using X-ray diffraction techniques. Oxide scale morphology was examined by SEM and TEM of the surfaces and across sections of oxidized specimens. The oxidation products formed depended on the exposure: Al2O3 and TiO2 were identified on all specimens exposed in and air and oxygen; the nitride phases TiN and Ti2AlN were also found on specimens exposed in air.

  16. Oxidation characteristics of Ti-33Al-6Nb-1.4Ta

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Clark, R. K.; Sankaran, S. N.; Wiedemann, K. E.

    1991-01-01

    Static oxidation kinetics of the gamma titanium-aluminide alloy Ti-33Al-6Nb-1.4Ta (wt pct) have been investigated in air from 700 to 1000 C and in oxygen from 800 to 1000 C using thermogravimetric analysis. The oxidation kinetics were controlled by the presence of alumina for all oxygen exposures and in air below 800 C, while the kinetics in air above 800 C were more complex. Oxidation products were identified using X-ray diffraction techniques. Oxide scale morphology was examined by SEM and TEM of the surfaces and across sections of oxidized specimens. The oxidation products formed depended on the exposure: Al2O3 and TiO2 were identified on all specimens exposed in and air and oxygen; the nitride phases TiN and Ti2AlN were also found on specimens exposed in air.

  17. Characterization of novel borides in Ti-Nb-Zr-Ta + 2B metal-matrix composites

    SciTech Connect

    Nag, Soumya; Samuel, Sonia; Puthucode, Anantha; Banerjee, Rajarshi

    2009-02-15

    Metal-matrix composites consisting of a complex quaternary Ti-35Nb-7Zr-5Ta alloy reinforced by borides have been successfully deposited from a powder feedstock consisting of a blend of elemental titanium, niobium, zirconium, tantalum, and, titanium diboride (TiB{sub 2}) powders, using the laser engineered net-shaping (LENS{sup TM}) process. The microstructures of the as-deposited composites have been characterized using scanning electron microscopy, orientation microscopy, and, transmission electron microscopy. Both primary and eutectic boride precipitates, exhibiting the orthorhombic B27 structure, are observed in these as-deposited composites. The complex primary borides exhibit an unusual compositional variation within the same precipitate, which has been investigated in detail using site-specific characterization with a transmission electron microscope. The ability to form near-net shape components using the Laser Engineered Net Shaping process makes these laser-deposited composites promising candidates for wear-resistant applications in biomedical implants.

  18. The origin of hyperferroelectricity in LiBO3 (B = V, Nb, Ta, Os)

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Ren, Xinguo; Guo, Guang-Can; He, Lixin

    2016-10-01

    The electronic and structural properties of LiBO3 (B = V, Nb, Ta, Os) are investigated via first-principles methods. We show that LiBO3 belong to the recently proposed hyperferroelectrics (hyperFEs), i.e., they all have unstable longitudinal optic phonon modes. Especially, the ferroelectric-like instability in the metal LiOsO3, whose optical dielectric constant goes to infinity, is a limiting case of hyperFEs. Via an effective Hamiltonian, we further show that, in contrast to normal proper ferroelectricity, in which the ferroelectric instability usually comes from long-range coulomb interactions, the hyperFE instability is due to the structure instability driven by short-range interactions. This could happen in systems with large ion size mismatches, which therefore provides a useful guidance in searching for novel hyperFEs.

  19. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  20. Experimental Evidence for Linear Metal-Azide Coordination: The Binary Group 5 Azides [Nb(N3)5], [Ta(N3)5], [Nb(N3)6], and [Ta(N3)6], and 1:1 Acetonitrile Adducts [Nb(N3)5(CH3CN)] and (Ta(N3)5(CH3CN))

    DTIC Science & Technology

    2006-03-20

    significantly longer than the equatorial ones, as expected from VSEPR argu- ments.[29] In contrast, the axial M-N-N arrangements in [Nb(N3)5] and [Ta(N3)5...Int. Ed. 2000, 39, 2108. [29] a) R. J. Gillespie, I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn and Bacon, Needham Heights, MA, 1991; b

  1. He implantation of bulk Cu-Nb nanocomposites fabricated by accumulated roll bonding

    NASA Astrophysics Data System (ADS)

    Han, W. Z.; Mara, N. A.; Wang, Y. Q.; Misra, A.; Demkowicz, M. J.

    2014-09-01

    We perform room temperature and elevated temperature He implantation of bulk Cu-Nb nanocomposites synthesized by accumulated roll bonding (ARB). Transmission electron microscopy (TEM) reveals that nanoscale He precipitates form preferentially along Cu-Nb interfaces during implantation at 20 °C and 450 °C. Bubble-free zones may be identified near interfaces after implantation at 450 °C. He implantation at 480 °C results in large, faceted cavities in thick Cu layers and highly elongated cavities in thin Cu layers. Only nanoscale bubbles are seen in Nb layers after implantation at 480 °C. Similar to vapor deposited Cu-Nb multilayers, ARB Cu-Nb nanocomposites exhibit He precipitate morphologies that are highly sensitive to implantation temperature and layer thickness.

  2. Stability of Cu-Nb layered nanocomposite from chemical bonding

    NASA Astrophysics Data System (ADS)

    Saikia, Ujjal; Sahariah, Munima B.; Pandey, Ravindra

    2016-07-01

    The potential use of layered metallic nanocomposites in radiation-resistant materials has been recognized with ultra-high mechanical strengths. Here we present results on layered Cu-Nb composite examining its stability in terms of chemical bond via charge density and transfer analysis, QTAIM, electron localization function and density of states using DFT. An intermediate character of bonding with a significant amount of charge transfer at the interface has been predicted. Shortening of intraplanar bond length is a good manifestation of their observed structural stability which may be due to electron promotion of 3 d → (4 s, 4 p) orbitals associated with the constituent atoms of the composite.

  3. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  4. Nano-Particle Formation of Mn/HA on the Ti-35Ta-xNb Alloy by Electrochemical Methods.

    PubMed

    Jo, Chae-Ik; Choe, Han-Cheol

    2015-08-01

    In this study, nano-particle formation of Mn/HA on the Ti-35Ta-xNb alloy by electrochemical methods has researched using various experiments. These alloys were performed by arc-melting furnace and then heat treated for 1000 °C at 12 h in Ar gas atmosphere and quenched at 0 °C water. Hydroxyapatite precipitation has been synthesized from 5 mM Ca(NO3)2 · 4 H2O+3 mM NH4H2PO4 at 80±1 °C. Manganese doped Hydroxyapatite precipitation has been synthesized from 4.95 mM Ca(NO3)2 · 4 H2O+3 mM NH4H2PO4+0.05 mM MnCl2 · 4 H2O at 80±1 °C. Morphology and structure were examined by FE-SEM, EDS and XRD. The microstructure of Ti-35Ta-xNb alloys was transformed from a phase to α phase as Nb content increased. The nano-scale HA shapes were plate-like precipitates and Mn doped HA shapes were net-like precipitates on Ti-35Ta-xNb alloys, and Ca, P and Mn peaks were detected on the Mn/HA deposited surface.

  5. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys.

    PubMed

    Rosalbino, F; Macciò, D; Giannoni, P; Quarto, R; Saccone, A

    2011-05-01

    The in vitro corrosion behavior and biocompatibility of two Zr alloys, Zr-2.5Nb, employed for the manufacture of CANDU reactor pressure tubes, and Zr-1.5Nb-1Ta (at%), for use as implant materials have been assessed and compared with those of Grade 2 Ti, which is known to be a highly compatible metallic biomaterial. The in vitro corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy (EIS) measurements, as a function of exposure time to an artificial physiological environment (Ringer's solution). Open circuit potential values indicated that both the Zr alloys and Grade 2 Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Zr-1.5Nb-1Ta alloy and that this oxide has better corrosion protection characteristics than the ones formed on Grade 2 Ti or on the Zr-2.5Nb alloy. EIS study showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film presents on the metals surface, improving their resistance with exposure time, presenting the highest values to the Zr-1.5Nb-1Ta alloy. For the biocompatibility analysis human osteosarcoma cell line (Saos-2) and human primary bone marrow stromal cells (BMSC) were used. Biocompatibility tests showed that Saos-2 cells grow rapidly, independently of the surface, due to reduced dependency from matrix deposition and microenvironment recognition. BMSC instead display a reduced proliferation, possibly caused by a reduced crosstalk with the metal surface microenvironment. However, once the substrate has been colonized, BMSC seem to respond properly to osteoinduction stimuli, thus supporting a substantial equivalence in the biocompatibility among the Zr alloys and Grade

  6. Quantifying protein adsorption on combinatorially sputtered Al-, Nb-, Ta- and Ti-containing films with electron microprobe and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Byrne, T. M.; Lohstreter, L.; Filiaggi, M. J.; Bai, Zhijun; Dahn, J. R.

    2009-04-01

    Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary libraries of Al 1-xNb x, Al 1-xTa x, Al 1-xTi x, Nb 1-xTa x, Nb 1-xTi x, and Ta 1-xTi x (0 ⩽ x ⩽ 1) and a ternary library of Al 1-xTi xTa y (0 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ 0.7), along with their corresponding pure element films were sputtered onto glass substrates using a unique magnetron sputtering technique. Films were characterized with wavelength-dispersive spectroscopy (WDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in good agreement for all films.

  7. Characterization of cryogenic materials by x-ray absorption methods. [Ta, Zr additions in Nb/sub 3/Sn

    SciTech Connect

    Heald, S.M.; Tranquada, J.M.

    1985-01-01

    X-ray absorption techniques have in recent years been developed into powerful probes of the electronic and structural properties of materials difficult to study by other techniques. In particular, the extended x-ray absorption fine structure (EXAFS) technique can be applied to a variety of cryogenic materials. Three examples are used to demonstrate the power of the technique. The first is the determination of the lattice location of dilute alloying additions such as Ta and Zr in Nb/sub 3/Sn. The Ta additions are shown to reside predominately in Nb lattice sites, while Zr is not uniquely located at either Nb or Sn sites. In addition to structural information, temperature dependent EXAFS studies can be used to determine the rms deviations of atomic bond lengths, providing information about the temperature dependence of interatomic force constants. For Nb/sub 3/Sn deviations are found from simple harmonic behavior at low temperatures which indicate a softening of the Nb-Sn bond strength. The final example is the study of interfacial properties in thin film systems. This is accomplished by making x-ray absorption measurements under conditions of total external reflection of the incident x-rays. As some examples show, this technique has great potential for studying interfacial reactions, a process used in the fabrication of many superconducting materials.

  8. Study of CoTa alloy as barrier layer for Cu/low-k interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Liu, Lin-Tao; He, Peng; Qu, Xin-Ping; Zhang, Jing; Wei, Shuhua; Mankelevich, Yuri A.; Baklanov, Mikhail R.

    2017-10-01

    CoTa alloy films as diffusion barriers for Cu/low-k interconnects are studied. Crystalline structure, thermal stability, barrier and sealing properties on low-k dielectric of CoTa alloys with different atomic ratios between Co and Ta are studied using different techniques. It is demonstrated that CoTa alloys with proper content and thickness can be considered as candidates to act as a barrier layer for Cu/low-k interconnects with acceptable thermal stability and resistivity. However, ultralow-k organosilicate based dielectrics with k  =  2.25 and pore size about 2 nm can be sealed by this barrier against penetration of neutral molecules only when the CoTa alloy thickness is larger than 3 nm. Correlation of the barrier performance with low-k pore size is demonstrated.

  9. Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti-Nb-Zr and Ti-Nb-Ta shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Sheremetyev, V. A.; Prokoshkin, S. D.; Brailovski, V.; Dubinskiy, S. M.; Korotitskiy, A. V.; Filonov, M. R.; Petrzhik, M. I.

    2015-04-01

    The superelastic parameters of Ti-Nb-Ta and Ti-Nb-Zr alloys, such as Young's modulus, residual strain, and transformation yield stress after thermomechanical treatment (TMT), were determined during cyclic mechanical tests using the tension-unloading scheme (maximum strain 2% per cycle, ten cycles). The superelastic parameters and the alloy structure have been studied by electron microscopy and X-ray diffraction analysis before and after testing and after holding for 40 days, as well as after retesting. The Young's modulus of the Ti-Nb-Ta alloy decreases from 30-40 to 20-25 GPa during mechanocycling after TMT by different modes; however, it returns to its original magnitude during subsequent holding for 40 days, and changes only a little during repeated mechanocycling. The Young's modulus of the Ti-Nb-Zr alloy changes insignificantly during mechanocycling, recovers during holding, and behaves stably upon repeated mechanocycling. Surface tensile stresses arise during mechanocycling, which facilitate the development of martensitic transformation under load, orient it, and thereby promote a decrease in the transformation yield stress and the residual strain. The enhancement of the level of initial strengthening stabilizes the superelastic behavior during mechanocycling.

  10. Residual stresses and clamped thermal expansion in LiNbO3 and LiTaO3 thin films

    NASA Astrophysics Data System (ADS)

    Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Murauskas, T.; Boulet, P.; Margueron, S.; Gleize, J.; Robert, S.; Kubilius, V.; Saltyte, Z.

    2012-09-01

    Residual stresses in LiNbO3 and LiTaO3 epitaxial thin films were evaluated taking into account Li nonstoichiometry by means of Raman spectroscopy and x-ray diffraction. The epitaxial films were grown on C-cut sapphire substrates by pulsed injection metal organic chemical vapour deposition. Clamping of the epitaxial films by the substrate induced a transfer from the in plane thermal expansion to the out of plane component. The temperature of the phase transition of clamped LiTaO3 films was close to that expected for a bulk sample.

  11. Tensile strain / transverse compressive stress effects in Nb{sub 3}Sn multifilamentary wires with CuNb reinforcing stabilizer

    SciTech Connect

    Katagiri, K.; Shoji, Y.; Noto, K.

    1997-06-01

    In order to improve the strain/stress characteristics of the critical current I{sub c}, the use of external CuNb reinforcing stabilizer, instead of the conventional Cu stabilizer, with bronze processed Nb{sub 3}Sn multifilamentary superconducting wires was examined up to the magnetic field of 14T and at a temperature of 4.2K. Although the axial tensile strain sensitivity of I{sub c} was not changed, the strain for peak I{sub c} as well as the reversible strain limit increased by 0.14% when the Cu stabilizer was replaced by the CuNb reinforcing stabilizer. On the other hand, the transverse compressive stress sensitivity of I{sub c} decreased and the reversible stress limit increased. An increase in both a bronze to Nb ratio and Sn content in bronze matrix resulted in a higher stress tolerance and, as a consequence, the contribution of the CuNb reinforcement became relatively small.

  12. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si

    PubMed Central

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-01-01

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099

  13. Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive?

    PubMed

    Vilarinho, Paula Maria; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO3 and LiTaO3 is reported. The formation of apatite-like structures on the surface of LiNbO3 and LiTaO3 powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed.

  14. Adsorption ability of samples with nanoscale anatase to extract Nb(V) and Ta(V) ions from aqueous media

    NASA Astrophysics Data System (ADS)

    Demina, P. A.; Zybinskii, A. M.; Kuz'micheva, G. M.; Obolenskaya, L. N.; Savinkina, E. V.; Prokudina, N. A.

    2014-05-01

    The adsorption ability of titanium dioxide samples with nanoscale anatase prepared by the sulfate method and Degussa (Evonik) P25, Hombfine N, and Hombikate UV-100 commercial agents with different compositions and characteristics to extract Nb(V) and Ta(V) ions from a model aqueous system has been investigated for the first time. It is established that the degree of sorption R (%) depends on the sorption conditions and the nature of analyte. It is demonstrated that the degree of sorption of Nb(V) ions in the presence of all samples is the highest ( R max = 99.9%) for Degussa P25, except for the peroxide-modified samples on which the maximum sorption of Ta(V) ions with R max = 99.9% has been attained.

  15. Growth and study of SrBi 2 (Ta, Nb) 2 O 9 thin films by pulsed excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Bharadwaja, S. S. N.; Krupanidhi, S. B.

    2000-05-01

    Thin films of SrBi 2(Ta,Nb) 2O 9 (SBTN) were grown using pulsed-laser ablation and were ex situ crystallized. Ferroelectric properties were achieved by low temperature deposition. A polycrystalline structure was achieved, with a Ta- to Nb-ratio nearly 1:1. The smaller thickness of the film allowed the switching voltage to be low enough (1.5 V), without affecting the insulating nature of the films. The hysteresis results showed an excellent square shaped loop with a remnant polarization ( Pr) of 7.6 μC/cm 2 and a coercive field ( Ec) of 75 kV/cm. This ferroelectric material composition is having a very high Curie temperature with higher stability and can be used in non-volatile random access memory (NVRAM) devices.

  16. In Vitro Cytotoxicity of a Ti-35Nb-7Zr-5Ta Alloy Doped with Different Oxygen Contents

    PubMed Central

    Donato, Tatiani Ayako Goto; de Almeida, Luciano Henrique; Arana-Chavez, Victor Elias; Grandini, Carlos Roberto

    2014-01-01

    Cp-Ti is the most common material used for dental implants, but its elastic modulus is around five times higher than that of bone. Recently, promising alloys that add Nb, Ta, Zr and Mo to Ti have been developed. The mechanical properties of these alloys are directly related to its microstructure and the presence of interstitial elements, such as oxygen, carbon, nitrogen and hydrogen. In this study, the in vitro cytotoxicity of Ti-35Nb-7Zr-5Ta (TNZT) alloys was analyzed in the as-received condition and after being doped with several small quantities of oxygen on a cultured osteogenic cell. The cell’s morphology was also examined by scanning electron microscopy (SEM). The TNZT alloy presented no cytotoxic effects on osteoblastic cells in the studied conditions. PMID:28788562

  17. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    PubMed

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method.

  18. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    NASA Astrophysics Data System (ADS)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  19. Trapping of Implanted He at Cu/Nb Interfaces Measured by Neutron Reflectometry

    SciTech Connect

    Wang, Peng; Zhernenkov, Mikhail; Kashinath, Abishek; Demkowicz, Michael; Baldwin, Jon K.; Majewski, Jaroslaw

    2012-06-20

    In single crystalline metals, He is insoluble and precipitates into bubbles. In contrast, Cu-Nb multilayers show no evidence of bubble formation below a critical concentration. The conclusions of this paper are: (1) He is trapped at Cu/Nb , Cu/Mo interfaces; (2) He is trapped interstitially; (3) The interface swells {approx} 10 times; and (4) The layered structure retains despite the swell of interfaces.

  20. Synthesis of amorphous alloys and amorphous-crystalline composites in the Cu-Nb-Hf system by ion beam mixing

    SciTech Connect

    Luo, S. Y.; Cui, Y. Y.; Wang, T. L.; Ding, N.; Li, J. H.; Liu, B. X.

    2011-06-15

    Seven sets of Cu-Nb-Hf multilayered films were designed and prepared with the overall compositions of Cu{sub 21}Nb{sub 65}Hf{sub 14}, Cu{sub 33}Nb{sub 49}Hf{sub 18}, Cu{sub 34}Nb{sub 34}Hf{sub 32}, Cu{sub 34}Nb{sub 10}Hf{sub 56}, Cu{sub 50}Nb{sub 23}Hf{sub 27}, Cu{sub 58}Nb{sub 10}Hf{sub 32}, and Cu{sub 70}Nb{sub 8}Hf{sub 22}, and an ion beam mixing experiment was then conducted using 200 keV xenon ions. It is found that the Cu-Nb-Hf system is a metallic glass forming one, and the single amorphous alloys could be synthesized in the Cu-Nb-based alloys with less than 18 at.% of Hf as a third addition. Also, when the Hf concentration is greater than 18 at.%, i.e., at the compositions of Cu{sub 34}Nb{sub 34}Hf{sub 32}, Cu{sub 34}Nb{sub 10}Hf{sub 56}, Cu{sub 50}Nb{sub 23}Hf{sub 27}, Cu{sub 58}Nb{sub 10}Hf{sub 32}, and Cu{sub 70}Nb{sub 8}Hf{sub 22}, ion beam mixing resulted in the formation of amorphous-crystalline composites, which might have better mechanical properties than single-phase glassy alloys. In addition, a detailed discussion was presented for the formation mechanism of the amorphous alloys and amorphous-crystalline composites.

  1. Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals

    PubMed Central

    Zhang, De-Long; Zhang, Qun; Qiu, Cong-Xian; Wong, Wing-Han; Yu, Dao-Yin; Yue-Bun Pun, Edwin

    2015-01-01

    Diffusion-doping is an effective, practical method to improve material properties and widen material application. Here, we demonstrate a new physical phenomenon: diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals. We exemplify Ti4+/Xn+ (Xn+ = Sc3+, Zr4+, Er3+) co-diffusion in the widely studied LiNbO3 and LiTaO3 crystals. Some Ti4+/Xn+-co-doped LiNbO3 and LiTaO3 plates were prepared by co-diffusion of stacked Ti-metal and Er-metal (Sc2O3 or ZrO2) films coated onto LiNbO3 or LiTaO3 substrates. The Ti4+/Xn+-co-diffusion characteristics were studied by secondary ion mass spectrometry. In the Xn+-only diffusion case, the Xn+ diffuses considerably slower than the Ti4+. In the Ti4+/Xn+ co-diffusion case, the faster Ti4+ controls the diffusion of the slower Xn+. The Xn+ diffusivity increases linearly with the initial Ti-metal thickness and the increase depends on the Xn+ species. The phenomenon is ascribed to the generation of additional defects induced by the diffusion of faster Ti4+ ions, which favors and assists the subsequent diffusion of slower Xn+ ion. For the diffusion system studied here, it can be utilized to substantially shorten device fabrication period, improve device performance and produce new materials. PMID:25941037

  2. (dme)MCl3(NNPh2) (dme = dimethoxyethane; M = Nb, Ta): a versatile synthon for [Ta=NNPh2] hydrazido(2-) complexes.

    PubMed

    Tonks, Ian A; Bercaw, John E

    2010-05-17

    Complexes (dme)TaCl(3)(NNPh(2)) (1) and (dme)NbCl(3)(NNPh(2)) (2) (dme =1,2-dimethoxyethane) were synthesized from MCl(5) and diphenylhydrazine via a Lewis-acid assisted dehydrohalogenation reaction. Monomeric 1 has been characterized by X-ray, IR, UV-vis, (1)H NMR, and (13)C NMR spectroscopy and contains a kappa(1)-bound hydrazido(2-) moiety. Unlike the corresponding imido derivatives, 1 is dark blue because of an LMCT that has been lowered in energy as a result of an N(alpha)-N(beta) antibonding interaction that raises the highest occupied molecular orbital (HOMO). Reaction of 1 with a variety of neutral, mono- and dianionic ligands generates the corresponding ligated complexes retaining the kappa(1)-bound [Ta-NNPh(2)] moiety.

  3. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained.

  4. Petrogenesis of the Yangzhuang Nb- and Ta-rich A-type granite porphyry in West Junggar, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Li, Xiaofeng; Wang, Guo; Xiao, Rong; Wang, Mou; Li, Yanlong; Ren, Manchuan; Bai, Yanping; Yang, Feng

    2014-06-01

    West Junggar is featured with a wide spread of Late Carboniferous-Early Permian A-type granites. Systematic comparison of the Yangzhuang granite porphyry and the regional coeval A-type granites (RCAG) shows that: (1) all the Late Carboniferous-Early Permian A-type granites are of the A2 group except the Yangzhuang granite porphyry; (2) the Nb and Ta contents of the Yangzhuang granite porphyry are nearly 10 times that of the RCAG while Ti content is more depleted; (3) εNd (t) of the Yangzhuang granite porphyry is slightly lower and the Sr isotope has a wider range relative to the RCAG. Previous research revealed that highly incompatible elements including Nb and Ta can be transferred into the mantle wedge by precipitation of amphibole from the ascending fluids generated by dehydration of subducted slab. It is inferred that enhanced heat flux brought by the Late Carboniferous ridge subduction decomposed amphibole in the mantle wedge to generate Nb and Ta-rich melt and finally produced the Yangzhuang granite porphyry.

  5. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO(3):Zr,Cu,Ce.

    PubMed

    Liu, Fucai; Kong, Yongfa; Ge, Xinyu; Liu, Hongde; Liu, Shiguo; Chen, Shaolin; Rupp, Romano; Xu, Jingjun

    2010-03-15

    We have designed and grown triply doped LiNbO(3):Zr,Cu,Ce crystal and investigated its characteristics of nonvolatile holographic storage. It's observed that the photorefractive sensitivity of LiNbO(3):Zr,Cu,Ce has improved to 0.099 cm/J, which is about one order of magnitude larger than that of congruent LiNbO(3):Cu,Ce. And LiNbO(3):Zr,Cu,Ce also has high suppression to light-induced scattering. Our results indicated that triply doped LiNbO(3):Zr,Cu,Ce is an excellent candidate for nonvolatile holographic data storage.

  6. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.

    PubMed

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-11-03

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu₃Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min.

  7. Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer

    SciTech Connect

    Li Peng; Li Jinglong; Xiong Jiangtao; Zhang Fusheng; Raza, Syed Hamid

    2012-06-15

    By using Nb/Cu/Ni structure as multi-interlayer, diffusion bonding titanium to austenitic stainless steel has been conducted. The effects of bonding temperature and bonding time on the interfacial microstructure were analyzed by scanning electron microscope equipped with energy dispersive spectroscope, and the joint strength was evaluated by tensile test. The results showed that Ni atoms aggregated at the Cu-Nb interface, which promoted Cu solution in Nb. This phenomenon forms a Cu-Nb solution strengthening effect. However, such effect would decay by using long bonding time that dilutes Ni atom aggregation, or be suppressed by using high bonding temperature that embrittles the Cu-Nb interface due to the formation of large grown intermetallic compounds. The sound joint was obtained by promoted parameters as 850 Degree-Sign C for 30-45 min, under which a bonding strength around 300 MPa could be obtained. - Highlights: Black-Right-Pointing-Pointer Titanium was diffusion bonded to stainless steel using Nb/Cu/Ni multi-interlayer. Black-Right-Pointing-Pointer The effects of bonding parameters on microstructure and joint strength were studied. Black-Right-Pointing-Pointer Nickel aggregation promotes Cu solution in Nb which can strengthen the joint. Black-Right-Pointing-Pointer The sound joint with strength of around 300 MPa was obtained by promoted parameters.

  8. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  9. A first-principles study of the tetragonal and hexagonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) phases

    NASA Astrophysics Data System (ADS)

    Shang, Xiu; Shen, Jiang; Tian, Fuyang

    2016-10-01

    The crystal structures, elastic moduli, electronic structure, and phonon dispersion of the tetragonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) intermetallic compounds are investigated by using the first-principles method. The space group number is 139 for tetragonal Cr2Al, 136 for tetragonal Nb2Al and Ta2Al, and the space group numbers are 140 and 194 for tetragonal and hexagonal Zr2Al and Hf2Al, respectively. The results of elastic constants and phonon dispersion indicate that the present intermetallic compounds are thermodynamically stable. The stability of hexagonal Zr2Al and Hf2Al is analyzed via the electronic density of state, compared to the tetragonal Zr2Al and Hf2Al compounds. For the R2Al intermetallic compounds, the less ductility and strong anisotropy are predicted. The more negative formation enthalpy and thermodynamic stability of R2Al (R = Nb, Zr, Hf) shed light on the Nb2Al, Zr2Al, Hf2Al phases found experimentally in refractory high entropy alloys.

  10. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    PubMed

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti20Zr20Nb20Ta20Mo20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σy=1390MPa and apparent plastic strain of εp≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition.

  11. Characterization of the Ti-10Nb-10Zr-5Ta Alloy for Biomedical Applications. Part 2: Wettability, Tribological Performance and Biocompatibility

    NASA Astrophysics Data System (ADS)

    Braic, V.; Balaceanu, M.; Braic, M.; Vitelaru, C.; Titorencu, I.; Pruna, V.; Parau, A. C.; Fanara, C.; Vladescu, A.

    2014-01-01

    The Ti-10Nb-10Zr-5Ta alloy, prepared in a levitation melting furnace, was investigated as a possible candidate for replacing Ti6Al4V alloy in medical applications. The sessile drop method, pin-on-disc and in vitro tests were used to analyze wettability, wear resistance, and biocompatibility of the new alloy. The characteristics of the Ti-10Nb-10Zr-5Ta alloy were assessed in comparison to those of the Ti6Al4V alloy. The Ti-10Nb-10Zr-5Ta system was found to have hydrophilic characteristics with similar contact angle as the Ti6Al4V alloy. In all environments (deionized water, simulated body fluid and Fusayama Meyer artificial saliva), the friction coefficient showed a stable evolution versus sliding distance, being similar for both alloys. On overall, the wear resistance of Ti-10Nb-10Zr-5Ta alloy was lower than that of Ti6Al4V for all testing environments. The Ti-10Nb-10Zr-5Ta alloy exhibited good biocompatibility characteristics at in vitro test compared to Ti6Al4V alloy. The cell viability on Ti-10Nb-10Zr-5Ta surfaces was higher than the one observed on Ti6Al4V samples, regardless the number of days spent in osteoblast-like cells culture. A high degree of cell attachment and spreading was observed on both alloys.

  12. ECAE-processed Cu-Nb and Cu-Ag nanocomposite wires for pulse magnet applications

    SciTech Connect

    Edgecumbe Summers, T.S.; Walsh, R.P.; Pernambuco-Wise, P.

    1997-06-01

    Cu-Nb and Cu-Ag nanocomposites have recently become of interest to pulse magnet designers because of their unusual combination of high strength with reasonable conductivity. In the as-cast condition, these conductors consist of two phases, one of almost pure Nb (or Ag) and the other almost pure Cu. When these castings are cold worked as in a wire-drawing operation for example, the two phases are drawn into very fine filaments which produce considerable strengthening without an unacceptable decrease in conductivity. Unfortunately, any increase in strength with operations such as wire drawing is accompanied by a reduction in the cross section of the billet, and thus far, no wires with strengths on the order of 1.5 GPa or more have been produced with cross sections large enough to be useful in magnet applications. Equal Channel Angular Extrusion (ECAE) is an innovative technique which allows for the refinement of the as-cast ingot structure without a reduction in the cross sectional dimensions. Samples processed by the ECAE technique prior to wire drawing should be stronger at a given wire diameter than those processed by wire drawing alone. The tensile properties of wire-drawn Cu-18%Nb and Cu-25%Ag both with and without prior ECAE processing were tested and compared at both room temperature and 77K. All samples were found to have resistivities consistent with their strengths, and the strengths of the ECAE-processed wires were significantly higher than their as-cast and drawn counterparts. Therefore, with ECAE processing prior to wire drawing, it appears to be possible to make high-strength conductors with adequately large cross sections for pulse magnets.

  13. Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides Nb(N3)5, Ta(N3)5, [Nb(N3)6]- and [Ta(N3)6]-, and 1:1 Adducts of Nb(N3)5 and Ta(N3)5 with CH3CN

    DTIC Science & Technology

    2005-04-27

    bonds are significantly longer than the equatorial ones, as expected from VSEPR arguments.[29] In contrast, the axial M-N-N bonds in Nb(N3)5 and Ta...Klapötke, H. Nöth, T. Schütt, M. Warchhold, Angew. Chem. Int. Ed. 2000, 39, 2108. [29] (a) R. J. Gillespie, I. Hargittai, The VSEPR Model of

  14. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Su, Y.; Y Yang, S.; Shi, Z.; Liu, X. J.

    2014-02-01

    In this study, a new type of Cu-Al-Ta (Cu86Al12Ta2 wt%) shape memory alloy with high martensitic transformation temperature is explored. The microstructure, reversible martensitic transformation and shape memory properties are investigated by means of optical microscopy, back-scattered electron, electron probe microanalysis, x-ray diffraction, differential scanning calorimetry and tensile tests. It is proposed that Cu86Al12Ta2 alloy consists of a mixture of primarily {\\beta }_{1}^{\\prime} martensite and a little {\\gamma }_{1}^{\\prime} martensite and some different precipitates. The tiny thin-striped Ta2(Al,Cu)3 precipitate is predominant in the as-quenched condition, whereas the particle-shaped Cu(Al, Ta) precipitate is dominant after hot-rolling. Additionally, the dendritic-shaped γ1(Cu9Al4) phase begins to appear after hot-rolling, but it disappears when the sample is re-quenched. All studied samples have reversible martensitic transformation temperatures higher than 450 ° C. The results show that two-step martensitic transformation behavior is observed for Cu86Al12Ta2 alloy in all three different conditions due to the transformations between ({\\beta }_{1}^{\\prime}+{\\gamma }_{1}^{\\prime}) martensites and the austenite parent phase. The results further show that the recovery ratios are almost 100% when the pre-strains are ≤2.5%, then they gradually decrease with further increase of the pre-strains. The shape memory effects clearly increase as a result of increase of the pre-strains, up to a maximum value of 3.2%.

  15. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    SciTech Connect

    Ellis, D.L.; Michal, G.M.; Dreshfield, R.L.

    1995-06-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  16. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  17. Effects of niobium on thermal stability and corrosion behavior of glassy Cu Zr Al Nb alloys

    NASA Astrophysics Data System (ADS)

    Tam, M. K.; Pang, S. J.; Shek, C. H.

    2006-04-01

    The corrosion behavior of Cu95-xZrxAl5 (x=40, 42.5 and 45 at.%) in 1 N HCl, 3 mass% NaCl and 1 N H2SO4 solutions was studied. As Zr content increases, the corrosion resistance is slightly enhanced. In order to improve the corrosion resistance of the Cu Zr Al glassy alloy, Nb was selected to substitute Cu. Although the supercooled liquid region ΔTx of the Cu Zr Al glassy alloys decreases with increasing Nb content, the alloys still retain high glass-forming ability and bulk glassy samples with 1.5 mm diameter can be obtained when up to 5 at.% Nb was added. It is found that the addition of Nb results in improvement of the corrosion resistance of the glassy Cu Zr Al alloys.

  18. Characteristics of Cu stabilized Nb3Al strands with low Cu ratio

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Barzi, E.; Kobayashi, M.; Lamm, M.; Nakagawa, K.; Sasaki, K.; Takeuchi, T.; Turrioni, D.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /Hitachi, Tsuchiura Works /KEK, Tsukuba

    2008-12-01

    Characteristics of recently developed F4-Nb{sub 3}Al strand with low Cu ratio are described. The overall J{sub c} of the Nb{sub 3}Al strand could be easily increased by decreasing of the Cu ratio. Although the quench of a pulse-like voltage generation is usually observed in superconducting unstable conductor, the F4 strand with a low Cu ratio of 0.61 exhibited an ordinary critical transition of gradual voltage generation. The F4 strand does not have magnetic instabilities at 4.2 K because of the tantalum interfilament matrix. The overall J{sub c} of the F4 strand achieved was 80-85% of the RRP strand. In the large mechanical stress above 100 MPa, the overall J{sub c} of the F4 strand might be comparable to that of high J{sub c} RRP-Nb{sub 3}Sn strands. The Rutherford cable with a high packing factor of 86.5% has been fabricated using F4 strands. The small racetrack magnet, SR07, was also fabricated by a 14 m F4 cable. The quench current, I{sub q}, of SR07 were obtained 22.4 kA at 4.5 K and 25.2 kA at 2.2 K. The tantalum matrix Nb{sub 3}Al strands are promising for the application of super-cooled high-field magnets as well as 4.2 K operation magnets.

  19. Interface structure in Cu/Ta2O5/Pt resistance switch: a first-principles study.

    PubMed

    Xiao, Bo; Watanabe, Satoshi

    2015-01-14

    The interface structures of a Cu/Ta2O5/Pt resistance switch under various oxidation conditions have been examined from first-principles. The O-rich Cu/Ta2O5 interface is found to be stable within a wide range of O chemical potentials. In this interface structure, a considerable number of interface Cu atoms tend to migrate to the amorphous Ta2O5 (a-Ta2O5) layer, which causes the formation of the Cu2O layer. The interface Cu atoms become more ionized with an increase in the interface O concentration and/or temperature. These ionized Cu(+) ions could function as one of the main sources for the formation of conduction filaments in the Cu/a-Ta2O5/Pt resistance switch. In contrast, the ionization of the interface Cu atoms is not observed in the Cu/crystal-Ta2O5 interface primarily due to the much lower Cu ionic conductivity in crystal-Ta2O5 than that in amorphous state. In addition, the Pt electrode could not be ionized, irrespective of the interface O concentration and temperature. The formation of interface O vacancies in Pt/Ta2O5 is always energetically more stable than that in Cu/Ta2O5, which may be partly responsible for the cone shape of conduction filament formed in the Cu/a-Ta2O5/Pt resistance switch, where the base of the cone lies on the Pt/Ta2O5 interface.

  20. Homo- and heterobimetallic niobium(v) and tantalum(v) peroxo-tartrate complexes and their use as molecular precursors for Nb-Ta mixed oxides.

    PubMed

    Bayot, Daisy; Tinant, Bernard; Devillers, Michel

    2005-03-07

    New water-soluble bimetallic peroxo-tartrato complexes of niobium(V) and/or tantalum(V) have been prepared, characterized from the structural and spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Two new homometallic complexes, (gu)5[Nb2(O2)4(tart)(Htart)] x 4H2O (1a) and (gu)6[Ta2(O2)4(tart)2] x 4H2O (2a), and the corresponding heterometallic complex, (gu)5[NbTa(O2)4(tart)(Htart)] x 4H2O (3), have been obtained. The crystal structures of the homometallic compounds, (gu)5[Nb2(O2)4(tart)(Htart)] x 6H2O x 1H2O2 (1b) and (gu)6[Ta2(O2)4(tart)2] x 6H2O (2b), have been determined, showing, for both cases, two 8-fold-coordinated metal atoms, each surrounded by oxygen atoms belonging to two bidentate peroxides, two monodentate carboxylato, and two alkoxo groups from both bridging tartrato ligands. The coordination polyhedron around each metal atom is a dodecahedron. The thermal treatment of complexes 1a, 2a, and 3 in air at 700 or 800 degrees C, depending of the Ta content, provided Nb2O5, Ta2O5, and the solid solution TaNbO5, respectively. The thermal treatment of a 1:1 Nb/Ta molar ratio mixture of 1a and 2a has also been studied. BET and SEM measurements have been carried out and reveal these oxides possess relatively high specific surface areas and display a porous character. Comparison between the use of homo- and heterometallic precursors is discussed.

  1. Constraints on Lu-Hf and Nb-Ta systematics in globally subducted oceanic crust from a survey of orogenic eclogites and amphibolites

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. Alex

    2016-04-01

    To further understand Lu-Hf and Nb-Ta systematics in globally subducted oceanic crust, this paper evaluates all available Lu-Hf garnet isochron ages and initial ɛHf values in conjunction with present-day bulk-rock Lu-Hf isotope and trace element (K, Nb, Ta, Zr, and Ti in addition to Lu-Hf) data from the world's orogenic eclogites and amphibolites (OEAs). Approximately half of OEAs exhibit Lu-Hf and Nb-Ta systematics mimicking those of unsubducted oceanic crust whereas the rest exhibit variability in one or both systems. For the Lu-Hf system, mixing calculations demonstrate that subduction-related phase transformations, in conjunction with open system behavior, can shift subducted oceanic crust toward higher Lu/Hf, or toward lower Lu/Hf that can also be associated with unradiogenic ɛHf values. However, evaluation of potential mechanisms for fractionating Nb from Ta is more complicated because many of the OEAs have Nb-Ta systematics that are decoupled from Lu-Hf and the behavior of K, Zr, and Ti. Nonetheless, the global data set demonstrates that the association between unradiogenic ɛHf and elevated Nb/Ta observed in some kimberlitic eclogite xenoliths can be inherited from processes that occurred during subduction of their oceanic crustal protoliths. This allows for a geologically based estimate of the Nb concentration in a reservoir composed of deeply subducted oceanic crust. However, mass balance calculations confirm that such a reservoir, when considered as a whole, likely has a Nb concentration similar to unsubducted oceanic crust and is therefore not the solution to the problem of the Earth's "missing" Nb.

  2. Ti-Nb-(Zr,Ta) superelastic alloys for medical implants: Thermomechanical processing, structure, phase transformations and functional properties

    NASA Astrophysics Data System (ADS)

    Dubinskiy, Sergey

    The aim of this project is to develop a new class of orthopaedic implant materials that combine the excellent biocompatibility of pure titanium with the outstanding biomechanical compatibility of Ti-Ni-based shape memory alloys. The most suitable candidates for such a role are Ti-Nb-Zr and Ti-Nb-Ta near-beta shape memory alloys. Since this class of materials was developed quite recently, the influence of thermomechanical treatment on their structure and functional properties has not as yet been the subject of any comprehensive study. Consequently, this project is focused on the interrelations between the composition, the microstructure and the functional properties of superelastic Ti-Nb-Zr and Ti-Nb-Ta alloys for biomedical application. The principal objective is to improve the functional properties of these alloys, more specifically their superelastic properties and fatigue resistance, through optimization of the alloys' composition and thermomechanical processing. It is shown in this thesis that the structure and functional properties of Ti-Nb-based shape memory alloys can be effectively controlled by thermomechanical processing including cold deformation with post-deformation annealing and ageing. It is also shown that the formation of nanosubgrain substructure leads to a significant improvement of superelasticity and fatigue resistance in these alloys. The influence of ageing on the ω-phase precipitation kinetics and, consequently, on the functional properties of Ti-Nb-Zr and Ti-Nb-Ta alloys is also observed. Based on the results obtained, optimized regimes of thermomechanical treatment resulting in a best combination of functional properties are recommended for each alloy, from the orthopaedic implant materials standpoint. An original tensile stage for a low-temperature chamber of an X-ray diffractometer is developed and used in this project. A unique low-temperature (-150...+100°C) comparative in situ X-ray study of the transformations' features and crystal

  3. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    PubMed

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  4. The wake of H in V, Nb and Ta at elevated temperatures: Irreversibility and non-central forces revisited

    NASA Astrophysics Data System (ADS)

    Reidinger, Franz

    2011-03-01

    At elevated temperatures U and Do of the Arrhenius equation for diffusion describe the amplitude and relaxation rate, respectively, of the stern wave wake of H in V, Nb and Ta. The key evidence for this hypothesis is the close correlation between the isotope dependence of U derived from the Gorsky measurements 1 and the shear distortion of the orthorhombic phases of NbH(D) and TaH(D). The isotope dependence of U can be expressed in closed form: U= a √{ M } + b √{ m } where M and m are the atomic numbers of the host metal and H isotope and a and b are 7.4 and 37 for Nb and Ta, and 0 and 55 for V, respectively, in units of meV. I explain this correlation in two steps: a) the cubic symmetry of the nearest neighbor strain field 2 of the interstitial H is the result of a dynamic superposition, possibly caused by a JT resonance 3 , of the two orthorhombic variants of β -NbH0.75 and b) the successful characterization of the diffusion process as jump diffusion 4 eliminates the transition state from consideration. Instead it is the relaxation of the just emptied site from its residual orthorhombic distortion towards the cubic symmetry of the bcc metal which is being measured. 1)Z Qi, J Voelkl, R Laesser and H Wenzl: J. Phys. F 13, 2053 (1983) 2)G Bauer, E Seitz, W Schmatz and H Horner: Sol. State Comm. 17, 161 (1975) 3)G C Abell: J. Phys. F 12, 1143 (1982) 4) V Lottner, A Heim and T Springer: Z. Physik B 32, 157 (1979).

