Sample records for cu oxide nanoparticles

  1. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.

    PubMed

    LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D

    2017-01-11

    Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu 2 O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu 2 O interface having a relationship of Cu{111}//Cu 2 O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.

  2. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  3. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  4. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.

    PubMed

    Huang, Chih-Chia; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng

    2006-05-03

    We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.

  5. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.

    2018-03-01

    We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.

  6. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  7. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.

    PubMed

    Senanayake, Sanjaya D; Stacchiola, Dario; Rodriguez, Jose A

    2013-08-20

    Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation states (Ce⁴⁺ and Ce³⁺). Cu(111), meanwhile, is a standard catalyst for reactions such as CO oxidation and the water-gas shift (WGS). This metal serves as an ideal replacement for other noble metals that are neither abundant nor cost effective. To prepare the inverse system we deposited nanoparticles (2-20 nm) of cerium oxide onto the Cu(111) surface. During this process, the Cu(111) surface grows an oxide layer that is characteristic of Cu₂O (Cu¹⁺). This oxide can influence the growth of ceria nanoparticles. Evidence suggests triangular-shaped CeO₂(111) grows on Cu₂O(111) surfaces while rectangular CeO₂(100) grows on Cu₄O₃(111) surfaces. We used the CeOx/Cu₂O/Cu(111) inverse system to study two catalytic processes: the WGS (CO + H₂O → CO₂ + H₂) and CO oxidation (2CO + O₂ → 2CO₂). We discovered that the addition of small amounts of ceria nanoparticles can activate the Cu(111) surface and achieve remarkable enhancement of catalytic activity in the investigated reactions. In the case of the WGS, the CeOx nanoparticle facilitated this process by acting at the interface with Cu to dissociate water. In the CO oxidation case, an enhancement in the dissociation of O₂ by the nanoparticles was a key factor. The strong interaction between CeOx nanoparticles and Cu(111) when preoxidized and reduced in CO resulted in a massive surface reconstruction of the copper substrate with the introduction of microterraces that covered 25-35% of the surface. This constitutes a new mechanism for surface reconstruction not observed before. These microterraces helped to facilitate a further enhancement of activity towards the WGS by opening an additional channel for the dissociation of water. In summary, inverse catalysts of CeOx/Cu(111) and CeO₂/Cu₂O/Cu(111) demonstrate the versatility of a model system to obtain insightful knowledge of catalytic processes. These systems will continue to offer a unique opportunity to probe key catalytic components and elucidate the relationship between structure and reactivity of novel materials and reactions in the future.

  9. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2013-02-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

  10. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode mutant strains containing gene knockouts in the divalent-metal transporters smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend credence to the hypothesis that some toxicological effects to eukaryotic organisms from copper oxide nanoparticle exposure may be due to properties specific to the nanoparticles and not solely from the released copper ions.

  11. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus

    PubMed Central

    Hsueh, Yi-Huang; Tsai, Ping-Han; Lin, Kuen-Song

    2017-01-01

    The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains. PMID:28397766

  12. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Srinivasakannan, C.; Peng, Jinhui; Yan, Mi; Zhang, Di; Zhang, Libo

    2015-03-01

    The Cu@Cu2O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu2O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu2O which serves as the shell of nanoparticle. The amount of Cu2O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu2O nanocomposite along with H2O2 exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.

  13. Magnetoelectric Coupling in CuO Nanoparticles for Spintronics Applications

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-05-01

    Multiferroic copper oxide (CuO) nanoparticles have been synthesized by colloidal synthesis method. The morphological, structural, magnetic, dielectric and magnetodielectric property has been investigated. The structural study reveals the monoclinic structure of CuO nanoparticles. Transmission electron microscopy images disclose that the size of the CuO nanoparticles is 18 nm and the synthesized nanoparticles are uniform in size and dispersion. Magnetic study tells the weak ferromagnetic character of CuO nanoparticles with coercivity and retentivity value 206 Oe and 0.060 emu/g respectively. Dielectric study confirms that the dielectric constant of CuO nanoparticles is around 1091 at low frequency. The magnetoelectric coupling in the synthesized CuO nanoparticles has been calculated by measuring magnetodielectric coupling coefficient.