  5. Preparation and investigation of the quaternary alloy CuTaInSe{sub 3}

    SciTech Connect

    Grima-Gallardo, P. Munoz, M.; Duran, S.; Delgado, G.E.; Quintero, M.; Ruiz, J.

    2007-12-04

    Polycrystalline samples of the quaternary alloy CuTaInSe{sub 3} were prepared by the usual melt and anneal technique. The analysis of the diffraction pattern indicates a single phase which indexes as a tetragonal chalcopyrite-like structure with lattice parameters a = 5.7837 {+-} 0.0002 A; c = 11.6208 {+-} 0.0007 A and V = 389 {+-} 1 A{sup 3}. Differential thermal analysis shows that the melting transition of CuTaInSe{sub 3} is incongruent with large liquid + solids regions.

  6. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.

    PubMed

    Zhu, Xiuliang; Lu, Chungui; Du, Lipu; Ye, Xingguo; Liu, Xin; Coules, Anne; Zhang, Zengyan

    2016-11-18

    The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R. cerealis. In this study, a wheat NB-LRR gene, named TaRCR1, was identified in response to R. cerealis infection using Artificial Neural Network analysis based on comparative transcriptomics and its defence role was characterized. The transcriptional level of TaRCR1 was enhanced after R. cerealis inoculation and associated with the resistance level of wheat. TaRCR1 was located on wheat chromosome 3BS and encoded an NB-LRR protein that was consisting of a coiled-coil domain, an NB-ARC domain and 13 imperfect leucine-rich repeats. TaRCR1 was localized in both the cytoplasm and the nucleus. Silencing of TaRCR1 impaired wheat resistance to R. cerealis, whereas TaRCR1 overexpression significantly increased the resistance in transgenic wheat. TaRCR1 regulated certain reactive oxygen species (ROS)-scavenging and production, and defence-related genes, and peroxidase activity. Furthermore, H2 O2 pretreatment for 12-h elevated expression levels of TaRCR1 and the above defence-related genes, whereas treatment with a peroxidase inhibitor for 12 h reduced the resistance of TaRCR1-overexpressing transgenic plants and expression levels of these defence-related genes. Taken together, TaRCR1 positively contributes to defence response to R. cerealis through maintaining ROS homoeostasis and regulating the expression of defence-related genes.

  7. Comparative study on structural, elastic, dynamical, and thermodynamic properties of Weyl semimetals MX (M = Ta or Nb; X = As or P)

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Zhao-Qi; Hu, Cui-E.; Cheng, Yan; Ji, Guang-Fu

    2017-09-01

    We present a comparative investigation on structural, elastic, dynamical and thermodynamic properties of Weyl semimetals MX (M = Ta or Nb; X = As or P) using density functional theory (DFT) within the generalized gradient approximation. The elastic properties of NbAs, TaP and NbP are obtained for the first time, then we compared them with each other and with some well-studied materials. Among four Weyl semimetals, TaP and NbAs possess the largest and smallest bulk modulus B, shear modulus G, and Young's modulus E, respectively, while NbP and TaAs own the maximum and minimum elastic Debye temperature. Through the analysis of three dimensional (3D) representations and two dimensional (2D) projections of Young's modulus, MX series exhibit distinct elastic anisotropy, especially for TaAs and NbAs. The calculated phonon dispersions of four Weyl semimetals show no imaginary frequency throughout the Brillouin zone, indicating they are dynamically stable. In addition, compared with other theoretical results, our calculated Brillouin-zone-center frequencies of MX series are more in line with experimental data. Furthermore, Phonon velocities are obtained using phonon spectra, and anisotropic phonon group velocities are responsible for their anisotropic lattice thermal conductivity. Additionally, thermodynamic properties are also predicted using the calculated phonon density of states. The results are in good agreement with available experimental values. We expect our work can provide more information for further experimental studies.

  8. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  9. Conduction paths in Cu/amorphous-Ta{sub 2}O{sub 5}/Pt atomic switch: First-principles studies

    SciTech Connect

    Xiao, Bo Tada, Tomofumi; Watanabe, Satoshi; Gu, Tingkun

    2014-01-21

    We have examined the structure of Cu filaments in Cu/amorphous-Ta{sub 2}O{sub 5} (a-Ta{sub 2}O{sub 5})/Pt atomic switch from first principles. We have found that the Cu single atomic chains are unstable during the molecular dynamics (MD) simulation and thus cannot work as conduction paths. On the other hand, Cu nanowires with various diameters are stable and can form conductive paths. In this case, the Cu-Cu bonding mainly contributes to the conductive, delocalized defect state. These make a sharp contrast with the case of single Cu chains in crystalline Ta{sub 2}O{sub 5}, which can be conductive paths through the alternant Cu-Ta bonding structure. A series of MD simulations suggest that even Cu nanowires with a diameter of 0.24 nm can work as conduction paths. The calculations of the transport properties of Cu/a-Ta{sub 2}O{sub 5}/Pt heterostructures with Cu nanowires between two electrodes further confirm the conductive nature of the Cu nanowires in the a-Ta{sub 2}O{sub 5}.

  10. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    SciTech Connect

    Dutta, Alo; Saha, Sujoy; Sinha, T.P.

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  11. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Okazaki, Yoshimitsu; Nagata, Hiroyuki

    2012-12-01

    Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 μA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.

  12. Electronic structures of transition metal dipnictides X P n2 (X =Ta , Nb; P n =P , As, Sb)

    NASA Astrophysics Data System (ADS)

    Xu, Chenchao; Chen, Jia; Zhi, Guo-Xiang; Li, Yuke; Dai, Jianhui; Cao, Chao

    2016-05-01

    The electronic structures and topological properties of transition metal dipnictides X P n2 (X =Ta , Nb; P n =P , As, Sb) have been systematically studied using first-principles calculations. In addition to small bulk Fermi surfaces, the band anticrossing features near the Fermi level can be identified from band structures without spin-orbit coupling, leading to nodal lines in all these compounds. Inclusion of spin-orbit coupling gaps out these nodal lines, leaving only a pair of disentangled electron/hole bands crossing the Fermi level. Therefore, the low-energy physics can be in general captured by the corresponding two-band model with several isolated small Fermi pockets. Detailed analysis of the Fermi surfaces suggests that the arsenides and NbSb2 are nearly compensated semimetals while the phosphorides and TaSb2 are not. Based on the calculated band parities, the electron and hole bands are found to be weakly topological nontrivial, giving rise to surface states. As an example, we presented the surface-direction-dependent band structure of the surfaces states in TaSb2.

  13. Brief communication: Lithium insertion characteristics of CuNb{sub 2}O{sub 6}

    SciTech Connect

    Sato, M.; Hama, Y.

    1995-08-01

    Chemical and electrochemical lithium intercalation reactions CuNb{sub 2}O{sub 6} with a columbite structure was examined. The chemical lithiation by n-butyllithium occurred accompanied by the formation of a new phase. Li{sub x}CuNb{sub 2}O{sub 6} (O {le} x {le} 1.9), with an apparent crystal lattice. The a axis of the new phase is a little longer (0.6 {angstrom}) than that of the parent phase. The electrochemical cell potential of Li/CuNb{sub 2}O{sub 6} almost attained a plateau at 2.6 V against Li/Li{sup +} in the range from x = 0.1 to x = 1.0 in Li{sub x}CuNb{sub 2}O{sub 6}, corresponding to the reduction from Cu{sup 2+} to Cu{sup +}. The reduction behavior in the range from x = 1.0 to x = 1.9 suggested the reduction from Nb{sup 5+} to Nb{sup 4+}.

  14. Mechanical properties of Cu/Ta multilayers prepared by magnetron sputtering

    SciTech Connect

    Nguyen, T.D.; Barbee, T.W., Jr.

    1998-04-01

    The microstructure and mechanical properties of sputtered Cu/Ta multilayers were studied. X- ray diffraction and transmission electron microscopy characterization indicate that both the Ta and Cu in the 2 nm period multilayer are predominantly amorphous, while in longer period samples, the layers are crystalline, with the metastable tetragonal {beta}-Ta observed. No observable microstructure changes upon annealing at 300{degrees}C were found. An average Vickers micro- hardness value of about 5.5 GPa was measured, which increases about 5% upon annealing at 300{degrees}C. Residual stress in the multilayers and its dependence on thermal annealing are reported. The relationships between microstructure and mechanical properties in the multilayers are discussed.

  15. Sputtered Ta-Si-N diffusion barriers in Cu metallizations for Si

    NASA Technical Reports Server (NTRS)

    Kolawa, E.; Pokela, P. J.; Reid, J. S.; Chen, J. S.; Nicolet, Marc A.; Ruiz, R. P.

    1991-01-01

    Electrical measurements on shallow Si n+-p junction diodes with a 30-nm TiSi2 contacting layer demonstrate that an 80-nm-thick amorphous Ta36Si14N50 film prepared by reactive RF sputtering of a Ta5Si3 target in an Ar/N2 plasma very effectively prevents the interaction between the Si substrate with the TiSi2 contacting layer and a 500-nm Cu overlayer. The Ta36Si14N50 diffusion barrier maintains the integrity of the I-V characteristics up to 900 C for 30-min annealing in vacuum. It is concluded that the amorphous Ta36Si14N50 alloy is not only a material with a very low reactivity for copper, titanium, and silicon, but must have a small diffusivity for copper as well.

  16. Interaction of He with Cu, V, and Ta in bcc Fe: A first-principles study

    SciTech Connect

    Yan, J. X.; Tian, Z. X.; Xiao, W.; Geng, W. T.

    2011-07-01

    Precipitates often play key roles in improving the mechanical performance of structural materials. Using first-principles density functional theory method, we have calculated the geometry and energetics of small X{sub n} and X{sub n}He (X = Cu, V, and Ta) clusters in bcc Fe matrix to investigate the effect of He on X precipitation on the initial stage in neutron-irradiated Fe alloys. Both substitutional and interstitial He attract solute atoms. The attraction of a substitutional He and a Cu atom is as strong as 0.30 eV (nearest neighbor) or 0.25 eV (next-nearest neighbor), even stronger than the vacancy-Cu pair. Such an attraction facilitates the clustering of Cu atoms. By comparison, the attraction of He to V (0.02 eV) or Ta (0.22 eV) is weaker than that of a vacancy. We find that one He can bind up to four Ta atoms to form a tetrahedron, despite the fact that in the absence of He, Ta atoms prefer to stay away from each other. The effect of He on the solute-solute and solute-matrix interactions can be understood from the facts that He behaves both as a free-volume filler and as a bonding insulator.

  17. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, J.B.; Sinha, S.P.; Kosynkin, V.D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  18. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  19. Electronic structure of metal hydrides. VI. Photoemission studies and band theory of VH, NbH, and TaH

    SciTech Connect

    Peterman, D.J.; Misemer, D.K.; Weaver, J.H.; Peterson, D.T.

    1983-01-15

    The electronic structures of VH/sub x/, NbH/sub x/, and TaH/sub x/ (0.6< or =x< or =1.0) have been studied with the use of photoemission spectroscopy with synchrotron radiation (10< or =h..nu..< or =100 eV). Two hydrogen-derived features are observed at approx.5.5- and 7.5-eV binding energies, and the metal d bands are shown to be modified by the hydrogen interaction. These results show no agreement with rigid-band models based on the density of states of the pure metals and relatively poor agreement with previous band-structure calculations for monohydrides. We have calculated the energy bands of ..gamma..-phase NbH (self-consistently) and of NbH/sub 0/ and NbH/sub 2/ (non-self-consistently). Together, the calculations and experiments show how the metal-hydrogen interaction alters the electronic properties of the bcc metals.

  20. Induced anisotropy in nanocrystalline FeCuNbSiB

    SciTech Connect

    Emura, M.; Severino, A.M.; Santos, A.D.; Missell, F.P. . Instituto de Fisica)

    1994-11-01

    The kinetics of induced anisotropy K[sub ind] was studied in nanocrystalline Fe[sub 73.5]Cu[sub 1]Nb[sub 3]Si[sub 13.5]B[sub 9], as well as in the amorphous precursor and in amorphous Fe[sub 78]B[sub 13]Si[sub 9]. The nanocrystalline alloy was produced from the precursor by annealing at 813 K for 1 h and possessed an average FeSi grain size of 13 nm, as determined from x-ray diffraction. Annealing in a 0.2 T field at 723--773 K, above [Tc] of the amorphous phase, resulted in low values of K[sub ind]. The data were compared to the micromagnetic theory of Kronmueller to determine activation energy spectra. K[sub ind] for the nanocrystalline alloy is well described by this theory, however, with an activation energy spectrum that is much narrower than for the amorphous alloys. The limiting value of the anisotropy is K[sub [infinity

  1. Abrasive and corrosive behaviors of Cu-Zr-Al-Ag-Nb bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhang, J. L.; Lu, J. X.; Shek, C. H.

    2009-01-01

    The present work investigated effects of Nb (1-5 at.%) on CuZrAlAg bulk metallic glasses. The addition of Nb did not change the amorphous structure but affected the thermal behaviors significantly. The corrosion resistances of the BMGs with addition of 5 at% Nb in 0.5 N H2SO4 solutions was the best among the samples. Pin-on-disk measurements showed that the hardest sample, viz. the one with 3 at% Nb exhibited the best wear resistance. Mechanical properties were also investigated using a nanoindentation technique. It was found that the addition of Nb may improved corrosion resistance and wear resistance of the Cu-based BMG, but not in a simple and systematic manner.

  2. Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors

    NASA Astrophysics Data System (ADS)

    Kheel, Hyejoon; Sun, Gun-Joo; Lee, Jae Kyung; Mirzaei, Ali; Choi, Seungbok; Lee, Chongmu

    2017-01-01

    Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO nanorods followed by thermal annealing. X-ray diffraction was performed to examine the structure and purity of the synthesized nanoatuctures. Scanning electron microscopy was used to examine the morphology and shape of the nanostuctures. The Nb2O5 nanoparticles-decorated CuO nanorod sensor showed responses of 217.05-862.54%, response times of 161-199 s and recovery times of 163-171 s toward H2 gas with concentrations in a range of 0.5 - 5% at the optimal working temperature of 300 °C. The Nb2O5 nanoparticle-decorated CuO nanorod sensor showed superior sensing performance to the pristine CuO nanorod sensor for the same H2 concentration range. The underlying mechanism for the enhanced hydrogen sensing performance of the CuO nanorods decorated with Nb2O5 nanoparticles is discussed.

  3. Roles of Li and Ta in Pb-free piezoelectric (Na,K)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Sung, Y. S.

    2014-10-01

    Piezoelectric coefficient (d33) of (Na,K)NbO3 (NKN) is enhanced not only at its morphotropic phase boundary (MPB) composition but also enhanced at its polymorphic phase transition (PPT) temperature between orthorhombic and tetragonal phases (TO-T). Thus, for NKN-based ceramics, even higher d33 could be obtained if both MPB and PPT are simultaneously optimized. This temperature as well as composition dependence of piezoelectric properties of NKN-based ceramics requires a systematic approach that differentiates factors for MPB and PPT. In this paper, the roles of Li and Ta known to affect d33 and TO-T were identified in relation with lattice parameters.

  4. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    NASA Astrophysics Data System (ADS)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  5. Study of solid state phase stability and diffusion by x-ray microanalytical techniques. [Ta/W; U/Nb

    SciTech Connect

    Romig, A.D. Jr.

    1986-01-01

    Diffusion behavior in Ta-W has been examined in the temperature range 1300 to 2100/sup 0/C with single phase diffusion couples prepared by chemical vapor deposition. The diffusion induced concentration gradients were measured by EPMA and/or AEM and the chemical diffusivities determined with the method of Darken. Multiphase diffusion behavior and phase stability in the U-Nb system has been studied at 500 to 1200/sup 0/C by using diffusion couples and isothermally annealed multiphase bulk alloys. The concentration profiles and interface phase compositions were measured by EPMA and/or AEM.

  6. Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta, and element 105, Db

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Anton, J.

    2012-01-01

    Fully relativistic, four-component density functional theory electronic structure calculations were performed for MBr5, MOBr3, MBr6-, KMBr6, and MBr5Cl- of group-5 elements Nb, Ta, and element 105, Db, with the aim to predict adsorption behaviour of the bromides in gas-phase chromatography experiments. It was shown that in the atmosphere of HBr/BBr3, the pentabromides are rather stable, and their stability should increase in the row Nb < Db < Ta. Several mechanisms of adsorption were considered. In the case of adsorption by van der Waals forces, the sequence in volatility of the pentabromides should be Nb < Ta < Db, being in agreement with the sublimation enthalpies of the Nb and Ta pentabromides. In the case of adsorption by chemical forces (on a quartz surface modified with KBr/KCl), formation of the MBr5L- (L = Cl, Br) complex should occur, so that the volatility should change in an opposite way, i.e., Nb > Ta > Db. This sequence is in agreement with the one observed in the "one-atom-at-a-time" chromatography experiments. Some other scenarios, such as surface oxide formation were also considered but found to be irrelevant.

  7. Preparation and visible-light photocatalytic properties of BiNbO₄ and BiTaO₄ by a citrate method

    SciTech Connect

    Zhai, Hai-Fa; Li, Ai-Dong; Kong, Ji-Zhou; Li, Xue-Fei; Zhao, Jie; Guo, Bing-Lei; Yin, Jiang; Li, Zhao-Sheng; Wu, Di

    2013-06-01

    Visible-light photcatalysts of BiNbO₄ and BiTaO₄ powders have been successfully synthesized by a citrate method. The formation of pure triclinic phase of BiNbO₄ and BiTaO₄ at low temperature of 700 °C can be attributed to the advantage of the citrate method. The photocatalytic activity and possible mechanism were investigated deeply. For BiNbO₄ particles, the mechanism of methyl violet (MV) degradation under visible light irradiation involves photocatalytic and photosensitization pathways and the catalyst specific surface area has dominant influence. While for BiTaO₄ particles, the dominant mechanism arises from photosensitization pathways and a trade off between high specific surface area and good crystallinity is achieved. BiNbO₄ powder calcined at 700 °C shows the best photocatalytic efficiency among these catalysts, which is ascribed to its large surface area and more positive conduction band level. The optimal catalyst loading, additive H₂O₂ concentration and pH value is around 1 g/L, 2 mmol/L and 8 mmol/L, respectively. - Graphical abstract: Photodegradation performance and adsorption ability of BiNbO₄ and BiTaO₄ powders, respectively. BNO700 with the best photocatalytic efficiency is ascribed to its large surface area and more positive conduction band level. Highlights: • Pure BiNbO₄ and BiTaO₄ powders were prepared by a citrate method. • Excellent performance of visible-light degradation of MV was observed. • Different MV degradation mechanism for BiNbO₄ and BiTaO₄ powders was proposed. • BNO700 has large surface area and more positive conduction band level.

  8. Extreme High Field Strength Element Depletion and Chondritic Nb/Ta in Central Andean Adakite-like Lavas (~27° S, ~68° W)

    NASA Astrophysics Data System (ADS)

    Goss, A. R.; Kay, S. M.

    2005-12-01

    We present new high precision ICP-MS HFSE data on ~30 samples from the adakite-like Pircas Negras (SiO2 =57-62 %; La/Yb= 20-60; Sr = 600-900 ppm, Cr to 200 ppm) and Dos Hermanos (SiO2 =56-59 %; La/Yb= 57-61; Sr = 1200-1500 ppm, Cr to 60 ppm) andesites from the southernmost Andean Central Volcanic Zone (CVZ). These andesites erupted in a broadened arc as the volcanic front was displaced about 50 km to the east between 8 and 3 Ma and likely reflect melting of a garnet bearing crustal source. Our data reveal a discrete change from chondritic Nb/Ta ratios (19-21) and low Zr/Sm (25-30) in older 8-7 Ma Dos Hermanos lavas to dominantly subchondritic Nb/Ta ratios (11-18) and higher Zr/Sm (30-45) in <6 Ma Pircas Negras lavas. These ratios are uncommon since frontal arc lavas worldwide typically have subchondritic Nb/Ta ratios (<19.9 ± 2) consistent with flux melting of uniformly subchondritic sources (i.e. depleted mantle, subducted sediments, crustal assimilation). The highest Nb/Ta ratios begin to approach those of kimberlitic eclogites (mean Nb/Ta = 24) from Siberia and western Africa where residual rutile controls the budget of eclogitic Nb and Ta (Rudnick et al., 2003). Extreme depletions in HFSE in both Pircas Negras (La/Ta = 40-80) and Dos Hermanos (La/Ta= 90-100) lavas are best explained as hydrous and oxidizing conditions within the mantle wedge initially stabilized Ti-oxides (i.e. rutile) as the arc front migrated. These steeper REE patterns and high La/Ta are a transient feature measured in lavas erupting during the peak of arc migration, as mafic <2 Ma CVZ lavas to the north (~26° S) have lower La/Yb (< 20) and La/Ta (< 40). The observed temporal shift in Nb/Ta coupled with a general increase in Zr/Sm suggests a change from residual rutile to low-Mg amphibole within an eclogitic/granulitic crustal residue during the course of arc migration. A potential factor in explaining these data is that a transient period of increased subduction erosion associated with

  9. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  10. Single crystal structure and SHG of defect pyrochlores CsB{sup V}MoO{sub 6} (B{sup V}=Nb,Ta)

    SciTech Connect

    Fukina, D.G.; Suleimanov, E.V.; Yavetskiy, R.P.; Fukin, G.K.; Boryakov, A.V.; Borisov, E.N.; Borisov, E.V.; Surodin, S.I.; Saharov, N.V.

    2016-09-15

    The crystal structure and non-linear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} defect pyrochlores have been studied. The single crystals of these compounds grown by the flux method possess an octahedral faceting and reach up to 50 µm in size. The crystal structures of CsB{sup V}MoO{sub 6} (B{sup V}=Nb, Ta) were investigated by X-ray diffraction method. Both compounds crystallize in the cubic symmetry with noncentrosymmetric space group F-43m. The second harmonic generation of CsNbMoO{sub 6} and CsTaMoO{sub 6}was found to be 1.6×10{sup −2} and 8.5×10{sup −4} of lithium niobate, correspondingly. It has been determined that distortions of [MO{sub 6}] polyhedra (M=Nb, Ta, Mo) as well as polarizability and covalency of Nb–O and Ta–O bonds have a great effect on the second harmonic generation. - Highlights: • CsNbMoO{sub 6} and CsTaMoO{sub 6} homogeneous single crystals have been grown. • The crystal structure of CsTaMoO{sub 6} has been studied. • Nonlinear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} have been found. • The microscopic origin of the second harmonic generation (SHG) response have been identified.

  11. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    NASA Astrophysics Data System (ADS)

    Parab, Pradnya; Kumar, Sanjeev; Bhui, Prabhjyot; Bagwe, Vivas; Bose, Sangita

    2016-05-01

    The evolution of the superconducting transition temperature (Tc) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (Tc) of ~ 7.2±0.5K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperature growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a Tc of 3.2K.

  12. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    SciTech Connect

    Parab, Pradnya Kumar, Sanjeev; Bhui, Prabhjyot; Bose, Sangita; Bagwe, Vivas

    2016-05-23

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperature growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.

  13. Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications.

    PubMed

    Cui, Jing; Zhao, Liang; Zhu, Weiwei; Wang, Bi; Zhao, Cancan; Fang, Liming; Ren, Fuzeng

    2017-10-01

    Tantalum has been widely used in orthopedic and dental implants. However, the major barrier to the extended use of such medical devices is the possibility of bacterial adhesion to the implant surface which will cause implant-associated infections. To solve this problem, bulk Ta-5Cu alloy has been fabricated by a combination of mechanical alloying and spark plasma sintering. The effect of the addition of Cu on the hardness, antibacterial activity, cytocompatibility, corrosion resistance and wear performance was systematically investigated. The sintered Ta-5Cu alloy shows enhanced antibacterial activity against E. Coli due to the sustained release of Cu ions. However, the addition of Cu would produce slight cytotoxicity and decrease corrosion resistance of Ta. Furthermore, pin-on-disk wear tests show that Ta-5Cu alloy has a much lower coefficient of friction but a higher wear rate and shows a distinct wear mode from that of Ta upon sliding against stainless steel 440C. Wear-induced plastic deformation leads to elongation of Ta and Cu grains along the sliding direction and nanolayered structures were observed upon approaching the sliding surface. The presence of hard oxides also shows a profound effect on the plastic flow of the base material and results in localized vortex patterns. The obtained results are expected to provide deep insights into the development of novel Ta-Cu alloy for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  15. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  16. Thermal and structural stability of cosputtered amorphous Ta(x)Cu(1-x) alloy thin films on GaAs

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Woolam, J. A.; Aylesworth, K. D.; Sellmyer, D. J.; Pouch, J. J.

    1986-01-01

    The characteristics of thin films of Ta-Cu, prepared over a wide range of compositions by cosputter deposition onto GaAs and fused quartz substrates, are studied by X-ray diffraction and van der Pauw resistivity measurement. Results show films to be amorphous over the range of 55-95 at. pct, and show Ta(93)Cu(7) barriers to be effective in preventing Au in-diffusion, with a 3000-A layer remaining unpenetrated after an annealing at 700 C for 20 min. Diffusion of Ga and/or As into amorphous 93 at. pct Ta is found to be more rapid than that of Au, and interfacial reactions were shown to form compounds including Ta3Au, CuAu, TaAs2, and Ga3Cu7 above 700 C.

  17. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  18. Characterization of the Ti-10Nb-10Zr-5Ta Alloy for Biomedical Applications. Part 1: Microstructure, Mechanical Properties, and Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Vladescu, A.; Braic, V.; Balaceanu, M.; Braic, M.; Parau, A. C.; Ivanescu, S.; Fanara, C.

    2013-08-01

    Ti-10Nb-10Zr-5Ta alloy was investigated as possible material candidate for replacing Ti6Al4V in medical applications. The alloy was prepared in a levitation melting furnace and characterized in terms of elemental and phase composition, microstructure, mechanical properties, and corrosion resistance in simulated body fluid and Fusayama Meyer artificial saliva solutions. The characteristics of the new alloy were compared to those of the Ti6Al4V alloy. The Ti-10Nb-10Zr-5Ta system was found to posses of a polyhedral structure consisting in α' and β phases. X-ray structural analysis revealed a mixture of hexagonal α' martensite (main phase, with grain size of about 21 nm) and β bcc phase. The Ti-10Nb-10Zr-5Ta alloy exhibited some better mechanical properties (Young modulus, tensile properties) and corrosion resistance (polarization resistance, corrosion current density, and corrosion rate), as compared to Ti6Al4V alloy.

  19. Effect of Crystal Structure on Microwave Dielectric Properties of (Ni1/3B2/3)1-xTixO2 (B=Nb and Ta)

    NASA Astrophysics Data System (ADS)

    Kim, Eung Soo; Kang, Dong Ho; Kim, Sung Joo

    2007-10-01

    Dependence of microwave dielectric properties on the crystal structure of (Ni1/3B2/3)1-xTixO2 (B5+=Nb, Ta, 0.3≤ x≤ 0.6) were investigated. Single phase of tetragonal rutile structure was detected through the entire range of compositions (0.3≤ x≤ 0.6). Dielectric constant (K) and the temperature coefficient of resonant frequency (\\mathit{TCF}) of (Ni1/3B2/3)1-xTixO2 (B5+=Nb, Ta) increased with an increase of TiO2 content due to the increase of bond length ratio of (dapical)/(dequatorial), and the octahedral distortion of rutile structure, respectively. The specimens with smaller Ti content and/or B5+=Ta showed larger Q f value than those with larger Ti content and/or B5+=Nb.

  20. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus.

    PubMed

    Guo, Yongyuan; Chen, Desheng; Lu, Weijie; Jia, Yuhua; Wang, Liqiang; Zhang, Xianlong

    2013-10-01

    β type titanium alloys have attracted much attention in the biomedical field because they consist of non-cytotoxic elements, show high corrosion resistance, and are biologically compatible. In this study, a novel β type titanium alloy (Ti35Nb3Zr2Ta) with a Young's modulus of 48 GPa was fabricated and the alloy's corrosion resistance and in vitro response were determined. The results indicate that the novel alloy exhibits comparable corrosion resistance when compared with Ti6Al4V, but in vitro experiments show that osteoblasts attach, spread, proliferate, and differentiate better on Ti35Nb2Ta3Zr than on Ti6Al4V. The high corrosion resistance and satisfactory biocompatibility make the novel Ti35Nb3Zr2Ta alloy a promising biomaterial for surgical implants.

  1. XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments.

    PubMed

    Lee, Baek-Hee; Kim, Young Do; Lee, Kyu Hwan

    2003-06-01

    Ti and Ti-based alloys have been widely used for the biomedical applications due to their superiorities of biocompatibility, mechanical properties and corrosion resistance. However, there has been the limiting factor for these metals to show the low affinity to the living bone. Most of commercially used Ti alloys have harmful alloying elements such as Al, V, etc. The purposes of this study are design of new Ti alloy having the good mechanical properties and corrosion resistivity without harmful alloying elements and to improve the bone-bonding ability between Ti-based alloy and living bone through the chemically activated process (alkali treatment) and thermally activated one (heat treatment). Mechanical properties of the Ti-In-Nb-Ta alloy were observed by tensile test (Instron model 8511). Corrosion potential and corrosion rate were investigated using a Potentiostate machine (EG&G, Princeton Applied Model 273, Boston, USA) with saline solution (9% NaCl) without dissolved oxygen at 37 degrees C. After alkali and heat treatments, the effects of the pre-treatments on the bonding property were evaluated by in vitro test. In this study, the surface changing behavior, which is apatite formation, of newly designed Ti-In-Nb-Ta alloy without harmful alloying elements was investigated through analyzing its surface by using X-ray photoelectron spectroscopy after surface activation treatments (alkali and heat treatments) and after subsequent soaking in the simulated body fluid.

  2. Diffusion Bonding of TA15 and Ti2AlNb Alloys: Interfacial Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Li, Ping; Ji, Xiaohu; Xue, Kemin

    2017-03-01

    TA15 and Ti2AlNb alloys were joined by diffusion welding. The influence of holding time on morphology and mechanical properties of the joint was studied under two conditions of different bonding pressure and temperature. The interface structure was analyzed by BSE and EDS. The mechanical properties of joints were tested. The results show that the typical interfacial microstructure consists of lath α-phase (TA15 alloy)/flake α phase + α-interfacial phase + α2 phase/B2-rich phase/Ti2AlNb alloy. When bonding at 920 °C and 15 MPa with increasing holding time, the interface microstructure evolves into flake α phase and distributes as a basket-weave and the interfacial coarse spherical α phase distributes as a line. α2 phase and O phase disappear gradually while the content of the B2 phase increases. The tensile strength of the joints is 870, 892 and 903 MPa, for 120, 150 and 210 min holding time, respectively, while the elongation rises as well. When bonding at 940 °C and 10 MPa with increasing holding time, the interfacial area includes more Widmanstatten structure and B2 phase. The tensile strength of joints decreases from 921 to 908 MPa, while the elongation increases from 12 to 15.5%, for holding 120 and 210 min, respectively. The tendency of plastic fracture also increases with holding time for both temperature-pressure combinations.

  3. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    PubMed

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI.

  4. Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U)₂(Ti,Nb,Ta)₂O₇].

    PubMed

    McMaster, Scott A; Ram, Rahul; Charalambous, Fiona; Pownceby, Mark I; Tardio, James; Bhargava, Suresh K

    2014-09-15

    Betafite of composition [(Ca,U)2(Ti,Nb,Ta)2O7] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150°C for 48 h under an inert gas atmosphere. XRD characterisation revealed that the synthesised betafite contained minor impurities. EPMA analysis of a sectioned surface showed very small regions of Ca-free betafite on grain boundaries as well as minor rutile impurities. Some heterogeneity between the Nb:Ta ratio was observed by quantitative EPMA but was generally within the nomenclature requirements stated for betafite. SEM analysis revealed the synthesised betafite was comprised mostly of hexaoctohedral crystals of ∼ 3 μm in diameter. XPS analysis of the sample showed that the uranium in the synthesised betafite was predominately present in the U(5+) oxidation state. A minor amount of U(6+) was also detected which was possibly due to surface oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Molina, J. F.; Bea, F.; Abu Anbar, M.; Montero, P.

    2016-08-01

    The relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios in A-type felsic rocks from the Ediacaran Katerina Ring Complex, northernmost Arabian-Nubian Shield (ANS; S. Sinai, Egypt), are investigated in this work to understand their behavior during generation of highly evolved granitic magmas and to explore the nature of magma sources. Textural and compositional relationships of cognate Th-REE- and Nb-Ta-accessory minerals in Katerina felsic rocks show that chevkinite-group minerals (CGM), monazite, thorite, allanite and xenotime formed from residual liquids in quartz syenite porphyries, quartz monzonites and peralkaline granites, whereas in aluminous granites, allanite and monazite crystallized early, and thorite and columbite formed from residual liquids. Relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios with Zr/Hf ratios in the aluminous granites and with Be abundances in the peralkaline granites suggest a decrease in La/Nb and Ce/Pb ratios in the former, and in Y/Nb and La/Nb ratios in the latter with crystallization progress. This contrasts with absence of systematic variations of Th/Nb and Ce/Pb ratios in the peralkaline compositions and of Y/Nb ratio in the aluminous ones. In this latter, Th/Nb ratio can present a significant decrease only in highly evolved compositions. An analysis of Y/Nb, Th/Nb, La/Nb and Ce/Pb relationships in worldwide OIB and subduction-related magmatic suites reveals that A-type felsic rocks with (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 may have A1-type affinity, and those with (Th/Nb)N > 2, (La/Nb)N > 2, and (Ce/Pb)N < 1 tend to present A2-type affinity. The crystal fractionation of Th-LREE- and Nb-Ta-accessory minerals and mixing of components derived from the two granite groups may cause deviations from these compositional limits that can be evaluated using constraints imposed by Th/Nb-La/Nb, Ce/Pb-Th/Nb and Ce/Pb-La/Nb relationships in OIB and subduction-related magmatic suites. Three mantle sources might have been

  6. Ba 3M IIITiM VO 9 (M III = Fe, Ga, Y, Lu; M V = Nb, Ta, Sb) perovskite oxides: Synthesis, structure and dielectric properties

    NASA Astrophysics Data System (ADS)

    Joy, Joby E.; Atamanik, Eric; Mani, Rohini; Nag, Abanti; Tiwari, R. M.; Thangadurai, V.; Gopalakrishnan, J.

    2010-12-01

    We describe the synthesis, structures and dielectric properties of new perovskite oxides of the formula, Ba 3M IIITiM VO 9, for M III = Fe, Ga, Y, Lu and M V = Nb, Ta, Sb. While M V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M III/Ti/M V metal-oxygen octahedra are corner-connected, the M V = Sb oxides show a distinct preference for the 6H structure, where Sb V/Ti IV metal-oxygen octahedra share a common face forming (Sb,Ti)O 9 dimers that are corner-connected to the M IIIO 6 octahedra. The preference of antimony oxides (Sb V:4d 10) for the 6H structure - which arises from a special Sb V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb V/Ta V:d 0 atoms which prefer ˜180° Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M V-O oxides in general. The dielectric properties reveal a significant difference among M III members. All the oxides with the 3C structure excepting those with M III = Fe show a normal low loss dielectric behaviour with ɛ = 20-60 in the temperature range 50-400 °C; the M III = Fe members with this structure (M V = Nb, Ta) display a relaxor-like ferroelectric behaviour with large ɛ values at frequencies ≤1 MHz (50-500 °C).

  7. Molten salt synthesis, characterization, and luminescence properties of GdNbO{sub 4}/LuTaO{sub 4}:Eu{sup 3+} phosphors

    SciTech Connect

    Lin, Jintai; Zhou, Zhan; Wang, Qianming

    2013-08-01

    Graphical abstract: Well crystallized GdNbO4:Eu3{sup +} and LuTaO{sub 4}:Eu3{sup +} in the presence of fluxes were formed under reduced temperature in contrast to conventional method and their photophysical properties were studied. - Highlights: • Molten salt method was used to assemble two phosphors. • Both GdNbO{sub 4}:Eu{sup 3+} and LuTaO{sub 4}:Eu{sup 3+} could be red emissive. • The two powders were well dispersed as nano-particles. - Abstract: GdNbO{sub 4}:Eu{sup 3+} and LuTaO{sub 4}:Eu{sup 3+} have been successfully prepared with different fluxes (NaCl, KCl, NaCl and KCl) by the molten salt method. X-ray diffraction (XRD) patterns illustrated that well crystallized GdNbO{sub 4}:Eu{sup 3+} and LuTaO{sub 4}:Eu{sup 3+} in the presence of fluxes were formed under reduced temperature (900 °C) in contrast to conventional method (GdNbO{sub 4}:Eu{sup 3+}: around 1200 °C; LuTaO{sub 4}:Eu{sup 3+}: around 1500 °C). Scanning electron microscope (SEM) images revealed that well dispersed particles were achieved (granular or rod-like structures). Meanwhile, the photo-luminescent studies demonstrated that both niobate and tantalate are efficient hosts to sensitize europium red emissions. The results indicated that GdNbO{sub 4}:Eu{sup 3+} using NaCl as the flux gave much enhanced red emission whereas LuTaO{sub 4}:Eu{sup 3+} synthesized with the assistance of mixed salts (NaCl–KCl) achieved the best luminescence.

  8. Geochemical evolution of micas and Sn-, Nb-, Ta- mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria

    NASA Astrophysics Data System (ADS)

    Akoh, Juliet U.; Ogunleye, Paul O.; Ibrahim, Aliyu A.

    2015-12-01

    The pegmatites in Angwan Doka, north central Nigeria are genetically related to the basement granites formed during the Pan-African orogeny, 550-530 Ma ago. They occur as sharply discordant dykes in the granitic and metasedimentary basement rocks. The pegmatite population comprises of mineralogically simple and complexly zoned types that are characterized by LCT (Li, Cs and Ta) geochemical signature. The host granitoids range in composition from hornblende, titanite-bearing to biotite-muscovite granodiorites. Analysis of geochemical data of whole rock and muscovite from the different zones reveals compositional variations and evolution across the pegmatite body from border zone to the lepidolite-quartz core zone. Fractionation of Rb, Cs, Sr, Li, F, B, Be Sn, Zn, Ta, Nb and Mn which increases from host granitoids, through the border zone to the central core, with decrease in Fe, Mg, Ti, Ba content, is typical and marks the magmatic crystallization trend of the pegmatites. Other distinctive attribute of the pegmatites is occurrence of cassiterite believed to have formed as a consequence of greisenization, albitization and late-stage metasomatism, which led to enrichment in Sn (up to 886 ppm) in the intermediate zone. Chemical composition of muscovite from the different zones of the pegmatite reveals high concentration of primary magmatic columbite-Fe (ferrocolumbite and ferrotantalite) in the border zone and tantalite-Mn (manganocolumbite and manganotantalite) in the core zone. Ta predominates (352 ppm) in the most evolved lepidolite (Li- and F-rich) zone while Nb was enriched (up to 714 ppm) in the border zone. These geochemical features are ascribed to undercooling of the melt and crystallization in boundary layers accompanied with increased accumulation of incompatible and fluxing components. With increasing fractionation, Nb/Ta and Fe/Mn ratio decreased and is accompanied with increase in Rb, Cs, Li, F and Be typical of crystallization from magmatic process. The

  9. Reverse Transformation of Deformation-Induced Phases and Associated Changes in the Microstructure of Explosively Clad Ti-5Ta-2Nb and 304L SS

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, C.; Murugesan, S.; Thomas Paul, V.; Saroja, S.

    2015-10-01

    Ti-5Ta-2Nb alloy was joined to 304L austenitic stainless steel by explosive cladding technique. Explosive cladding resulted in the formation of deformation-induced martensite in 304L SS and fcc phase of Ti in the Ti-5Ta-2Nb side of the joint. The stability of these metastable phases was systematically studied using high-temperature X-ray diffraction technique and transmission electron microscopy, which enabled the optimization of the temperature window for post-cladding heat treatments.

  10. Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO{sub 4} and BiTaO{sub 4}

    SciTech Connect

    Muktha, B.; Darriet, J.; Madras, Giridhar; Guru Row, T.N. . E-mail: ssctng@sscu.iisc.ernet.in

    2006-12-15

    The high-temperature polymorphs of two photocatalytic materials, BiNbO{sub 4} and BiTaO{sub 4} were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO{sub 4} and BiTaO{sub 4} crystallize into the triclinic system P1-bar (No. 2), with a=5.5376(4) A, b=7.6184(3) A, c=7.9324(36) A, {alpha}=102.565(3){sup o}, {beta}=90.143(2){sup o}, {gamma}=92.788 (4){sup o}, V=326.21 (5) A{sup 3}, Z=4 and a=5.931 (1) A, b=7.672 (2) A, c=7.786 (2) A, {alpha}=102.94 (3){sup o}, {beta}=90.04 (3){sup o}{gamma}=93.53 (3){sup o}, V=344.59 (1) A{sup 3} and Z=4, respectively. The structures along the c-axis, consist of layers of [Bi{sub 2}O{sub 2}] units separated by puckered sheets of (Nb/Ta)O{sub 6} octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO{sub 4} towards aromatics containing quinonic and azo functional groups. - Graphical abstract: Crystal structures of Bi(Nb/Ta)O{sub 4} along b-axis: triclinic form.

  11. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  12. Influence of Ti and Ta doping on the irreversible strain limit of ternary Nb3Sn superconducting wires made by the restacked-rod process

    SciTech Connect

    Cheggour, N.; Ghosh, A.; Goodrich, L.F., Stauffer, T.C., Splett, J.D., Lu, X.F., Ambrosio, G.

    2010-06-22

    Nb{sub 3}Sn superconducting wires made by the restacked-rod process (RRP{reg_sign}) were found to have a dramatically improved resilience to axial tensile strain when alloyed with Ti as compared to Ta. Whereas Ta-alloyed Nb{sub 3}Sn in RRP wires showed permanent damage to its current-carrying capacity (I{sub c}) when tensioned beyond an intrinsic strain as small as 0.04%, Ti-doped Nb{sub 3}Sn in RRP strands exhibits a remarkable reversibility up to a tensile strain of about 0.25%, conceivably making Ti-doped RRP wires more suitable for the high field magnets used in particle accelerators and nuclear magnetic resonance applications where mechanical forces are intense. A strain cycling experiment at room temperature caused a significant drop of I{sub c} in Ta-alloyed wires, but induced an increase of I{sub c} in the case of Ti-doped strands. Whereas either Ti or Ta doping yield a similar enhancement of the upper critical field of Nb{sub 3}Sn, the much improved mechanical behavior of Ti-alloyed wires possibly makes Ti a better choice over Ta, at least for the RRP wire processing technique.