  14. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2014-07-01

    Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.

  15. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling.

    PubMed

    Park, Ji-Won; Lee, In-Chul; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Ko, Je-Won; Kim, Jong-Choon; Oh, Sei-Ryang; Shin, In-Sik; Ahn, Kyung-Seop

    2016-01-01

    Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.

  16. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols.

    PubMed

    Sharma, Mukesh; Das, Biraj; Sharma, Mitu; Deka, Biplab K; Park, Young-Bin; Bhargava, Suresh K; Bania, Kusum K

    2017-10-11

    Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N 2 -adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.

  17. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system.

    PubMed

    Zhu, Junwu; Zeng, Guiyu; Nie, Fude; Xu, Xiaoming; Chen, Sheng; Han, Qiaofeng; Wang, Xin

    2010-06-01

    A facile chemical procedure capable of aligning CuO nanoparticles on graphene oxide (GO) in a water-isopropanol system has been described. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicate that the exfoliated GO sheets are decorated randomly by spindly or spherical CuO nanoparticle aggregates, forming well-ordered CuO:GO nanocomposites. A formation mechanism of these interesting nanocomposites is proposed as intercalation and adsorption of Cu2+ ions onto the GO sheets, followed by the nucleation and growth of the CuO crystallites, which in return resulted in the exfoliation of GO sheets. Moreover, the obtained nanocomposites exhibit a high catalytic activity for the thermal decomposition of ammonium perchlorate (AP), due to the concerted effect of CuO and GO.

  18. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ning, Rui; Tian, Jingqi; Asiri, Abdullah M; Qusti, Abdullah H; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-10-29

    In this Letter, for the first time, we demonstrated the preparation of a highly efficient electrocatalyst, spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide (CuCo2O4/N-rGO), for an oxygen reduction reaction (ORR) under alkaline media. The hybrid exhibits higher ORR catalytic activity than CuCo2O4 or N-rGO alone, the physical mixture of CuCo2O4 nanoparticles and N-rGO, and Co3O4/N-rGO. Moreover, such a hybrid affords superior durability to the commercial Pt/C catalyst.

  19. Synthesis and structural characterization of ZnO and CuO nanoparticles supported mesoporous silica SBA-15

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Selmane, Mohamed; Kodeh, Fawzi S.; Ebtihan, Heba A.

    2017-01-01

    Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles were loaded into mesoporous silica SBA-15 by post-synthesis and direct methods. The structural properties were characterized using wide and small angle X-ray diffraction (WXRD & SXRD), X-ray photoelectron spectroscopy (XPS) and N2-adsorption desorption (BET). The WXRD showed that, the loaded zinc and copper oxides were present in crystalline forms (impregnation). The mesoporosity properties of SBA-15 silica were well maintained even after the introduction of metal oxide nanoparticles. BET analysis indicate that the impregnated and condensed ZnO and CuO supported SBA-15 nanocomposites have a lower surface area than that of its parent SBA-15.

  20. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  1. Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Li, Yingjie; Zhang, Xiaoxiong; Li, Cuiluo

    2017-09-01

    We report a facile combustion method synthesis of reduced graphene oxide/CuI composites as a photocatalyst, in which CuI nanoparticles were homogeneously distributed on the surface of reduced graphene oxide (rGO), showing a good visible light response. The rGO-supported and unsupported CuI hybrids were tested over the photocatalytic reduction of CO2 for methanol evolution in visible light. In the current study rGO-CuI composites have shown excellent yields (19.91 μmol g-cat-1). rGO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the CuI nanoparticles.

  2. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    PubMed

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion

    PubMed Central

    Kawamura, Go; Alvarez, Samuel; Stewart, Ian E.; Catenacci, Matthew; Chen, Zuofeng; Ha, Yoon-Cheol

    2015-01-01

    The low performance or high cost of commercially available conductive inks limits the advancement of printed electronics. This article studies the explosion of metal wires in aqueous solutions as a simple, low-cost, and environmentally friendly method to prepare metallic nanoparticles consisting of Cu and Cu alloys for use in affordable, highly conductive inks. Addition of 0.2 M ascorbic acid to an aqueous explosion medium prevented the formation of Cu2O shells around Cu nanoparticles, and allowed for the printing of conductive lines directly from these nanoparticles with no post-treatment. Cu alloy nanoparticles were generated from metal wires that were alloyed as purchased, or from two wires of different metals that were twisted together. Cu nanoparticles alloyed with 1% Sn, 5% Ag, 5% Ni and 30% Ni had electrical conductivities similar to Cu but unlike Cu, remained conductive after 24 hrs at 85 °C and 85% RH. PMID:26669447

  4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.

    PubMed

    Stacchiola, Darío J

    2015-07-21

    Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.

  5. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  6. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.

    PubMed

    Glaria, Arnaud; Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Turrin, Cédric-Olivier; Chaudret, Bruno; Fau, Pierre

    2015-01-12

    The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation.

    PubMed

    Liu, Yongxin; Zhang, Jiali; Song, Lingxiao; Xu, Wenyuan; Guo, Zanru; Yang, Xiaomin; Wu, Xiaoxin; Chen, Xi

    2016-09-07

    A novel coordination replication of Cu2O redox-template strategy is reported to efficiently fabricate Au-HKUST-1 composite nanocapsule, with a HKUST-1 sandwich shell and an embedded Au nanoparticles layer. The novel synthesis procedure involves forming Au nanoparticles on the surface of Cu2O, transforming partial Cu2O into HKUST-1 shell via coordination replication, and removing the residual Cu2O by acid. The as-prepared Au-HKUST-1 composite nanocapsules displayed high catalytic activity on CO oxidation.

  8. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions

    EPA Science Inventory

    An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...

  9. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  10. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  11. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE PAGES

    Crane, Cameron C.; Wang, Feng; Li, Jun; ...

    2017-02-21

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  12. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Cameron C.; Wang, Feng; Li, Jun

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  13. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    NASA Astrophysics Data System (ADS)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  14. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus.

    PubMed

    Devipriya, Duraipandi; Roopan, Selvaraj Mohana

    2017-11-01

    Recently, non-toxic source mediated synthesis of metal and a metal oxide nanoparticle attains more attention due to key applicational responsibilities. This present report stated that the eco-friendly synthesis of copper oxide nanoparticles (CuO NPs) using Cissus quadrangularis (C. quadrangularis) plant extract. Further the eco-friendly synthesized CuO NPs were characterized using a number of analytical techniques. The observed results stated that the synthesized CuO NPs were spherical in shape with 30±2nm. Then the eco-friendly synthesized CuO NPs were subjected for anti-fungal against two strains namely Aspergillus niger (A. niger) resulted in 83% at 500ppm, 86% of inhibition at 1000ppm and Aspergillus flavus (A. flavus) resulted in 81% at 500ppm, 85% of inhibition at 1000ppm respectively. Despite the fact that compared to standard Carbendazim, eco-friendly synthesized CuO NPs exhibits better results were discussed in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  16. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  17. Cu3(BTC)2: CO oxidation over MOF based catalysts.

    PubMed

    Ye, Jing-yun; Liu, Chang-jun

    2011-02-21

    Crystalline and amorphized MOFs (Cu(3)(BTC)(2)) have been demonstrated to be excellent catalysts for CO oxidation. The catalytic activity can be further improved by loading PdO(2) nanoparticles onto the amorphized Cu(3)(BTC)(2).

  18. EFFECT OF COPPER OXIDE NANOPARTICLES TO SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS) AT DIFFERENT SALINITIES

    PubMed Central

    ATES, M.; DUGO, M.A.; DEMIR, V.; ARSLAN, Z.; TCHOUNWOU, P.B.