  13. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic

    NASA Astrophysics Data System (ADS)

    Breiter, K.; Škoda, R.; Uher, P.

    2007-11-01

    The strongly peraluminous, P- and F-rich granitic system at Podlesí in the Krušné Hory Mountains, Czech Republic, resembles the zonation of rare element pegmatites in its magmatic evolution (biotite → protolithionite → zinnwaldite granites). All granite types contain disseminated Nb-Ta-Ti-W-Sn minerals that crystallized in the following succession: rutile + cassiterite (in biotite granite), rutile + cassiterite → ferrocolumbite (in protolithionite granite) and ferrocolumbite → ixiolite → ferberite (in zinnwaldite granite). Textural features of Nb-Ta-Ti-W minerals indicate a pre-dominantly magmatic origin with only minor post-magmatic replacement phenomena. HFSE remained in the residual melt during the fractionation of the biotite granite. An effective separation of Nb + Ta into the melt and Sn into fluid took place during subsequent fractionation of the protolithionite granite, and the tin-bearing fluid escaped into the exocontact. To the contrast, W contents are similar in both protolithionite and zinnwaldite granites. Although the system was F-rich, only limited Mn-Fe and Ta-Nb fractionation appeared. Enrichment of Mn and Ta was suppressed due to foregoing crystallization of Mn-rich apatite and relatively low Li content, respectively. The content of W in columbite increases during fractionation and enrichment in P and F in the melt. Ixiolite (up to 1 apfu W) instead of columbite crystallized from the most fluxes-enriched portions of the melt (unidirectional solidification textures, late breccia).

  14. Effects of WO3 and Ta2O5 Dopants on the Structure, Microstructure, and Microwave Dielectric Properties of Ca5Nb4TiO17 Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Chen, Chun-Ya

    2016-06-01

    Ca5Nb4TiO17 ceramics were doped with WO3 and Ta2O5 to improve their microwave dielectric properties. The substitution of W6+ into Nb5+/Ti4+ sites resulted in the reduction of the sintering temperatures of the Ca5Nb4-1.2 x W x TiO17 ceramics to 1450°C for x > 0.3 due to the formation of a second phase, CaWO4. In addition, the densification temperatures of the Ca5Nb4- x Ta x TiO17 ceramics increased with Ta5+ content. Some irregular grains of CaWO4 were observed in the microstructures with plate-like grains, which increased with increasing W6+ content in the Ca5Nb4-1.2 x W x TiO17 ceramics. All the Ca5Nb4- x Ta x TiO17 samples exhibited dense microstructures with closely packed plate-like grains and a few pores. The dielectric constant (ɛ r ) of the Ca5Nb4-1.2 x W x TiO17 ceramics decreased with increasing W6+ content from 45.0 for x = 0 to 36.4 for x = 0.9. This decrease occurred because the more highly polarizable Nb5+ ions were replaced by less polarizable W6+ ions at B-sites, and the formation of the CaWO4 second phase diluted ɛ r . The quality factor ( Q × f) reached a maximum of 26,478 GHz for x = 0.3 because of the cation distribution and decrease in the volume of cation sites as well as the increase in the average grain size. The CaWO4 second phase caused the temperature coefficient of the resonant frequency (τ f ) of the Ca5Nb4-1.2 x W x TiO17 ceramics to move in the positive direction. For the Ca5Nb4- x Ta x TiO17 ceramics, ɛ r decreased almost linearly with increasing Ta5+ content from 45.2 for x = 0 to 36.2 for x = 2.5 because of the dampening of the ionic mobility and decrease in the molecular polarizability. The Q × f and τ f values decreased with increasing x value.

  15. Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation

    NASA Astrophysics Data System (ADS)

    Li, Ganglong; Wu, Houya; Luo, Honglong; Chen, Zhuo; Tay, Andrew A. O.; Zhu, Wenhui

    2017-09-01

    Three-dimensional (3D) integration technology using Cu interconnections has emerged as a promising solution to improve the performance of silicon microelectronic devices. However, Cu diffuses into SiO2 and requires a barrier layer such as Ta to ensure acceptable reliability. In this paper, the effects of temperature and strain normal to the interface on the inter-diffusion of Cu and Ta at annealing conditions are investigated using a molecular dynamics (MD) technique with embedded atomic method (EAM) potentials. Under thermal annealing conditions without strain, it is found that a Cu-rich diffusion region approximately 2 nm thick is formed at 1000 K after 10 ns of annealing. Ta is capable of diffusing into the interior of Cu but Cu hardly diffuses into the inner lattice of Ta. At the Cu side near the interface an amorphous structure is formed due to the process of diffusion. The diffusion activation energy of Cu and Ta are found to be 0.9769 and 0.586 eV, respectively. However, when a strain is applied, a large number of crystal defects are generated in the sample. As the strain is increased, extrinsic stacking faults (ESFs) and lots of Shockley partial dislocations appear. The density of the dislocations and the diffusion channels increase, promoting the diffusion of Cu atoms into the inner lattice of Ta. The thickness of the diffusion layer increases to 4 times the value when only a temperature load of 700 K is applied. The MD simulations demonstrated that Ta is very effective as a barrier layer under thermal loading only, and its effectiveness is impaired by tensile strain at the Cu/Ta interface. The simulations also clarified the mechanism that caused the impairment. The methodology and approach described in this paper can be followed further to study the effectiveness of barrier layers under various annealing and strain conditions, and to determine the minimum thickness of barrier layers required for a particular application.

  16. Synthesis of the new layered oxides NaRbLnMO{sub 5} (Ln = La, Nd, Sm, Eu, Gd; M = Nb, Ta)

    SciTech Connect

    Cavazos, Ronaldo J.; Schak, Raymond E

    2004-07-02

    The new layered transition metal oxides NaRbLnMO{sub 5} (Ln = Nd, Sm, Eu, Gd; M = Nb, Ta) were synthesized by direct solid-state reaction. NaRbLaNbO{sub 5} crystallizes with a tetragonal unit cell [a=5.839(6) A, c=8.313(1) A] analogous to that of the related compound NaKLaNbO{sub 5}, while NaRbLaTaO{sub 5} indexes to a larger monoclinic unit cell [a=9.577(2) A, b=5.834(1) A, c=8.323(2) A, {beta}=93.00(2)]. NaRbLnNbO{sub 5} can be prepared for Ln = Nd, Sm, Eu, Gd, and NaRbLnTaO{sub 5} can be prepared for Ln = Nd, Sm. Both series of compounds show the expected decrease in unit cell volume as the size of the lanthanide decreases. NaRbLaNbO{sub 5} is also amenable to ion exchange, forming Li{sub 2-x}Rb{sub x}LaNbO{sub 5} upon reaction with molten lithium nitrate.

  17. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    SciTech Connect

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; Liu, Weilong; Yang, Hong; Jiang, Xiaohua; Ren, Yang; Cui, Lishan

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, which means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.

  18. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    DOE PAGES

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; ...

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less

  19. Structural and surface properties of semitransparent and antibacterial (Cu,Ti,Nb)Ox coating

    NASA Astrophysics Data System (ADS)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Szponar, B.; Grobelny, M.; Kalisz, M.; Pelczarska, A.; Szczygiel, I.; Poniedzialek, A.; Osekowska, M.

    2016-09-01

    In this work structural and surface properties of oxide thin-film coating based on Cu, Ti and Nb prepared by reactive magnetron sputtering have been described. During the deposition process metallic Cu, Ti and Nb targets were sputtered in oxygen plasma. Structural characterization of the film microstructure has revealed that as-prepared coating was amorphous. Due to such structure and the content of Ti and Nb the hardness of the oxide film was about 3.6 GPa, which is 40% higher as compared to metallic Cu film. Moreover, the surface roughness was below 1 nm, what resulted in receiving of hydrophobic properties. The multioxide film was transparent at the level of 40%, but due to high Cu-content its optical absorption edge was about 450 nm and had bright orange color. Optical investigation has revealed that the energy band-gap of this film was 1.41 eV, which indicates on the presence of CuO form. Moreover, the studies of antimicrobial activity showed that as-prepared film had a strong bactericidal effect for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Enterococcus hirae, while fungicidal effect for Candida albicans was not observed. The biological activity was related to the amount of copper ions released from the surface of (Cu,Ti Nb)Ox coating, which was equal to 0.041 ppm per day.

  20. Development of Cu-Nb alloy microcomposite conductors for high field pulsed magnets. Final report

    SciTech Connect

    Pantsyrnyi, V.I.; Shikov, A.K.; Nikulin, A.D.; Belyiakov, N.M.; Potapenko, I.I.; Vorob`ova, A.E.; Silaev, A.G.; Kozlenkova, N.I.; Zinov`ev, V.G.; Drobyshev, V.A.

    1995-12-31

    Primary goal is to develop high strength-high conductivity composite wires with enhanced cross section. The following research areas were started: melting, deformation, TEM, SEM, and mechanical/electrical characterization of in-situ Cu-Nb microcomposites. Consumable arc melting using initial composite electrodes produced by cold deformation was chosen for preparing initial ingots of Cu-(16- 18)wt%Nb alloy. The deformation process including extrusion, drawing with intermediate heat treatments, and rolling was analyzed. Structure of Cu-Nb composite was investigated at all stages of its fabrication. Rebundling was successfully used to manufacture conductors with enhanced cross sections. Wire with 3x7mm{sup 2} cross section and 50m length was produced with UTS (20 C) = 1000 MPa and electroconductivity 70% IACS.

  1. Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb3Sn

    DOE PAGES

    Tarantini, C.; Sung, Z. -H.; Lee, P. J.; ...

    2016-01-25

    Nb3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on Hc2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher Tc onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a Tc-distribution extending from 18 down to 5-6 K (the lowest expected Tc for the binarymore » A15 phase), the Ti-doped samples have no A15 phase with Tc below ~12 K. The much narrower Tc distribution in the Ti-doped samples has a positive effect on their in-field Tc-distribution too, leading to an extrapolated μ0Hc2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less

  2. Phase stability and electrical conductivity of Ca-doped LaNb 1- xTa xO 4- δ high temperature proton conductors

    NASA Astrophysics Data System (ADS)

    Bi, Zhonghe; Bridges, Craig A.; Kim, Jung-Hyun; Huq, Ashfia; Paranthaman, M. Parans

    The electrical conductivity, crystal structure and phase stability of La 0.99Ca 0.01Nb 1- xTa xO 4- δ (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, δ = 0.005), a potential candidate for proton conductor for solid oxide fuel cells (SOFCs), have been investigated using AC impedance technique and in situ X-ray powder diffraction. Partially substituting Nb with Ta elevates the phase transition temperature (from a monoclinic to a tetragonal structure) from ∼520 °C for x = 0 to above 800 °C for x = 0.4. AC conductivity of the La 0.99Ca 0.01Nb 1- xTa xO 4- δ both in dry and wet air decreased slightly with increasing Ta content above 750 °C, while below 500 °C, it decreased by nearly one order of magnitude for x = 0.4. It was also determined that the activation energy for the total conductivity increases with increasing Ta content from 0.50 eV (x = 0) to 0.58 eV (x = 0.3) for the tetragonal phase, while it decreases with increasing Ta content from 1.18 eV (x = 0) to 1.08 eV (x = 0.4) for the monoclinic phase. By removing the detrimental structural phase transition from the intermediate-temperature range, consequently avoiding the severe thermal expansion problem up to 800 °C, partial substitution of Nb with Ta brings this class of material closer to its application in electrode-supported thin-film intermediate-temperature SOFCs.

  3. Mechanical properties of Cu-Nb microcomposites fabricated by the bundling and drawing process

    SciTech Connect

    Hong, S.I.; Hill, M.A.

    2000-04-14

    Based upon a study of the microstructural and mechanical stability of Cu-Nb microcomposite wires fabricated by the bundling and drawing process, the following conclusions can be drawn. (1) The ratio of yield stresses (0.95) is close to that of Young's moduli (0.93), suggesting that thermal obstacles significantly affect the yield strength. This observation favors the barrier strengthening model over the dislocation accumulation model to predict the yield strength. (2) The yield strength of bundled Cu-Nb microcomposite wire was predicted by modifying the model of Spitzig and coworkers. The predictions of the model were in good agreement with experimental data.

  4. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    PubMed

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  5. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices.

  6. Spark Plasma Sintering of AlN Ceramics and Surface Metallization by Refractory Metal of Ti, Nb, Mo, Ta or W at Low Temperature

    NASA Astrophysics Data System (ADS)

    Kai, Ayako; Johkoh, Naoji; Miki, Toshikatsu

    2003-06-01

    Aluminum nitride (AlN) powder with no additives was sintered successfully at 1200°C in low-pressure N2 gas using a spark plasma sintering (SPS) process. The density value of the resultant ceramic is as high as 95% of the theoretical one. No openings were left in the grain boundary. If AlN powder is sandwiched by refractory metal (Ti, Nb, Mo, Ta and W) foils during SPS, one obtains AlN ceramics metallized by the refractory metals even at 1200°C. The adhesion strength of Ti, Mo or W to AlN ceramics is sufficiently high, but that of Nb or Ta is low. The characterization of metal/AlN interfaces by X-ray diffractometory (XRD), scanning electron microscopy (SEM) and electron-probe microanalysis (EPMA) has revealed the formation of a thin reaction layer at the Ti/AlN interface, which may be the reason for the high adhesion strength of the Ti/AlN interface. The high adhesion strengths of Mo/AlN and W/AlN might also be associated with thinner metal/AlN reaction layers, which were unfortunately undetectable in our XRD data. The weak adhesion of Nb/AlN and Ta/AlN interfaces was elucidated by large differences in the thermal-expansion coefficient between metallic Nb or Ta and the AlN ceramics.

  7. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    SciTech Connect

    Seetala, Naidu; Siriwardane, Upali

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  8. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  9. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  10. Phonon and thermal expansion properties in Weyl semimetals MX (M = Nb, Ta; X = P, As): ab initio studies.

    PubMed

    Chang, Dahu; Liu, Yaming; Rao, Fengfei; Wang, Fei; Sun, Qiang; Jia, Yu

    2016-06-07

    Weyl semimetal (WSM) is a new type of topological quantum material for future spintronic devices. Using the first-principles density functional theory, we systematically investigated the thermal expansion properties, and the temperature dependence of isovolume heat capacity and bulk modulus in WSMs MX (M = Nb, Ta; X = P, As). We also presented the phonon dispersion curves and its variation under stress in MX and the anisotropic thermal expansion properties due to the anisotropic crystal structure in WSMs have been predicted in our calculations. Intriguing, we found that the heat capacities increase more rapidly with increasing temperature in the low temperature region for all MX. Furthermore, our results showed that the thermal expansion properties are determined mainly by the isovolume heat capacity at low temperatures, while the bulk modulus has the major effect at high temperatures. These results are useful for applications of WSMs in electronic and spintronic devices.

  11. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

    NASA Astrophysics Data System (ADS)

    Konovalenko, Sergey I.; Ananyev, Sergey A.; Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Aksenov, Sergey M.; Baeva, Anna A.; Gainov, Ramil R.; Vagizov, Farit G.; Lopatin, Oleg N.; Nebera, Tatiana S.

    2015-11-01

    A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine-spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm-1 (with shoulders at 500 and 600 cm-1) corresponding to cation-oxygen stretching vibrations and weak bands at 1093 and 1185 cm-1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: {{Mn}}_{0.06}^{2 + } {{Fe}}_{0.21}^{2 + } {{Fe}}_{0.47}^{3 + } Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/ c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern

  12. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  13. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  14. Large-scale Molecular Dynamics Simulations of Shock-induced Plasticity and Twinning in bcc Nb and Ta

    NASA Astrophysics Data System (ADS)

    Germann, Timothy; Zhang, Ruifeng; Ravelo, Ramon

    2013-06-01

    Large-scale classical molecular dynamics (MD) simulations are used to investigate dislocation slip and twinning activity in bcc metals under shock compression. We will discuss both the orientation-dependent response of Nb and Ta single crystals, as well as the more complex response of nanocrystalline samples. Of particular importance as MD simulations are becoming applied to model more complex materials, we will discuss issues related to the interatomic potential description and the analysis of the deformation response. Embedded atom method (EAM) potentials for shock compression studies must properly describe the energy landscape under the pressure range of interest; and an orientation imaging map technique is described for following the plastic response of fcc and bcc metals.

  15. Bioactive surface modification of Ti-29Nb-13Ta-4.6Zr alloy through alkali solution treatments.

    PubMed

    Takematsu, E; Katsumata, K; Okada, K; Niinomi, M; Matsushita, N

    2016-05-01

    Bioactive surface modification of Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) was performed through three different alkali solution treatments, including the electrochemical (E), hydrothermal (H), and hydrothermal-electrochemical (HE) processes; all of the processes lead to the formation of sodium-contained amorphous titanium oxide layers on TNTZ samples. The TNTZ samples subjected to the E, H, and HE processes exhibit a flat surface, smooth and fine mesh-like structure surface, and rough mesh-like structure surface, respectively. In the bioactive test, namely, simulated body fluid test, apatite inductivity increases as the surface morphology becomes rough. The order of inductivity for the three processes was HE>H>E. The surface chemical composition also affects the apatite induction ability. The surface with fewer niobium species exhibits better apatite inductivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Recrystallization temperature influence upon texture evolution of a SPD processed Ti-Nb-Ta-Zr-O alloy

    NASA Astrophysics Data System (ADS)

    Cojocaru, V. D.; Raducanu, D.; Gordin, D. M.; Cinca, I.; Thibon, I.; Caprarescu, A.

    2014-08-01

    The present study investigates the texture features occurred during recrystallization of a Ti-29Nb-9Ta-10Zr-0.2O (wt.%) alloy processed by multi-pass cold-rolling, up to 90% thickness reduction. Data concerning alloy component phases and the lattice parameters of identified phases were obtained and analysed for all thermo-mechanical processing stages. Crystallographic texture changes occurred during alloy thermo-mechanical processing (coldrolling and recrystallization), were investigated using X-ray diffraction; by acquiring the pole figures data of the main β-Ti phase. Data concerning observed texture components and texture fibers was analysed using phi1 - Φ - phi2 Bunge system in phi2 = 0° and 45° sections. The γ textural fiber was analysed for all thermo-mechanical processing stages.

  17. The electrical properties and relaxation behavior of AgNb1/2Ta1/2O3 ceramic

    NASA Astrophysics Data System (ADS)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2017-02-01

    Polycrystalline AgNb1/2Ta1/2O3 powder was prepared by solid state reaction method. Preliminary x-ray diffractogram analysis of some aspects of crystal structure showed that a single phase compound formed exhibiting a monoclinic system. Impedance spectroscopy showed the presence of both bulk and grain boundary effects in the material. The relaxation behavior was studied by fitting electric modulus with Bergman function confirms us the existence of non-Debye type of relaxation the material. The ac conductivity spectrum obeyed Funke's double power law and fitting in results, the hopping parameters n1,n2 were indicating the existence of small and large range polaron hopping in the material. The band gap of the material 3.02 eV measured by using UV visible spectroscopy.

  18. Theoretical study of B2 type technetium AB (A=Tc, B=Ti, V, Nb and Ta) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Acharya, Nikita; Fatima, Bushra; Sanyal, Sankar P.

    2016-12-01

    The structural, electronic, elastic and thermal properties of the cubic AB type (A=Tc, B=Ti, V, Nb and Ta) technetium intermetallic compounds have been studied using the full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) and local density approximation (LDA) used for the exchange-correlation potential. The calculated lattice parameters agree well with the experimental results. The calculated electronic properties reveal that these compounds are metallic in nature with partial ionic bonding. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh's rule and Cauchy's pressure revealing ductile in nature of all the compounds. Bonding nature is discussed using Fermi surface, band structure and charge density difference plots.

  19. Growth and characterization of lead-free ferroelectric (K,Na,Li)(Nb,Ta,Sb)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Junjun; Zheng, Limei; Yang, Bin; Wang, Rui; Huo, Xiaoqing; Sang, Shijing; Wu, Jie; Chang, Yunfei; Ning, Huanpo; Lv, Tianquan; Cao, Wenwu

    2015-01-01

    In this work, a large size lead-free piezoelectric single crystal, (K,Na,Li)(Nb,Ta,Sb)O3 (KNLNTS) with the dimensions of 8.5×8.5×13.5 mm3 was successfully grown by the top-seeded solution growth method. This KNLNTS single crystal with high compositional homogeneity is in the tetragonal phase at room temperature. The Curie temperature TC of the tetragonal-cubic phase transition temperature is 210 °C. The piezoelectric coefficients and electromechanical coupling factors of the [001]C oriented KNLNTS single crystal are d33=172.55 pC/N, d31=-71.90 pC/N, k31=0.327, k33=0.523, and kt=0.541. In addition, the crystal shows good thermal stability so that it can be used for making high temperature electromechanical devices.

  20. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Zhang, Hui; Tong, Yawen; Zhao, Ling; Zhang, Yongfan; Qiu, Yuzhi; Lin, Xianning

    2017-10-01

    Two-dimensional (2D) layered materials are at the forefront of research because of their unique structures and promising catalytic abilities. Here, the structural stability, electronic properties and gas adsorption of metal (V, Nb, Ta)-doped monolayer MoS2 have been investigated by density functional theory calculations. Our results show that the metal (V, Nb, Ta)-doped monolayer MoS2 is a stable catalyst under room temperature, due to the strong interaction between the doped metals (V, Nb, Ta) and S vacancy of monolayer MoS2. Compared with the gas adsorption (CO, NO2, H2O, NH3) on pristine monolayer MoS2, doped metal (V, Nb, Ta) can significantly improve the adsorption properties, chemical activity and the sensitivity of that of adsorbed gas molecules. This effect occurs due to the strong overlap between the metal nd orbitals and gas molecule orbitals, result in activation of the adsorbed gas molecules. Analysis of Bader charge shows that, more charge transfer (-0.66 e to -0.72 e) occur from metal (V, Nb, Ta)-doped monolayer MoS2 to the oxidizing gas molecules (NO2) acting as acceptors. While for the adsorption of CO molecules, the relative less electrons (about -0.24 e - -0.35 e) transfer occuring from substrate to the adsorbed gases. Whereas the direction of charge transfers is reversed for the adsorption of the reducing gas (H2O and NH3) behaving as donors, in which small electrons (0.04 e -0.09 e) transfer from adsorbed gas to metal (V, Nb, Ta)-doped monolayer MoS2. Our results suggested that metal (V, Nb, Ta)-doped monolayer MoS2 might be a good candidate for low-cost, highly active, and stable catalysts and gas sensors, providing an avenue to facilitate the design of high active MoS2-based two dimensional catalysts and gas sensors.

  1. Thermal Stability and Humidity Resistance of ScTaO4 Modified (K0.5Na0.5)NbO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Mei; Wang, Jin-Feng; Wang, Chun-Ming; Wu, Qing-Zao; Zang, Guo-Zhong

    2009-12-01

    Lead-free (Na0.5K0.5)NbO3-xmol% ScTaO4 (x = 0-1.5) ceramics are prepared using the conventional solid-state reaction method and their properties are investigated in detail. The results indicate that the piezoelectric properties and density are improved by the introduction of ScTaO4. Due to the high orthorhombic-tetragonal phase transition temperature TO-T (around 200° C), stable piezoelectric properties against temperature are obtained. In a wide temperature range of 15-160° C, kp of the (Na0.5K0.5)NbO3-0.5 mol% ScTaO4 ceramic remains almost unchanged and d31 increases slightly from 59 pC/N to 71 pC/N. The deliquescent problem is effectively solved by the addition of ScTaO4. The piezoelectric properties of ScTaO4 modified (Na0.5K0.5)NbO3 ceramics show no obvious reduction and dielectric loss increases slightly after 120 h of immersion. From the analysis, it is suggested that the density is an important factor that improves the humidity resistance of the specimens.

  2. Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface

    PubMed Central

    2012-01-01

    Excellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface under low voltage operation of ± 1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA. Oxygen accumulation at the Ti nanolayer and formation of a defective high-κ TaOx film were confirmed by high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photo-electron spectroscopy. The resistive switching memory characteristics of the Al/Cu/Ti/TaOx/W structure, such as HRS/LRS (approximately 104), stable switching cycle stability (>106) and multi-level operation, were improved compared with those of Al/Cu/TaOx/W devices. These results were attributed to the control of Cu migration/dissolution by the insertion of a Ti nanolayer at the Cu/TaOx interface. In contrast, CuOx formation at the Cu/TaOx interface was observed in an Al/Cu/TaOx/W structure, which hindered dissolution of the Cu filament and resulted in a small resistance ratio of approximately 10 at a CC of 500 μA. A high charge-trapping density of 6.9 × 1016 /cm2 was observed in the Al/Cu/Ti/TaOx/W structure from capacitance-voltage hysteresis characteristics, indicating the migration of Cu ions through defect sites. The switching mechanism was successfully explained for structures with and without the Ti nanolayer. By using a new approach, the nanoscale diameter of Cu filament decreased from 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA, resulting in a large memory size of 7.6 T to 28 Pbit/sq in. Extrapolated 10-year data retention of the Ti nanolayer device was also obtained. The findings of this study will not only improve resistive switching memory performance but also aid future design of nanoscale nonvolatile memory. PMID:22734564

  3. Coexistence of 1-dimensional and 3-dimensional spectral characteristics in TaTe4 and NbTe4

    NASA Astrophysics Data System (ADS)

    Zwick, F.; Berger, H.; Forro, L.; Margaritondo, G.; Grioni, M.; Laveigne, J.; Tanner, D.; Onellion, M.

    2000-03-01

    We have measured TaTe4 and NbTe4 using resistivity, optical conductivity, and angle-resolved photoemission.[1,2] Consistent with earlier reports, the resistivity and optical conductivity in different directions in the crystal exhibit a small ( ~ 10%) anisotropy. The optical conductivity exhibits a Drude peak and conductivity that scales as (1/w)2 for low photon energies (hw), again consistent with earlier results and as expected for a three-dimensional metal. The residual resistivity is below 5 mW-cm, indicating that disorder does not play a major role in these samples. However, the angle-resolved photoemission data indicate a coexistence of three-dimensional and one-dimensional properties. The three-dimensional properties include (a) quasiparticle states in all major symmetry directions of the Brillouin zone, both parallel to and perpendicular to the Ta (Nb) chains, and (b) an energy resolution-limited Fermi-Dirac cutoff of the spectral function. The quasi-one-dimensional properties include (a) dispersing coherent states only for wavevectors along the cation chains, and (b) no coherent state dispersing through or within 0.2 eV of the chemical potential. Further, we measure the resolution-limited Fermi-Dirac cutoff of the spectral function at every point of the Brillouin zone for which we took data, including all three high symmetry directions. (*) Present address: ABB Corp., Zürich, Switzerland 1. F. Zwick et.al., Phys. Rev. B 59 , 7762 (1999). 2. F. Zwick, Ph.D. thesis, EPFL, September, 1998.

  4. Corrosion Behaviour of Nitrogen-Implantation Ti-Ta-Nb Alloy in Physiological Solutions Simulating Real Conditions from Human Body

    NASA Astrophysics Data System (ADS)

    Drob, Silviu Iulian; Vasilescu, Cora; Drob, Paula; Vasilescu, Ecaterina; Gordin, Doina Margareta; Gloriant, Thierry

    2015-04-01

    We applied a new nitrogen-implantation technique (trademark Hardion+) using a source of nitrogen ions, electron cyclotron resonance that assures higher energy and deeper implantation than the conventional techniques. The N-implantation surface of the new Ti-25Ta-25Nb alloy was analyzed as follows: for the phase identification by x-ray diffraction (XRD) in a glancing geometry (1°); for the hardness by the nano-indentation method; for the corrosion behaviour in Ringer solutions of different pH values (simulating the real conditions from the human body) by cyclic and linear polarization, electrochemical impedance spectroscopy and the monitoring of the open circuit potentials and corresponding potential gradients. XRD pattern was indexed with face-centred cubic TiN compound partially substituted with TaN and NbN. The hardness increased about 2 times for the N-implantation alloy. The implantation layer had a protection effect, increasing the corrosion and passivation potentials and decreasing the tendency to passivation and passive current density, due to its compactness, reinforcement action. The corrosion current density and rate decreased by about 10 times and the polarization resistance increased by about 2 times, indicative of a more resistant nitride layer. The porosity was much reduced and the protection efficiency had values closed to 90%, namely the implantation treatment led to the formation of a dense, resistant layer. Impedance spectra showed that the capacitive behaviour of the N-implantation alloy was more insulating and protective. An electric equivalent circuit with two times constants was modelled.

  5. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility.

    PubMed

    Kopova, Ivana; Stráský, Josef; Harcuba, Petr; Landa, Michal; Janeček, Miloš; Bačákova, Lucie

    2016-03-01

    Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2 wt.%) and Si (0-1 wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65 GPa to 85 GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115 GPa), and thus closer to that of the bone (10-30 GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21 days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  7. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  8. Low-temperature structural and dielectric phenomena in La1/3NbO3 and La1/3TaO3: Comparative study

    NASA Astrophysics Data System (ADS)

    Salak, Andrei N.; Vyshatko, Nikolai P.; Khalyavin, Dmitry D.; Prokhnenko, Oleksandr; Ferreira, Victor M.

    2008-10-01

    The crystal structures of the perovskites La1/3NbO3 and La1/3TaO3 were studied between 10 and 350 K using high-resolution neutron powder diffraction and compared with their radio-frequency dielectric response over the same temperature range. The structure of La1/3NbO3 remains orthorhombic Cmmm, while La1/3TaO3 undergoes continuous transition from the high-temperature tetragonal P4/mmm to Cmmm phase at about 220 K. This transition is tricritical in nature and accompanied by no dielectric anomaly. In La1/3NbO3, the frequency-dependent peak of the dielectric permittivity is associated with an atypical increase in the lattice parameters below about 80 K.

  9. Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires

    SciTech Connect

    Borza, F. Lupu, N.; Dobrea, V.; Chiriac, H.

    2015-05-07

    Ferromagnetic Fe-Ni-Co-Al-(Ta,Nb)-B microwires with diameters from 170 μm to 50 μm, which possess both superelastic and good magnetic properties, have been prepared by rapid quenching from the melt using the in rotating water spinning technique followed by cold-drawing and ageing. The cold-drawing and annealing processes lead to the initialization of premartensitic phases as confirmed by the X-ray diffraction and scanning transmission electron microscopic investigations, more significantly in the 50 μm cold-drawn microwires. An increase in the coercive field and in the saturation magnetization has been obtained by annealing, more importantly in the case of Nb-containing alloy. Ageing by thermal or current annealing led to the initialization of the superelastic effect. High values of strain of up to 1.8%, very good repeatability under successive loading, and values of superelastic effect of up to 1.2% have been achieved. The structural analysis coupled with the stress-strain data suggests that these materials annealed at 800 °C have superelastic potential at reduced ageing times. The magnetic behavior was found to be easily tailored through both thermal and thermomagnetic treatments with changes in the magnetic parameters which can be contactless detected. The results are important for future applications where both mechanical and magnetic properties matter, i.e., sensing/actuating systems.

  10. CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts.

    PubMed

    Fresno, F; Jana, P; Reñones, P; Coronado, J M; Serrano, D P; de la Peña O'Shea, V A

    2017-01-18

    The activity of NaNbO3 and NaTaO3 perovskites for the photocatalytic reduction of CO2 is studied in this work. For this purpose, sodium niobate and tantalate have been prepared using solid-state reactions, extensively characterised by means of powder X-ray diffraction, UV-vis, photoluminescence and Raman spectroscopies and N2 adsorption isotherms, and tested in the gas-phase reduction of CO2 under UV light in a continuous flow photoreactor. NaNbO3 is constituted of an orthorhombically distorted perovskite structure, while a ca. 4.5 : 1 combination of the orthorhombic and monoclinic modifications is found in the tantalate. Both catalysts exhibit interesting intrinsic activities, with the tantalate material giving rise to a slightly higher performance. This is attributed to a compromise situation between electron-hole recombination and the reducing potential of conduction band electrons. In addition, a decrease in the competition of water protons for photogenerated electrons is observed with both catalysts with respect to TiO2.

  11. The optical band gap of LiTaO3 and Nb2O5-doped LiTaO3 thin films based on Tauc Plot method to be applied on satellite

    NASA Astrophysics Data System (ADS)

    Estrada, R.; Djohan, N.; Pasole, D.; Dahrul, M.; Kurniawan, A.; Iskandar, J.; Hardhienata, H.; Irzaman

    2017-01-01

    This research observed the optical band gap of thin films made from LiTaO3 undoped (0%) and doped (5% and 10%) with Nb2O5 in the 1 M-solubility deposited on n-type Si (111) substrates. The thin films are manufactured with coating process of substrates by Chemical Solution Deposition (CSD) method using a spin coater device at a rotation speed of 3000 rpm for 30 seconds and annealed in furnace (Nabertherm B180) at a temperature of 850°C for 15 hours. The optical absorption data of thin films are obtained by using an Ocean Optics USB2000 device in the wavelength of visible light. The band gap curve is determined from optical absorption data processing using Tauc Plot method. The Tauc Plot with indirect transition shows that LiTaO3 doped with Nb2O5 provides increased optical band gap value in a range less than 3.5 eV. Based on the results of this research, it can be concluded that LiTaO3 and Nb2O5-doped LiTaO3 thin films on n-type Si (111) substrate are semiconductor materials and has the potential to be applied on satellite.

  12. Influence of crystal growth regimes on the structure and properties of Cu-intercalated Ta1+yS2

    NASA Astrophysics Data System (ADS)

    Antal, V.; Kavečanský, V.; Kačmarčík, J.; Diko, P.

    2017-08-01

    Ta1+yS2 and Cu-intercalated Ta1+yS2 crystals with high Cu concentration were grown by the chemical vapour transport method with different crystal growth regimes. Depending on the cooling process either 2H-type or 6R-type CuxTa1+yS2 crystals were grown. Transformation of 2H-CuxTa1+yS2 polytype crystals to 6R-CuxTa1+yS2 takes place during a low cooling process, whereas during air quenching 2H-type crystals result. It was shown that cooling process and additional annealing steps in crystal growth regimes have an essential influence on the structure of the samples and their physical properties such as superconductivity. The samples were examined by X-ray diffraction, energy dispersive X-ray spectroscopy and electrical resistivity measurements.

  13. Materials Study of NbN and Ta x N Thin Films for SNS Josephson Junctions

    DOE PAGES

    Missert, Nancy; Brunke, Lyle; Henry, Michael D.; ...

    2017-02-15

    We investigated properties of NbN and TaxN thin films grown at ambient temperatures on SiO2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N2 gas flow. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N2 gas flow during growth. High crystalline quality, (111) oriented NbN films with Tc up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the TaxN films depended upon both the N2 partial pressure used during growth and the film thickness. Furthermore,more » the root mean square surface roughness of TaxN films grown by MS increased as the film thickness decreased down to 10 nm.« less

  14. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-01

    The 19F isotropic chemical shifts (δiso) of two isomorphic compounds, NbF5 and TaF5, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19F MAS NMR spectra. In parallel, the corresponding 19F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M4F20] units of NbF5 and TaF5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19F NMR lines of NbF5 and TaF5 is obtained, ensured by the linearity between experimental 19F δiso values and calculated 19F isotropic chemical shielding σiso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF5. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M-F bonds have been established. Additionally, for three of the 19F NMR lines of NbF5, distorted multiplets, arising from 1J-coupling and residual dipolar coupling between the 19F and 93Nb nuclei, were simulated yielding to values of 93Nb-19F 1J-coupling for the corresponding fluorine sites.

  15. Skin effect suppression for Cu/CoZrNb multilayered inductor

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  16. First-principles calculations for the structural stabilities of ordered Nb4 clusters on the Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Lin, Qiubao; Li, Renquan; Zhu, Zizhong

    2006-06-01

    First-principles density-functional theory and supercell models are employed to study the structural stabilities and electronic structures of periodically two-dimensional arrays of Nb4 clusters on the Cu(111) surface. The calculations on the relaxed geometries and cohesive energies show that Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) surface, which might have important applications. The absorption energies are 2.00, 1.43eV/Nb atom for quadrangle- and tetrahedron- Nb4 on Cu(111) , respectively, showing that adsorption of quadrangle- Nb4 clusters are more stable than those of tetrahedron- Nb4 . The energy barrier for the tetrahedron- Nb4 adsorption to the quadrangle one is around 1.21eV/cluster . Electronic structure calculations suggest that adsorption of Nb4 on Cu(111) surface causes significant charge redistributions between the surface layer Cu and the Nb4 adsorbate, leading to remarkable changes on the electronic structure of the copper surface.

  17. Characteristics of reactively sputtered niobium nitride thin films as diffusion barriers for Cu metallization

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Lin; Lai, Chih-Huang; Tsai, Po-Hao; Huang, Hsing-An; Lin, Jing-Cheng; Lee, Chiapyng

    2013-09-01

    NbN films were prepared by radio frequency reactive magnetron sputtering and then employed as diffusion barriers between Cu and Si. The microstructure of the NbN films was an assembly of very small columnar crystallites with a cubic structure. To investigate the properties as diffusion barriers, we performed metallurgical reactions of Cu/NbN0.8/Si, Cu/Nb/Si and Cu/TaN0.7/Si for comparisons. The sheet resistance increased dramatically after annealing above 750°C for Cu/NbN0.80/Si, and above 500°C for both Cu/Nb/Si and Cu/TaN0.7/Si. The interfaces were deteriorated seriously and formation of Cu3Si was observed when the sheet resistance was significantly increased. The diffusion coefficient of Cu in NbN barrier films was estimated by using the change of resistance (Δ R s / R s %). Compared with TaN0.7, NbN0.8 films possess larger grain size and lower Cu diffusion coefficient. Our results suggest that the NbN film can be used as a diffusion barrier for Cu metallization as compared to the well-known TaN film.

  18. Evidence of Nb-Ta mobility in high temperature F-rich fluids evidenced by the La Bosse quartz-Nb-ferberite stockwork (Echassières, French Massif Central).

    NASA Astrophysics Data System (ADS)

    Marignac, C.; Cuney, M.

    2012-04-01

    In the Echassières district (northern French Massif Central), the 310 Ma Beauvoir granite (a P-rich peraluminous RMG) overprints a quartz-ferberite stockwork. The 900 m-deep GPF1 scientific hole shows that the stockwork is split into two parts by the gently dipping Beauvoir intrusion: the upper section (~ 100m thick) occurs in the La Bosse quarry, , and the lower section (≥ 60 m thick) below the granite floor. The root of the stockwork (hypothetic La Bosse granite) has not been reached. The stockwork comprises flat-lying quartz veins (≤ 0.6 m thick) concordant to the regional schistosity of surrounding micaschists, and steep N10-N50°E quartz veins (≤ 0.2 m thick). The two sets result from hydraulic fracturing, and consistently display crack seal features. A family of aplites and aplo-pegmatites dikes follow the same set of fractures, being either later (with partial dissolution of pre-existing quartz veins) or earlier, than the quartz veins. There is no alteration, nor associated mineral other than ferberite, at the La Bosse quarry, whereas micaceous selvages are observed in the lower section. Ferberite display a trend of ferberite enrichment with increasing depth (0.71 to 0.95 Fb mole%). In the La Bosse quarry, three ferberite habitus are present: acicular, lanceolate and prismatic. Acicular crystals are typically nicely zoned, with alternating Nb-rich (4.95±0.94 % Nb2O5) and Nb-poor (1.57±0.38 % Nb2O5) growth bands. Ta (up to 0.30 Ta2O5), Ti and Sn are also enriched in the Nb-rich bands. Nb and Ta incorporation into the ferberite is in the form of columbite, as either true solid solution or nanoinclusions. Lanceolate crystals have a similarly zoned acicular core and a Nb-poor rim (1.08±0.66 % Nb2O5). Prismatic crystals are unzoned and Nb-poor (0.67±0.20 % Nb2O5). In the lower part of the stockwork, the Nb contents are lower (2.17 % Nb2O5 in the Nb-rich bands, 1.36 % in the Nb-poor bands, 0.08 % in the unzoned cortex, 0.15 % in the unzoned prisms

  19. Electronic effects at interfaces in Cu - Cr, Mo, Ta, Re Multilayers

    SciTech Connect

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-06-28

    In this study we characterize electronic effects in short-period ({approx}20 {angstrom}) metallic multilayer films in which 40% of the atoms are at an interface using near-edge (L{sub 3,2}) x-ray absorption. This study investigates Cu/TM where TM = Cr, MO, W, Ta, Re. These immiscible elemental pairs are ideal to study as they form no compounds and exhibit terminal solid solubility. An interest in the charge transfer between elements in alloys and compounds has led to studies using x-ray absorption as described above. Near edge x-ray absorption fine structure (NEXAFS), a technique used for analyzing x-ray absorption near the absorption edge of the element, is especially suited to study the amount of unoccupied states in the conduction band of a metal. The d-metals spectra show large peaks at the absorption edges called ''white lines.'' These are due to the unoccupied d-states just above the Fermi level in these metals. A study of the white lines in the 3d metals show that as the d-band is increasingly occupied the white lines decrease in intensity. Starting with Ti (3d{sup 2} 4s{sup 2}), which has an almost empty d-band and shows strong white lines, the white-line intensities decrease across the Periodic Chart to Cu (3d{sup 10} 4s{sup 1}), which has a full d-band and no white lines. Systematic measurement of the L{sub 3,2} absorption spectra of bulk elemental Cu and Cu in the Cu/TM multilayers enabled measurement of the charge transfer. NEXAFS on metallic multilayers has received less attention than alloys because of the difficulty in synthesizing multilayers with controllability up to the monolayer level and because there is little difference between the signal from the bulk and from longer period (> 30 {angstrom}) multilayers. For high-quality short period multilayers, however, the difference is clear. This is highlighted in a study of short period Co/Cu multilayers, where the electronic density of states of Cu in Cu/Co greatly differed from that of bulk Cu. The

  20. Chemical stability of highly (0001) textured Sm(CoCu){sub 5} thin films with a thin Ta capping layer

    SciTech Connect

    Zhao Haibao; Wang Hao; Liu Xiaoqi; Wang Jianping; Zhang Tao

    2011-04-01

    With the highest magnetocrystalline anisotropy constant (Ku) among practical magnetic materials, SmCo{sub 5} could be a very attractive candidate for future high areal density magnetic recording. However, its corrosion resistance is always a concern in recording media applications. In this paper, the chemical stability and microstructures of highly (0001) textured Sm(CoCu){sub 5} thin films with and without a 3 nm Ta capping layer were reported. For Sm(CoCu){sub 5} thin films without a capping layer, the coercivity decreases significantly (from 8kOe to 1kOe) within one month. Sm(CoCu){sub 5} thin films capped with a thin Ta layer (3 nm) behave differently. Even exposed to a laboratory environment (25 deg. C) over 3 years, the Ta-capped Sm(CoCu){sub 5} thin films are stable in terms of structural and magnetic properties, i.e., there were no changes in X-ray diffraction peaks and vibrating sample magnetometer hysteresis loops. Microstructure of Ta-capped Sm(CoCu){sub 5} thin films showed that Sm(CoCu){sub 5} formed a domelike particle assembly structure on a smooth Ru underlayer and were well covered by partially oxidized Ta capping layer, as shown by TEM cross-section micrographs. Accelerated corrosion treatment (130 deg. C, 95% relative humidity, 6 h) was performed on Ta-capped Sm(CoCu){sub 5} thin films. X-ray photoelectron spectroscopy (XPS) results showed that no Co was detected on the sample surface before the corrosion treatment, but strong XPS signals of CoOx and Co(OH)x were observed after treatment. Therefore, none of our Sm(CoCu){sub 5} thin films can pass the accelerated corrosion test. Hcp-phased CoPt-alloys are proposed as better capping materials for Sm(CoCu){sub 5} thin films in future high-density magnetic recording applications.

  1. The Joint Strength and Fracture Mechanisms of TC4/TC4 and TA0/TA0 Brazed with Ti-25Cu-15Ni Braze Alloy

    NASA Astrophysics Data System (ADS)

    Zou, Zhihuan; Zeng, Fanhao; Wu, Haobo; Liu, Jian; Li, Yi; Gu, Yi; Yuan, Tiechui; Zhang, Fuqin

    2017-05-01

    In this paper, Ti-25Cu-15Ni (mass ratio) braze alloys were prepared by vacuum arc melting. Additionally, the TA0 pure titanium and TC4 titanium alloy were brazed with the Ti-25Cu-15Ni braze alloy at 960, 980, 1000, 1020, and 1040 °C. The effects of the braze temperature on the tensile strength of the TA0 and TC4 joints and their fracture mechanisms were studied. The maximum tensile strength of the TA0 joints of 219.9 ± 0.1 MPa was achieved at a brazing temperature of 980 °C, and the maximum tensile strength of the TC4 joints of 832.9 ± 0.1 MPa was achieved at the same brazing temperature. These results indicate that their ideal joint strength is comparable. According to the fractography results of the TA0 joints, a mixed fracture morphology is indicated. The TA0 fracture surface is dominated by cleavage fracture with a small contribution from ductile fracture. The TC4 joint fracture arises from cleavage.

  2. Study of microstructure and precipitates of a Zr-2.5Nb-0.5Cu CANDU spacer material

    NASA Astrophysics Data System (ADS)

    Dong, Qingshan; Yu, Hongbing; Yao, Zhongwen; Long, Fei; Balogh, Levente; Daymond, Mark R.

    2016-12-01

    Synchrotron X-ray diffraction, scanning electron microscopy, and transmission electron microscope bright field and high angle annular dark field were employed to investigate the microstructure and precipitates of a Zr-2.5Nb-0.5Cu alloy wire, with potential application as a spacer in the CANDU® reactor design. Results show that three types of microstructure co-exist in the alloy: Widmanstätten structure, α-Zr grains without precipitates and α-Zr grains with precipitates. In the meantime, three types of second phase particles are detected: β-Nb, Zr2Cu and Zr2Fe, which have different distributions within the microstructure. The β-Nb precipitates are observed to be extensively distributed among the α plate boundaries and twin interfaces in the Widmanstätten structure, whereas the Zr2Cu and Zr2Fe precipitates are only found in the α plate boundaries. The orientation relations of the Zr2Cu precipitates with respect to the α-Zr and β-Nb are found to be (013)Zr2Cu / /(0001)α (013)Zr2Cu / /(0001)α , [ 0 3 bar 1 ] Zr2Cu / /[ 1 bar 100 ] α and (013)Zr2Cu / /(011) β -Nb , [ 0 3 bar 1 ] Zr2Cu / /[ 2 bar 1 bar 1 ] β -Nb respectively.

  3. Thermal contact resistance at the Nb/Cu interface as a limiting factor for sputtered thin film RF superconducting cavities

    NASA Astrophysics Data System (ADS)

    Palmieri, V.; Vaglio, R.

    2016-01-01

    The ‘Q-slope’ problem has so far strongly limited the application of niobium thin film sputtered copper cavities in high field accelerators. In the present paper, based on experimental evidence, we consider the hypothesis that the Q-slope is related to enhanced thermal boundary resistance R Nb/Cu at the Nb/Cu interface, due to poor thermal contact between film and substrate. We have developed a simple model that directly connects the Q versus E acc curves to the distribution function f(R Nb/Cu) of R Nb/Cu values at the Nb/Cu interface over the cavity surface. Starting from different Q versus E acc experimental curves from different sources, using typical ‘inverse problem’ methods, we deduce the corresponding distribution functions generating those curves. The results show, for all the examined cases, very similar functional dependences of f(R Nb/Cu) and prove that, to describe the experimental Q versus E acc curves, it is sufficient to assume that only a small fraction of the film over the cavity surface is in poor thermal contact with the substrate. The whole body of information and data reported seems to indicate that the main origin of the Q-slope in thin film cavities is related to bad adhesion at the Nb/Cu interface. Strategies to solve the Q-slope problem improving the film adhesion are finally delineated.

  4. Ion-Beam Deposition of Nb and Ta Refractory Superconducting Films,

    DTIC Science & Technology

    1982-01-01

    physical separation of the deposition substrate from the plasma t5 and high energy particles. Photoresist processing is one such advantage.5 Refractory...grid current to 13 mA and the plasma discharge voltage (a lesser value for Xe) produced the highest T Nb films at c a given beam power. This...Electron Dev. ED-27, 1998 (1980). 10.) E. I. Alessandrini, R. B. Laibowitz, and J. M. Viggiano , J. Vac. Sci. Technol. 18, 318 (1981). 11.) W. E. J. Neal

  5. Transport and thermoelectric properties of Sr3(Ti0.95R0.05)2O7 (R = Ta, Nb, W) oxides

    NASA Astrophysics Data System (ADS)

    Sun, R. R.; Qin, X. Y.; Li, L. L.; Li, D.; Wang, N. N.; Zhang, J.; Wang, Q. Q.

    2012-12-01

    The Sr3(Ti0.95R0.05)2O7 (R = Ta, Nb, W) polycrystalline compounds were fabricated, and their transport and thermoelectric properties were investigated. The results indicate that at T > 300 K electrical resistivity ρ for all the doped compounds increases monotonically with temperature, and basically can be described by a relation ρ ∝ TM at T > ˜650 K, with M = 1.39, 1.66, and 1.77 for R = Ta, Nb, and W, respectively, implying that at the high temperatures the acoustic phonon scattering dominates the scattering process. Although the resistivity ρ of Sr3(Ti0.95Ta0.05)2O7 exhibits a metallic-like behavior at the temperature as low as 5 K, a transition from metallic state (dρ/dT > 0) to semiconductor-like state (dρ/dT < 0) was observed at a critical low temperature ˜41 K and ˜79 K for R = Nb and W, respectively. At T < ˜22 K, ˜57 K, and ˜80 K, a relation of σ ∝ T1/2 (here conductivity σ = 1/ρ) holds for the doped compounds with R = Nb, Ta, and W, respectively, suggesting that at the low temperatures the main transport mechanism is electron-electron interaction due to the presence of disorder induced by the dopants. The thermoelectric figure of merit (ZT) for Ta-doped compound increases more steeply with increasing temperature among the three compounds and reaches 0.066 at 1000 K.

  6. Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3

    NASA Astrophysics Data System (ADS)

    Eichel, Rüdiger-A.; Erünal, Ebru; Jakes, Peter; Körbel, Sabine; Elsässer, Christian; Kungl, Hans; Acker, Jérôme; Hoffmann, Michael J.

    2013-06-01

    "Lead-free" piezoelectric sodium potassium niobate has been studied with respect to its defect structure when doping with CuO. The results indicate that two kinds of mutually compensating charged defect complexes are formed, (Cu'''Nb-VO••)' and (VO••-Cu'''Nb-VO••)•. Concerning the interplay of these defect complexes with the piezoelectric materials properties, the trimeric (VO••-Cu'''Nb-VO••)• defect complex primarily has an elastic dipole moment and thus is proposed to impact the electromechanical properties, whereas the dimeric (Cu'''Nb-VO••)' defect possesses an electric dipole moment in addition to an elastic distortion. Both types of defect complexes can impede domain-wall motion and may contribute to ferroelectric "hardening."

  7. New hydrogen-evolution heteronanostructured photocatalysts: Pt-Nb3 O7 (OH) and Cu-Nb3 O7 (OH).

    PubMed

    Hmadeh, Mohamad; Hoepfner, Veronika; Larios, Eduardo; Liao, Kristine; Jia, Jia; Jose-Yacaman, Miguel; Ozin, Geoffrey A

    2014-08-01

    Nanorods of triniobium hydroxide heptaoxide, Nb3 O7 (OH), were synthesized by means of a hydrothermal method. Subsequently, Pt and CuO nanoparticles were introduced on the surface of Nb3 O7 (OH) nanorods by a microwave-assisted solvothermal nucleation and growth technique. The resulting Pt- and CuO-decorated Nb3 O7 (OH) nanorods demonstrated uniform particle dispersion and were fully characterized by X-ray diffraction, electron microscopy, and spectroscopic analysis. Furthermore, the solar-powered photocatalytic hydrogen production properties of these heteronanostructures were studied. The solar-driven H2 formation rate over Pt-Nb3 O7 (OH) was determined to be 710.4 ± 1.7 μmol g(-1) h(-1) with a quantum efficiency of ϕ=5.40% at λ=380 nm. Interestingly, the as-prepared CuO-Nb3 O7 (OH) heteronanostructure was found to be inactive under solar irradiation during an induction phase, whereupon it undergoes an in situ photoreduction process to form the photocatalytically active Cu-Nb3 O7 (OH). This restructuring process was monitored by an in situ measurement of the time-evolution of the optical absorption spectra. The solar-powered H2 production for the restructured compound was determined to be 290.3 ± 5.1 μmol g(-1) h(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  9. Dark counts in superconducting single-photon NbN/NiCu detectors

    NASA Astrophysics Data System (ADS)

    Parlato, L.; Nasti, U.; Ejrnaes, M.; Cristiano, R.; Myoren, H.; Sobolewski, Roman; Pepe, G.

    2015-05-01

    Nanostripes of hybrid superconductor/ferromagnetic (S/F) NbN/NiCu bilayers and pure superconducting NbN nanostripes have been investigated in dark count experiments. Presence of a ferromagnetic layer influences the superconducting properties of the S/F bilayer, such as the critical current density and the transient photoresponse. The observed significant decrease of the dark-count rate is discussed in terms of vortex-related fluctuation models to shed more light in the intriguing question of the basic mechanism responsible for dark counts in superconducting nanostripe single photon detectors.

  10. Film Deposition, Cryogenic RF Testing and Materials Analysis of a Nb/Cu Single Cell SRF Cavity

    SciTech Connect

    Zhao, Xin; Geng, Rongli; Palczerski, Ari; Li, Yongming

    2013-09-01

    In this study, we present preliminary results on using a cathodic-arc-discharge Nb plasma ion source to establish a Nb film-coated single-cell Cu cavity for SRF research. The polycrystalline Cu cavity was fabricated and mirror-surface-finished by a centrifugal barrel polishing (CBP) process at Jefferson Lab. Special pre-coating processes were conducted, in order to create a template-layer for follow-on Nb grain thickening. A sequence of cryogenic RF testing demonstrated that the Nb film does show superconductivity. But the quality factor of this Nb/Cu cavity is low as a result of high residual surface resistance. We are conducting a thorough materials characterization to explore if some microstructural defects or hydrogen impurities, led to such a low quality factor.

  11. Structure and Microhardness of Cu-Ta Joints Produced by Explosive Welding

    PubMed Central

    Maliutina, Iu. N.; Mali, V. I.; Bataev, I. A.; Bataev, A. A.; Esikov, M. A.; Smirnov, A. I.; Skorokhod, K. A.

    2013-01-01

    The structure and microhardness of Cu-Ta joints produced by explosive welding were studied. It was found that, during explosive welding, an intermediate layer 20⋯40 μm thick with a finely dispersed heterophase structure, formed between the welded copper and tantalum plates. The structure of the layer was studied by scanning and transmission electron microscopy. Microvolumes with tantalum particles distributed in a copper matrix and microvolumes of copper particles in a tantalum matrix were detected. The tantalum particles in copper have a size of 5⋯500 nm, with a predominance of 5⋯50 nm particles. A mechanism for the formation of the finely dispersed heterophase structure in explosive welding is proposed. The microhardness of interlayers with the heterophase structure reaches 280 HV, which far exceeds the microhardness of copper (~130 HV) and tantalum (~160 HV). Many twins of deformation origin were found in the structure of the copper plate. The effect of heating temperature in the range from 100 to 900°C on the microhardness of copper, tantalum, and the Cu-Ta welded joint was studied. Upon heating to 900°C, the microhardness of the intermediate layer decreases from 280 to 150 HV. The reduction in the strength properties of the weld material is mainly due to structural transformations in copper. PMID:24453818

  12. Quadruple-layered perovskite (CuCl)Ca2NaNb4O13

    NASA Astrophysics Data System (ADS)

    Kitada, A.; Tsujimoto, Y.; Yamamoto, T.; Kobayashi, Y.; Narumi, Y.; Kindo, K.; Aczel, A. A.; Luke, G. M.; Uemura, Y. J.; Kiuchi, Y.; Ueda, Y.; Yoshimura, K.; Ajiro, Y.; Kageyama, H.

    2012-01-01

    We will present the synthesis, structure and magnetic properties of a new quadruple-layered perovskite (CuCl)Ca2NaNb4O13. Through a topotactic ion-exchange reaction with CuCl2, the precursor RbCa2NaNb4O13 presumably having an incoherent octahederal tliting changes into (CuCl)Ca2NaNb4O13 with a 2ap×2ap×2cp superstructure (tetragonal; a=7.73232(5) Å, c=39.2156(4) Å). The well-defined superstructure for the ion-exchanged product should be stabilized by the inserted CuCl4O2 octahedral layers that firmly connect with neighboring perovskite layers. Magnetic studies show the absence of long-range magnetic ordering down to 2 K despite strong in-plane interactions. Aleksandrov‧s group theory and Rietveld refinement of synchrotron X-ray diffraction data suggest the structure to be of I4/mmm space group with in-phase tilting along the a and b axes, a two-tilt system (++0).

  13. YBa2Cu3O(7-x)/Au/Nb device structures

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L.; Vasquez, R. P.

    1991-01-01

    Fabrication and testing of planar and edge geometry YBaCuO/Au/Nb superconductor/normal-metal/superconductor (SNS) device structures is described. Weak-link devices of this type serve as sensitive probes of the electrical quality of the YBaCuO/Au interface. The devices are fabricated using laser-ablated, in situ, c-axis-oriented YBaCuO thin films, with both annealed and unannealed YBaCuO/Au interfaces. The planar SNS structures are formed by sequential, in situ deposition of YBaCuO, Au, and Nb, followed by etching, planarization, and wiring electrode definition to produce junctions ranging from 5 to 20 micron on a side. Resulting RnA products are 1-10 x 10 to the -8th ohm-sq cm with critical current densities up to 5 kA/sq cm. For the edge geometry devices, the YBaCuO film edges are patterned using Ar ion milling, followed by a low energy ion cleaning step and in situ deposition of Au and Nb. Devices with areas in the 10 to the -7th to 10 to the -8th sq cm range have been fabricated with RnA products lower than 10 to the -8th ohm-sq cm and critical current densities up to 3kA/sq cm. Both types of devices show ac Josephson steps under microwave irradiation. The best results have been obtained with annealed YBaCuO/Au interfaces.

  14. Li6La3SnMO12 (M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-Ion Conductivity

    SciTech Connect

    Bridges, Craig A; Goodenough, J. B.; Gupta, Dr Asha; Nakanishi, Masahiro; Paranthaman, Mariappan Parans; Sokolov, Alexei P; Bi, Zhonghe; Li, Yutao; Han, Jiantao; Dong, Youzhong; Wang, Long; Xu, Maowen

    2012-01-01

    In order to investigate the influence of covalent bonding within the garnet framework on the conductivity of Li+ in the interstitial space, the Li+ conductivities in the family of Sn-based compounds Li6La3 SnMO12 (M = Sb, Nb, Ta) have been obtained and are compared with those of Li6La3ZrMO12. Refinement of the neutron diffraction pattern of Li6La3 SnNbO12shows that the interstitial tetrahedral sites (24d ) are about half-occupied and most of the Li in the interstitial bridging octahedral sites are displaced from the center position (48g ). The Sb-based compound has the largest lattice parameter while the Ta-based compound has the highest Li+-ion conductivity of 0.42 10 4 Scm 1.

  15. Shock compression of NbH0.75 and TaH0.50: Universal compression behavior of hydrogen in metallic environments

    NASA Astrophysics Data System (ADS)

    Taguchi, Hiroaki; Fukai, Yuh; Atou, Toshiyuki; Fukuoka, Kiyoto; Syono, Yasuhiko

    1994-02-01

    Shock-compression experiments were performed on NbH0.75 to 150 GPa and TaH0.50 to 210 GPa using a 25-mm propellant gun and a 20-mm two-stage light-gas gun. Linear relations were found between the shock velocity Us and the particle velocity up: Us=4.79+1.14up for NbH0.75 and Us=3.44+1.23up for TaH0.50. Compression curves of interstitial hydrogen, deduced from the Hugoniots of these hydrides and original metals, come close to the one calculated for metallic hydrogen. These data provide additional examples of a universal compression behavior of hydrogen in a metallic environment.

  16. Simultaneous holographic and photocurrent studies of the photorefractive effect in LiTaO3 and LiNbO3

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. M.; Ang, D.; Joiner, C. S.; Estle, T. L.

    1977-01-01

    In reduced LiNbO3:Mn both the photorefractive sensitivity and the simultaneously measured photocurrent result from drift with a polarization-dependent effective 'internal field' of about 6 kV/cm. In reduced undoped LiTaO3 the observed difference in applied fields of the minimum photorefractive sensitivity and zero photocurrent imply charge transport is by a mechanism that cannot be completely described by diffusion and drift in an electric field. The direct measurement of the harmonic content of phase gratings written in several LiNbO3 and LiTaO3 crystals shows termination of charge-transport results from the space-charge field of the hologram.

  17. Cu Diffusion in Amorphous Ta2O5 Studied with a Simplified Neural Network Potential

    NASA Astrophysics Data System (ADS)

    Li, Wenwen; Ando, Yasunobu; Watanabe, Satoshi

    2017-10-01

    Understanding atomistic details of diffusion processes in amorphous structures is becoming increasingly important due to the recent advances in various information and energy devices. Atomistic simulations based on the density functional theory (DFT) represent a powerful approach; however, the development of a method characterized by both high reliability and computational efficiency remains a challenge. In this study, a simple neural network (NN) interatomic potential is constructed from the results of DFT simulations to investigate the diffusion of a single Cu atom in amorphous Ta2O5. The proposed technique is as accurate as the DFT in predicting hopping paths and the corresponding barrier energies in a given amorphous structure. Although the developed NN-based approach exhibited some limitations since it was constructed specifically for Cu, the obtained results showed that the NN potential was able to satisfactorily describe the Cu diffusion behavior. Thus, the Cu diffusion activation energy calculated at low temperatures (between 500 and 800 K) using kinetic Monte Carlo simulations and the NN potential matched the experimental data reasonably well.

  18. Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be,Cs-rich and Li,B-poor dike

    NASA Astrophysics Data System (ADS)

    Chudík, Peter; Uher, Pavel; Gadas, Petr; Škoda, Radek; Pršek, Jaroslav

    2011-10-01

    A complex assemblage of Nb-Ta-(Sn) oxide minerals occur in a relatively narrow (~1-2 m thick) extensively albitized, Hercynian granitic pegmatite dike intruding biotite granodiorites near Bratislava, SW Slovakia. The dike shows enrichment in beryl (locally Cs-rich) but absence of Li- and B-rich phases. Compositions and textural relationships indicate complex evolutions of Nb-Ta oxide phases with several generations presenting distinct textural and compositional features. The first generation of the Nb-Ta minerals from the quartz-microcline-muscovite zone show Ta,Fe-rich compositions with Ta# [Ta/(Ta + Nb)] = 0.52-0.70 (Ct I columbite-tantalite), 0.88-0.90 (Tap I ferrotapiolite) and 0.73-0.86 (Fw I ferrowodginite); Mn# [Mn/(Mn + Fe)] = 0.32-0.49 (Ct I), 0.06-0.10 (Tap I) and 0.33-0.41 (Fw I). The 2nd generation is represented by ferrocolumbite to ferrotantalite (Ct II) in saccharoidal albite zone, replacement zones of Ct II in Ct I, and irregular overgrowths of ferrotapiolite (Tap II) and ferrowodginite (Fw II) on Tap I grains. The minerals of the 2nd generation show decreasing of Ta# in comparison to the 1st group: 0.10-0.60 (Ct II), 0.85-0.87 (Tap II) and 0.73-0.77 (Fw II); Mn# attains 0.30-0.45 (Ct II), 0.06-0.09 (Tap II) and 0.26-0.37 (Fw II). The 3rd generation includes fissure fillings, overgrowths and replacement zones of manganocolumbite and manganotantalite (Ct III), ferrotapiolite (Tap III) and ferrowodginite (Fw III) on the older Nb-Ta phases (Ct I, Tap I, Fw I, Fw II), in the coarse-grained unit. The 3rd population displays distinct Mn# increasing (Ct III: 0.51-0.69, Tap III: 0.11-0.24, Fw III: 0.40-0.41), Ta# values reach 0.16-0.79 (Ct III), 0.88-0.92 (Tap III) and 0.80-0.81 (Fw III). The latest, 4th generation of the Nb-Ta phases represents irregular veinlets and patches of fluorcalciomicrolite, replacing Ct I, Tap I, Fw I, Ct II and Tap III. Decrease of Ta/(Ta + Nb) values in Ct II from the saccharoidal albite unit can be explained by crystallization

  19. Differences and Commonalities in the Gas-Phase Reactions of Closed-Shell Metal Dioxide Clusters [MO2 ](+) (M=V, Nb, and Ta) with Methane.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-05-17

    High-level electronic structure calculations, in combination with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometric studies, permit the mechanism by which closed-shell, "naked" [TaO2 ](+) brings about C-H bond activation of methane to be revealed. These studies also help to understand why the lighter congeners of [MO2 ](+) (M=V, Nb) are unreactive under ambient conditions.

  20. Thermoelectric Properties of Fe2VAl and Fe2V0.75M0.25Al (M = Mo, Nb, Ta) Alloys: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Al-Yamani, H.; Hamad, B.

    2016-02-01

    Ab initio investigations of the structural, electronic, and thermoelectric properties of stoichiometric Fe2VAl full-Heusler alloy and Fe2V0.75M0.25Al (M = Mo, Nb, Ta) nonstoichiometric alloys have been performed using density functional theory on the basis of the full-potential linearized augmented plane wave method with the generalized gradient approximation. The thermoelectric properties are calculated using semiclassical Boltzmann transport theory within the constant-relaxation-time approximation. Fe2VAl, Fe2V0.75Nb0.25Al, and Fe2V0.75Ta0.25Al alloys are found to exhibit a semimetallic behavior, while Fe2V0.75Mo0.25Al acts as a metal. We found that Fe2VAl has a pseudogap of about -0.13 eV, whereas Fe2V0.75Nb0.25Al and Fe2V0.75Ta0.25Al are characterized by a zero energy gap around the Fermi level. Thermoelectric calculations showed that Fe2VAl has both p- and n-type thermoelectric properties, where the p-type thermopower values are found to be higher than those of n-type. The Seebeck coefficient S has maximum values from 20 μV K-1 to 125 μV K-1 and from 19 μV K-1 to 90 μV K-1 in the temperature range of 100 K to 800 K for p- and n-type, respectively. The maximum thermoelectric properties can be obtained at carrier concentration of the order of 1020 cm-3 for p- or n-type doping. Substitution of Nb and Ta atoms enhanced the thermoelectric properties to 150 μV K-1 at 800 K. The optimum concentrations for the three partially substituted alloys were found to be between 1020 cm-3 and 1021 cm-3.

  1. Dispersion and solubility of In, Tl, Ta and Nb in the aquatic environment and intertidal sediments of the Scheldt estuary (Flanders, Belgium).

    PubMed

    Folens, Karel; Du Laing, Gijs

    2017-09-01

    Certain specialty elements are indispensable in modern technologies for their particular properties. Yet, potential risks associated to the release of these elements at any stage, remains unknown. Therefore, the dispersion of indium (In), thallium (Tl), tantalum (Ta) and niobium (Nb) in the aquatic environment of the Scheldt estuary (Flanders, Belgium) was studied. Maximum concentrations in intertidal sediments of 101 ± 15 μg kg(-1) for In, 481 ± 37 μg kg(-1) for Tl, 88 ± 19 μg kg(-1) for Ta and 1162 ± 4 μg kg(-1) for Nb appeared on the sampling location closest to the river mouth, i.e. 57.5 km upstream. Their distribution in the intertidal sediments depends on the physicochemical sediment characteristics along the flow of the river Scheldt. The same was the case for most other metals and aluminum as their occurrence also correlated (p < 0.05) with the occurrence of In, Tl and Nb. While in general, studied elements correlate to the OM content and sulfur and phosphorus herein included, a relative enrichment of In, Tl and Nb was seen at Rupelmonde (92.0 km from the river mouth). Mainly the intertidal sediment silt fraction is capable of retaining the elements by exchanging with other ions in the mineral interlayer. Increasing salinity towards the river mouth can furthermore induce the formation of insoluble chloride species. Overall, the solubility of In, Tl, Ta and Nb appeared extremely low upon extraction of pore water from intertidal sediments saturated to 100% field capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy.

    PubMed

    Larianovsky, Natalya; Katz-Demyanetz, Alexander; Eshed, Eyal; Regev, Michael

    2017-07-31

    This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture.

  3. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O.

    PubMed

    Stráský, Josef; Harcuba, Petr; Václavová, Kristína; Horváth, Klaudia; Landa, Michal; Srba, Ondřej; Janeček, Miloš

    2017-07-01

    Low-modulus biomedical beta titanium alloys often suffer from low strength which limits their use as load-bearing orthopaedic implants. In this study, twelve different Ti-Nb-Zr-Ta based alloys alloyed with Fe, Si and O additions were prepared by arc melting and hot forging. The lowest elastic modulus (65GPa) was achieved in the benchmark TNTZ alloy consisting only of pure β phase with low stability due to the 'proximity' to the β to α'' martensitic transformation. Alloying by Fe and O significantly increased elastic modulus, which correlates with the electrons per atom ratio (e/a). Sufficient amount of Fe/O leads to increased yield stress, increased elongation to fracture and also to work hardening during deformation. A 20% increase in strength and a 20% decrease in the elastic modulus when compared to the common Ti-6Al-4V alloy was achieved in TNTZ-Fe-Si-O alloys, which proved to be suitable for biomedical use due to their favorable mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Mode of Deformation in a Cold-Swaged Multifunctional Ti-Nb-Ta-Zr-O Alloy

    NASA Astrophysics Data System (ADS)

    Guo, W.; Quadir, M. Z.; Ferry, M.

    2013-05-01

    Multifunctional titanium alloys, termed Gum Metal™, are β-phase Ti alloys first developed in 2003. These alloys exhibit many interesting properties including, for example, low rate of work-hardening and superplasticity during cold deformation. The original report described a new plastic deformation mechanism not involving major dislocation activity to explain such deformation behavior. In the current study, a comparable Ti-36.8Nb-2.7Zr-2.0Ta-0.44O (wt pct) alloy to the original investigators was produced by powder sintering, hot forging, solution treatment, and cold swaging with the aim at investigating the microstructural development during swaging. XRD and TEM showed that the forged/solution-treated alloy was β-phase with a small amount of ω-phase. After cold swaging by up to 96 pct area reduction, TEM/HRTEM revealed the existence of dislocations, deformation twins, ω-phase, nanodisturbances, and lattice bending, with EBSD showing the grains to be highly elongated in the swaging direction, fragmented, and distorted. Most notably, swaging also generated a strong <110> fiber texture, even after moderate strains. The foregoing structural analysis provides substantial evidence that dislocations are present in the alloy after cold swaging. The major support of dislocation glide processes acting as the dominant plastic deformation mode in the swaged alloy is the strong <110> fiber texture that develops, which is a characteristic feature of all cold-drawn/swaged body centered cubic metals and alloys.

  5. Evolution of Microstructure and Texture during Recrystallization of the Cold-Swaged Ti-Nb-Ta-Zr-O Alloy

    NASA Astrophysics Data System (ADS)

    Guo, W. Y.; Xing, H.; Sun, J.; Li, X. L.; Wu, J. S.; Chen, R.

    2008-03-01

    The deformed microstructure and evolution of microstructure and texture during recrystallization of the cold-swaged multifunctional Ti-23Nb-0.7Ta-2Zr-1.2O (TNTZO, at. pct) alloy were investigated by optical microscope, electron backscatter diffraction, and transmission electron microscope. This alloy has been reported, by Saito et al., to possess a specific dislocation-free plastic deformation mechanism. In this study, the results show a curly grain or swirled structure and a pronounced fibrous {left< {110} rightrangle } texture along the swaging axis in the cold-swaged TNTZO alloy. The normal to the swirled grain surface is near {left< {001} rightrangle } in the cross section of the rod. This characteristic microstructure can be considered to arise from the plane strain deformation of the grains under applied stress, which is similar to that in ordinary bcc metals after heavily drawing or swaging. It is also shown that recovery involves the redistribution and partial annihilation of dislocations within the deformation bands, and recrystallization proceeds by a typical new grain nucleation-growth mechanism during annealing of the TNTZO alloy. The fibrous {left< {110} rightrangle } deformation texture is gradually replaced by random orientations with increasing annealing time. Thus, it could be concluded that the TNTZO alloy deforms by the traditional dislocation glide on {left< {111} rightrangle }{left\\{ {110} right\\}} , {112}, or {123} slip systems, rather than the dislocation-free mechanism.

  6. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  7. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.

    PubMed

    Li, Qiang; Niinomi, Mitsuo; Hieda, Junko; Nakai, Masaaki; Cho, Ken

    2013-08-01

    For spinal-fixation applications, implants should have a high Young's modulus to reduce springback during operations, though a low Young's modulus is required to prevent stress shielding for patients after surgeries. In the present study, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) with a low Young's modulus was modified by adding Cr to obtain a higher deformation-induced Young's modulus in order to satisfy these contradictory requirements. Two newly designed alloys, TNTZ-8Ti-2Cr and TNTZ-16Ti-4Cr, possess more stable β phases than TNTZ. These alloys consist of single β phases and exhibit relatively low Young's moduli of <65GPa after solution treatment. However, after cold rolling, they exhibit higher Young's moduli owing to a deformation-induced ω-phase transformation. These modified TNTZ alloys show significantly less springback than the original TNTZ alloy based on tensile and bending loading-unloading tests. Thus, the Cr-added TNTZ alloys are beneficial for spinal-fixation applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy

    PubMed Central

    Larianovsky, Natalya; Katz-Demyanetz, Alexander; Eshed, Eyal; Regev, Michael

    2017-01-01

    This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture. PMID:28773245

  9. (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties

    PubMed Central

    Huo, Xiaoqing; Zhang, Rui; Zheng, Limei; Zhang, Shujun; Wang, Rui; Wang, Junjun; Sang, Shijing; Yang, Bin; Cao, Wenwu

    2016-01-01

    Lead-free single crystal, (K, Na, Li)(Nb, Ta)O3:Mn, was successfully grown using top-seeded solution growth method. Complete matrix of dielectric, piezoelectric and elastic constants for [001]C poled single crystal was determined. The piezoelectric coefficient d33 measured by the resonance method was 545 pC/N, which is almost three times that of its ceramic counterpart. The values measured by the Berlincourt meter ( d33∗=630pC/N) and strain-field curve ( d33∗∗=870pm/V) were even higher. The differences were assumed to relate with the different extrinsic contributions of domain wall vibration and domain wall translation during the measurements by different approaches, where the intrinsic contribution (on the order of 539 pm/V) was supposed to be the same. The crystal has ultrahigh electromechanical coupling factor (k33 ~ 95%) and high ultrasound velocity, which make it promising for high frequency medical transducer applications. PMID:27594704

  10. Wetting and spontaneous infiltration: the case study of TaC/(Au, Al and Cu) compared to TiC/Cu

    NASA Astrophysics Data System (ADS)

    Aizenshtein, M.; Froumin, N.; Nafman, O.; Frage, N.

    2016-06-01

    Spontaneous infiltration of molten metals in to ceramic skeletons, in the course MMCs' production, is related to improved wetting of the ceramic by metals. TiC is considered a "metal-like" carbide and is supposed to be wetted well by metals through metallic bonding mechanism. Nevertheless, TiC/Cu exhibit an unusual behavior since spontaneous infiltration of molten Cu takes place, while TiC is partially wetted by Cu (θ=90°).In this work we studied the relation between wetting and spontaneous infiltration in the TaC/Au, Al and Cu systems. TaC is also considered a "metal-like" carbide and indeed no chemical interaction was observed at the interfaces of the studied systems.Sessile drop experiments showed almost perfect wetting in the three system but spontaneous infiltration occurred only in the first two (e.g. TaC/Au or Al). Thermodynamic calculation shows the difference between the systems which also has its' influence on the mechanical properties of the MMCs'. Further calculation clarifies the difference between TaC/Cu and TiC/Cu infiltration behavior, but is unable to explain the wetting results differences.Correlation between wetting and spontaneous infiltration in some cases is not straight forward and more studies and calculations on the atomistic level should be done in order to clarify this matter.

  11. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants

    PubMed Central

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-01-01

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a ‘single crystalline β-Ti implant’ as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young’s modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to <111> was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to <111> dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of <111> slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the “plastically almost-isotropic and elastically highly-anisotropic” nature, that is desirable for the development of ‘single crystalline β-Ti implant’. PMID:27417073

  12. Anion Exchange Behavior Of Ti, Zr, Hf, Nb And Ta As Homologues Of Rf And Db In Mixed HF--Acetone Solutions

    SciTech Connect

    Aksenov, N. V.; Bozhikov, G. A.; Starodub, G. Ya.; Dmitriev, S. N.; Filosofov, D. V.; Sun Jin, Jon; Radchenko, V. I.; Lebedev, N. A.; Novgorodov, A. F.

    2010-04-30

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration anion exchange equilibrium analysis indicated the formation of fluoride complexes of group 4 elements with charge-3 and Ta---2. For Nb the slope of-2 increased up to-5. Optimal conditions for separation of the elements using AIX chromatography were found. Group 4 elements formed MF{sub 7}{sup 3-} (M = Ti, Zr, Hf) complexes whose sorption decreased Ti>Hf>Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed.

  13. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants.

    PubMed

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-07-15

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a 'single crystalline β-Ti implant' as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young's modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to <111> was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to <111> dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of <111> slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the "plastically almost-isotropic and elastically highly-anisotropic" nature, that is desirable for the development of 'single crystalline β-Ti implant'.

  14. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants

    NASA Astrophysics Data System (ADS)

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-07-01

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a ‘single crystalline β-Ti implant’ as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young’s modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to <111> was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to <111> dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of <111> slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the “plastically almost-isotropic and elastically highly-anisotropic” nature, that is desirable for the development of ‘single crystalline β-Ti implant’.

  15. DFT simulation on the temperature-dependent electronic transition of V (Nb or Ta) substituted NiMn2O4

    NASA Astrophysics Data System (ADS)

    Li, Hai-Long; Bian, Liang; Chang, Ai-Ming; Jian, Ji-Kang; Hou, Wen-Ping; Gao, Lei; Zhang, Xiao-Yan; Wang, Lei; Ren, Wei; Song, Mian-Xin; Dong, Fa-Qin

    2016-07-01

    Previously, we reported that the d-p (Mn-3d-O-2p) orbital hybridization induces Mn valence change (Mn3+→Mn4+) in the octahedron. The electron transfer mechanism can be controlled by modifying the Mn-3d orbital in the octahedron. Here, we used the density functional theory (DFT) with generalized gradient approximation (GGA) and two-dimensional correlation analysis (2D-CA) techniques to calculate the electron transfer mechanism of the V (Nb or Ta) substituted NiMn2O4 (NMO) in the temperature range of 50-1500 K. The results show that the heat accumulation accelerates the O-2p4 orbital splitting, inducing charge disproportionation. The V-3d3 substituted Mn increases the intensity and of the partial density of state (PDOS) at conduction band (1-3 eV), this enhances the V-3d3-O-2p4 p-d σ∗ orbital. The Nb-4d3/Ta-5d3 substituted Mn reduces the intensity of the PDOS at conduction band (1-5 eV), this weakens the Nb-4d3/Ta-5d3-O-2p4 p-d σ∗ orbital. This study effectively analyzes the microscopic changes of the electron transfer caused by the heat accumulation, provides a theoretical basis for the design of NMO-based negative temperature coefficient (NTC) thermistors.

  16. The effect of microstructure and temperature on the oxidation behavior of two-phase Cr-Cr{sub 2}X (X = Nb, Ta) alloys

    SciTech Connect

    Brady, M.P.; Tortorelli, P.F.

    1998-11-01

    The oxidation behavior of Cr(X) solid solution (Cr{sub ss}) and Cr{sub 2}X Laves phases (X = Nb, Ta) was studied individually and in combination at 950--1,100 C in air. The Cr{sub ss} phase was significantly more oxidation resistant than the Cr{sub 2}X Laves phase. At 950 C, two-phase alloys of Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Ta exhibited in-situ internal oxidation, in which remnants of the Cr{sub 2}X Laves phase were incorporated into a growing chromia scale. At 1,100 C, the Cr-Cr{sub 2}Nb alloys continued to exhibit in-situ internal oxidation, which resulted in extensive O/N penetration into the alloy ahead of the alloy-scale interface and catastrophic failure during cyclic oxidation. IN contrast, the Cr-Cr{sub 2}Ta alloys exhibited a transition to selective Cr oxidation and the formation of a continuous chromia scale. The oxidation mechanism is interpreted in terms of multiphase oxidation theory.

  17. Flux growth of multiferroic Cu3Nb2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Chen, R.; Shi, M. M.; Liu, Y. J.; Liu, C. B.; Zhu, H. P.; Dong, C.; Liu, Y.; Shi, J.; Xia, Z. C.; Ouyang, Z. W.; Wang, J. F.

    2017-10-01

    Cu3Nb2O8 belongs to a new multiferroic family with coexisting structure and magnetic chiralities. In this work, we report on the flux growth of Cu3Nb2O8 single crystals using a V2O5-K2MoO4 mixture as the flux with a 5:1 ratio. The obtained crystals have an average size of 3 × 3 × 2 mm3 and high quality determined from X-ray diffraction, specific heat and susceptibility measurements. The experimental results on the single crystals reveal robust anomalies at 26.2 K and 24.5 K in specific heat and magnetic anisotropy along different crystallographic axes, which provide a better understanding of this fascinating multiferroic compound.

  18. Fluid-mediated alteration of (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway

    NASA Astrophysics Data System (ADS)

    Duran, Charley J.; Seydoux-Guillaume, Anne-Magali; Bingen, Bernard; Gouy, Sophie; de Parseval, Philippe; Ingrin, Jannick; Guillaume, Damien

    2016-10-01

    We document the textural relations and chemical composition of (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals in a granitic pegmatite from the Evje-Iveland district, southern Norway, using a combination of scanning and transmission electron microscopy, electron probe micro-analysis and infrared absorption spectroscopy. The (Y,REE,U,Th)-(Nb,Ta,Ti) oxide mineral is euxenite, which is strongly radiation damaged and surrounded by radial fractures. Within euxenite grains, three domains of distinct composition comprising unaltered, intermediate and altered euxenite, have been identified. In most cases pyrochlore occurs as corroded grain boundaries around euxenite and within relict fractures. Intermediate and altered euxenite are depleted in U, Pb, Ti, Nb, and Y, but enriched in Si and Ca relative to unaltered euxenite. Pyrochlore is also enriched in Fe, Pb, Zr and LREE relative to all euxenite phases. Altered domains of euxenite have deficient analytical totals and contain O-H. These domains are metamict and contain nanopores and nanodomains enriched in U and Ca. We suggest that as radiation damage accumulated in euxenite, radial fractures developed around the euxenite grains, thus allowing fluid infiltration. In the presence of fluid, euxenite was replaced by secondary euxenite then pyrochlore, owing to dissolution-precipitation and diffusion reactions. During alteration, U and the strategic metals Nb, Ti, and REE were mobilized at both the nanoscale and the scale of the pegmatite.

  19. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  20. Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    C . Films were characterized using x-ray diffraction (XRD), atomic force microscopy, x-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy...and transmission electron microscopy. XRD of these films indicate c -axis oriented YBa2Cu2NbOy formation. XPS and micro-Raman spectroscopy analysis...OF ABSTRACT: SAR 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c

  1. Quantifying the electron donor and acceptor ability of the ketimide ligands in M(N=CtBu2)4 (M = V, Nb, Ta)

    PubMed Central

    Damon, Peter L.; Liss, Cameron J.; Lewis, Richard A.; Morochnik, Simona; Szpunar, David E.; Telser, Joshua; Hayton, Trevor W.

    2015-01-01

    Addition of 4 equiv of Li(N=CtBu2) to VCl3 in THF, followed by addition of 0.5 equiv I2, generates the homoleptic V(IV) ketimide complex, V(N=CtBu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N=CtBu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N=CtBu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N=CtBu2) in THF results in a isolation of a Ta(V) ketimide complex, Ta(Cl)(N=CtBu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N=CtBu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N=CtBu2)4 (7), although the yields are poor. All three homoleptic Group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a dx2−y21 (2B1 in D2d) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (~9 and 35 GHz, respectively), further supports the 2B1 ground state assignment, while comparison of 1, 2, and 7 with related Group 5 tetra(aryl), tetra(amido) and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands. PMID:26419513

  2. Quantifying the Electron Donor and Acceptor Abilities of the Ketimide Ligands in M(N═C(t)Bu2)4 (M = V, Nb, Ta).

    PubMed

    Damon, Peter L; Liss, Cameron J; Lewis, Richard A; Morochnik, Simona; Szpunar, David E; Telser, Joshua; Hayton, Trevor W

    2015-10-19

    Addition of 4 equiv of Li(N═C(t)Bu2) to VCl3 in THF, followed by addition of 0.5 equiv of I2, generates the homoleptic V(IV) ketimide complex, V(N═C(t)Bu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N═C(t)Bu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N═C(t)Bu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N═C(t)Bu2) in THF results in the isolation of a Ta(V) ketimide complex, Ta(Cl)(N═C(t)Bu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N═C(t)Bu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N═C(t)Bu2)4 (7), although the yields are poor. All three homoleptic group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a d(x(2)-y(2))(1) ((2)B1 in D(2d)) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (∼9 and 35 GHz, respectively), further supports the (2)B1 ground-state assignment, whereas comparison of 1, 2, and 7 with related group 5 tetra(aryl), tetra(amido), and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands.

  3. Electrochemical characterization of surface complexes formed on Cu and Ta in succinic acid based solutions used for chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher M.; Roy, Dipankar

    2010-02-01

    Open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H 2O 2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. The data analysis steps are discussed in detail to demonstrate how the D.C. and A.C. electrochemical probes can be combined in the framework of the RDE technique to design and test CMP slurry solutions.

  4. INVESTIGATION OF Ta/Ni-Al INTEGRATED FILM USED AS A DIFFUSION BARRIER LAYER BETWEEN Cu AND Si

    NASA Astrophysics Data System (ADS)

    Yang, Lim; Wang, Shi Jie; Huo, Ji Chuan; Li, Xiao Hong; Guo, Jian Xin; Dai, Xiu Hong; Ma, Lian Xi; Zhang, Xiang Yi; Liu, Bao Ting

    2014-09-01

    Ta (3.3 nm)/Ni-Al (3.3 nm) integrated films deposited on Si substrates by magnetron sputtering, annealed at various temperatures in a ultra-high vacuum, have been studied as diffusion barrier layers between Cu and Si for application in Cu interconnection. The images of transmission electron microscopy (TEM) prove that the cross-sectional interfaces of Cu/Ta/Ni-Al/Si sample annealed at 600°C are clear and sharp. No Cu-silicide peaks can be found from the X-ray diffraction (XRD) patterns of the 850°C annealed sample, but the sheet resistance of the sample increases abruptly. Moreover, large grooves are found from the image of atomic force microscopy (AFM) for the 850°C annealed sample, implying the failure of the diffusion barrier. The integrated Ta/Ni-Al barrier layer retains thermally stable nature up to at least 800°C, indicating that the Ta/Ni-Al integrated film is an excellent diffusion barrier between Cu and Si.

  5. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  6. Hydroforming of Multi-Cell Niobium and NbCu-Clad Cavities

    SciTech Connect

    X. Singer, I. Jelezov, A. Matheisen, W. Singer, P. Kneisel

    2009-05-01

    Technological aspects of seamless tube fabrication and multi-cell cavity production by hydroforming will be discussed. Problems related to the fabrication of seamless cavities from bulk niobium are mainly solved. Several two cell- and three cell- niobium cavities have been produced by hydroforming at DESY. A 9-cell cavity of the TESLA shape has been completed from three sub-sections at company ZANON. The cavity was treated by electropolishing (EP) and successfully RF-tested. Two 3-cell units equipped with niobium beam pipes are being RF-tested after BCP surface treatment. The temperature mapping method with Jlab’s two-cell thermometry system is applied for performance analysis. It is of particular interest to compare the seamless cavity quench locations to those from standard cavities. The cryogenic test results and the T-mapping findings will be discussed. Of special interest is the combination of the seamless technique with NbCu cladding, i.e. the fabrication of cavity from bimetallic clad NbCu tube by hydroforming. Fabrication of single-cell and multi-cell NbCu clad cavities by hydroforming from bimetallic tubes is proven. Some test results will be presented.

  7. Combinatorial Investigations of High Temperature CuNb Oxide Phases for Photoelectrochemical Water Splitting.

    PubMed

    Skorupska, Katarzyna; Maggard, Paul A; Eichberger, Rainer; Schwarzburg, Klaus; Shahbazi, Paria; Zoellner, Brandon; Parkinson, Bruce A

    2015-12-14

    High-throughput combinatorial methods have been useful in identifying new oxide semiconductors with the potential to be applied to solar water splitting. Most of these techniques have been limited to producing and screening oxide phases formed at temperatures below approximately 550 °C. We report the development of a combinatorial approach to discover and optimize high temperature phases for photoelectrochemical water splitting. As a demonstration material, we chose to produce thin films of high temperature CuNb oxide phases by inkjet printing on two different substrates: fluorine-doped tin oxide and crystalline Si, which required different sample pyrolysis procedures. The selection of pyrolysis parameters, such as temperature/time programs, and the use of oxidizing, nonreactive or reducing atmospheres determines the composition of the thin film materials and their photoelectrochemical performance. XPS, XRD, and SEM analyses were used to determine the composition and oxidation states within the copper niobium oxide phases and to then guide the production of target Cu(1+)Nb(5+)-oxide phases. The charge carrier dynamics of the thin films produced by the inkjet printing are compared with pure CuNbO3 microcrystalline material obtained from inorganic bulk synthesis.

  8. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  9. Properties of TaN{sub {ital x}} films as diffusion barriers in the thermally stable Cu/Si contact systems

    SciTech Connect

    Takeyama, M.; Noya, A.; Sase, T.; Ohta, A.; Sasaki, K.

    1996-03-01

    The properties of Ta{sub 2}N and TaN compound films as a diffusion barrier between Cu and Si have been investigated by examining compositional depth profiles obtained by Auger electron spectroscopy. The use of a Ta{sub 2}N barrier is effective for improving the thermal stability of the contact system by raising the silicide formation temperature as compared with the use of a Ta barrier. The contact system of Cu/TaN/Si is fairly stable due to annealing for 1 h even at 750{degree}C. This is interpreted by the stability of the TaN compound, which is chemically inert to Si as well as Cu at this temperature. Eliminating the grain growth of TaN due to annealing is also effective for suppressing the physical diffusion through the barrier. {copyright} {ital 1996 American Vacuum Society}

  10. Photocatalytic removal of organic pollutants in aqueous solution by Bi(4)Nb(x)Ta((1-x))O(8)I.

    PubMed

    Hu, Xing-Yun; Fan, Jing; Zhang, Ke-Lei; Wang, Jian-Ji

    2012-06-01

    In this work, Bi(4)Nb(x)Ta((1-x))O(8)I photocatalysts have been synthesized by solid state reaction method and characterized by powder X-ray diffraction, scanning electron microscope and UV-Vis near infrared diffuse reflectance spectroscopy. The photocatalytic activity of these photocatalysts was evaluated by the degradation of methyl orange (MO) in aqueous solutions under visible light, UV light and solar irradiation. The effects of catalyst dosage, initial pH and MO concentration on the removal efficiency were studied, and the photocatalytic reaction kinetics of MO degradation as well. The results indicated that Bi(4)Nb(x)Ta((1-x))O(8)I exhibited high photocatalytic activity for the removal of MO in aqueous solutions. For example, the removal efficiency of MO by Bi(4)Nb(0.1)Ta(0.9)O(8)I was as high as 92% within 12 h visible light irradiation under the optimal conditions: initial MO concentration of 5-10 mg L(-1), catalyst dosage of 6 g L(-1) and natural pH (6-8), the MO molecules could be completely degradated by Bi(4)Nb(0.1)Ta(0.9)O(8)I within 40 min under UV light irradiation, and the photodegradation efficiency reaches to 60% after 7 h solar irradiation. Furthermore, the photocatalytic degradation of Bisphenol A (BPA) was also investigated under visible light irradiation. It is found that 99% BPA could be mineralized by Bi(4)Nb(0.1)Ta(0.9)O(8)I after 16 h visible light irradiation. Through HPLC/MS, BOD, TOC, UV-Vis measurements, we determined possible degradation products of MO and BPA. The results indicated that MO was degradated into products which are easier to be biodegradable and innocuous treated, and BPA could be mineralized completely. Furthermore, the possibility for the photosensitization effect in the degradation process of MO under visible light irradiation has been excluded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Synthesis and characterization of homo- and heterobimetallic niobium{sup v} and tantalum{sup v} peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    SciTech Connect

    Bayot, Daisy . E-mail: devillers@chim.ucl.ac.be

    2005-09-15

    New water-soluble bimetallic peroxo complexes of niobium{sup V} and/or tantalum{sup V} with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].3H{sub 2}O 1 (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].5H{sub 2}O 2 (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].2H{sub 2}O 4 and (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].3H{sub 2}O 5 and the corresponding heterometallic complexes (gu){sub 3}[NbTa(O{sub 2}){sub 4}(dtpaO{sub 3})].2.5H{sub 2}O 3 and (gu){sub 3}[NbTa(O{sub 2}){sub 4}(HtthaO{sub 4)}].2H{sub 2}O 6 have been obtained. In these compounds, the in situ oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 deg. C, depending on the Ta content, provided Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5} while the heteronuclear compounds led to the solid solution TaNbO{sub 5}. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.

  12. Structure of the copper(I) tantalum oxide, Cu/sub 5/Ta/sub 11/O/sub 30/

    SciTech Connect

    Jahnberg, L.

    1982-03-01

    The structure of hexagonal CU/sub 6/Ta/sub 11/O/sub 30/ (space group P62c) has been determined from single-crystal diffractometer data. The cell dimensions are a = 6.2297(2) angstrom and c = 32,550(2) angstrom, and the cell content is two formula units. The structure is related to those of CaTa/sub 4/O/sub 11/ and CeTa/sub 7/O/sub 19/ and contains alternately single and double layers of TaO/sub 7/ pentagonal bipyramids sharing edges in the equatorial plane in the same way as UO/sub 7/ in ..cap alpha..-U/sub 3/O/sub 8/. The layers are connected by TaO/sub 6/ octahedra and linear CuO/sub 2/ groups, both formed by the apex oxygens of the TaO/sub 7/ bipyramids. Refinement was made with the least-squares technique using 729 reflections, of which 422 were independent. The conventional R value was 3.9%.

  13. Novel high-strength NiCuCoTiTa alloy with plasticity

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu

    2013-07-01

    The present investigation reports a novel Ni-Ti-based Ni48Cu10Co2Ti38Ta2 alloy, obtained by arc melting cum suction casting route under ultrahigh-purity Ar atmosphere. X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy (TEM) investigations reveal a microstructure consisting of nanostructured eutectic between cubic NiTi and hexagonal Ni3Ti with micron-scale NiTi and cubic Ti2Ni dendrites. Detailed TEM investigation indicates substantial reduction in the interlamellar spacing as the alloy chemistry changes from binary to quinary. The alloy shows a high compressive strength, 2 GPa, with high plasticity 13 %. Fractography surface of this new alloy reveals mixed mode of fracture. The results are discussed in light of the available literature on deformation of nanostructured eutectic with micron-sized dendrites in the microstructures.

  14. Excellent red phosphors of double perovskite Ca{sub 2}LaMO{sub 6}:Eu (M=Sb, Nb, Ta) with distorted coordination environment

    SciTech Connect

    Yin Xin; Wang Yaoming; Huang Fuqiang; Xia Yujuan; Wan Dongyun; Yao Jiyong

    2011-12-15

    Double perovskite Ca{sub 2}LaSbO{sub 6}, successfully synthesized by solid state reaction method, was identified by Rietveld refinements to crystallize in the monoclinic space group P2{sub 1}/n, which is isostructural to Ca{sub 2}LaMO{sub 6} (M=Nb, Ta). Excellent red luminescence of Eu-doped Ca{sub 2}LaMO{sub 6} (M=Sb, Nb, Ta) can be obtained and no luminescence quenching effect was observed when Eu-doping level reached 40%. For Ca{sub 2}La{sub 0.6}NbO{sub 6}:0.4Eu{sup 3+}, quantum efficiencies of 20.9% and 27.7% were reached to show high light conversion and bright red emission excited at 465 nm (blue light) and 534 nm (green light), respectively, comparable to the commercial phosphors. Through systemic investigation for the series of double perovskite compounds, the excellent red emission in Ca{sub 2}LaMO{sub 6} is attributed to highly distorted polyhedra of EuO{sub 8} (low tolerance factor of the pervoskite), and large bond distances of La-O (low crystal field effect of the activator). - Graphical Abstract: Eu{sup 3+} doped double-perovskite compounds A{sub 2}LnMO{sub 6} (A=Ca, Sr, Ba; Ln=La, Gd, Y; M=Sb, Nb, Ta) show the dependence of luminescence intensity on the crystal structure. Highlights: Black-Right-Pointing-Pointer A series of double perovskite compounds were synthesized by solid state reaction. Black-Right-Pointing-Pointer Eu{sup 3+} doped samples display intense red emission when excited by blue or green light. Black-Right-Pointing-Pointer High quantum efficiency was obtained, comparable to the commercial phosphors. Black-Right-Pointing-Pointer Luminescence properties were ascribed to crystal distortion and large Ln-O distance.

  15. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy

    DTIC Science & Technology

    2014-04-01

    better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb–Si–Al–Ti and Nb...The alloy has a better combination of mechanical properties and oxidation resistance than com- mercial Nb alloys and earlier reported developmental Nb...damage, is dif- ficult to achieve [2]. Thus, new metallic systems with higher melting points and a good balance of structural properties at high

  16. The hardening of CuO-(K,Na)NbO3 via post annealing with argon

    NASA Astrophysics Data System (ADS)

    Liu, Yaoyang; Maeda, Takafumi; Yokouchi, Yuriko; Morita, Takeshi

    2014-01-01

    Copper-doped potassium sodium niobate CuO-(K0.48Na0.52)NbO3 (CuO-KNN) ceramics was fabricated via a hydrothermal method. An extra post-annealing process with argon atmosphere was adopted after the sintering procedure to increase the quality factor (Qm). The results show that the annealing process with argon can significantly increase the Qm from 880 to approximately 1500. In CuO-KNN ceramics, Cu2+ substitutes Nb5+ as an acceptor type dopant, which would constitute charge dipoles. These charge dipoles are inclined to be relatively stable around the domain boundaries and generate a pinning effect. The pinning effect can be so strong that the domain walls become more difficult to move, even under applied electric field. Thus, the annealing procedure can increase the amount of oxygen vacancies, which influences the stability of the domain structures. The increase of oxygen vacancies strengthens the suppression of domain wall movement and thus enlarges the Qm value.

  17. Mechanical Failure of Thin Ta and Cu/Ta Layers on Polyimide Substrates: A Synchrotron-Based Technique for In Situ Characterization

    SciTech Connect

    Frank, Stephan; Olliges, Sven; Spolenak, Ralph; Handge, Ulrich A.

    2009-06-18

    In situ synchrotron radiation diffraction and confocal light microscopy is used to study fragmentation and buckling of thin brittle Ta layers with thicknesses of 50 nm, 100 nm and 200 nm on polyimide substrates. Synchrotron-based stress measurements confirm that cracking leads to relaxation of tensile stress. Simultaneously, compressive stress arises in transverse direction, which finally leads to buckling. This behavior can be explained quantitatively by a two-dimensional shear lag model. It is well established that the properties of the coating-substrate interface determine the processes of coating fragmentation and delamination. A possible approach for influencing and controlling these processes is given by the incorporation of a ductile interlayer. It can be observed that the presence of Cu interlayers with thicknesses of 5 nm, 20 nm and 50 nm reduces the fracture strength of brittle Ta coatings on polyimide substrates, whereas the resistance to buckling is increased significantly.

  18. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100-x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-02-01

    In the present study, (Zr55Cu30Al10Ni5)100-x Nb(x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  19. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  20. Structural characterization and electrical properties of NiNb{sub 2-x}Ta{sub x}O{sub 6} (0<=x<=2) and some Ti-substituted derivatives

    SciTech Connect

    Lopez-Blanco, M.; Amador, U.; Garcia-Alvarado, F.

    2009-07-15

    A structural and electrical characterization of the system NiNb{sub 2-x}Ta{sub x}O{sub 6} (0<=x<=2) is presented. For x<=0.25 materials with the columbite-type structure typical of NiNb{sub 2}O{sub 6} have been obtained whereas for x>=1 tri-rutile-like oxides were obtained. The electrical properties are similar in both cases; they are semiconducting with very low electrical conductivity and very high activation energy, though slight differences were found as a function of Ta content. Improvement of conductivity by reducing the stoichiometric materials could not be achieved due to decomposition. In this connection, partial substitution of Nb or Ta by Ti has been carried out in order to create oxygen vacancies. Tantalum was partially replaced by Ti to a significant extent in the tri-rutile structure inducing a slight increasing of conductivity. However, for the columbite case neither Nb nor Ta could be partially replaced. This behavior is quite different from that reported for other similar columbites such as MnNb{sub 2}O{sub 6-{delta}}, which exhibits high electrical conductivity upon substitution of niobium by titanium. - Graphical abstract: NiNb{sub 2-x}Ta{sub x}O{sub 6} exhibits the columbite structure for low tantalum contents whereas high contents of tantalum stabilize a trirutile-like structure. Electrical conductivity decreases as tantalum content increases in both columbite and tri-rutile.

  1. Microstructural refinement and strengthening of Cu-4 Cr-2 Nb alloy by mechanical milling

    SciTech Connect

    Anderson, K.R.; Groza, J.R.; Ulmer, D.G.

    1997-07-15

    Lately, a variety of dispersion strengthened (DS) copper alloys that provide a good combination of thermal/electrical conductivity and mechanical strength have been developed. Strengthening is usually achieved by the introduction of a ceramic, refractory metal or intermetallic secondary phase. Cu-Cr-Nb is one such DS alloy in which strengthening is provided by Cr{sub 2}Nb intermetallic particles. Mechanical milling of as-atomized Cu-4 Cr-2 Nb alloy powders substantially increases the mechanical strength (hardness) of the starting material. This is achieved through a drastic grain size, as well as large precipitate size refinement. A more uniform precipitate distribution is also attained. Whether milling is performed with steel or WC vial and balls the hardness saturates at approximately 100 HRB after about 4 hr milling. However, this benefit of MM was offset by an equally severe decrease in electrical conductivity. This decrease is attributed to impurities/contamination from the milling media introduced into the milled powder, primarily, Fe and C, or, WC and Co.

  2. Nb Ta (Ti Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Beurlen, Hartmut; da Silva, Marcelo R. R.; Thomas, Rainer; Soares, Dwight R.; Olivier, Patrick

    2008-02-01

    The Borborema Pegmatitic Province (BPP), northeastern Brazil, is historically important for tantalum mining and also famous for top-quality specimens of exotic Nb Ta oxides and, more recently, for the production of gem quality, turquoise blue, ‘Paraíba Elbaite.’ With more than 750 registered mineralized rare-element granitic pegmatites, the BPP extends over an area of about 75 by 150 km in the eastern part of the Neoproterozoic Seridó Belt. The Late Cambrian pegmatites are mostly hosted by a sequence of Neoproterozoic cordierite sillimanite biotite schists of the Seridó Formation and quartzites and metaconglomerates of the Equador Formation. The trace-element ratios in feldspar and micas allow to classify most pegmatites as belonging to the beryl columbite phosphate subtype. Electron microprobe analyses (EMPA) of columbite, tapiolite, niobian tantalian rutile, ixiolite and wodginite group minerals from 28 pegmatites in the BPP are used to evaluate the effectiveness of Nb Ta oxide chemistry as a possible exploration tool, to trace the degree of pegmatite fractionation and to classify the pegmatites. The columbite group mineral composition allows to establish a compositional trend from manganoan ferrocolumbite to manganocolumbite and on to manganotantalite. This trend is typical of complex spodumene- and/or lepidolite-subtype pegmatites. It clearly contrasts with another trend, from ferrocolumbite through ferrotantalite to ferrowodginite and ferrotapiolite compositions, typical of pegmatites of the beryl columbite phosphate subtype. Large scatter and anomalous trends in zoned crystals partially overlap and conceal the two main evolution patterns. This indicates that a large representative data set of heavy mineral concentrate samples, collected systematically along cross-sections, would be necessary to predict the metallogenetic potential of individual pegmatites. Other mineral species, e.g. garnets and/or tourmaline, with a more regular distribution than Nb

  3. Doping of Nb to the Ba and Cu Sites in the Y0.6Gd0.4Ba2Cu3O7- δ

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Sönmez, E.; Doğan, O.

    2013-04-01

    Polycrystalline samples of Y0.6Gd0.4Ba2- x Nb x Cu3O7- δ and Y0.6Gd0.4Ba2Cu3- x Nb x O7- δ with different Nb contents ( x=0.025, 0.075, 0.125, 0.175 and 0.225) were prepared using the solid state reaction method. Structural and electrical properties of new compounds were investigated with optical microscope, scanning electron microscopy (SEM), X-ray diffraction (XRD), Four Point Probe (FPP). The results indicated that Nb constituted YBa2NbO6 structure instead of substituting to the Y0.6Gd0.4Ba2Cu3O7- δ structure. YBa2NbO6 structures gathered between grains. Transition temperature did not change significantly, but critical current ( J c) values decreased with increase of Nb concentration. The underlying reason is that the oxygen concentration of compounds remained unchanged due to Gd; thus, T c values did not change significantly.

  4. Synthesis, properties and phase transitions of pyrochlore- and fluorite-like Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta)

    SciTech Connect

    Shlyakhtina, A.V.; Belov, D.A.; Pigalskiy, K.S.; Shchegolikhin, A.N.; Kolbanev, I.V.; Karyagina, O.K.

    2014-01-01

    Graphical abstract: Temperature dependences of bulk conductivity for Sm{sub 2}ScTaO{sub 7} pyrochlore prepared at (1) 1400 °C, 20 h; and (2) 1200 °C, 40 h. - Highlights: • The phase formation of Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta) at 1200–1600 °C. • The bulk conductivity and magnetic susceptibility were measured. • The bulk conductivity of Sm{sub 2}ScTaO{sub 7} has oxygen ion type at T ≥ 750 °C. • The first-order structural phase transition was observed in Sm{sub 2}ScTaO{sub 7} at ∼650–700 °C. • This phase transformation is not typical for defect fluorites. - Abstract: We have studied the new compounds with fluorite-like (Ho{sub 2}RNbO{sub 7} (R = Lu, Sc)) and pyrochlore-like (Sm{sub 2}ScTaO{sub 7}) structure as potential oxide ion conductors. The phase formation process (from 1200 to 1600 °C) and physical properties (electrical, thermo mechanical, and magnetic) for these compounds were investigated. Among the niobate materials the highest bulk conductivity is offered by the fluorite-like Ho{sub 2}ScNbO{sub 7} synthesized at 1600 °C: 3.8 × 10{sup −5} S/cm at 750 °C, whereas in Sm system the highest bulk conductivity, 7.3 × 10{sup −6} S/cm at 750 °C, is offered by the pyrochlore Sm{sub 2}ScTaO{sub 7} synthesized at 1400 °C. In Sm{sub 2}ScTaO{sub 7} pyrochlore we have observed the first-order phase transformation at ∼650–700 °C is related to rearrangement process in the oxygen sublattice of the pyrochlore structure containing B-site cations in different valence state and actually is absent in the defect fluorites. The two holmium niobates show Curie–Weiss paramagnetic behavior, with the prevalence of antiferromagnetic coupling. The magnetic susceptibility of Sm{sub 2}ScTaO{sub 7} is a weak function of temperature, corresponding to Van Vleck paramagnetism.

  5. Anion Exchange Behavior Of Ti, Zr, Hf, Nb And Ta As Homologues Of Rf And Db In Mixed HF—Acetone Solutions

    NASA Astrophysics Data System (ADS)

    Aksenov, N. V.; Bozhikov, G. A.; Starodub, G. Ya.; Dmitriev, S. N.; Filosofov, D. V.; Sun Jin, Jon; Radchenko, V. I.; Lebedev, N. A.; Novgorodov, A. F.

    2010-04-01

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration anion exchange equilibrium analysis indicated the formation of fluoride complexes of group 4 elements with charge-3 and Ta—-2. For Nb the slope of-2 increased up to-5. Optimal conditions for separation of the elements using AIX chromatography were found. Group 4 elements formed MF73- (M = Ti, Zr, Hf) complexes whose sorption decreased Ti>Hf>Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed.

  6. Bond dissociation energies of TiSi, ZrSi, HfSi, VSi, NbSi, and TaSi

    NASA Astrophysics Data System (ADS)

    Sevy, Andrew; Sorensen, Jason J.; Persinger, Thomas D.; Franchina, Jordan A.; Johnson, Eric L.; Morse, Michael D.

    2017-08-01

    Predissociation thresholds have been observed in the resonant two-photon ionization spectra of TiSi, ZrSi, HfSi, VSi, NbSi, and TaSi. It is argued that because of the high density of electronic states at the ground separated atom limit in these molecules, the predissociation threshold in each case corresponds to the thermochemical bond dissociation energy. The resulting bond dissociation energies are D0(TiSi) = 2.201(3) eV, D0(ZrSi) = 2.950(3) eV, D0(HfSi) = 2.871(3) eV, D0(VSi) = 2.234(3) eV, D0(NbSi) = 3.080(3) eV, and D0(TaSi) = 2.999(3) eV. The enthalpies of formation were also calculated as Δf,0KH°(TiSi(g)) = 705(19) kJ mol-1, Δf,0KH°(ZrSi(g)) = 770(12) kJ mol-1, Δf,0KH°(HfSi(g)) = 787(10) kJ mol-1, Δf,0KH°(VSi(g)) = 743(11) kJ mol-1, Δf,0KH°(NbSi(g)) = 879(11) kJ mol-1, and Δf,0KH°(TaSi(g)) = 938(8) kJ mol-1. Using thermochemical cycles, ionization energies of IE(TiSi) = 6.49(17) eV and IE(VSi) = 6.61(15) eV and bond dissociation energies of the ZrSi- and NbSi- anions, D0(Zr-Si-) ≤ 3.149(15) eV, D0(Zr--Si) ≤ 4.108(20) eV, D0(Nb-Si-) ≤ 3.525(31) eV, and D0(Nb--Si) ≤ 4.017(39) eV, have also been obtained. Calculations on the possible low-lying electronic states of each species are also reported.

  7. Kinetics and thermal stability of the Ni62Nb38- x Ta x ( x=5, 10, 15, 20 and 25) bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    He, MengKe; Zhang, Yi; Xia, Lei; Yu, Peng

    2017-07-01

    We studied thermal stability and its relationship to the glass-forming ability (GFA) of the Ni62Nb38- x Ta x ( x=5, 10, 15, 20, 25) bulk metallic glasses (BMG) from a kinetic point of view. By fitting the heating-rate dependence of glass transition temperature ( T g onset) and crystallization temperatures ( T x onset and T x peak) of the Ni62Nb38- x Ta x BMG using the Vogel-Fulcher-Tammann (VFT) equation, we obtained the ideal glass transition and crystallization temperatures ( T g 0 and T x 0) and the fragility parameter ( m), and also constructed continuous heating transition (CHT) diagrams for crystallization of the BMG. The CHT diagrams of the BMG indicate enhanced thermal stability by Ta addition; the T g 0 as well as the T x 0 also illustrates this improved stability limit. The compositional dependence of m, which agrees well with that of the reduced glass-transition temperature, indicates a strong correlation between liquid fragility and glass-forming ability in the present alloy system. These results provide new evidence for understanding thermal stability, liquid fragility, and GFA in BMG.

  8. Synthesis and physical properties of Ca- and Ta-modified (K,Na)NbO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Coondoo, Indrani; Panwar, Neeraj; Rai, Radheshyam; Amorín, Harvey; Kholkin, Andrei L.

    2013-11-01

    Polycrystalline samples of lead-free Ca and Ta co-substituted potassium sodium niobate (K0.5Na0.5NbO3, KNN) ceramics have been prepared by solid state reaction technique. X-ray diffraction showed formation of a single-phase perovskite structure with orthorhombic symmetry. Substitution inhibits the grain growth, improves densification and decreases the ferro-paraelectric phase transition temperature. Temperature dependent dielectric permittivity studies demonstrate significant decrease in peak-permittivity values in the substituted samples. Bulk longitudinal piezoelectric coefficient is significantly enhanced, up to ∼155 pC/N for (K0.48Na0.48Ca0.02)(Nb0.85Ta0.15O3) as compared to 95 pC/N for pristine KNN ceramic. Local piezoelectric properties have been observed by piezoresponse force microscopy (PFM) technique. Distinct piezocontrast was studied in both vertical and in-plane modes of PFM for all samples. The samples exhibit self-polarization effect in the unpoled state and effective local vertical piezoelectric coefficient was the largest in Ca and Ta co-substituted sample whereas the in-plane piezoelectric coefficient was maximum for Ca-substituted KNN sample. These studies are important for using substituted lead free KNN materials in various piezoelectric applications.

  9. Structures and crystal chemistry of the double perovskites Ba{sub 2}LnB'O{sub 6} (Ln=lanthanide and B'=Nb, Ta):

    SciTech Connect

    Saines, Paul J.; Spencer, Jarrah R.; Kennedy, Brendan J. Kubota, Yoshiki; Minakata, Chiharu; Hano, Hiroko; Kato, Kenichi; Takata, Masaki

    2007-11-15

    The structures of eight members of the series of double perovskites of the type Ba{sub 2}LnB'O{sub 6} (Ln=La{sup 3+}-Sm{sup 3+} and Y{sup 3+} and B'=Nb{sup 5+} and Ta{sup 5+}) were examined both above and below room temperature using synchrotron X-ray powder diffraction. The La{sup 3+} and Pr{sup 3+} containing compounds had an intermediate rhombohedral phase whereas the other tantalates and niobates studied have a tetragonal intermediate. This difference in symmetry appears to be a consequence of the larger size of the La{sup 3+} and Pr{sup 3+} cations compared to the other lanthanides. The temperature range over which the intermediate symmetry is stable is reduced in those compounds near the point where the preferred intermediate symmetry changes from tetragonal to rhombohedral. In such compounds the transition to the cubic phase involves higher order terms in the Landau expression. This suggests that in this region the stability of the two intermediate phases is similar. - Graphical abstract: Variable temperature structural studies of Ba{sub 2}LaTaO{sub 6} show the presence of a unexpected rhombohedral phase. Other Ba{sub 2}LnB'O{sub 6} (B'=Nb, Ta) have a tetragonal intermediate phase.

  10. Crystal chemistry, band engineering, and photocatalytic activity of the LiNb3O8-CuNb3O8 solid solution.

    PubMed

    Sahoo, Prangya Parimita; Maggard, Paul A

    2013-04-15

    A new solid solution has been prepared in the system LiNb3O8-CuNb3O8, and the impacts of chemical composition and crystal structure have been investigated for the resulting band gap sizes and photocatalytic activities for water reduction to hydrogen under visible light. All members of the solid solution were synthesized by solid-state methods within evacuated fused-silica vessels, and their phase purities were confirmed via powder X-ray diffraction techniques (space group P2(1)/a, a = 15.264(5)-15.367(1) Å, b = 5.031(3)-5.070(1) Å, c = 7.456(1)-7.536(8) Å, and β = 107.35(1)-107.14(8)°, for 0 ≤ x ≤ 1). Rietveld refinements were carried out for the x = 0.09, 0.50, and 0.70 members of the solid solution, which reveal the prevailing isostructurality of the continuous solid solution. The structure consists of chains of (Li/Cu)O6 and NbO6 octahedra. The optical band gap size across the solid solution exhibits a significant red-shift from ∼3.89 eV (direct) to ∼1.45 eV and ∼1.27 eV (direct and indirect) with increasing Cu(I) content, consistent with the change in sample color from white to dark brown to black. Electronic structure calculations based on density-functional theory methods reveal the rapid formation of a new Cu 3d(10)-based valence band that emerges higher in energy than the O 2p band. While the pure LiNb3O8 is a highly active UV-photocatalyst for water reduction, the Li(1-x)Cu(x)Nb3O8 solid is shown to be photocatalytically active under visible-light irradiation for water reduction to hydrogen.

  11. Effect of Cu doping on room temperature ferromagnetic behavior of Mn doped LiNbO3 films

    NASA Astrophysics Data System (ADS)

    Bu, Dechong; Fu, Yuting; Sun, Ning; Li, Chunjing; Li, Yanghua; An, Yukai; Liu, Jiwen

    2016-11-01

    Cu and Mn co-doped LiNbO3 films were deposited on Si (111) substrates by rf-magnetron sputtering. XRD shows a randomly oriented polycrystalline R3C structure of LiNbO3 was formed in the films annealed at 1000 °C for 1 h in air. XPS and XAFS determine that Mn2+ substitutes on the Li site with a Li vacancy and Cu2+ substitutes on the Nb site with an oxygen vacancy in the LiNbO3 lattice. SQUID measurements indicate that all the films exhibit room temperature ferromagnetism, attributed to a strong d-d electron interaction between Mn and Nb and the bound magnetic polarons resulting from the oxygen vacancies. The saturated magnetization increases but the atom magnetic moment decreases with increasing Cu content in the films. The drop of the atom magnetic moment may arise from the antiferromagnetic coupling among adjacent Cu ions and an antiparallel configuration between Cu2+ ions and their trapped electrons.

  12. Structure and Properties of Ti-19.7Nb-5.8Ta Shape Memory Alloy Subjected to Thermomechanical Processing Including Aging

    NASA Astrophysics Data System (ADS)

    Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.

    2013-09-01

    In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.

  13. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    PubMed

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications.

  14. Characterization of passive oxide film on a Ti-5%Ta-1.8%Nb alloy on exposure to severe oxidizing conditions

    SciTech Connect

    Mythili, R.; Saroja, S. Vijayalakshmi, M.

    2010-12-15

    This paper presents the results of a study on the characteristics of the passive oxide film that forms on the surface of an {alpha} + {beta} Ti-5%Ta-1.8%Nb alloy, which possesses good corrosion resistance in severe oxidizing environment of boiling 11.5 M nitric acid. Through systematic structure-property studies, the microstructure with low corrosion rate (< 1 mpy) in liquid, vapor and condensate phases of nitric acid was identified. The characteristics of the passive film, which imparts corrosion resistance to the alloy, are influenced by its microstructure, temperature and concentration of the acid. The microstructure, thickness and composition of the oxide film were characterized using different techniques. TiO{sub 2}, Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} formed on exposure to vapor and condensate phases, while TiO{sub 2} was observed on exposure to the liquid phase. Detailed microstructural studies showed that the passive film consists of nano-crystalline phases of titanium and tantalum oxides, predominantly anatase in an amorphous matrix. Based on these studies, the mechanism of corrosion of the alloy is derived. - Research Highlights: {yields}Liquid phase corrosion results in a thicker and protective oxide film. {yields}Oxide film is a mixture of amorphous and nano-crystalline anatase. {yields}Higher amounts of Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} form on vapor and condensate phase corrosion. {yields}High corrosion rate in condensate phase is due to selective dissolution of Ti in {alpha} phase.

  15. Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts - The Ary-Bulak ongonite massif

    NASA Astrophysics Data System (ADS)

    Agangi, Andrea; Kamenetsky, Vadim S.; Hofmann, Axel; Przybyłowicz, Wojciech; Vladykin, Nikolay V.

    2014-08-01

    Textural, mineralogical and geochemical data on F-rich rhyolite (ongonite) from the Ary-Bulak massif of eastern Transbaikalia help constrain the formation of magmatic topaz. In these rocks, topaz occurs as phenocrysts, thus providing compelling evidence for crystallisation at the orthomagmatic stage. Cathodoluminescence images of topaz and quartz reveal growth textures with multiple truncation events in single grains, indicative of a dynamic system that shifted from saturated to undersaturated conditions with respect to topaz and quartz. Electron microprobe and Raman analyses of topaz indicate near-pure F composition [Al2SiO4F2], with very limited OH replacement. Laser ablation ICP-MS traverses revealed the presence of a large number of trace elements present at sub-ppm to hundreds of ppm levels. The chemical zoning of topaz records trace element fluctuations in the coexisting melt. Concentrations of some trace elements (Li, Ga, Nb, Ta and W) are correlated with cathodoluminescence intensity, thus suggesting that some of these elements act as CL activators in topaz. The study of melt inclusions indicates that melts with different F contents were trapped at different stages during formation of quartz and topaz phenocrysts, respectively. Electron microprobe analyses of glass in subhedral quartz-hosted melt inclusions indicate F ≤ 1.2 wt.%, whereas irregular-shaped melt inclusions hosted in both topaz and quartz have F ≤ 9 wt.%. Cryolithionite [Na3Li3Al2F12] coexists with glass in irregular inclusions, implying high Li contents in the melt. The very high F contents would have increased the solubility of Nb, Ta and W in the melt, thus allowing progressive concentration of these elements during magma evolution. Crystallisation of Nb-Ta-W-oxides (W-ixiolite and tantalite-columbite) may have been triggered by separation of cryolithionite, which would have caused F and Li depletion and consequent drop in the solubility of these elements.

  16. Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals

    NASA Astrophysics Data System (ADS)

    Kawamura, S.; Imai, T.; Sakamoto, T.

    2017-09-01

    The temperature dependence of the electrostrictive coefficients (Q11 and Q12) of K0.95Li0.05Ta0.73Nb0.27O3 single crystals, which were applied to electro-optical devices, was measured to calculate precisely the refractive index modulation. To measure the electrostrictive coefficients accurately, we prevented electron injection by employing Pt electrodes. We also determined the electric field range applied to the sample by measuring P-E curves to avoid the field induced phase transition. The experimental results showed that both Q11 and Q12 were temperature independent and had values of approximately 0.070 and -0.026 m4/C2, respectively. These results differed from a previous study of KTa0.55Nb0.45O3, which revealed an anomalous temperature dependence. The reason for the different results is discussed.

  17. Flux pinning behavior in Nb50Ti/Cu superconducting composite with different form of artificial pinning center

    NASA Astrophysics Data System (ADS)

    Liu, X. H.; Zhou, L.; Wu, X. Z.; Fu, B. Q.; Wang, F. Y.; Zhang, P. X.; Feng, Y.; Weber, H. W.

    2003-04-01

    Artificial pinning center (APC) niobium-titanium composites achieve very high critical current density value at low magnetic field (below 5 T), but they are inferior to conventional composites at high magnetic fields (above 7 T) due to weak flux pining force. Therefore, realization of flux pinning behavior and improvement of flux pinning force of NbTi composite are very important. In this paper, three forms of niobium APC were introduced into Nb50Ti/Cu composites, that is, island-shaped, net-shaped and sheet-shaped Nb APC. The results show that Nb50Ti/Cu composites with island-shaped APC have highest flux pinning force over other two kinds of composites with net-shaped and sheet-shaped APC, however, this difference will be reduced after heat treatment process.

  18. Control of the Crystalline Structure and Piezoelectric Properties of (K,Na,Li)(Nb,Ta,Sb)O3 Ceramics through Transition Metal Oxide Doping

    NASA Astrophysics Data System (ADS)

    Rubio-Marcos, Fernando; José Romero, Juan; Francisco Fernández, José; Marchet, Pascal

    2011-10-01

    Divalent transition metal oxide doping of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 piezoceramics is studied. Two different behaviors were observed independently of the doping metal: at low concentrations, the tetragonal structure is preserved, while at a high doping level, the material becomes orthorhombic. For any given doping level, a linear dependence was found between the pseudo-tetragonal lattice distortion and the ionic radii of doping ions. The ferroelectric and piezoelectric properties of the material are reduced by the doping, whereas the mechanical quality factor increases. Thus, the piezoelectric and ferroelectric properties of these lead-free piezoceramics can be easily controlled through metal oxide doping.

  19. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  20. Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds

    SciTech Connect

    Acharya, Nikita Fatima, Bushra; Sanyal, Sankar P.

    2016-05-06

    The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.

  1. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions

    NASA Astrophysics Data System (ADS)

    Li, Shenghu; Li, Jiankang; Chou, I.-Ming; Jiang, Lei; Ding, Xin

    2017-04-01

    The Yichun Ta-Nb deposit, which is located in Jiangxi Province, South China, can be divided into four lithological zones (from bottom upward): two-mica granite, muscovite granite, albite granite, and lepidolite-albite granite zones. It remains controversial whether these distinct vertical zones were formed through late magmatic-hydrothermal metasomatic alteration or fractional crystallization of magma. To investigate the evolution mechanism of rock- and ore-forming fluid in this deposit, we studied fluid and melt inclusions in quartz and lepidolite in these four granite zones. These fluid inclusions are mainly composed of H2O-NaCl, and have homogenization temperatures ranging from 160 °C to 240 °C, with densities between 0.86 and 0.94 g/cm3 and salinities between 0.5 and 6.5 wt% NaCl equivalent. Raman spectroscopic analyses showed that the daughter minerals contained in silicate melt inclusions are mainly quartz, lepidolite, albite, muscovite, microcline, topaz, and sassolite. From the lower to upper granite zones, the albite contents in silicate melt inclusions increase, while the muscovite contents decrease gradually until muscovite is substituted by lepidolite in the lepidolite-albite granite zone. Additionally, the calculated densities of the silicate melt inclusions exhibit decreasing trends from bottom upward. The total homogenization temperatures of silicate melt inclusions, which were observed under external pressures created in the sample chamber of a hydrothermal diamond-anvil cell, decreased from 860 °C in the lower lithological zone to 776 °C in the upper lithological zone, and the initial melting temperatures of solid phases were 570-710 °C. The calculated initial H2O contents of granitic magma showed an increasing trend from the lower (∼2 wt% in the two-mica granite zone) to the upper granitic zones (∼3 wt% in the albite granite zone). All of these features illustrate that the vertical granite zones in the Yichun Ta-Nb deposit formed through

  2. Shock compression of VH0.50, NbH0.75 and TaH0.50: A comparative study

    NASA Astrophysics Data System (ADS)

    Syono, Y.; Taguchi, H.; Fukai, Y.; Atou, T.; Kusaba, K.; Fukuoka, K.

    1994-07-01

    Shock compression data of VH0.50, NbH0.75 and TaH0.50 up to the pressure range of 135, 148 and 216 GPa respectively are summarized. Compressibility of these hydrides were found to be comparable to those of the corresponding metals, indicating that the hydrogen-metal bonds in these hydrides are no less incompressible than the metal-metal bonds in the corresponding Group Va bcc metals. Implication of these data for the equation-of-state of metallic hydrogen is discussed.

  3. Ternary borides Nb7Fe3B8 and Ta7Fe3B8 with Kagome-type iron framework.

    PubMed

    Zheng, Qiang; Gumeniuk, Roman; Borrmann, Horst; Schnelle, Walter; Tsirlin, Alexander A; Rosner, Helge; Burkhardt, Ulrich; Reissner, Michael; Grin, Yuri; Leithe-Jasper, Andreas

    2016-06-21

    Two new ternary borides TM7Fe3B8 (TM = Nb, Ta) were synthesized by high-temperature thermal treatment of samples obtained by arc-melting. This new type of structure with space group P6/mmm, comprises TM slabs containing isolated planar hexagonal [B6] rings and iron centered TM columns in a Kagome type of arrangement. Chemical bonding analysis in Nb7Fe3B8 by means of the electron localizability approach reveals two-center interactions forming the Kagome net of Fe and embedded B, while weaker multicenter bonding present between this net and Nb atoms. Magnetic susceptibility measurements reveal antiferromagnetic order below TN = 240 K for Nb7Fe3B8 and TN = 265 K for Ta7Fe3B8. Small remnant magnetization below 0.01μB per f.u. is observed in the antiferromagnetic state. The bulk nature of the magnetic transistions was confirmed by the hyperfine splitting of the Mössbauer spectra, the sizable anomalies in the specific heat capacity, and the kinks in the resistivity curves. The high-field paramagnetic susceptibilities fitted by the Curie-Weiss law show effective paramagnetic moments μeff≈ 3.1μB/Fe in both compounds. The temperature dependence of the electrical resistivity also reveals metallic character of both compounds. Density functional calculations corroborate the metallic behaviour of both compounds and demonstrate the formation of a sizable local magnetic moment on the Fe-sites. They indicate the presence of both antiferro- and ferrromagnetic interactions.

  4. Nb-Ti superconductor wires with Cu as artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Tirelli, Marcelo Alexandre; Nunes, Cristina Bormio; Ghivelder, Luis

    2004-08-01

    The present work reports the procedure used for the production and characterization of Nb-Ti superconductor wires with Cu as artificial pinning centers (APC) for two different pin geometries: island and barrier. Cold swaging, bundling, drawing processing in addition to controlled heat treatments were used to reduce the pinning centers size. Superconducting properties characterization was made by means of transport and magnetization measurements. We obtained Jc values at 4.2 K of 124 A/mm 2 (island) and 101 A/mm 2 (barrier) at 5 T.

  5. Unusual multiferroicity in Cu{sub 3}Nb{sub 2}O{sub 8}

    SciTech Connect

    Sharma, G. Saha, J. Patnaik, S.

    2014-04-24

    Cu{sub 3}Nb{sub 2}O{sub 8} is an anti-ferromagnetic - ferroelectric material in which the non-collinear spin alignment leads to breaking of spatial inversion symmetry. We confirm that the ferroelectricity and magnetic anomaly both occur at T{sub N1} = 25K. The emergence of ferroelectricity due to complex spin ordering is investigated by the temperature dependent low temperature measurements of magnetization, dielectric constant and electric polarization. The microscopic origin to explain magneto-electric coupling in this compound is based on a model based on ferroaxial coupling rather than inverse Dzyalonshkii-Moria interaction.

  6. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  7. Conduction processes in metal–insulator–metal diodes with Ta{sub 2}O{sub 5} and Nb{sub 2}O{sub 5} insulators deposited by atomic layer deposition

    SciTech Connect

    Alimardani, Nasir; McGlone, John M.; Wager, John F.; Conley, John F.

    2014-01-15

    Metal–insulator–metal diodes with Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} insulators deposited via atomic layer deposition are investigated. For both Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}, the dominant conduction process is established as Schottky emission at small biases and Frenkel–Poole emission at large biases. Fowler–Nordheim tunneling is not found to play a role in determining current versus voltage asymmetry. The dynamic dielectric constants are extracted from conduction plots and found to be in agreement with measured optical dielectric constants. Trap energy levels at ϕ{sub T} ≈ 0.62 and 0.53 eV below the conduction band minimum are estimated for Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}, respectively.

  8. Magnetic properties of Fe-Cu-Nb-Si-B nanocrystalline magnetic alloys

    SciTech Connect

    Garcia del Muro, M.; Batlle, X.; Zquiak, R.; Tejada, J.; Polak, C.; Groessinger, R.

    1994-03-01

    Several ribbons of composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 16.5}B{sub 6} and Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} were prepared by annealing the as-quenched samples between 525 C and 700 C, which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE S.Q.U.I.D. Magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature T{sub M}, thus signaling a certain distribution of nanocrystalline sizes, and T{sub M} strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.

  9. Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    PubMed Central

    Mitran, Valentina; Vasilescu, Cora; Drob, Silviu Iulian; Osiceanu, Petre; Calderon-Moreno, Jose Maria; Tabirca, Mariana-Cristina; Gordin, Doina-Margareta; Gloriant, Thierry; Cimpean, Anisoara

    2015-01-01

    The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096

  10. First principle study on electronic structure, structural phase stability, optical and vibrational properties of Ba2ScMO6 (M = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Rameshe, Balasubramaniam; Murugan, Ramaswamy; Palanivel, Balan

    2016-12-01

    First principle calculations are performed to investigate the electronic structure, structural phase stability, optical and vibrational properties of double perovskite oxide semiconductors namely Ba2ScMO6 (M = Nb, Ta) in the cubic symmetry using WIEN2k. In order to study the ground state properties of these compounds, the total energies are calculated as a function of reduced volumes and fitted with Brich Murnaghan equation. The estimated ground state parameters are comparable with the available experimental data. Calculations of electronic band structure on these compounds reveal that both Ba2ScNbO6 and Ba2ScTaO6 exhibit a semiconducting behavior with a direct energy gap of 2.78 and 3.15 eV, respectively. To explore the optical transitions in these compounds, the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical absorption coefficient, real part of optical conductivity and the energy-loss function are calculated at ambient pressure and analyzed. The collective Raman active modes of the atoms of these materials are also calculated in order to understand the structural stability of these compounds.

  11. Weakly Bound and Strongly Interacting: NbSe2 and 1T-TaS2 in the 2D Limit

    NASA Astrophysics Data System (ADS)

    Tsen, Adam

    The layered metallic dichalcogenides are known to exhibit rich collective electron phases such as charge density waves, spin density waves, and superconductivity. In the past, studies on graphene and various semiconducting dichalcogenides have shown that taking layered materials to their physical two-dimensional (2D) limit leads to fundamental changes in band structure, allowing for a powerful experimental knob to tune for electronic functionality. In contrast, due to their instability in the ambient environment, the effect of thickness control over such collective electron phases has been largely unexplored in metallic systems. We have recently demonstrated a new experimental platform for the isolation and assembly of environmentally sensitive 2D materials in inert atmosphere. I will discuss our recent studies of the charge density wave material 1T-TaS2 and superconducting NbSe2 in the atomically thin limit, made possible using this technique. For 1T-TaS2, we find that the lock-in transition to commensurate charge ordering becomes increasingly metastable for reduced thickness, allowing for all-electrical control over this phase transition in the 2D state. In NbSe2, a small magnetic field induces a transition to a quantum metallic phase, the resistivity of which obeys a unique field-scaling property. These methods and experiments open new doors for the study of other correlated 2D materials in the immediate future.

  12. (23)Na multiple-quantum MAS NMR of the perovskites NaNbO(3) and NaTaO(3).

    PubMed

    Ashbrook, Sharon E; Le Pollès, Laurent; Gautier, Régis; Pickard, Chris J; Walton, Richard I

    2006-08-07

    The distorted perovskites NaTaO(3) and NaNbO(3) have been studied using (23)Na multiple-quantum (MQ) MAS NMR. NaTaO(3) was prepared by high temperature solid state synthesis and the NMR spectra are consistent with the expected room temperature structure of the material (space group Pbnm), with a single crystallographic sodium site. Two samples of NaNbO(3) were studied. The first, a commercially available sample which was annealed at 900 degrees C, showed two crystallographic sodium sites, as expected for the room temperature structure of the material (space group Pbcm). The second sample, prepared by a low temperature hydrothermal method, showed the presence of four sodium sites, two of which match the expected room temperature structure and the second pair, another polymorph of the material (space group P21ma). This is consistent with powder X-ray diffraction data which showed weak extra peaks which can be accounted for by the presence of this second polymorph. Density functional theory (DFT) calculations support our conclusions, and aid assignment of the NMR spectra. Finally, we discuss the measured NMR parameters in relation to other studies of sodium in high coordination sites in the solid state.

  13. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel

    2016-11-01

    A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  14. Striking Doping Effects on Thermal Methane Activation Mediated by the Heteronuclear Metal Oxides [XAlO4 ](.+) (X=V, Nb, and Ta).

    PubMed

    Wu, Xiao-Nan; Li, Jilai; Schlangen, Maria; Zhou, Shaodong; González-Navarrete, Patricio; Schwarz, Helmut

    2017-01-18

    The thermal reactivity of the heteronuclear metal-oxide cluster cations [XAlO4 ](.+) (X=V, Nb, and Ta) towards methane has been studied by using mass spectrometry in conjunction with quantum mechanical calculations. Experimentally, a hydrogen-atom transfer (HAT) from methane is mediated by all the three oxide clusters at ambient conditions. However, [VAlO4 ](.+) is unique in that this cluster directly transforms methane into formaldehyde. The absence of this reaction for the Nb and Ta analogues demonstrates a striking doping effect on the chemoselectivity in the conversion of methane. Mechanistic aspects of the two reactions have been elucidated by quantum-chemical calculations. The HAT reactivity can be attributed to the significant spin density localized at the terminal oxygen atom (Ot(.-) ) of the cluster ions, while the ionic/covalent character of the Lewis acid-base unit [X-Ob ] plays a crucial role for the generation of formaldehyde. The mechanistic insight derived from this combined experimental/computational investigation may provide guidance for a more rational design of catalysts.

  15. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  16. Phase diagram, chemical stability and physical properties of the solid-solution Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}

    SciTech Connect

    Dunstan, Matthew T.; Southon, Peter D.; Kepert, Cameron J.; Hester, James; Kimpton, Justin A.; Ling, Chris D.

    2011-10-15

    Through the construction of the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} phase diagram, it was discovered that the unique high-temperature {gamma} phase is a thermodynamic intermediate between the low-temperature {alpha} phase (Sr{sub 4}Ru{sub 2}O{sub 9}-type) and a 6H-perovskite. Refined site occupancies for the {gamma} phase across the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} solid-solution indicate that Nb preferentially occupies the tetrahedral sites over the octahedral sites in the structure. When annealed in a CO{sub 2}-rich atmosphere, all of the phases studied absorb large amounts of CO{sub 2} at high temperatures between {approx}700 and 1300 K. In situ controlled-atmosphere diffraction studies show that this behaviour is linked to the formation of BaCO{sub 3} on the surface of the material, accompanied by a Ba{sub 5}(Nb,Ta){sub 4}O{sub 15} impurity phase. In situ diffraction in humid atmospheres also confirms that these materials hydrate below {approx}1273K, and that this plays a critical role in the various reconstructive phase transitions as well as giving rise to proton conduction. - Graphical abstract: Thermodynamic phase diagram of Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}. Highlights: > {gamma}-Ba{sub 4}Nb{sub 2}O{sub 9} phase is a structural intermediate between the {alpha} and 6H-perovskite phases. > Ba{sub 4}Nb{sub 2}O{sub 9} and Ba{sub 4}Ta{sub 2}O{sub 9} decompose at high temperatures in the presence of CO{sub 2}. > These materials all absorb between 5% and 6% of CO{sub 2} by mass between {approx}800 and 1200 K.

  17. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data (Postprint)

    DTIC Science & Technology

    2014-04-01

    COMPOSITION OF A CrMo0 5NbTa0 5TiZr HIGH ENTROPY ALLOY : COMPARISON OF EXPERIMENTAL AND SIMULATED DATA (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT...e15093796. 14. ABSTRACT Microstructure and phase composition of a CrMo0 5NbTa0 5TiZr high entropy alloy were studied in the as-solidified and heat...15. SUBJECT TERMS refractory high entropy alloy , microstructure and phase analysis, CALPHAD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. Influence of ultrafast quenching on the structure of Li0.12Na0.88Ta y Nb1 - y O3 ceramics obtained by solid-phase synthesis

    NASA Astrophysics Data System (ADS)

    Aleshina, L. A.; Palatnikov, M. N.; Shcherbanich, Ya. I.; Feklistova, E. P.; Shcherbina, O. B.

    2017-03-01

    A technology of perovskite-type Li0.12Na0.88Ta y Nb1 - y O3 ceramic solid solutions based on sodium and lithium niobates and tantalates and a method of their ultrafast quenching have been presented. The influence of quenching on the structure of ceramic samples and the variations in crystallographic and fine structure parameters have been studied. It has been found that ultrafast quenching results in a preferred orientation of crystallites, severe local microstrains, and changes in the atomic structure of Li0.12Na0.88Ta y Nb1 - y O3 ceramics.

  19. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    PubMed

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  20. Differences in chemical doping matter: Superconductivity in Ti1-xTaxSe2 but not in Ti1-xNbxSe2

    SciTech Connect

    Luo, Huixia; Zhu, Yimei; Xie, Weiwei; Tao, Jing; Pletikosic, Ivo; Valla, Tonica; Sahasrabudhe, Girija S.; Osterhoudt, Gavin; Sutton, Eric; Burch, Kenneth S.; Seibel, Elizabeth M.; Krizan, Jason W.; Cava, Robert J.

    2016-02-21

    We report that 1T-TiSe2, an archetypical layered transition metal dichalcogenide, becomes superconducting when Ta is substituted for Ti but not when Nb is substituted for Ti. This is unexpected because Nb and Ta should be chemically equivalent electron donors. Superconductivity emerges near x = 0.02 for Ti1–xTaxSe2, while, for Ti1–xNbxSe2, no superconducting transitions are observed above 0.4 K. The equivalent chemical nature of the dopants is confirmed by X-ray photoelectron spectroscopy. ARPES and Raman scattering studies show similarities and differences between the two systems, but the fundamental reasons why the Nb and Ta dopants yield such different behavior are unknown. We present a comparison of the electronic phase diagrams of many electron-doped 1T-TiSe2 systems, showing that they behave quite differently, which may have broad implications in the search for new superconductors. Here, we propose that superconducting Ti0.8Ta0.2Se2 will be suitable for devices and other studies based on exfoliated crystal flakes.

  1. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dalong; Hu, Shengsun; Shen, Junqi; Zhang, Hao; Bu, Xianzheng

    2016-05-01

    Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α' phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

  2. Synthesis and structure of new framework phosphates Li{sub 1/4M7/4}(PO{sub 4}){sub 3}(M = Nb, Ta)

    SciTech Connect

    Sukhanov, M. V.; Gobechiya, E. R.; Kabalov, Yu. K.; Pet'kov, V. I.

    2008-11-15

    New lithium-niobium and lithium-tantalum phosphates Li{sub 1/4}M{sub 7/4}(PO{sub 4}){sub 3}(M = Nb, Ta) are synthesized by the solid-phase method. The compounds prepared are characterized using electron microprobe analysis, X-ray powder diffraction, and IR spectroscopy. The crystal structure of the Li{sub 1/4}Ta{sub 7/4}(PO{sub 4}){sub 3} phosphate is determined from the X-ray powder diffraction data (the Rietveld method) and belongs to the framework type. The framework of the structure consists of TaO{sub 6} and LiO{sub 6} vertex-shared octahedra and PO{sub 4} tetrahedra. The isostructural phosphates Li{sub 1/4}M{sub 7/4}(PO{sub 4}){sub 3} crystallize in the trigonal crystal system (space group R3-barc, Z = 6) and belong to the NaZr{sub 2}(PO{sub 4}){sub 3} structure type.

  3. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  4. Quench tests of Nb3Al small racetrack magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  5. A study of the superconducting properties of YBa2Cu(9-x)Nb(x)O(y) thin films

    NASA Astrophysics Data System (ADS)

    Srinivas, S.; Bhatnagar, A. K.; Pinto, R.; Pai, S. P.; Apte, P. R.; Purandare, S. C.; Dsousa, C. P.

    1995-04-01

    Effect of Niobium substitution at the copper site in YBa2Cu3O(7-x) was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa2Cu(3-x)Nb(x)O(y) where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO3 (100) substrates. Films were characterized by XRD, resistivity, I-V and J(sub c) measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. the best J(sub c) realized for x - 0.025 Nb concentration was 1.8 x 10(exp 6) A/sq cm and for 0.05 Nb concentration it was 3.2 x 10(exp 6) A/sq cm at 77 K. However, degradation of the superconducting properties, with the increase of x is greater than or equal to 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x is greater than or equal to 0.4. The growth of impurity phase YBa2NbO6 for x = 0.1 and above of Nb concentration was noted from XRD (X-Ray Diffraction) patterns. However, the site occupancy of Nb could not be confirmed from these studies.

  6. A study of the superconducting properties of YBa2Cu(9-x)Nb(x)O(y) thin films

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Bhatnagar, A. K.; Pinto, R.; Pai, S. P.; Apte, P. R.; Purandare, S. C.; Dsousa, C. P.

    1995-01-01

    Effect of Niobium substitution at the copper site in YBa2Cu3O(7-x) was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa2Cu(3-x)Nb(x)O(y) where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO3 (100) substrates. Films were characterized by XRD, resistivity, I-V and J(sub c) measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. the best J(sub c) realized for x - 0.025 Nb concentration was 1.8 x 10(exp 6) A/sq cm and for 0.05 Nb concentration it was 3.2 x 10(exp 6) A/sq cm at 77 K. However, degradation of the superconducting properties, with the increase of x is greater than or equal to 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x is greater than or equal to 0.4. The growth of impurity phase YBa2NbO6 for x = 0.1 and above of Nb concentration was noted from XRD (X-Ray Diffraction) patterns. However, the site occupancy of Nb could not be confirmed from these studies.

  7. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.

    PubMed

    Wang, Limin; Cao, Bingfei; Kang, Wei; Hybertsen, Mark; Maeda, Kazuhiko; Domen, Kazunari; Khalifah, Peter G

    2013-08-19

    Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of Ag(x)Bi(5/6)Ta2O(6.25+x/2) with 0.5 < x < 1. The structure of Ag4/5Bi5/6Ta2O6.65 was determined from the refinement of time-of-flight neutron diffraction data and was found to be a cubic pyrochlore with a = 10.52268(2) Å and a volume of 1165.143(6) Å(3). The closely related compound, AgBiNb2O7, appears to have an integer stoichiometry and to adopt an orthorhombically distorted pyrochlore-related structure with a subcell of a = 7.50102(8) Å, b = 7.44739(7) Å, c = 10.5788(1) Å, and V = 590.93(2) Å(3). Density functional theory-based calculations predict this distortion should result from A-site cation ordering. Fits to UV-vis diffuse reflectance data suggest that AgBiNb2O7 and "AgBiTa2O7" are both visible-light-absorbing semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy

  8. Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb3Sn

    SciTech Connect

    Tarantini, C.; Sung, Z. -H.; Lee, P. J.; Ghosh, A. K.; Larbalestier, D. C.

    2016-01-25

    Nb3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on Hc2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher Tc onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a Tc-distribution extending from 18 down to 5-6 K (the lowest expected Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with Tc below ~12 K. The much narrower Tc distribution in the Ti-doped samples has a positive effect on their in-field Tc-distribution too, leading to an extrapolated μ0Hc2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.

  9. Bond dissociation energies of diatomic transition metal selenides: TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe

    NASA Astrophysics Data System (ADS)

    Sorensen, Jason J.; Persinger, Thomas D.; Sevy, Andrew; Franchina, Jordan A.; Johnson, Eric L.; Morse, Michael D.

    2016-12-01

    Predissociation thresholds have been observed in the resonant two-photon ionization spectra of TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe. It is argued that the sharp onset of predissociation corresponds to the bond dissociation energy in each of these molecules due to their high density of states as the ground separated atom limit is approached. The bond dissociation energies obtained are D0(TiSe) = 3.998(6) eV, D0(ZrSe) = 4.902(3) eV, D0(HfSe) = 5.154(4) eV, D0(VSe) = 3.884(3) eV, D0(NbSe) = 4.834(3) eV, and D0(TaSe) = 4.705(3) eV. Using these dissociation energies, the enthalpies of formation were found to be Δf,0 KHo(TiSe(g)) = 320.6 ± 16.8 kJ mol-1, Δf,0 KHo(ZrSe(g)) = 371.1 ± 8.5 kJ mol-1, Δf,0 KHo(HfSe(g)) = 356.1 ± 6.5 kJ mol-1, Δf,0 KHo(VSe(g)) = 372.9 ± 8.1 kJ mol-1, Δf,0 KHo(NbSe(g)) = 498.9 ± 8.1 kJ mol-1, and Δf,0 KHo(TaSe(g) ) = 562.9 ± 1.5 kJ mol-1. Comparisons are made to previous work, when available. Also reported are calculated ground state electronic configurations and terms, dipole moments, vibrational frequencies, bond lengths, and bond dissociation energies for each molecule. A strong correlation of the measured bond dissociation energy with the radial expectation value, ⟨r⟩nd, for the metal atom is found.

  10. Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6

    NASA Astrophysics Data System (ADS)

    Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.

    2017-04-01

    Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.

  11. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Lin, Chunfu; Lin, Shiwei; Chen, Yongjun; Li, Jianbao

    2016-10-01

    To explore advanced anode materials for lithium-ion batteries of electric vehicles, Cu2+/Nb5+ co-doped TiNb2O7 is studied. Cu0.02Ti0.94Nb2.04O7 is successfully fabricated using a facile solid-state reaction. X-ray diffraction analyses combined with Rietveld refinements demonstrate that the trace Cu2+/Nb5+ co-doping does not destroy the shear ReO3 crystal structure of TiNb2O7 but increases the lattice parameters and unit cell volume. Specific surface area tests and scanning electron microscopy images reveal a smaller average particle size in Cu0.02Ti0.94Nb2.04O7. Due to the increased unit cell volume and free 3d electrons in Cu2+ ions, the Li+-ion diffusion coefficient and electronic conductivity of Cu0.02Ti0.94Nb2.04O7 are respectively enhanced by 14.8 times and at least 220 times. Consequently, Cu0.02Ti0.94Nb2.04O7 exhibits advanced electrochemical properties in terms of specific capacity, rate capability and cyclic stability. At 0.1 C, it delivers a large first-cycle discharge/charge capacity of 346/315 mAh g-1. At 10 C, it still provides a large capacity of 182 mAh g-1 with tiny loss of only 1.2% over 1000 cycles. In sharp contrast, TiNb2O7 shows a small capacity of only 90 mAh g-1 and large loss of 59.8%. Therefore, Cu0.02Ti0.94Nb2.04O7 possesses great potential for the application in lithium-ion batteries for electric vehicles.

  12. Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites

    NASA Astrophysics Data System (ADS)

    Yang, L. X.; Zheng, S. J.; Zhou, Y. T.; Zhang, J.; Wang, Y. Q.; Jiang, C. B.; Mara, N. A.; Beyerlein, I. J.; Ma, X. L.

    2017-04-01

    Interface engineering is an important strategy for developing radiation tolerant materials. In prior work, bulk nanolayered composites fabricated by accumulative roll bonding (ARB) showed outstanding radiation resistance. However, the effects of layer thickness and radiation conditions on damage distributions and their effect on hardness have not been explored. Here, we use transmission electron microscopy (TEM) and nanoindentation to investigate the effects of radiation on the distribution of radiation-induced cavities and post-radiation hardness in ARB nanolayered Cu-Nb composites. We show that whether the cavities cross the interface depends on layer thickness and temperature, and that, remarkably, radiation could generate softening, not always hardening. We posit that the softening mainly results from the recovery of dislocations stored in the crystal after the bulk forming ARB processing due to He radiation and this phenomenon offsets radiation-induced hardening as layers become finer and temperatures rise.

  13. Ultrafast nonlinear optical studies of equiaxed CuNbO3 microstructures

    NASA Astrophysics Data System (ADS)

    Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.

    2017-08-01

    Diverse microstructures of monoclinic copper niobate (m-CuNbO3) were synthesized by solid-state reaction (900 °C, 3-12 h). FESEM data demonstrated that agglomerated clusters grew as an elongated grains which migrated to form web-shaped equiaxed structure and dissected to form individual equiaxed microstructure. With femtosecond laser excitation (800 nm, 150 fs), open aperture Z-scan data revealed the presence of two-photon absorption. The nonlinear refractive index (n2) toggled between positive and negative nonlinearity for different microstructures. Web-shaped equiaxed structure kindled both the nonlinear absorption (βeff = 2.0 × 10-12 m/W), nonlinear refraction (n2 = 3.16 × 10-17 m2/W) and a strong optical limiting action (onset limiting threshold of 22.24 μJ/cm2).

  14. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    NASA Astrophysics Data System (ADS)

    Butvinová, B.; Butvin, P.; Brzózka, K.; Kuzminski, M.; Maťko, I.; Švec, P., Sr.; Chromčíková, M.

    2017-02-01

    Si-poor Fe74Nb3Cu1Si8B14-xPx, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties.

  15. Temperature calibration for high-temperature MAS NMR to 913 K: 63Cu MAS NMR of CuBr and CuI, and 23Na MAS NMR of NaNbO3.

    PubMed

    Wu, Jingshi; Kim, Namjun; Stebbins, Jonathan F

    2011-09-01

    The solid-state phase transitions of CuBr, CuI and NaNbO(3) can be readily observed using (63)Cu and (23)Na high-temperature magic-angle spinning nuclear magnetic resonance spectroscopy. Temperature has large, linear effects on the peak maximum of (63)Cu in each solid phase of CuBr and CuI, and there is large jump in shift across each phase transition. The (23)Na MAS NMR peak intensities and the line widths in NaNbO(3) also clearly show its high-temperature transition to the cubic phase. These data can be used to calibrate high-temperature MAS NMR probes up to 913 K, which is two hundred degrees higher than the commonly-used temperature calibration based on the chemical shift of (207)Pb in Pb(NO(3))(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Role of the (Ta/Nb)O{sub x}/Al{sub 2}O{sub 3} interface on the flatband voltage shift for Al{sub 2}O{sub 3}/(Ta/Nb)O{sub x}/Al{sub 2}O{sub 3} multilayer charge trap capacitors

    SciTech Connect

    Nabatame, Toshihide; Ohi, Akihiko; Ito, Kazuhiro; Takahashi, Makoto; Chikyo, Toyohiro

    2015-01-15

    The authors studied the characteristics of Si/Al{sub 2}O{sub 3}/(Ta/Nb)O{sub x}/Al{sub 2}O{sub 3}/SiO{sub 2}/Pt charge trap capacitors fabricated by atomic layer deposition and postmetallization annealing at 400 °C. Al{sub 2}O{sub 3} and (Ta/Nb)O{sub x} films are amorphous and have negligible fixed charges. In program mode, a flatband voltage (V{sub fb}) drastically shifts toward the positive direction at a short program time of 10{sup −4} s. A large V{sub fb} shift of approximately 4 V arises after programming at 1 mC/cm{sup 2} because there is a large difference in the conduction band offset between the (Ta/Nb)O{sub x}-charge trapping layer (TNO-CTL) and the Al{sub 2}O{sub 3}-blocking layer (AlO-BL) (1.8 eV). In the retention mode, most of the trapped electrons in the TNO-CTL transfers across the Al{sub 2}O{sub 3}-tunneling layer (AlO-TL) rather than the AlO-BL. The thickness of the AlO-TL affects the V{sub fb} shift degradation behavior in the retention mode. The injected electrons are dominantly located at the TNO-CTL/ALO-BL interface, determined from the thickness dependence of the TNO-CTL on the V{sub fb} shift.

  17. Microwave dielectric properties of (A2+(1/3)B5+(2/3))0.5Ti0(0.5)O2 (A2+ = Zn, Mg, B5+ = Nb, Ta) ceramics.

    PubMed

    Kim, E S; Kang, D H

    2008-05-01

    Dielectric properties of (A(2+)(1/3)B(5+)(2/3))(0.5)Ti0(0.5)O(2) (A(2+) = Zn, Mg, B(5+) = Nb, Ta) ceramics were investigated at microwave frequencies. A single phase with tetragonal rutile structure was obtained through the entire compositions. Dielectric properties were strongly dependent on the structural characteristics. The specimens with B(5+) = Nb showed a larger dielectric constant than those with B(5+) = Ta due to the decrease of bond valence. Quality factors (Qf) of the specimens with B(5+) = Ta were larger than those with B(5+) = Nb. Temperature coefficient of the resonant frequencies (TCF) of (Zn(1/3)Nb(2/3) )0(0.5)Ti0(0.5)O(2) was larger than that of (Mg(1/3)Ta(2/3))0(0.5)Ti0(0.5)O(2). These results could be attributed to the changes of the temperature coefficient of dielectric constant and the degree of oxygen octahedral distortion.

  18. Diffusion of oxygen in amorphous Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, and Nb{sub 2}O{sub 5}

    SciTech Connect

    Nakamura, R. Tsukui, S.; Toda, T.; Tane, M.; Suzuki, T.; Ishimaru, M.; Nakajima, H.

    2014-07-21

    The self-diffusivity of oxygen in amorphous Al{sub 2}O{sub 3} (a-Al{sub 2}O{sub 3}), a-Ta{sub 2}O{sub 5}, and a-Nb{sub 2}O{sub 5} was investigated along with structural analysis in terms of pair distribution function (PDF). The low activation energy, ∼1.2 eV, for diffusion in the oxides suggests a single atomic jump of oxygen ions mediated via vacancy-like defects. However, the pre-exponential factor for a-Ta{sub 2}O{sub 5} and a-Nb{sub 2}O{sub 5} with lower bond energy was two orders of magnitude larger than that for a-Al{sub 2}O{sub 3} with higher bond energy. PDF analyses revealed that the short-range configuration in a-Ta{sub 2}O{sub 5} and a-Nb{sub 2}O{sub 5} was more broadly distributed than that in a-Al{sub 2}O{sub 3}. Due to the larger variety of atomic configurations of a-Ta{sub 2}O{sub 5} and a-Nb{sub 2}O{sub 5}, these oxides have a higher activation entropy for diffusion than a-Al{sub 2}O{sub 3}. The entropy term for diffusion associated with short-range structures was shown to be a dominant factor for diffusion in amorphous oxides.

  19. Chemical Coupling SERS Properties of Pyridine on Silver-Caged Metal Clusters M@Ag12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, Re+)

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhigang; Li, Zhengqiang; Zhang, Rui-Qin

    2016-10-01

    Using density functional theory, this work presents a comprehensive analysis of nonresonant surface-enhanced Raman scattering enhancement of pyridine on M@Ag12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, Re+). Computational results indicate that the chemical enhancement of pyridine on M@Ag12 is closely associated with the charge properties of silver-caged clusters. Pyridine on negative clusters exhibits the strongest chemical enhancement with a factor of about 103, while the chemical enhancement is only about 102 for pyridine on neutral clusters and 10 for pyridine on positive clusters. The polarizability analyses elucidate the nature of the chemical enhancement that delocalized electrons of negative adsorption systems occupy higher molecular orbitals than those of neutral and positive adsorption systems, which can lead to stronger nonresonant chemical enhancement.

  20. Electronic structure of the LiAA‧O6 (A = Nb, Ta, and A‧ = W, Mo) ceramics by modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Ali, Zahid; Khan, Imad; Rahman, Mazhar; Ahmad, Rashid; Ahmad, Iftikhar

    2016-08-01

    DFT is used to study various transition metal based ceramics LiAA‧O6 (A = Nb, Ta, and A‧ = W, Mo) in tetragonal phase with space group 421 m (No. 113). The calculated structural and geometrical parameters are found in closed agreement with the experiments. Electronic clouds explain the chemical bonding and reveal that Li atom occupy central position and form ionic bond. Other bonds in these compounds are significantly covalent due to the sharing of electrons between O and A/A‧. The electronic properties demonstrate that these compounds are wide bandgap semiconductors in the energy range of 2.18-2.60 eV. These bandgap energies confirm the suitability of these oxides in optoelectronic devices operating in the visible range of the electromagnetic spectrum.

  1. Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1979-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  2. Elevated-temperature flow strength, creep resistance and diffusion welding characteristics of Ti-gAl-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1977-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  3. First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in α-Fe (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Fors, Dan H. R.; Wahnström, Göran

    2011-06-01

    We perform a systematic ab initio study of the interface energetics of thin coherent rocksalt (nacl) structured MN and tetragonal CrMN films in bcc Fe (M = V, Nb, Ta), motivated by the vital role of MN and CrMN precipitates for the long-term creep resistance in 9%-12%Cr steels. The similarities and differences in the work of separations and the elastic costs for the coherency strains are identified, and the possibility for formation of coherent films are discussed. Our findings provide valuable information of the interface energetics, which in continuation can be combined with thermodynamical modeling to obtain a better understanding of the initial nucleation stage of the MN and CrMN precipitates, and their influence on the long-term microstructural evolution in 9%-12%Cr steels.

  4. Electronic, mechanical, phase transition, and thermo-physical properties of TMC (TM = V, Nb, and Ta): high pressure ab initio study

    NASA Astrophysics Data System (ADS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2015-12-01

    The structural, electronic, mechanical, phase transition, and thermo-physical properties of refractory carbides, viz. VC, NbC, and TaC have been computed in stable B1 and high pressure B2 phases by means of two different ab initio calculations using pseudo- and full-potential schemes. These materials have mixed covalent-, metallic-, and ionic-type bonding. The calculations of elastic constants show the mechanical stability of these materials in B1 phase only. The brittle nature and anisotropy is observed in these materials in B1 phase. Non-central forces are present in both the phases. Elastic wave velocities and Debye temperature have also been calculated. The present results on structural, phase transition, elastic, and other properties are in reasonably good agreement with the available experimental and theoretical data. The calculations in high pressure phase need experimental verification.

  5. Phase transformation and its effect on mechanical characteristics in warm-deformed Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Lee, Taekyung; Nakai, Masaaki; Niinomi, Mitsuo; Park, Chan Hee; Lee, Chong Soo

    2015-01-01

    Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy has been extensively studied as it is promising for use in biomedical applications. Despite its potential, the effects of warm plastic deformation on the alloy have not yet been revealed. This study investigated the differences in phase constitution of two warm-deformed TNTZ alloys and revealed relevant mechanisms with particular attention to martensitic transformation. The influence of phase constituents on mechanical characteristics was discussed as well. The TNTZ alloy deformed at 823 K possessed α, β, and ω phases as well as α″ martensite, and demonstrated a low Young's modulus and double-yielding phenomenon. In contrast, the alloy deformed at 723 K had no martensite but more ω phase, leading to increased strength, hardness, and Young's modulus. The absence of α″ martensite in the alloy deformed at 723 K was interpreted in light of β-stability of the parent phase and reduced M s temperature.

  6. Thermally induced A'-A site exchange in novel layered perovskites Ag2[Ca1.5M3O10] (M = Nb, Ta).

    PubMed

    Bhuvanesh, Nattamai S P; Woodward, Patrick M

    2002-12-04

    We have synthesized and characterized new layered perovskites Ag2[A1.5M3O10] (A = Ca, M = Nb, Ta), from their lithium analogues, by soft-chemical ion exchange. These oxides show topotactic irreversible thermally induced A'-A site exchange, resulting in Ag1.1Ca0.9[Ca0.6Ag0.9M3O10], conferred from our high-temperature X-ray and ionic conductivity studies. The latter phases are the first compounds where Ag+ ions reside in both A' and A sites in layered perovskites. The absence of similar phase transition for A = Sr suggests that these transitions strongly depend on the size, charge, and the coordination preference of A' and A cations. This result provides a new synthetic tool for modifying the occupation of the 12-coordinate A site of layered perovskites using soft chemical routes.

  7. Chemical Twinning of Salt and Metal in the Subnitridometalates Ba23 Na11 (MN4 )4 with M=V, Nb, Ta.

    PubMed

    Wörsching, Matthias; Tambornino, Frank; Datz, Stefan; Hoch, Constantin

    2016-08-26

    The subnitridometalates Ba23 Na11 (MN4 )4 (M=V, Nb, Ta) crystallize in a new structure type, which shows ionic ortho-nitridometalate anions and motifs from simple (inter)metallic packings: Na-centered [Na8 ] cubes as cutouts of the bcc structure of elemental Na and Na-centered [Ba10 Na2 ] icosahedra as found in Laves phases, for example. Single-crystal and powder X-ray diffraction studies in combination with quantum-chemical calculations of the electronic structure and Raman spectroscopy support the characterization of the subnitridometalates as "chemical twins". They consist of independent building units with locally prevalent ionic or metallic bonding in an overall metallic compound.

  8. Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1979-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  9. Atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, Ta investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Urban, Daniel F.; Elsässer, Christian

    2017-09-01

    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well are evaluated. The dependence thereof on the thermodynamic environment, i.e., the chemical conditions of a growing Z-phase precipitate, is studied, and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis by atom probe tomography or transmission electron microscopy to the theoretical modeling of the formation process of the Z phase from binary transition-metal nitrides.

  10. Chemical Coupling SERS Properties of Pyridine on Silver-Caged Metal Clusters M@Ag12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, Re+)

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhigang; Li, Zhengqiang; Zhang, Rui-Qin

    2017-07-01

    Using density functional theory, this work presents a comprehensive analysis of nonresonant surface-enhanced Raman scattering enhancement of pyridine on M@Ag12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, Re+). Computational results indicate that the chemical enhancement of pyridine on M@Ag12 is closely associated with the charge properties of silver-caged clusters. Pyridine on negative clusters exhibits the strongest chemical enhancement with a factor of about 103, while the chemical enhancement is only about 102 for pyridine on neutral clusters and 10 for pyridine on positive clusters. The polarizability analyses elucidate the nature of the chemical enhancement that delocalized electrons of negative adsorption systems occupy higher molecular orbitals than those of neutral and positive adsorption systems, which can lead to stronger nonresonant chemical enhancement.

  11. Coordination adducts of niobium(V) and tantalum(V) azide M(N₃)₅ (M=Nb, Ta) with nitrogen donor ligands and their self-ionization.

    PubMed

    Haiges, Ralf; Deokar, Piyush; Christe, Karl O

    2014-05-19

    Several new donor-acceptor adducts of niobium and tantalum pentaazide with N-donor ligands have been prepared from the pentafluorides by fluoride-azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2'-bipyridine and 1,10-phenanthroline, the self-ionization products [MF4(2,2'-bipy)2](+)[M(N3)6](-), [M(N3)4(2,2'-bipy)2](+)[M(N3)6](-) and [M(N3)4(1,10-phen)2](+)[M(N3)6](-) were obtained. With the donor ligands 3,3'-bipyridine and 4,4'-bipyridine the neutral pentaazide adducts (M(N3)5)2⋅L (M=Nb, Ta; L=3,3'-bipy, 4,4'-bipy) were formed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo) during the petrogenesis of mafic K-rich lavas: The Eastern Mediterranean case

    NASA Astrophysics Data System (ADS)

    Kirchenbaur, M.; Münker, C.

    2015-09-01

    In arc lavas, elements of the extended high field strength element group (HFSE; Nb, Ta, Zr, Hf, W, and Mo) are valuable tracers to unravel magma source processes. These elements can also help to identify residual mineral assemblages in subducting slabs and in the mantle. Most high-precision studies on HFSE behaviour to date only focused on intra-oceanic arc suites and data for mafic lavas of the K-rich series (medium-K, high-K and shoshonitic) are scarce. Arguably, K-rich series are the most incompatible element-rich end-members of subduction zone magmatism, and they often record sediment recycling into the mantle. Understanding HFSE fractionation in K-rich lavas can therefore provide important insight into the global HFSE budget. Here we present a comprehensive extended HFSE dataset obtained by isotope dilution on well-characterised K-rich lavas from the Eastern Mediterranean, also including subducting sediment samples drilled during DSDP Leg 13 and ODP Leg 160 South and West of Crete. The volcanic samples include mafic calc-alkaline lavas from the active Aegean Island arc (Santorini) and post-collisional Tertiary lavas from SE Bulgaria. The Santorini lavas record a hydrous sediment melt-mediated source overprint of a depleted mantle source by components from the subducting African plate. The Bulgarian lavas tap lithospheric mantle sources that were overprinted by fluid- and melt-like subduction components during Eocene subduction of the African Plate. The sediments in this study comprise silts/sands, marl oozes, limestones and clay-rich debris flows and approximate the bulk sediment subducted beneath the Hellenic arc. The marked enrichment of all HFSE in the lavas is controlled by the composition of the subducted sediments as shown by low 176Lu/177Hf (0.008630-0.02433) and Zr/Nb (11.3-29.4), combined with variable εHf (-3 to +11) and elevated W contents (up to 2.45 ppm) in the lavas. Nevertheless, the lavas display unfractionated ratios of Nb/Ta and Zr/Hf of 12

  13. Investigation into the evolution of the structure of K{sub 1-x}Li{sub x}Ta{sub 1-y}Nb{sub y}O{sub 3} single crystals under variations in temperature

    SciTech Connect

    Borisov, S. A.; Vakhrushev, S. B.; Koroleva, E. Yu.; Naberezhnov, A. A. Syrnikov, P. P.; Simkin, V. G.; Kutnjak, Z.; Egami, T.; Dmowski, W.; Piekarz, P.

    2007-05-15

    The evolution of the structure of K{sub 1-x}Li{sub x}Ta{sub 1-y}Nb{sub y}O{sub 3} single crystals with x = 0.001, y = 0.026, and 1900 ppm Cu (KLTN277) and with x = 0.0014 and y = 0.024 (KLTN123), which exhibit an extremely high permittivity (up to 4 x 10{sup 5} in the quasi-static regime for the KLTN277 crystal), is investigated in the range from room temperature to 20 K. It is demonstrated that, upon cooling to the lowest temperatures, both crystals retain their cubic structure, but the lattice parameters pass through a minimum at the temperature of the observed anomalies of the dielectric response ({approx}50 K). In the neutron diffraction pattern of the KLTN123 sample, satellites appear in the vicinity of the (hhh) reflections at temperatures below {approx}50 K. These satellites can be associated with the nucleation of the rhombohedral phase.

  14. Piezoelectric properties of Li- and Ta-modified (K{sub 0.5}Na{sub 0.5})NbO{sub 3} ceramics

    SciTech Connect

    Hollenstein, Evelyn; Davis, Matthew; Damjanovic, Dragan; Setter, Nava

    2005-10-31

    Lead-free, potassium sodium niobate piezoelectric ceramics substituted with lithium (K{sub 0.5-x/2},Na{sub 0.5-x/2},Li{sub x})NbO{sub 3} or lithium and tantalum (K{sub 0.5-x/2},Na{sub 0.5-x/2},Li{sub x})(Nb{sub 1-y},Ta{sub y})O{sub 3} have been synthesized by traditional solid state sintering. The compositions chosen are among those recently reported to show high piezoelectric properties [Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature (London) 42, 84 (2004); Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004); Mater. Lett. 59, 241 (2005)]. We show that high densities and piezoelectric properties can be obtained for all compositions by pressureless sintering in air, without cold isostatic pressing, and without any sintering aid or special powder treatment. Resonance and converse piezoelectric (strain-field) measurements show a thickness coupling coefficient k{sub t} of 53% and converse piezoelectric coefficient d{sub 33} around 200 pm/V for the Li-substituted ceramics, and a k{sub t} of 52% and d{sub 33} over 300 pm/V for the Li- and Ta-modified samples. The unipolar strain-field hysteresis is small and comparable to that measured under similar conditions in hard Pb(Zr,Ti)O{sub 3}. A peak of piezoelectric properties can be noted close to the morphotropic phase boundary. These ceramics look very promising as possible, practicable, lead-free replacements for lead zirconate titanate.

  15. Interface Roughness in Copper-Tantalum Wire and NB3SN Superconductor Composites

    NASA Astrophysics Data System (ADS)

    Hartwig, K. T.; Balachandran, S.; Mathaudhu, S. N.; Barber, R. E.; Pyon, T.; Griffin, R. B.

    2008-03-01

    Poor deformation behavior of tantalum (Ta) sheet used for tin diffusion barriers in Nb3Sn composite superconductors can lead to Ta layer rupture and even strand fracture during wire drawing. These problems arise because the Ta layer deforms nonuniformly as it is reduced in thickness. The origin of the problem resides in the microstructure of the Ta and the co-deformation mechanics of relatively strong body centered cubic Ta with surrounding weaker and more ductile face centered cubic Cu. In an attempt to remedy this problem, 25 mm square bars of Ta were processed by multi-axis severe plastic deformation (SPD) via equal channel angular extrusion (ECAE), then rolled to sheet and recrystallized. The SPD processing was done to refine the microstructure and reduce nonuniformities in grain size and texture. Measurements of the Cu-Ta interface roughness in experimental Cu-Ta composite wires were made and compared with the interface roughness seen in commercial Ta diffusion barrier layers. Results show that Ta sheet made from SPD processed bulk Ta co-deforms well with Cu and leads to less interface roughening than is developed in commercial Ta sheet material fabricated into superconductor wire.

  16. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian; Jin, Lei

    2017-03-01

    It has been shown that enhanced electric field intensity (0-4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·αE/0.8)2. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  17. Synthesis and characterization of K(Ta(x)Nb(1_x))O3 particles by high temperature mixing method under hydrothermal and solvothermal conditions.

    PubMed

    Gu, Honghui; Zhu, Kongjun; Qiu, Jinhao; Ji, Hongli; Cao, Yang; Jin, Jiamei

    2013-02-01

    KTa(x)Nb(1_x)O3 (KTN) particles with an orthorhombic perovskite structure were synthesized via a high temperature mixing method (HTMM) under hydrothermal and solvothermal conditions. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microcopy (HRTEM). The influences of alkaline concentration and Ta doping amounts on the phase structure and morphology of the obtained powders were investigated. The results showed that KTN powders could be solvothermally prepared when the KOH concentration is as low as 0.5 M. In comparison with the hydrothermal process, supercritical isopropanol plays an important role in synthesizing KTN particles under milder conditions. The KTa(0.4)Nb(0.6)O3 particles solvothermally synthesized in isopropanol are made of well crystallized and single crystalline particles with a size of about 100-200 nm. Room temperature PL studies excited at different wavelengths reveal five emission bands centered at about 421 nm, 446 nm, 468 nm, 488 nm, and 498 nm, respectively. The supercritical process proposed here provides a new potential route for synthesizing other perovskite-type materials.

  18. Electrical Properties of Textured (KNa)0.44Li0.06Nb0.84Sb0.06Ta0.1O3 Thick Films

    NASA Astrophysics Data System (ADS)

    Fu, Fang; Zhai, Jiwei; Xu, Zhengkui; Bai, Wangfeng; Kong, Lingbing

    2012-11-01

    Lead-free (KNa)0.44Li0.06Nb0.84Sb0.06Ta0.1O3 textured thick films with 25 μm thickness were fabricated by the reactive templated grain growth method. The influence of LiSbO3 substitution on the degree of grain orientation was investigated. The addition of LiSbO3 improved the dielectric properties of the K0.5Na0.5NbO3 potassium sodium niobate (KNN) textured thick films. Leakage current behavior of the thick film was also reduced due to the LiSbO3 doping, which is explicable based on the space-charge-limited current mechanism. It was also found that the problem of interface effect was alleviated due to the presence of LiSbO3. Piezoelectric properties of thick film were improved dramatically owing to the co-effect of texturing and LiSbO3 doping, with d {33/*} being sharply increased from 38 pm/V to 173 pm/V.

  19. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Hollenstein, Evelyn; Davis, Matthew; Damjanovic, Dragan; Setter, Nava

    2005-10-01

    Lead-free, potassium sodium niobate piezoelectric ceramics substituted with lithium (K0.5-x/2,Na0.5-x/2,Lix)NbO3 or lithium and tantalum (K0.5-x/2,Na0.5-x/2,Lix)(Nb1-y,Tay)O3 have been synthesized by traditional solid state sintering. The compositions chosen are among those recently reported to show high piezoelectric properties [Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature (London) 42, 84 (2004); Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004); Mater. Lett. 59, 241 (2005)]. We show that high densities and piezoelectric properties can be obtained for all compositions by pressureless sintering in air, without cold isostatic pressing, and without any sintering aid or special powder treatment. Resonance and converse piezoelectric (strain-field) measurements show a thickness coupling coefficient kt of 53% and converse piezoelectric coefficient d33 around 200pm/V for the Li-substituted ceramics, and a kt of 52% and d33 over 300pm/V for the Li- and Ta-modified samples. The unipolar strain-field hysteresis is small and comparable to that measured under similar conditions in hard Pb(Zr ,Ti)O3. A peak of piezoelectric properties can be noted close to the morphotropic phase boundary. These ceramics look very promising as possible, practicable, lead-free replacements for lead zirconate titanate.

  20. Computational study on the molecular structures and photoelectron spectra of bimetallic oxide clusters MWO9-/0 (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jie; Zhang, Chang-Fu; Zhang, Xian-Hui; Zhang, Yong-Fan; Huang, Xin

    2013-05-01

    Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MWO9-/0 (M = V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaWO9- cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the WO9+ cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity.

  1. Computational study on the molecular structures and photoelectron spectra of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta).

    PubMed

    Chen, Wen-Jie; Zhang, Chang-Fu; Zhang, Xian-Hui; Zhang, Yong-Fan; Huang, Xin

    2013-05-15

    Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaW2O9(-) cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the W3O9(+) cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Meso-Scale Modeling the Orientation and Interface Stability of Cu/Nb-Layered Composites by Rolling

    NASA Astrophysics Data System (ADS)

    Bronkhorst, C. A.; Mayeur, J. R.; Beyerlein, I. J.; Mourad, H. M.; Hansen, B. L.; Mara, N. A.; Carpenter, J. S.; McCabe, R. J.; Sintay, S. D.

    2013-03-01

    Metallic-based multilayered nanocomposites are recognized for their increased plastic flow resistance and indentation hardness, increased ductility, improved radiation damage resistance, improved electrical and magnetic properties, and enhanced fatigue failure resistance compared to conventional metallic materials. One of the ways in which these classes of materials are manufactured is through accumulated roll bonding where the material is produced by several rolling and heat-treatment steps during which the layer thickness is reduced through severe plastic deformation. A single rolling pass of the accumulated roll bonding process in which a Cu/Nb-layered composite with an initial average layer thickness of 24 μm subjected to a 50% height reduction is modeled. A single-crystal model based upon thermally activated dislocation motion is used. Nanohardness tests for both the Cu and Nb layers are used to help initialize the model for each of the two materials. Electron backscatter diffraction (EBSD) data of the heat-treated material is used to characterize the initial state of the composite and to produce 40 combined morphological and crystallographic numerical model realizations of the material. The results suggest very good agreement between the predicted and experimental textures for both the materials. Highly oriented microstructure develops during severe plastic rolling deformation of Cu/Nb nanocomposites. The deformation textures significantly deviate from those expected when rolling Cu or Nb alone, and the Cu/Nb interfaces do not correspond to those with the lowest possible formation energies. We study the interfacial stability of specific Cu/Nb bicrystal configurations under rolling conditions using a finite-element crystal plasticity model. Specifically, we examine how slip activity and lattice reorientation are affected by the kinematic constraint imposed by the interface. Our results show that for certain configurations the slip activity and lattice

  3. Effects of K4CuNb8O23 on phase structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chu, Ruiqing; Xu, Zhijun; Lv, Huiqin; Wu, Liming; Yang, Yizheng; Li, Guorong

    2012-07-01

    Dense K4CuNb8O23 (KCN) modified 0.948K0.5Na0.5NbO3-0.052LiSbO3 (KNNLS) ceramics were prepared by conventional solid state reaction method. The effect of addition of K4CuNb8O23 liquid phase sintering aid on the phase structure and electrical properties of ceramics was studied. Results showed that K4CuNb8O23 induced a perovskite structure transition from coexistence of orthorhombic and tetragonal phases to orthorhombic symmetry. The addition of K4CuNb8O23 promoted the sintering of KNNLS ceramics. In particular, the K4CuNb8O23 addition to the KNNLS greatly improved the mechanical quality factor Qm value. The ceramics with x=0.8 sintered at 1090 °C possess the optimum properties (Qm=192, d33=135 pC/N, tan δ=0.024 and kp=0.357). These results indicate that the ceramic is a promising candidate for lead-free high-power piezoelectric devices, such as piezoelectric actuators, transformers and filter materials.

  4. Photovoltaic effect in YBa2Cu3O7-δ/Nb-doped SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Hao, F. X.; Zhang, C.; Liu, X.; Yin, Y. W.; Sun, Y. Z.; Li, X. G.

    2016-09-01

    The photovoltaic properties of YBa2Cu3O7-δ/Nb-doped SrTiO3 (SNTO) heterostructures were investigated systematically under laser irradiation of different wavelengths from 365 nm to 640 nm. A clear photovoltaic effect was observed, and the photovoltage Voc ranged from 0.1 V to 0.9 V depending on the wavelength. The Voc appeared under laser illumination with a photon energy of 2.4 eV, far below the band gap (3.2 eV) of Nb-doped SrTiO3. The temperature dependencies of the Voc and short-current density showed kinks near the structural phase transition of the Nb-doped SrTiO3. Our findings are helpful for understanding the photovoltaic effect in transition-metal oxide based heterojunctions and designing such photovoltaic devices.

  5. Complex permeability spectra of PbO and Ta2O5 added nanocrystalline MgCuZn ferrites

    NASA Astrophysics Data System (ADS)

    V, Seetha Rama Raju

    2015-05-01

    PbO and Ta2O5 added MgCuZn ferrites are prepared by the Microwave-Hydrothermal (M-H) processing. The nanocrystalline ferrites are sintered to a temperature of 900 °C/4 h. SEM pictures reveal that, the addition of PbO causes a small amount of grain growth, whereas the addition of Ta2O5 causes a fine-grained microstructure. The complex permeability spectra (μ*=μ‧-iμ″) of the prepared samples were measured in the frequency range from 1 MHz to 1.8 GHz, the μ* spectra are analyzed into two magnetization processes with focus on the particle size of ferrite samples. In addition to the spin rotation relaxation in 130-200 MHz, it is initially identified the contribution from reversible domain wall bowing rising at 6-40 MHz. The magnetic state of the ferrite is also influenced by the addition of PbO and Ta2O5. The spin rotation mechanism of the present ferrites is enhanced by the preparation of nanocrystalline samples.

  6. Crystallographic and dielectric properties of flux grown PbB1/2'B1/2″O (B'B″: InNb, InTa, YbNb, YbTa and MgW) single crystals

    NASA Astrophysics Data System (ADS)

    Kania, Antoni

    2008-05-01

    Single crystals of PbIn 1/2Nb 1/2O 3 (PIN), PbIn 1/2Ta 1/2O 3 (PIT), PbYb 1/2Nb 1/2O 3 (PYN), PbYb 1/2Ta 1/2O 3 (PYT) and PbMg 1/2W 1/2O 3 (PMW) have been grown by the flux method. The PbO-based solvents were used. Transparent, light yellow and arrow like shaped PIN and PIT crystals of the perovskite structure were obtained. Small amounts of red and of octahedron habit PIN and PIT crystals of the pyrochlore type were simultaneously grown. In the case of PYN, PYT and PMW only the crystals of the perovskite structure have been grown. The transparent and brown PYN and PYT crystals of octahedron habit were obtained. The transparent, light yellow and of octahedron or truncated octahedron shape PMW crystals were grown. The crystals were characterised by X-ray and dielectric studies. They showed that as-grown PIN crystals are nearly disordered, exhibit the rhombohedral distortion of the pseudo-perovskite unit cell and reveal relaxor behaviour. The partially ordered PIT crystals show monoclinic distortion and undergo antiferroelectric-paraelectric phase transition. The PYN, PYT and PMW single crystals, characterised by chemical order in the B'/B″ ion sublattice, exhibit orthorhombic symmetry and undergo the first-order antiferroelectric-paraelectric phase transitions.

  7. Properties of the Ti40Zr10Cu36Pd14 BMG Modified by Sn and Nb Additions

    NASA Astrophysics Data System (ADS)

    Sypien, Anna; Stoica, Mihail; Czeppe, Tomasz

    2016-03-01

    The results of investigation of the influence of additions of 2 and 3 at.% of Sn and simultaneously of Sn and 3 at.% Nb on microstructure and properties of the bulk metallic glasses of composition (Ti40Cu36- x Zr10Pd14Sn x )100- y Nb y are reported. It was found that the additions of Sn increased the temperatures of glass transition (T g), primary crystallization (T x ), melting, and liquidus as well as supercooled liquid range (Δ T) and glass forming ability (GFA). The nanohardness and elastic modulus decreased in alloys with 2 and 3 at.% Sn additions, revealing similar values. The 3 at.% Nb addition to the Sn-containing amorphous phase decreased as well all the T g, T x , T L, and T m temperatures as Δ T and GFA; however, relatively larger values of this parameters in alloys containing larger Sn content were preserved. In difference to the previously published results, in the case of the amorphous alloys containing small Nb and Sn additions, a noticeable amount of the quenched-in crystalline phases was not confirmed, at least of the micrometric sizes. In the case of the alloys containing Sn or both Sn and Nb, two slightly different amorphous phase compositions were detected, suggesting separation in the liquid phase. Phase composition of the alloys determined after amorphous phase crystallization was similar for all compositions. The phases Cu8Zr3, CuTiZr, and Pd3Zr were mainly identified in the proportions dependent on the alloy compositions.

  8. Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Yeniyol, Sinem; Oktay, Enver

    2016-04-01

    In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young's modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.

  9. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  10. Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO{sub 3} and LiTaO{sub 3} crystals

    SciTech Connect

    Shur, V. Ya.; Zelenovskiy, P. S.; Nebogatikov, M. S.; Alikin, D. O.; Sarmanova, M. F.; Ievlev, A. V.; Mingaliev, E. A.; Kuznetsov, D. K.

    2011-09-01

    Piezoelectric force microscopy (PFM) and Raman confocal microscopy have been used for studying the nanodomain structures in congruent LiNbO{sub 3} and LiTaO{sub 3} crystals. The high-resolution nanodomain images at the surface were observed via PFM. Raman confocal microscopy has been used for the visualization of the nanodomain structures in the bulk via layer-by-layer scanning at various depths. It has been shown experimentally that the nanodomain images obtained at different depths correspond to domain images at the polar surface obtained at different moments: the deeper the nanodomain, the earlier the moment. Such a correlation was applied for the reconstruction of the evolution of the domain structures with charged domain walls. The studied domain structures were obtained in highly non-equilibrium switching conditions realized in LiNbO{sub 3} and LiTaO{sub 3} via pulse laser irradiation and the electric field poling of LiNbO{sub 3}, with the surface layer modified by ion implantation. The revealed main stages of the domain structure evolution allow the authors to demonstrate that all geometrically different nanodomain structures observed in LiNbO{sub 3} and LiTaO{sub 3} appeared as a result of discrete switching.

  11. Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Salazar, D.; Martín-Cid, A.; Madugundo, R.; Garitaonandia, J. S.; Barandiaran, J. M.; Hadjipanayis, G. C.

    2017-01-01

    In this work, we present a complete study of the influence of Nb and Cu addition on the crystallization behavior of Nd-lean Nd-Fe-B melt-spun alloys. Alloys with compositions Nd10-x-y Fe84B6Nb x Cu y (x  =  1, y  =  0 and x  =  0.5, y  =  0.5) were melt-spun at different wheel speeds (15-40 m s-1) to obtain samples in amorphous, highly disordered and nanocrystalline structures. The crystallization process, induced by different heat treatments, was studied by means of differential thermal analysis and x-ray powder thermodiffraction. Magnetic properties of as-made and heat-treated ribbons were measured by magnetometry. The as-made amorphous samples showed a crystallization to the 2:14:1 hard magnetic phase at T 1 ~ 350 °C. Doping with Nb results in an increase of T 1, and addition of Cu lowers T 1. This behavior is explained in terms of an inhibition of grain growth by Nb and a nucleation enhancement by Cu additions. During the crystallization process, a secondary phase (identified as a bcc-Fe-rich phase) is formed. The amount of such a phase increases with the annealing temperature. Coercivity increases upon annealing reaching maxima at 700-750 °C. This can be explained in terms of competition between the two phases formed: the 2:14:1 hard phase and the soft bcc-Fe-rich phase. The highest coercivity of the Nd-lean samples is observed when the microstructure is appropriate and both phases are exchange-coupled.

  12. Transport and thermoelectric properties of Sr{sub 3}(Ti{sub 0.95}R{sub 0.05}){sub 2}O{sub 7} (R = Ta, Nb, W) oxides

    SciTech Connect

    Sun, R. R.; Qin, X. Y.; Li, L. L.; Li, D.; Wang, N. N.; Zhang, J.; Wang, Q. Q.

    2012-12-15

    The Sr{sub 3}(Ti{sub 0.95}R{sub 0.05}){sub 2}O{sub 7} (R = Ta, Nb, W) polycrystalline compounds were fabricated, and their transport and thermoelectric properties were investigated. The results indicate that at T > 300 K electrical resistivity {rho} for all the doped compounds increases monotonically with temperature, and basically can be described by a relation {rho}{proportional_to}T{sup M} at T > {approx}650 K, with M = 1.39, 1.66, and 1.77 for R = Ta, Nb, and W, respectively, implying that at the high temperatures the acoustic phonon scattering dominates the scattering process. Although the resistivity {rho} of Sr{sub 3}(Ti{sub 0.95}Ta{sub 0.05}){sub 2}O{sub 7} exhibits a metallic-like behavior at the temperature as low as 5 K, a transition from metallic state (d{rho}/dT > 0) to semiconductor-like state (d{rho}/dT < 0) was observed at a critical low temperature {approx}41 K and {approx}79 K for R = Nb and W, respectively. At T < {approx}22 K, {approx}57 K, and {approx}80 K, a relation of {sigma}{proportional_to}T{sup 1/2} (here conductivity {sigma} = 1/{rho}) holds for the doped compounds with R = Nb, Ta, and W, respectively, suggesting that at the low temperatures the main transport mechanism is electron-electron interaction due to the presence of disorder induced by the dopants. The thermoelectric figure of merit (ZT) for Ta-doped compound increases more steeply with increasing temperature among the three compounds and reaches 0.066 at 1000 K.

  13. Preparation of soft magnetic films of nanocrystalline Fe-Cu-Nb-Si-B alloy by facing targets sputtering

    NASA Astrophysics Data System (ADS)

    Naoe, Masahiko; Matsumiya, Hiroaki; Ichihara, Takayuki; Nakagawa, Shigeki

    1998-06-01

    Soft magnetic thin films of nanocrystalline Fe-Cu-Nb-Si-B alloy were deposited using the facing targets sputtering (FTS) apparatus. It was found that the Fe-Cu-Nb-Si-B single layers thinner than 100 nm revealed good soft magnetic properties, of which the saturation magnetization 4πMs and the relative permeability μr were 11.3 kG and 500, respectively. However, when these films were thicker than 100 nm, their soft magnetic properties degraded due to the perpendicular magnetic anisotropy. On the other hand, the soft magnetic properties of the post-annealed films were improved owing to the release of stress in the films. Especially, μr of the post-annealed films with thickness of 120 nm increased drastically up to around 6200. Furthermore, Fe-Cu-Nb-Si-B/Al multilayers revealed superior soft magnetic properties due to the magnetostatic coupling between the two ferromagnetic layers. These multilayers post-annealed at 300 °C revealed softer magnetic properties than single layers. They exhibited very low coercivity Hc of 0.63 Oe, large 4πMs of 13.2 kG and high μr of 4600.

  14. The in vitro and in vivo performance of a strontium-containing coating on the low-modulus Ti35Nb2Ta3Zr alloy formed by micro-arc oxidation.

    PubMed

    Liu, Wei; Cheng, Mengqi; Wahafu, Tuerhongjiang; Zhao, Yaochao; Qin, Hui; Wang, Jiaxing; Zhang, Xianlong; Wang, Liqiang

    2015-07-01

    The β-titanium alloy is thought to be a promising alloy using as orthopedic or dental implants owing to its characteristics, which contains low elastic modulus, high corrosion resistance and well biocompatibility. Our previous study has reported that a new β-titanium alloy Ti35Nb2Ta3Zr showed low modulus close to human bone, equal tissue compatibility to a traditional implant alloy Ti6Al4V. In this study, micro-arc oxidation (MAO) was applied on the Ti35Nb2Ta3Zr alloy to enhance its surface characteristics and biocompatibility and osseointegration ability. Two different coatings were formed, TiO2 doped with calcium-phosphate coating (Ca-P) and calcium-phosphate-strontium coating (Ca-P-Sr). Then we evaluated the effects of the MAO coatings on the Ti35Nb2Ta3Zr alloy through in vitro and in vivo tests. As to the characteristics of the coatings, the morphology, chemical composition, surface roughness and contact angle of MAO coatings were tested by scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, and video contact-angle measurement system respectively. Besides, we performed MTT assay, ALP test and cell morphology-adhesion test on materials to evaluate the MAOed coating materials' biocompatibility in vitro. The in vivo experiment was performed through rabbit model. Alloys were implanted into rabbits' femur shafts, then we performed micro-CT, histological and sequential fluorescent labeling analysis to evaluate implants' osseointegration ability in vivo. Finally, the Ca-P specimens and Ca-P-Sr specimens exhibited a significant enhancement in surface roughness, hydrophilicity, cell proliferation, cell adhesion. More new bone was found around the Ca-P-Sr coated alloy than Ca-P coated alloy and Ti35Nb2Ta3Zr alloy. In conclusion, the MAO treatment improved in vitro and in vivo performance of Ti35Nb2Ta3Zr alloy. The Ca-P-Sr coating may be a promising modified surface formed by MAO for the novel β-titanium alloy Ti35Nb2Ta3Zr.

  15. Effect of crystal structure on microwave dielectric properties of Li{sub 2}SrTa{sub 2(1−x)}Nb{sub 2x}O{sub 7} compounds

    SciTech Connect

    Singh, Santosh Kumar; Murthy, V.R.K

    2015-10-15

    Highlights: • Synthesis of orthorhombic Li{sub 2}SrTa{sub 2(1−x)}Nb{sub 2x}O{sub 7} compounds • The mechanism for enhancement of quality factor by bond strength. • Deviation of τ{sub ƒ} with octahedral distortion of the compound. - Abstract: The Li{sub 2}SrTa{sub 2(1−x)}Nb{sub 2x}O{sub 7} (x = 0–1.0) with layered-perovskite type structure were synthesized by conventional solid state reaction method. The X-ray diffraction reveals that all these compounds possess orthorhombic crystal structure with Cmcm space group. B-site bond strength and B-site octahedral distortion of these compounds were calculated using bond lengths obtained from Rietveld refinement. The dielectric constant (ϵ{sub r}) decreased from 24.2 to 15.2 with increase in the Nb concentration, which was due to decrease in dielectric polarizability of compound. The non-monotonic variation in quality factor (Q × ƒ) was observed with Nb concentration. This variation of quality factor was correlated with the B-site bond strength. The B-site octahedral distortion was found to increase with Nb content, which was the major factor for increase in temperature coefficient of resonant frequency (τ{sub f}) of these compounds.

  16. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Blue, B. E.; Robinson, A. C.; Mattsson, T. R.

    2016-01-01

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ˜1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

  17. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE PAGES

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  18. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    SciTech Connect

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Blue, B. E.; Robinson, A. C.; Mattsson, T. R.

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

  19. Synthesis, structure and electrical properties of Cu{sub 3.21}Ti{sub 1.16}Nb{sub 2.63}O{sub 12} and the CuO{sub x}-TiO{sub 2}-Nb{sub 2}O{sub 5} pseudoternary phase diagram

    SciTech Connect

    Reeves-McLaren, Nik; Ferrarelli, Matthew C.; Tung, Yuan-Wei; Sinclair, Derek C.; West, Anthony R.

    2011-07-15

    Subsolidus phase relations in the CuO{sub x}-TiO{sub 2}-Nb{sub 2}O{sub 5} system were determined at 935 deg. C. The phase diagram contains one new phase, Cu{sub 3.21}Ti{sub 1.16}Nb{sub 2.63}O{sub 12} (CTNO) and one rutile-structured solid solution series, Ti{sub 1-3x}Cu{sub x}Nb{sub 2x}O{sub 2}: 0Cu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with square planar Cu{sup 2+} but with A site vacancies and a disordered mixture of Cu{sup +}, Ti{sup 4+} and Nb{sup 5+} on the octahedral sites. It is a modest semiconductor with relative permittivity {approx}63 and displays non-Arrhenius conductivity behavior that is essentially temperature-independent at the lowest temperatures. - Graphical abstract: The CuO{sub x}-TiO{sub 2}-Nb{sub 2}O{sub 5} phase diagram was determined at 935 deg. C and contains one new phase, Cu{sub 3.21}Ti{sub 1.16}Nb{sub 2.63}O{sub 12}, pictured, a modest semiconductor with {epsilon}{sub r}{approx}63, and one rutile-structured solid solution series, Ti{sub 1-3x}Cu{sub x}Nb{sub 2x}O{sub 2}. Highlights: > Subsolidus phase relations in the CuO{sub x}-TiO{sub 2}-Nb{sub 2}O{sub 5} system were determined at 935 deg. C. > A new phase, Cu{sub 3.21}Ti{sub 1.16}Nb{sub 2.63}O{sub 12} (CTNO), was found with a CaCu{sub 3}Ti{sub 4}O{sub 12}-like crystal structure. > We discovered one rutile-structured solid solution series, Ti{sub 1-3x}Cu{sub x}Nb{sub 2x}O{sub 2}: 0 CTNO has square planar Cu{sup 2+}, A site vacancies and Cu{sup +}, Ti{sup 4+} and Nb{sup 5+} disordered on octahedral sites. > CTNO is a modest semiconductor with relative permittivity {approx}63.

  20. Transmission electron microscopy study of the failure mechanism of the diffusion barriers (TiN and TaN) between Al and Cu

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun

    2017-01-01

    Failure mechanisms of transition metal nitride thin film diffusion barriers, such as TiN and TaN (10 nm in thickness), between Al and Cu were investigated by transmission electron microscopy (TEM), scanning transmission electron microscopy, and energy dispersive spectroscopy. After annealing at 450 °C during 30 min, the TiN diffusion barrier initially failed due to an interfacial reaction between TiN and Al forming TiAl3. When the annealing temperature was increased to 500 °C, Cu-Al intermetallic compounds were formed by the interdiffusion of Al and Cu through the diffusion barrier. In the case of the Al/TaN/Cu structure, no interfacial reaction products were observed after annealing up to 550 °C. On the other hand, it failed after annealing at 550 °C due to the inter-diffusion of Cu and Al through the diffusion barrier. TEM also identified Cu to be the rapid diffusing species in both systems. The results are discussed based on the thermodynamic stability of the interface predicted by the ternary phase diagram and the diffusion kinetics of Al and Cu through the diffusion barrier. The results show that both the thermodynamic stability of the diffusion barrier between Al and Cu and the diffusion kinetics of Al and Cu through the diffusion barrier, which are dependent on the microstructure of the diffusion barrier, should be considered carefully when selecting diffusion barrier materials between Al and Cu.

  1. Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites

    DOE PAGES

    Nizolek, T. J.; Begley, M. R.; McCabe, R. J.; ...

    2017-07-01

    Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not consider the often rapid and unstable process of kink band propagation. In this paper, we take advantage of stable kink band formation in Cu-Nb nanolaminates to quantitatively map the local strain fields surrounding a propagating kink band during uniaxial compression. Kink bands are observed to initiate at specimen edges, propagate across the sample during a rising globalmore » stress, and induce extended strain fields in the non-kinked material surrounding the propagating kink band. Finally, it is proposed that these stress/strain fields significantly contribute to the total energy dissipated during kinking and, analogous to crack tip stress/strain fields, influence the direction of kink propagation and therefore the kink band inclination angle.« less

  2. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  3. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-04-01

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  4. The effect of boron addition on microstructure and mechanical properties of biomedical Ti35Nb6Ta alloy

    SciTech Connect

    Málek, Jaroslav; Hnilica, František; Veselý, Jaroslav; Smola, Bohumil; Březina, Vítězslav

    2014-10-15

    The beta-titanium alloys are promising materials for bioapplications but their processing via melting is difficult. Coarse grains have been observed in as-cast specimens. Subsequent thermo-mechanical processing seems to be necessary in order to obtain fine-grained microstructure with better mechanical properties. The grain size can be decreased significantly by addition of small boron amount. In this work Ti–35Nb–6Ta alloy with various B additions (0, 0.05, 0.1, 0.3 and 0.5 wt.%) has been studied. Even the smallest amount of B leads to significant grain refinement in Ti–35Nb–6Ta alloy (from 1300 to about 350 μm). Slight grain refinement has been observed also after hot forging and solution treatment. TiB particles emerged in specimens due to B addition. These particles contribute to changes in mechanical properties not only in hot forged and solution treated specimens (hardness increase from 140 to 180 HV10), but also in cold swaged specimens (hardness from 230 to 250 HV10, tensile strength from 800 to 920 MPa). The hardness values can be increased up to 370 HV10 during aging at 400 °C (specimen with 0.5 wt.% B). It has been observed that specimens with low boron addition 0.05 wt.% possess no cytotoxicity. On the other hand in specimens with 0.1 wt.% B or more slight adverse effect on cytotoxicity has been observed. - Highlights: • The influence of boron on microstructure and mechanical properties has been studied. • Beta-transus temperature has been determined. • Cytotoxicity depending on boron content has been evaluated. • Possibility of final heat treatment has been determined.

  5. Cross sections of X-ray production induced by C and Si ions with energies up to 1 MeV/u on Ti, Fe, Zn, Nb, Ru and Ta

    NASA Astrophysics Data System (ADS)

    Prieto, José Emilio; Zucchiatti, Alessandro; Galán, Patricia; Prieto, Pilar

    2017-09-01

    X-ray production differential cross sections induced by C and Si ions with energies from 1 MeV/u down to 0.25 MeV/u, produced by the CMAM 5 MV tandem accelerator, have been measured for thin targets of Ti, Fe, Zn, Nb, Ru and Ta in a direct way. X-rays have been detected by a fully characterized silicon drift diode and beam currents have been measured by a system of two Faraday cups. Measured cross sections agree in general with previously published results. The ECPSSR theory with the united atoms correction gives absolute values close to the experimental ones for all the studied elements excited by C ions and for Ta, Nb and Ru excited by Si ions. For Ti, Fe and Zn excited by Si, the matching with theory is poor since even the ionization cross section is below the measured data.

  6. Mirroring the dynamic magnetic behavior of magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates

    NASA Astrophysics Data System (ADS)

    Agra, K.; Gomes, R. R.; Della Pace, R. D.; Dorneles, L. S.; Bohn, F.; Corrêa, M. A.

    2015-11-01

    We investigate the magnetoimpedance effect in a wide frequency range in magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates. We observe a direct correlation between structural and quasi-static magnetic properties and the magnetoimpedance effect, since they are directly dependent on the nature of the spacer material. Moreover, we verify that all these properties are insensitive to the kind of employed substrate. We compare the magnetoimpedance results measured for multilayers in rigid and flexible substrates and discuss them in terms of different mechanisms that govern the impedances changes, magnetic anisotropy, structural character, and of numerical calculation results found in the literature. The fact that magnetostrictive multilayers can be reproduced in distinct kinds of substrates corresponds to an important advance for their applicability. The results place multilayers grown onto flexible substrates as attractive candidates for application as probe element in the development of MI-based sensor devices.

  7. Structure analysis on the Ba{sub 3}Mg(Ta{sub 1-x}Nb{sub x}){sub 2}O{sub 9} ceramics: Coexistence of order and disorder

    SciTech Connect

    Janaswamy, Srinivas Murthy, G. Sreenivasa; Dias, E.D.; Murthy, V.R.K.

    2008-03-04

    The Ba{sub 3}ZnTa{sub 2}O{sub 9} (BZT) and Ba{sub 3}MgTa{sub 2}O{sub 9} (BMT) ceramics, a family of A{sub 3}B{sup 2+}B{sup 5+}{sub 2}O{sub 9} complex perovskites, are extensively utilized in mobile based technologies due to their intrinsic high unloaded quality factor, high dielectric constant and a low (near-zero) resonant frequency temperature coefficient at microwave frequencies. The preparation conditions as well as size and nature of B cations have a profound effect on the final dielectric properties. In this article, we report the effect of Nb{sup 5+} at the Ta{sup 5+} site on the BMT structure prepared at four synthesis temperatures (1300, 1400, 1500 and 1600 deg. C). The analysis has been carried out using the Rietveld technique on the X-ray powder diffraction data. Results suggest that both the preparation temperatures and Nb{sup 5+} content have significant effect on the ordering of B cations in the Ba{sub 3}Mg(Ta{sub 1-x}Nb{sub x}){sub 2}O{sub 9} solid solution. A disordered (cubic) structure is preferred by the 1300 deg. C compounds. The weight percentage of the ordered (trigonal) phase escalates, for a given composition, with increasing calcination temperature. A fully ordered trigonal arrangement exists only for x = 0.0 and 0.2 compounds calcined at 1600 deg. C, and the rest are biphasic (cubic and trigonal). The increase in the cubic fraction upon Nb{sup 5+} augmentation suggests that the solid solution leans more toward the disordered structural arrangement of B{sup 2+} and B{sup 5+} cations.

  8. Enhanced second harmonic generation and photoluminescence in Pr-doped LiNb0.5Ta0.5O3 nanocrystals embedded in a borate based glass

    NASA Astrophysics Data System (ADS)

    Jaschin, P. W.; Varma, K. B. R.

    2017-08-01

    Non-linear optical properties and photoluminescence exhibited by Pr-doped LiNb0.5Ta0.5O3 nanocrystals embedded in a borate based glass are presented here. The glasses of composition 1.5Li2O-2B2O3-0.5Nb2O5-0.5Ta2O5:xPr6O11 (x = 0.0025, 0.005, and 0.01) were synthesized via the conventional melt-quenching technique, and the nanocrystal growth was induced by subjecting the as-quenched glasses to heat treatment between 530 and 560 °C for 3 h. Coalesced nanocrystals of sizes in the 20-38 nm range, resulting in the formation of dendritic spherulites, were obtained from the isothermal heat treatment. Effect of doping on the structural units of LiNb0.5Ta0.5O3 lattice was analysed by Raman studies, which indicated that Pr ions occupied Li+ vacancies or Nb/Ta antisites. A strong red emission at 620 nm, due to 1D2 → 3H4 electronic transition of Pr3+ ions, was observed upon excitation by a 450 nm radiation. The maximum intensity was exhibited by the composition corresponding to Pr-doping level, x = 0.005, while the crystallization had a pronounced effect on the intensity of the red output. A non-linear optical coefficient as high as 0.77 pm/V (twice that of d36 of potassium dihydrogen phosphate single crystal) was obtained from the bulk glass-nanocrystal composites of the composition in which x = 0.0025.

  9. Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) Alloys for the Hydrogen Separation Membrane.

    PubMed

    Nayebossadri, Shahrouz; Speight, John D; Book, David

    2017-01-25

    Self-supported fcc Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) alloys were studied as potential hydrogen purification membranes. The effects of small additions (1-2.6 at. %) of these elements on the structure, hydrogen solubility, diffusivity, and permeability were examined. Structural analyses by X-ray diffraction (XRD) showed the fcc phase for all alloys with induced textures from cold rolling. Heat treatment at 650 °C for 96 h led to the reorientation in all alloys except the Pd-Cu-Zr alloy, exhibiting the possibility to enhance the structural stability by Zr addition. Hydrogen solubility was almost doubled in the ternary alloys containing Y and Zr compared to Pd65.1Cu34.9 alloy at 300 °C. It was noted that hydrogen diffusivity is decreased upon additions of these elements compared to the Pd65.1Cu34.9 alloy, with the Pd-Cu-Zr alloy showing the lowest hydrogen diffusivity. However, the comparable hydrogen permeability of the Pd-Cu-Zr alloy with the corresponding binary alloy, as well as its highest hydrogen permeability among the studied ternary alloys at temperatures higher than 300 °C, suggested that hydrogen permeation of these alloys within the fcc phase is mainly dominated by hydrogen solubility. Hydrogen flux variations of all ternary alloys were studied and compared with the Pd65.1Cu34.9 alloy under 1000 ppm of H2S + H2 feed gas. Pd-Cu-Zr alloy showed superior resistance to the sulfur poisoning probably due to the less favorable H2S-surface interaction and more importantly slower rate of bulk sulfidation as a result of improved structural stability upon Zr addition. Therefore, Pd-Cu-Zr alloys may offer new potential hydrogen purification membranes with improved chemical stability and hydrogen permeation compared to the binary fcc Pd-Cu alloys.

  10. Multiphoton photoluminescence contrast in switched Mg:LiNbO{sub 3} and Mg:LiTaO{sub 3} single crystals

    SciTech Connect

    Reichenbach, P. Kämpfe, T.; Thiessen, A.; Haußmann, A.; Eng, L. M.; Woike, T.

    2014-09-22

    We observed a multiphoton luminescence contrast between virgin and single-switched domains in Mg-doped LiNbO{sub 3} (LNO) and LiTaO{sub 3} (LTO) single crystals with different doping levels of 0–7 mol. % and 0–8 mol. %, respectively. A luminescence contrast in the range of 3% was measured between as-grown and electrically inverted domain areas in Mg:LNO samples, while the contrast reaches values of up to 30% for the Mg:LTO case. Under annealing, an exponential decay of the domain contrast was observed. The activation energy of about 1 eV being determined for the decay allowed a comparison with reported activation energies of associated defects, clearly illustrating a strong connection between thermal contrast decay and the H{sup +} and Li{sup +}-ion mobility. Finally, performing similar experiments on oxidized samples undoubtedly demonstrated that the origin of the reported luminescence contrast is strongly connected with lithium ions.

  11. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).

    PubMed

    Lin, Zhengjie; Wang, Liqiang; Xue, Xiaobing; Lu, Weijie; Qin, Jining; Zhang, Di

    2013-12-01

    In this paper, an equal channel angular pressing method is employed to refine grains and enhance mechanical properties of a new β Ti-35Nb-3Zr-2Ta biomedical alloy. After the 4th pass, the ultrafine equiaxed grains of approximately 300 nm and 600 nm are obtained at pressing temperatures of 500 and 600°C respectively. The SEM images of billets pressed at 500°C reveal the evolution of shear bands and finally at the 4th pass intersectant networks of shear bands, involving initial band propagation and new band broadening, are formed with the purpose of accommodating large plastic strain. Furthermore, a unique herringbone microstructure of twinned martensitic variants is observed in TEM images. The results of microhardness measurements and uniaxial tensile tests show a significant improvement in microhardness and tensile strength from 534 MPa to 765 MPa, while keeping a good level of ductility (~16%) and low elastic modulus (~59 GPa). The maximum superelastic strain of 1.4% and maximum recovered strain of 2.7% are obtained in the billets pressed at 500°C via the 4th pass, which exhibits an excellent superelastic behavior. Meanwhile, the effects of different accumulative deformations and pressing temperatures on superelasticity of the ECAP-processed alloys are investigated. © 2013. Published by Elsevier B.V. All rights reserved.

  12. First-principles and molecular-dynamics study of structure and bonding in perovskite-type oxynitrides ABO(2)N (A = Ca, Sr, Ba; B = Ta, Nb).

    PubMed

    Wolff, Holger; Dronskowski, Richard

    2008-10-01

    A series of perovskite-type phases of alkaline-earth-based tantalum and niobium oxynitrides has been studied using both first-principles electronic-structure calculations and molecular-dynamics simulations, in particular by investigating different structural arrangements and anion distributions in terms of total-energy calculations. The structural properties are explained on the basis of COHP chemical bonding analyses and semiempirical molecular orbital calculations. We provide theoretical proof for the surprising result that the local site symmetries of these phases are lower than cubic because density-functional calculations clearly show that all crystallographic unit cells are better described as being orthorhombic with space group Pmc2(1) to optimize metal-nitrogen bonding; nonetheless, there is no contradiction with a macroscopic cubic description of the structures of BaTaO(2)N and BaNbO(2)N adopting space group Pm3m. Additionally, we find that the anionic sublattice is ordered in all compounds studied over a wide temperature range.

  13. Electronic structures and properties of eight-coordinate metal-polyarsenic complexes MAs8n- (M = V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re).

    PubMed

    Li, J; Wu, K

    2000-04-03

    The eight-coordinate early transition metal polyarsenic complexes, MAs(8)3- (M = V, Nb, Ta), MAs(8)2- (M = Cr, Mo, W), and MAs8- (M = Mn, Tc, Re), have been studied using density functional theory (DFT). The geometry optimizations of these complexes indicate that in the most stable structures the transition metal atoms are trapped in a crownlike cavity consisting of a zigzag eight-membered ring of As8 cluster. The scalar-relativistic effects and spin-orbit coupling effects on the electronic structures and energy levels were taken into account. The stabilities of gas-phase MAs8n- ions and bonding between the As8 ring and early transition metals are discussed on the basis of population analysis, atomization energies, and decomposition reaction energies. All these complex ions are found to be diamagnetic with notable HOMO-LUMO energy gaps. The vibrational frequencies and infrared absorption intensities of the MAs8n- series are predicted theoretically. Brief theoretical calculations of the similar MoA(8)2- pnictide ions indicate that the analogous P, Sb, and even Bi complexes are likely to be stable, whereas the crownlike MoN(8)2- is not a stable complex.

  14. Electrical conductivity and impedance spectroscopy studies of cerium based aeschynite type semiconducting oxides: CeTiMO6 (M=Nb or Ta)

    NASA Astrophysics Data System (ADS)

    Sumi, S.; Rao, P. Prabhakar; Deepa, M.; Koshy, Peter

    2010-09-01

    Complex ceramic oxides, CeTiMO6 (M=Nb or Ta) having aeschynite type mineral structure were prepared by the conventional ceramic route. Complex impedance analysis in the frequency range 10 Hz-1 MHz over a wide temperature range (30-600 °C) indicates the presence of grain boundary effect along with the bulk contribution and also confirms the presence of non-Debye type of multiple relaxations in the material. The frequency dependent conductivity plots exhibit double power law dependence suggesting three types of conduction mechanisms: low frequency (10 Hz-1 kHz) conductivity owing to long range translational motion of electrons (frequency independent), mid-frequency conductivity (1-10 kHz) due to short-range hopping, and high frequency (10 kHz-1 MHz) conduction due to localized orientation hopping mechanism. The hopping model can explain the nature of the conduction mechanism completely. The electrical conductivity measurements with temperature suggest the negative temperature coefficient of resistance behavior. The activation energy studies allow insight into the nature of the conduction mechanisms.

  15. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2012-12-01

    Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.

  16. High-coupling leaky surface acoustic waves on LiNbO3 or LiTaO3 thin plate bonded to high-velocity substrate

    NASA Astrophysics Data System (ADS)

    Gomi, Masashi; Kataoka, Takuya; Hayashi, Junki; Kakio, Shoji

    2017-07-01

    The propagation properties of leaky surface acoustic waves (LSAWs) and longitudinal-type LSAWs (LLSAWs) on a LiNbO3 (LN) or LiTaO3 (LT) thin plate bonded to an AT-cut quartz or c-plane sapphire (c-Al2O3) substrate with a high phase velocity were investigated. It was theoretically revealed that when the LN or LT thin-plate thickness is less than one wavelength, the particle displacement of LLSAWs was concentrated in the thin plate and the electromechanical coupling factor (K 2) was increased to two to three times that in the single substrate. Furthermore, for 36° Y-cut X-propagating LT/c-Al2O3 with an LT thin-plate thickness of 0.35 λ and X-cut 36° Y-propagating LN/c-Al2O3 with an LN thin-plate thickness of 0.19 λ, the values of K 2 for an LSAW and an LLSAW were experimentally found to increase from 5.6 and 10.4% in the single substrate to 11.5 and 19.7% in the thin-plate bonded structure, respectively.

  17. Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Y.; Rajendran, N.

    2012-10-01

    Ti and its alloys are widely used in manufacturing orthopedic implants as prostheses for joint replacement because of their high corrosion resistance and excellent biocompatibility. However, they lack in bone-bonding ability and leads to higher rate of osteolysis and subsequent loosening of implants. In order to enhance the bone-bonding ability of these alloys, various surface-modification techniques are generally employed. The present investigation is mainly concerned with the surface modification of Cp-Ti and Ti-5Al-2Nb-1Ta alloy using a mixture of alkali and hydrogen peroxide followed by subsequent heat treatment to produce a porous gel layer with anatase structure, which enhances osseointegration. The morphological behavior was examined by x-ray diffractometer (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX). The in vitro characterization of all the specimens was evaluated by immersing the specimens in simulated body fluid solution to assess the apatite formation over the metal surface. The apatite formation was confirmed by XRD, SEM-EDX, and Fourier transform infrared spectroscopy (FT-IR). Further, the electrochemical corrosion behaviors of both the untreated and treated specimens were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that the surface-modified and heat-treated specimens exhibited higher corrosion resistance and excellent biocompatibility when compared to the chemical and untreated specimens.

  18. Effect of spin-orbit coupling on formation of native defects in Weyl fermion semimetals: The case of T X (T =Ta ,Nb ; X =As ,P )

    NASA Astrophysics Data System (ADS)

    Yu, Zhi Gen; Zhang, Yong-Wei

    2016-11-01

    How to control the formation of native defects is crucial to obtaining high-quality samples and realizing the balance between electrons and holes for achieving high carrier mobilities in noncentrosymmetric Weyl fermion semimetals (WSMs). Using first-principles calculations, we explore the formation mechanisms of native defects in the family of T X (T =Ta , Nb; X =As , P), and find that the spin-orbit coupling (SOC) is not only intrinsic to these semimetals but also plays a significant role in dictating the formation of native defects. The calculated defect formation energies with the SOC are lower than those without the SOC. The detailed analyses of partial density of states reveal that the valence shells of T -d and X -p hybridization states contribute to the antibonding states in T X compounds. The broadness of T -d and X -4 p hybridization states with the SOC inclusion increases by about 1 eV compared with the corresponding T X without the SOC consideration. The more delocalized T -d and X -p hybridization states increase the energy of antibonding states and further attribute to the stabilization of native defects with the reduced formation energies in T X compounds. We also estimate the defect concentrations based on our accurately calculated formation energies of native defects, and propose practical strategies to control their concentrations to grow high-quality samples. Our results provide insights to the defect behavior under the effect of the SOC in WSMs.

  19. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Kang, Wei; Xue, Jianming

    2014-03-01

    Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M2C(M = Hf, Nb, Sc, Ta, Ti, V, Zr, known as MXenes) subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti2C and Zr2C which show a magnetic moment of 1.92 and 1.25 μB/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf2C, in which the magnetic moment is elevated to 1.5 μB/unit at a strain of 1.80%. We further show that the magnetic properties of Hf2C are attributed to the band shift mainly composed of Hf(5d) states.

  20. Structural and ferroelectric properties of (K,Na,Li)(Nb,Ta)O3 — CaZrO3 thick films by aerosol deposition

    NASA Astrophysics Data System (ADS)

    Lee, Jungkeun; Lee, Soohwan; Choi, Min-Geun; Kang, Soo-Bin; Lim, Ji-Ho; Kim, Hwee-Jong; Jeong, Dae-Yong; Kong, Young-Min; Lee, Jong-Pil

    2015-04-01

    Ferroelectric (1- x)(K0.51Na0.47Li0.02)(Nb0.8Ta0.2)O3 — paraelectric xCaZrO3 solid solution films were deposited on Pt-coated Si substrates by using an aerosol deposition method. The hysteresis and the dielectric properties changed significantly even with small changes in the content of paraelectric CaZrO3. With increasing CaZrO3 content, the ferroelectric phase transformed gradually to a paraelectric phase. With the addition of 3.0 mol% CaZrO3, the dielectric constant was highest; ɛ 33 ~1100 at 1 kHz with a ferroelectric hysteresis loop. Although the 5.0 mol% of CaZrO3 added film revealed a higher remanent polarization, saturated polarization and coercive field than the 3.0 mol% CaZrO3 added film, the former exhibited an asymmetric polarization — electric field hysteresis loop. The X-ray diffraction confirmed that the ferroelectric to paraelectric phase transition occurred at approximately 3.0 mol% CaZrO3.

  1. Spectral and fluorescent kinetics features of Nd3+ ion in Nb2O5, Ta2O5 and La2O3 mixed lithium zirconium silicate glasses.

    PubMed

    Srikumar, T; Brik, M G; Srinivasa Rao, Ch; Gandhi, Y; Rao, D Krishna; Ravi Kumar, V; Veeraiah, N

    2011-10-15

    Li(2)O-ZrO(2)-SiO(2):Nd(3+) glasses mixed with Nb(2)O(5), Ta(2)O(5) and La(2)O(3) were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The Judd-Ofelt theory was successfully applied to characterize Nd(3+) spectra of all the three glasses. From this theory, various radiative properties like transition probability A, branching ratio β(r), the radiative lifetime τ(r), for (4)F(3/2) emission level in the spectra of these glasses has been evaluated. The radiative life time for (4)F(3/2) level of Nd(3+) ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied, the La(2)O(3) mixed glass has exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Nd(3+) ions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Quaternary Ti-20Nb-10Zr-5Ta alloy during immersion in simulated physiological solutions: formation of layers, dissolution and biocompatibility.

    PubMed

    Milošev, Ingrid; Hmeljak, Julija; Žerjav, Gregor; Cör, Andrej; Calderon Moreno, Jose Maria; Popa, Monica

    2014-04-01

    Samples of the quaternary Ti-20Nb-10Zr-5Ta alloy were immersed in Hanks' simulated physiological solution and in minimum essential medium (MEM) for 25 days. Samples of Ti metal served as controls. During immersion, the concentration of ions dissolved in MEM was measured by inductively coupled plasma mass spectrometry, while at the end of the experiment the composition of the surface layers was analyzed by X-ray photoelectron spectroscopy, and their morphology by scanning electron microscopy equipped for chemical analysis. The surface layer formed during immersion was comprised primarily of TiO2 but contained oxides of alloying elements as well. The degree of oxidation differed for different metal cations; while titanium achieved the highest valency, tantalum remained as the metal or is oxidized to its sub-oxides. Calcium phosphate was formed in both solutions, while formation of organic-related species was observed only in MEM. Dissolution of titanium ions was similar for metal and alloy. Among alloying elements, zirconium dissolved in the largest quantity. The long-term effects of alloy implanted in the recipient's body were investigated in MEM, using two types of human cells-an osteoblast-like cell line and immortalized pulmonary fibroblasts. The in vitro biocompatibility of the quaternary alloy was similar to that of titanium, since no detrimental effects on cell survival, induction of apoptosis, delay of growth, or change in alkaline phosphatase activity were observed on incubation in MEM.

  3. Development of thermo-mechanical processing for fabricating highly durable β-type Ti-Nb-Ta-Zr rod for use in spinal fixation devices.

    PubMed

    Narita, Kengo; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Oribe, Kazuya

    2012-05-01

    The mechanical strength of a beta titanium alloy such as Ti-Nb-Ta-Zr alloy (TNTZ) can be improved significantly by thermo-mechanical treatment. In this study, TNTZ was subjected to solution treatment, cold caliber rolling, and cold swaging before aging treatment to form a rod for spinal fixation. The {110}(β) are aligned parallel to the cross-section with two strong peaks approximately 180° apart, facing one another, in the TNTZ rods subjected to cold caliber rolling and six strong peaks at approximately 60° intervals, facing one another, in the TNTZ rods subjected to cold swaging. Therefore, the TNTZ rods subjected to cold swaging have a more uniform structure than those subjected to cold caliber rolling. The orientation relationship between the α and β phases is different. A [110](β)//[121](α), (112)(β)//(210)(α) orientation relationship is observed in the TNTZ rods subjected to aging treatment at 723 K after solution treatment and cold caliber rolling. On the other hand, a [110](β)//[001](α), (112)(β)//(200)(α) orientation relationship is observed in TNTZ rod subjected to aging treatment at 723 K after cold swaging. A high 0.2% proof stress of about 1200 MPa, high elongation of 18%, and high fatigue strength of 950 MPa indicate that aging treatment at 723 K after cold swaging is the optimal thermo-mechanical process for a TNTZ rod. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Frictional wear characteristics of biomedical Ti-29Nb-13Ta-4.6Zr alloy with various microstructures in air and simulated body fluid.

    PubMed

    Niinomi, Mitsuo; Nakai, Masaaki; Akahori, Toshikazu

    2007-09-01

    The frictional wear characteristics of Ti-29Nb-13Ta-4.6Zr alloy subjected to solution treatment (referred to as TNTZ(ST)) and aged at 598, 673 and 723 K after solution treatment (referred to as TNTZ(598K), TNTZ(673K) and TNTZ(723K), respectively) were investigated in air and a simulated body environment (Ringer's solution) as a function of the loading level. Ti-6Al-4V ELI alloy aged at 813 K after solution treatment (referred to as T64(STA)) was employed as a reference material. Wear weight losses of TNTZ(ST), TNTZ(598K), TNTZ(673K), TNTZ(723K) and Ti64(STA) are lower in Ringer's solution than in air under both low and high loading conditions (1.96 and 29.4 N, respectively). It is considered that the frictional factor decreases because of the lubricating effect of Ringer's solution between the contact surface of the specimen and the zirconia ball-the mating material. Moreover, the wear weight losses of TNTZ(598K), TNTZ(673K) and TNTZ(723K) are lower than that of Ti64(STA) in both air and Ringer's solution under the low loading condition, but are higher under the high loading condition. This result implies that the transition from severe wear to mild wear versus loading level depends on the type of material.

  5. Motif of misfit layer compounds (SnS) xTS 2 (T=Ti, V, Nb, Ta) in the matrix of SnS 2

    NASA Astrophysics Data System (ADS)

    Abramov, S. P.

    1999-09-01

    The possibility of T (T=Ti, V, Nb, Ta) insertion in the layer matrix of SnS 2 (when T≪Sn) presents a special case of intercalation for the specific interactions that are inherent in the misfit layer compounds (SnS) xTS 2 ( x≈1). FT Raman spectra of T xSnS 2 (T=Ti, V) with x≪1 testify to the SnS 2 matrix that is invariable with respect to a charge transfer from T to SnS 2 layers as compared with the pristine SnS 2. At the same time the T xSnS 2 structure ( x≪1) taken as a whole has substantial features in the UV-IR spectra as compared with the pristine SnS 2 but is still a semiconductor at least in the case of T=Ti. This points out in the cluster manner of TS 2 insertion in the matrix of SnS 2 with the interactions that are typical of the misfit layer compounds (SnS) xTS 2 in which metallic conductivity occurs in the TS 2 layers.

  6. Comparison of single-beam and dual-beam laser welding of Ti-22Al-25Nb/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Shen, Junqi; Li, Bo; Hu, Shengsun; Zhang, Hao; Bu, Xianzheng

    2017-08-01

    Laser beam welding (LBW) was used to join Ti-22Al-25Nb/TA15 dissimilar titanium alloys. The microstructure and mechanical properties of the welded joints under single and dual beam welding were analyzed and compared. In the mode of single laser beam, the fusion zone only consisted of B2 phase because of existence of β-phase stabilizer and rapid cooling rate of LBW. However, O phase was formed in the fusion zone while applying dual-beam laser welding due to decrease of the cooling rate. The microhardness distribution of the welded joint in dual-beam welding mode was consistent with that in single mode, but the hardness of the weld under dual laser beam was higher than that of single laser beam. In room-temperature tensile tests, the fractures all occurred in the weld, but the morphology exhibited a quasi-cleavage feature in single mode while the morphology was dimple fracture in the mode of dual laser beam. The tensile strength and elongation were both increased under dual-beam laser welding compared with those under single-beam laser welding.

  7. Manipulation of electronic and magnetic properties of M{sub 2}C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains

    SciTech Connect

    Zhao, Shijun; Kang, Wei; Xue, Jianming

    2014-03-31

    Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M{sub 2}C(M = Hf, Nb, Sc, Ta, Ti, V, Zr, known as MXenes) subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti{sub 2}C and Zr{sub 2}C which show a magnetic moment of 1.92 and 1.25 μ{sub B}/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf{sub 2}C, in which the magnetic moment is elevated to 1.5 μ{sub B}/unit at a strain of 1.80%. We further show that the magnetic properties of Hf{sub 2}C are attributed to the band shift mainly composed of Hf(5d) states.

  8. Microstructures and wear properties of surface treated Ti-36Nb-2Ta-3Zr-0.35O alloy by electron beam melting (EBM)

    NASA Astrophysics Data System (ADS)

    Chen, Zijin; Liu, Yong; Wu, Hong; Zhang, Weidong; Guo, Wei; Tang, Huiping; Liu, Nan

    2015-12-01

    Ti-36Nb-2Ta-3Zr-0.35O (wt.%) (TNTZO, also called gum metal) alloy was surface treated by electron beam melting (EBM), in order to improve wear properties. The microstructures and phase constitutions of the treated surface were characterized by optical microscopy (OM), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXD) and electron backscattered diffraction (EBSD). The results showed that the martensitic phase and dendrites were formed from the β phase alloy after the EBM treatment, and microstructures in the surface changed with the processing parameters. Compared with the untreated TNTZO alloy, the surface modified TNTZO alloys exhibited higher nano-hardness, 8.0 GPa, and the wear loss was also decreased apparently. The samples treated at a scanning speed of 0.5 m/s exhibited the highest wear resistance due to the fast cooling rate and the precipitation of acicular α″ phase. The relationship between the wear property and the surface microstructure of TNTZO alloy was discussed.

  9. Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers

    NASA Astrophysics Data System (ADS)

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2017-01-01

    Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO2, Nb2O5, and Ta2O5, can be used to achieve broader bandwidths compared to coatings that contain HfO2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO2, Nb2O5, and Ta2O5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO2 as the low index material to create broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. High reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta2O5/SiO2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO2/SiO2 and Nb2O5/SiO2 coatings.

  10. Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-09-21

    Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO2, Nb2O5, and Ta2O5, can be used to achieve broader bandwidths compared to coatings that contain HfO2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO2, Nb2O5, and Ta2O5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO2 as the low index material to create broad bandwidth high reflection coatings centered at 1054 nm for 45 degmore » angle of incidence and P polarization. Furthermore, high reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta2O5/SiO2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO2/SiO2 and Nb2O5/SiO2 coatings.« less

  11. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A

  12. Ferromagnetic resonance studies of amorphous and nanocrystalline FeCuNbSiB alloys

    SciTech Connect

    Schmool, D.S.; Gorria, P.; Barandiaran, J.M.

    1997-04-01

    Alloys with composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 22.5{minus}x}B{sub x}, where x=6 and 9, have been studied from the as-cast state, through various stages of crystallization, in annealing range of 300{endash}650{degree}C, by the technique of ferromagnetic resonance (FMR). The annealing was performed isothermally at preset temperatures to produce nanocrystalline structures in an amorphous matrix. Both the nanocrystalline structures and the surrounding amorphous matrix are ferromagnetic, and will therefore contribute to the FMR spectra. The spectral features, resonance field, intensity, and linewidth have been used to characterize the structurally related changes in the sample during the crystallization process. The major changes in the spectra are observed to occur in the region of the crystallization peak in the differential thermal analysis curves for these samples. The FMR spectra exhibit a complex in-plane angular variation, which is understood in terms of preferential orientation of the magnetization vector in the direction of the ribbon, and shape effects. The square cut samples give rise to multipeaked spectra when the external magnetic field is applied in an {open_quotes}off-square{close_quotes} direction. This is the first report of the appearance of a second resonance feature of this type. This is explained as arising from the magnetic confinement of the nanocrystallites in the amorphous matrix, producing spin waves localized at the interface of the two phases. {copyright} {ital 1997 American Institute of Physics.}

  13. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    SciTech Connect

    Morsdorf, L.; Povstugar, I.; Raabe, D.; Pradeep, K. G. E-mail: kgprad@gmail.com; Herzer, G.; Kovács, A.; Dunin-Borkowski, R. E.; Konygin, G.; Choi, P.

    2016-03-28

    Nucleation of soft magnetic Fe{sub 3}Si nanocrystals in Cu-free Fe{sub 74.5}Si{sub 15.5}Nb{sub 3}B{sub 7} alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe{sub 3}Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe{sub 3}Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe{sub 3}Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ∼10 A/m.

  14. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite

    SciTech Connect

    Raabe, D.; Mattissen, D.

    1998-10-09

    A ternary in situ metal matrix composite consisting of Cu, 8.2 wt% Ag and 4 wt% Nb was produced by inductive melting, casting, and subsequent wire drawing. The material was very ductile so that a maximum wire strain of {eta} = 10.5 was attained without intermediate annealing ({eta} = ln(A{sub 0}/A), where A is the wire cross-section). The wire has a very high strength (1,840 MPa at {eta} = 10.5) and at the same time good electrical conductivity (46% of the conductivity of pure Cu). The wire strength is much larger than predicted by the linear rule of mixtures. Up to wire strains of {eta} {approx} 8 the strength even exceeds that of Cu-20 wt% Nb. The paper concentrates on the investigation of the evolution of the filament microstructure during wire drawing and its relation to the observed mechanical properties. The strength is discussed in terms of a Hall-Petch- or phase-barrier-type effect that arises from lattice dislocation pile-ups at the interfaces.

  15. Nanoindentation, High-Temperature Behavior, and Crystallographic/Spectroscopic Characterization of the High-Refractive-Index Materials TiTa2O7 and TiNb2O7.

    PubMed

    Perfler, Lukas; Kahlenberg, Volker; Wikete, Christoph; Schmidmair, Daniela; Tribus, Martina; Kaindl, Reinhard

    2015-07-20

    Colorless single crystals, as well as polycrystalline samples of TiTa2O7 and TiNb2O7, were grown directly from the melt and prepared by solid-state reactions, respectively, at various temperatures between 1598 K and 1983 K. The chemical composition of the crystals was confirmed by wavelength-dispersive X-ray spectroscopy, and the crystal structures were determined using single-crystal X-ray diffraction. Structural investigations of the isostructural compounds resulted in the following basic crystallographic data: monoclinic symmetry, space group I2/m (No. 12), a = 17.6624(12) Å, b = 3.8012(3) Å, c = 11.8290(9) Å, β = 95.135(7)°, V = 790.99(10) Å(3) for TiTa2O7 and a = 17.6719(13) Å, b = 3.8006(2) Å, c = 11.8924(9) Å, β = 95.295(7)°, V = 795.33(10) Å(3), respectively, for TiNb2O7, Z = 6. Rietveld refinement analyses of the powder X-ray diffraction patterns and Raman spectroscopy were carried out to complement the structural investigations. In addition, in situ high-temperature powder X-ray diffraction experiments over the temperature range of 323-1323 K enabled the study of the thermal expansion tensors of TiTa2O7 and TiNb2O7. To determine the hardness (H), and elastic moduli (E) of the chemical compounds, nanoindentation experiments have been performed with a Berkovich diamond indenter tip. Analyses of the load-displacement curves resulted in a hardness of H = 9.0 ± 0.5 GPa and a reduced elastic modulus of Er = 170 ± 7 GPa for TiTa2O7. TiNb2O7 showed a slightly lower hardness of H = 8.7 ± 0.3 GPa and a reduced elastic modulus of Er = 159 ± 4 GPa. Spectroscopic ellipsometry of the polished specimens was employed for the determination of the optical constants n and k. TiNb2O7 as well as TiTa2O7 exhibit a very high average refractive index of nD = 2.37 and nD = 2.29, respectively, at λ = 589 nm, similar to that of diamond (nD = 2.42).

  16. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  17. Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks

    NASA Astrophysics Data System (ADS)

    Spandler, Carl; Morris, Caitlin

    2016-12-01

    The Toongi Deposit, located in central NSW, Australia, hosts significant resources of Zr, Hf, Nb, Ta, Y and REE within a small (ca. 0.3 km2), rapidly cooled trachyte laccolith. Toongi is part of regional Late Triassic to Jurassic alkaline magmatic field, but is distinguished from the other igneous bodies by its peralkaline composition and economically significant rare metal content that is homogenously distributed throughout the trachyte body. The primary ore minerals are evenly dispersed throughout the rock and include lueshite/natroniobite and complex Na-Fe-Zr-Nb-Y-REE silicate minerals dominated by a eudialyte group mineral (EGM). The EGM occurs in a unique textural setting in the rock, commonly forming spheroidal or irregular-shaped globules, herein called "snowballs", within the rock matrix. The snowballs are often protruded by aegirine and feldspar phenocrysts and contain swarms of fine aegirine and feldspar grains that often form spiral or swirling patterns within the snowball. Secondary ore minerals include REE carbonates, Y milarite, catapleiite and gaidonnayite that fill fractures and vesicles in the rock. Based on bulk-rock geochemical and Nd isotope data, and thermodynamic modelling of magma fractionation, the alkaline rocks of the region are interpreted to represent extrusive to hyperbyssal products of mantle-derived magma that ponded at mid-crustal levels (ca. 0.3 GPa) and underwent extensive fractionation under low-oxygen fugacity conditions. The high Na2O, peralkaline nature of the Toongi Deposit trachyte developed via extensive fractionation of an alkali olivine basalt parental magma initially in the mid-crust and subsequently at shallow levels (ca. 0.1 GPa). This extended fractionation under low fO2 and relatively low H2O-activity conditions limited volatile release and allowed build-up of rare metal contents to ore grades. We speculate that the ore minerals may have originally formed from rare metal-rich sodic-silicate melt that formed immiscible

  18. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  19. Origin of magnetoelectric effect in Co4Nb2O9 and Co4Ta2O9 : The lessons learned from the comparison of first-principles-based theoretical models and experimental data

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Kolodiazhnyi, T. V.

    2016-09-01

    We report results of joint experimental and theoretical studies on magnetoelectric (ME) compounds Co4Nb2O9 and Co4Ta2O9 . On the experimental side, we present results of the magnetization and dielectric permittivity measurements in the magnetic field. On the theoretical side, we construct the low-energy Hubbard-type model for the magnetically active Co 3 d bands in the Wannier basis, using the input of the first-principles electronic structure calculations, solve this model in the mean-field Hartree-Fock approximation, and evaluate the electric polarization in terms of the Berry phase theory. Both experimental and theoretical results suggest that Co4Ta2O9 is magnetically softer than Co4Nb2O9 . Therefore, it is reasonable to expect that the antiferromagnetic structure of Co4Ta2O9 can be easier deformed by the external magnetic field, yielding larger polarization. This trend is indeed reproduced by our theoretical calculations, but does not seem to be consistent with the experimental behavior of the polarization and dielectric permittivity. Thus, we suggest that there should be a hidden mechanism controlling the ME coupling in these compounds, probably related to the magnetic striction or a spontaneous change of the magnetic structure, which breaks the inversion symmetry. Furthermore, we argue that unlike in other ME systems (e.g., Cr2O3 ), in Co4Nb2O9 and Co4Ta2O9 there are two crystallographic sublattices, which contribute to the ME effect. These contributions are found to be of the opposite sign and tend to compensate each other. The latter mechanism can be also used to control and reverse the electric polarization in these compounds.

  20. Assessing the performance and longevity of Nb, Pt, Ta, Ti, Zr, and ZrO₂-sputtered Havar foils for the high-power production of reactive [18F]F by proton irradiation of [18O]H2O.

    PubMed

    Gagnon, K; Wilson, J S; Sant, E; Backhouse, C J; McQuarrie, S A

    2011-10-01

    As water-soluble ionic contaminants, which arise following proton irradiation of [18O]H2O have been associated with decreased [18F]FDG yields, the minimization of these contaminants is an asset in improving the [18F]F reactivity. To this end, we have previously demonstrated that the use of Nb-sputtered Havar foils results in decreased radionuclidic and chemical impurities in proton irradiated [18O]H2O, improved [18F]FDG yields, and improved [18F]FDG yield consistency when compared with non-sputtered Havar. Resulting from the highly reactive chemical microenvironment within the target however, this niobium layer is observed to degrade over time. To find a material that displays increased longevity with regards to maintaining high [18F]F reactivity, this project extensively investigated and compared Havar foils sputtered with Nb, Pt, Ta, Ti, Zr and ZrO₂. Of the materials investigated, the results of this study suggest that Ta-sputtered Havar foil is the preferred choice. For similar integrated currents (~1,000,000 μA min), when comparing the Ta-sputtered Havar with Nb-sputtered Havar we observed: (i) greater than an order of magnitude decrease in radionuclidic impurities, (ii) a 6.4 percent increase (p=0.0025) in the average TracerLab MX [18F]FDG yield, and (iii) an overall improvement in the FDG yield consistency. Excellent performance of the Ta-sputtered foil was maintained throughout its ~1,500,000 μA min lifetime.

  1. Spin-Singlet Ground State of Two-Dimensional Quantum Spin Antiferromagnet (CuCl)Ca2Nb3O10

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Yoshihiro; Kitada, Atsushi; Nishi, Masakazu; Narumi, Yasuo; Kindo, Koichi; Goko, Tatsuo; Uemura, Yasutomo J.; Aczel, Adam A.; Williams, Travis J.; Luke, Graeme M.; Ajiro, Yoshitami; Kageyama, Hiroshi

    2014-07-01

    We report structural and magnetic properties of the triple-layered perovskite (CuCl)Ca2Nb3O10 with a spin-1/2 CuCl layer, investigated by transmission electron microscopy, magnetic susceptibility, high-field magnetization, specific heat, µSR, and inelastic neutron scattering measurements. The results show that (CuCl)Ca2Nb3O10 has a spin-singlet ground state with a gap of Δ/kB = 11 K. The observation of a 2 × 2 superstructure suggests a coherent distortion of the CuCl square lattice as in the double-layered (CuCl)LaNb2O7 with Δ/kB = 14 K. The low-temperature magnetization exhibits a jump to saturation above the critical field of Hc = 7.8 T, in marked contrast to the case of (CuCl)LaNb2O7, where the magnetization slowly increases above Hc. The observed magnetic properties are discussed in terms of the ferromagnetic Shastry-Sutherland model.

  2. Citrate sol gel synthesis, phase formation, optical-properties and TEM analysis of nanocrystalline TaSr2SmCu2O8 materials

    NASA Astrophysics Data System (ADS)

    Balamurugan, S.; George, Jincymol; Parthiban, P.

    2016-05-01

    We report the citrate sol gel (CSG) derived synthesis of nanocrystalline tantalo-cuprate, TaSr2SmCu2O8 (Ta1212Sm) materials and studied the thermal, phase formation, photoluminescence (PL) and photo-catalytic properties and TEM analysis. Like Ta1212Eu phase, the present Ta1212Sm phase is also successfully crystallized in tetragonal symmetry with lattice parameter, a = 0.3875(1) nm and c = 1.1690(5) nm with average crystalline size of ~61.5 nm upon subsequent annealing of the combustion product at 1100°C for 24 h under O2 atmosphere. The room temperature PL emission spectrum of nanocrystalline Ta1212Sm materials exhibits an emission peak at ~605 nm under excitation wavelength of 404 nm. The photo-degradation (~89 %) of methyl orange (MO) by the Ta1212Sm catalyst in the presence of H2O2 is explored. The TEM micro-images reveal that the particles are in nano-scale and irregular morphology.

  3. Oscillatory magnetic anisotropy and spin-reorientation induced by heavy-metal cap in Cu/FeCo/M (M =Hf or Ta): A first-principles study

    NASA Astrophysics Data System (ADS)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-11-01

    Using ab initio electronic structure calculations we have investigated the effect of the thickness of a heavy-metal (HM) cap on the magnetic anisotropy of the Cu /FeCo /HM (n ) thin film where HM = Hf and Ta with thicknesses of n =0 -10 monolayers (MLs). We find that the Hf cap results in a large perpendicular magnetic anisotropy (PMA), which exhibits quasiperiodic oscillation with a period of two MLs. In contrast, the Ta-capped heterostructure exhibits a spin reorientation from out-of-plane to in-plane magnetization orientation at two MLs of Ta. Moreover, the MA remains negative and depends weakly on the Ta-cap thickness beyond the critical thickness. The underlying mechanism of the PMA oscillation is the periodic change in spin-flip spin-orbit coupling between the minority-spin Fe d (x z ,y z ) and majority Fe d (z2) at Γ ¯, which is induced by the hybridization with Hf at the FeCo/Hf interface. Our results help resolve the contradictory experiments regarding the role of the FeCo/Ta interface on the PMA of the MgO/FeCo/Ta junction. The calculations reveal that the ferromagnet/Hf is promising for spintronic applications and that the capping material and thickness are additional parameters for optimizing the functional properties of spintronic devices.

  4. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications.

    PubMed

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken; Liu, Huihong

    2015-11-01

    In previous studies, it has been concluded that volume losses (V loss) of the Ti-29Nb-13Ta-4.6Zr (TNTZ) discs and balls are larger than those of the respective Ti-6Al-4V extra-low interstitial (Ti64) discs and balls, both in air and Ringer's solution. These results are related to severe subsurface deformation of TNTZ, which is caused by the lower resistance to plastic shearing of TNTZ than that of Ti64. Therefore, it is necessary to further increase the wear resistance of TNTZ to satisfy the requirements as a biomedical implant. From this viewpoint, interstitial oxygen was added to TNTZ to improve the plastic shear resistance via solid-solution strengthening. Thus, the wear behaviors of combinations comprised of a new titanium alloy, TNTZ with high oxygen content of 0.89 mass% (89O) and a conventional titanium alloy, Ti64 were investigated in air and Ringer's solution for biomedical implant applications. The worn surfaces, wear debris, and subsurface damage were analyzed using a scanning electron microscopy and an electron probe microanalysis. V loss of the 89O discs and balls are smaller than those of the respective TNTZ discs and balls in both air and Ringer's solution. It can be concluded that the solid-solution strengthening by oxygen effectively improves the wear resistance for TNTZ materials. However, the 89O disc/ball combination still exhibits higher V loss than the Ti64 disc/ball combination in both air and Ringer's solution. Moreover, V loss of the disc for the 89O disc/Ti64 ball combination significantly decreases in Ringer's solution compared to that in air. This decrease for the 89O disc/Ti64 ball combination in Ringer's solution can be explained by the transition in the wear mechanism from severe delamination wear to abrasive wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cong, Xin; Cho, Ken; Boehlert, Carl J.; Khademi, Vahid

    2017-01-01

    Oxygen was added to the biomedical β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ, mass pct) in order to improve its strength, while keeping its Young's modulus low. Conventionally, with an increase in the oxygen content, an alloy's tensile strength increases, while its tensile elongation-to-failure decreases. However, an abnormal deformation behavior has been reported in the case of oxygen-modified TNTZ alloys in that their strength increases monotonically while their elongation-to-failure initially decreases and then increases with the increase in the oxygen content. In this study, this abnormal tensile deformation behavior of oxygen-modified TNTZ alloys was investigated systematically. A series of TNTZ-(0.1, 0.3, and 0.7 mass pct)O alloy samples was prepared, treated thermomechanically, and finally solution treated; these samples are denoted as 0.1ST, 0.3ST, and 0.7ST, respectively. The main tensile deformation mechanisms in 0.1ST are a deformation-induced α″-martensitic transformation and {332}<113> mechanical twinning. The large elongation-to-failure of 0.1ST is attributable to multiple deformation mechanisms, including the deformation-induced martensitic transformation and mechanical twinning as well as dislocation glide. In both 0.3ST and 0.7ST, dislocation glide is the predominant deformation mode. 0.7ST shows more homogeneous and extensive dislocation glide along with multiple slip systems and a higher frequency of cross slip. As a result, it exhibits a higher work-hardening rate and greater resistance to local stress concentration, both of which contribute to its elongation-to-failure being greater than that of 0.3ST.

  6. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation

    NASA Astrophysics Data System (ADS)

    Simons, Beth; Andersen, Jens C. Ø.; Shail, Robin K.; Jenner, Frances E.

    2017-05-01

    The Early Permian Variscan Cornubian Batholith is a peraluminous, composite pluton intruded into Devonian and Carboniferous metamorphosed sedimentary and volcanic rocks. Within the batholith there are: G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz) granites. G1-G2 and G3-G4 are derived from greywacke sources and linked through fractionation of assemblages dominated by feldspars and biotite, with minor mantle involvement in G3. G5 formed though flux-induced biotite-dominate melting in the lower crust during granulite facies metamorphism. Fractionation enriched G2 granites in Li (average 315 ppm), Be (12 ppm), Ta (4.4 ppm), In (74 ppb), Sn (18 ppm) and W (12 ppm) relative to crustal abundances and G1 granites. Gallium (24 ppm), Nb (16 ppm) and Bi (0.46 ppm) are not significantly enriched during fractionation, implying they are more compatible in the fractionating assemblage. Sb (0.16 ppm) is depleted in G1-G2 relative to the average upper and lower continental crust. Muscovite, a late-stage magmatic/subsolidus mineral, is the major host of Li, Nb, In, Sn and W in G2 granites. G2 granites are spatially associated with W-Sn greisen mineralisation. Fractionation within the younger G3-G4 granite system enriched Li (average 364 ppm), Ga (28 ppm), In (80 ppb), Sn (14 ppm), Nb (27 ppm), Ta (4.6 ppm), W (6.3 ppm) and Bi (0.61 ppm) in the G4 granites with retention of Be in G3 granites due to partitioning of Be into cordierite during fractionation. The distribution of Nb and Ta is controlled by accessory phases such as rutile within the G4 granites, facilitated by high F and lowering the melt temperature, leading to disseminated Nb and Ta mineralisation. Lithium, In, Sn and W are hosted in biotite micas which may prove favourable for breakdown on ingress of hydrothermal fluids. Higher degrees of scattering on trace element plots may be attributable to fluid-rock interactions or variability within the magma chamber. The G3-G4 system is more boron

  7. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    NASA Astrophysics Data System (ADS)

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; Mara, N.; Beyerlein, I. J.; Llorca, J.; Molina-Aldareguía, J. M.

    2017-08-01

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The analysis suggests that room temperature deformation was determined by dislocation glide at larger layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. A deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.

  8. Structural and mechanical properties of lanthanide doped La1/3Nb0.8Ta0.2O3 thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Brunckova, Helena; Medvecky, Lubomir; Kovalcikova, Alexandra; Fides, Martin; Mudra, Erika; Durisin, Juraj; Skvarla, Jiri; Kanuchova, Maria

    2017-04-01

    Transparent Eu and Nd doped lanthanum niobate tantalate La1/3Nb0.8Ta0.2O3 (LNT) thin films (˜150 nm) were prepared by sol-gel/spin-coating process on Pt/SiO2/Si substrates and annealing at 1100 °C. The x-ray diffraction analysis of films confirmed formation of the perovskite La1/3NbO3 and La1/3TaO3 phases with traces of pyrochlore LaNbO4. Eu and Nd doped LNT films were smoother with roughness 17.1 and 25.4 nm in comparison with LNT (43.3 nm). In all films was observed heterogeneous microstructure with the perovskite spherical and pyrochlore needle-like particles. The mechanical properties of films were characterized for the first time by conventional and continuous stiffness (CSM) nanoindentation. The Eu and Nd doped LNT film modulus (E) and hardness (H) were higher than LNT (˜99.8 and 4.4 GPa) determined by conventional nanoindentation. It was measured the significant effect of substrate on properties of Eu or Nd films (H ˜ 5.9 or 4.9 GPa and E ˜ 107.3 or 104.1 GPa) by CSM nanoindentation.

  9. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~ 28°S, ~ 68°W)

    NASA Astrophysics Data System (ADS)

    Goss, A. R.; Kay, S. M.

    2009-03-01

    The eruption of andesites with steep REE patterns and high Sr concentrations (adakite-like) in the northernmost Chilean flatslab region of the Central Andes spatially and temporally corresponds with the appearance of a marked HFSE (high field strength element) depletion in these lavas (La/Ta up to 95). Known as the Dos Hermanos and Pircas Negras andesites, these lavas erupted at the beginning (˜ 8 Ma), during (7-3 Ma), and immediately following (3-2 Ma) a period of tectonic instability characterized by eastward migration of the frontal volcanic arc. ICP-MS analyses of the HFSE reveal a range of chondritic (20-18) to subchondritic (18-11) Nb/Ta ratios in these lavas. Evident temporal trace element trends support a change from a rutile-bearing to an amphibole-bearing eclogitic residual assemblage in equilibrium with the mafic precursor magmas of these andesites. This change in residual mineralogy is contemporaneous with the onset of frontal arc migration in the region. Potential eclogitic sources for the Dos Hermanos and Pircas Negras adakitic andesites include mafic Andean lower crust and an additional flux of forearc crust transported to the sub-arc mantle via subduction erosion during the height of arc migration and Pircas Negras magmatism. Batch melting models of rutile- or amphibole-bearing eclogitic arc basalt in tandem with magma mixing calculations generate the observed adakitic signatures and near-chondritic Nb/Ta ratios of these Central Andean andesites.

  10. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

    PubMed

    Huang, Lu; Yokoyama, Yoshihiko; Wu, Wei; Liaw, Peter K; Pang, Shujie; Inoue, Akihisa; Zhang, Tao; He, Wei

    2012-08-01

    Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO(2)-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO(2) films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2012 Wiley Periodicals, Inc.

  11. Microstructure and nonohmic properties of SnO2-Ta2O5-TiO2 varistor system doped with CuO

    NASA Astrophysics Data System (ADS)

    Peng, Zhijian; Gao, Ruichao; Jiang, Feng; He, Jianfeng; Fu, Xiuli

    2014-04-01

    The microstructure and nonohmic properties of SnO2-Ta2O5-TiO2-CuO varistor system were investigated. The proposed samples were doped with different contents of CuO (0-6 mol%) and sintered at 1400°C for 2 h with conventional ceramic processing method. In all the samples, the commonly identified phase was SnO2 (rutile); however, with increasing doping amount of CuO, the peaks of CuO phase emerged in the X-ray diffraction (XRD) patterns. Scanning electron microscopy (SEM) examination on the fractured surfaces of the samples revealed that a minor amount of CuO dopant can facilitate the sintering of the varistor ceramics, but excessive CuO would mainly segregate at grain-boundaries. The doped CuO may also act as a modifier in the SnO2 based varistors. The measured electric-field versus current-density characteristics of the samples indicated that both nonlinear exponent and varistor voltage increased with increasing doping amount of CuO up to 3 mol% and then decreased with excessive CuO.

  12. Piezoelectric Properties of CuO-Doped (K,Na)NbO3 Lead-Free Ceramics Synthesized with Hydrothermal Powders

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yuriko; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-07-01

    We report the piezoelectric properties of CuO-doped hydrothermal (K,Na)NbO3 ceramics that can be applied as hard-type lead-free piezoelectric ceramics. To date, we have succeeded in synthesizing high-quality KNbO3 and NaNbO3 powders by the hydrothermal method, which is based on an ionic reaction at high temperature (around 210 °C) and pressure. Increasing both the piezoelectric constant d and the mechanical quality factor (Qm) is important for resonance-type piezoelectric devices, such as ultrasonic motors and transformers. CuO doping into hydrothermal (K,Na)NbO3 ceramics was examined to realize hard-type lead-free piezoelectric ceramics. By doping with 1.2 mol % CuO, Qm was increased and the dielectric loss (tan δ) was decreased to 0.5%. The grain size was also influenced by the amount of CuO doping, which indicates that Qm is related to the density. To achieve a higher Qm value, the grain size is required to be less than 5 µm however, excessive CuO doping leads to anomalous grain growth. Optimal piezoelectric properties were obtained for 1.2 mol % CuO-doped (K,Na)NbO3; k31 = 0.32, d31 = -44 pC/N, Qm (radial) = 959, and tan δ= 0.5%. These characteristics showed that CuO doping with hydrothermal powders is effective for obtaining hard-type ceramics, and the mechanical quality factor is more than ten times higher than that of nondoped hydrothermal (K,Na)NbO3 ceramics. Therefore, compared with the conventional solid-state method, we could succeed in obtaining hard-type ceramics by a simple and short process.

  13. Strain-Rate Dependence of Material Strength: Large-Scale Atomistic Simulations of Defective Cu and Ta Crystals

    NASA Astrophysics Data System (ADS)

    Abeywardhana, M.; Vasquez, A.; Gaglione, J.; Germann, T. C.; Ravelo, R.

    2015-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model shock wave (SW) and quasi-isentropic compression (QIC) in defective copper and tantalum crystals. The atomic interactions were modeled employing embedded-atom method (EAM) potentials. In the QIC simulations, the MD equations of motion are modified by incorporating a collective strain rate function in the positions and velocities equations, so that the change in internal energy equals the PV work on the system. We examined the deformation mechanisms and material strength for strain rates in the 109-1012 s-1 range For both Cu and Ta defective crystals, we find that the strain rate dependence of the flow stress in this strain rate regime, follows a power law with an exponent close to 0.40. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396.

  14. Probing off-Hugoniot states in Ta, Cu, and Al to 10 Mbar compression with magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Mattsson, T. R.; Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Robinson, A. C.; Tomlinson, K.; Blue, B. E.

    We report on a technique for obtaining off-Hugoniot equation of state data on solid metals by a magnetically driven cylindrical liner implosion on Sandia's Z-machine (Z). The sample material is in an inner tube with an outer tube composed of Al that serves as the current carrying cathode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. Photonic Doppler velocimetry measures the implosion velocity of the free inner surface of the sample material, and the explosion velocity of the return current anode free outer surface. The velocimetry measurements are used in conjunction with magnetohydrodynamic simulations and optimization to infer pressure and density in the sample. Results are presented for experiments on the Z-machine in which Ta, Cu, and Al samples were compressed to peak pressure 10 Mbar. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    SciTech Connect

    Valente, Anne-Marie; Eremeev, Grigory V.; Spradlin, Joshua K.; Phillips, H. Lawrence; Reece, Charles E.; Cao, C.; Proslier, Thomas; Tao, T.

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  16. Differing reactivities of (trimpsi)M(CO)(2)(NO) complexes [M = V, Nb, Ta; trimpsi = (t)BuSi(CH(2)PMe(2))(3)] with halogens and halogen sources.

    PubMed

    Hayton, Trevor W; Legzdins, Peter; Patrick, Brian O

    2002-10-21

    Treatment of (trimpsi)V(CO)(2)(NO) (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) with 1 equiv of PhICl(2) or C(2)Cl(6) or 2 equiv of AgCl affords (trimpsi)V(NO)Cl(2) (1) in moderate yields. Likewise, (trimpsi)V(NO)Br(2) (2) and (trimpsi)V(NO)I(2) (3) are formed by the reactions of (trimpsi)V(CO)(2)(NO) with Br(