    2014-01-01

    Nanotechnologies research has become a significant priority worldwide. Many engineered nano-sized materials have been increasingly used in consumer products. But the adverse effects of these nanoparticles on the environment and organisms have recently drawn much attention. The present study investigated the effects of different concentrations of copper oxide nanoparticles (CuO NPs) on the sheepshead minnow (Cyprinodon variegatus) at different salinity regimes, since it is able to withstand a wide range of salinities. The results indicated that CuO NPs could cause behavioral changes in the fish, such as increased mucus secretion, less general activity and loss of equilibrium. No mortality was observed at the presence of CuO NPs during the experiments. But higher oxidative stress was determined at half strength seawater than seawater exposure medium, which can be associated with the decreasing toxicity of CuO NPs as salinity increases. In addition, Cu contents in the tissues of the fish were significantly higher (p<0.05) in the low salinity. The order of Cu accumulation in the fish's organs was intestine > gills > liver. PMID:25411584

  19. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.

    PubMed

    Jeong, Sunho; Song, Hae Chun; Lee, Won Woo; Lee, Sun Sook; Choi, Youngmin; Son, Wonil; Kim, Eui Duk; Paik, Choon Hoon; Oh, Seok Heon; Ryu, Beyong-Hwan

    2011-03-15

    With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.

  20. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    PubMed Central

    Guan, Panpan; Li, Yongjian; Zhang, Jie; Li, Wei

    2016-01-01

    Copper oxide (CuO)-decorated cerium oxide (CeO2) nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions. PMID:28335287

  1. Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Kerour, A.; Boudjadar, S.; Bourzami, R.; Allouche, B.

    2018-07-01

    In this work, we have synthesized cuprous oxide (Cu2O) nanoparticles with octahedral and spherical like shapes by an ecofriendly, simple and coast effective method, by using the aqueous extract of Aloe vera and copper sulfate as solvent and precursor respectively. The effect of Aloe vera aqueous extract concentration on the morphological, structural and optical properties of as synthesized nanoparticles was studied by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform (FT-IR) spectroscopy and UV-visible diffuse reflectance. The SEM images showing octahedral and spherical agglomeration of nanoparticles. The cubic structure of Cu2O was confirmed by XRD analysis, the crystallites size depends to the concentration of Aloe vera aqueous extract with an average size ranged between 24 and 61 nm. The FT-IR vibration measurements valid the presence of pure Cu2O in the samples. The UV-visible spectra show that the prepared cuprous oxide (Cu2O) has a gap energy estimated from 2.5 to 2.62 eV. The photocatalytic activities of the as-prepared material were highly improvement by the fast degradation of methylene blue in aqueous solution at room temperature under solar simulator irradiation.

  2. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.

    PubMed

    Alzahrani, Khalid E; Niazy, Abdurahman A; Alswieleh, Abdullah M; Wahab, Rizwan; El-Toni, Ahmed M; Alghamdi, Hamdan S

    2018-01-01

    The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E . coli than against E . faecalis . Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. The combination of three metal oxide NPs (ZnO, CuO, and Fe 2 O 3 ) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.

  3. Effect of counterpart metals in carbon-supported Pt-based catalysts prepared using radiation chemical method

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.

  4. Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts

    DOE PAGES

    Jiang, Kezhu; Wang, Pengtang; Guo, Shaojun; ...

    2016-06-02

    Here, the development of superior non-platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen-reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells,but still agreat challenge.Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu-based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo.Under the dual tuning on the composition and intermetallic phase,the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol-oxidation reaction (EOR)than those of disordered PdCuM NPs,the commercial Pt/Cand Pd/C catalysts.The density functional theory (DFT)calculations reveal that themore » improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on thePd surface owing to the smaller atomic size of Cu, Co,and Ni.« less

  5. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties

    NASA Astrophysics Data System (ADS)

    Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran

    2012-11-01

    In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles.

  6. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol.

    PubMed

    Khan, Farman Ullah; Asimullah; Khan, Sher Bahadar; Kamal, Tahseen; Asiri, Abdullah M; Khan, Ihsan Ullah; Akhtar, Kalsoom

    2017-09-01

    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu 0 -Ag 0 /CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH 4 . Additionally, the Cu 0 -Ag 0 /CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies

    USGS Publications Warehouse

    Misra, S.K.; Dybowska, A.; Berhanu, D.; Croteau, M.-N.; Luoma, S.N.; Boccaccini, A.R.; Valsami-Jones, E.

    2012-01-01

    This work presents results on synthesis of isotopically enriched (99% 65Cu) copper oxide nanoparticles and its application in ecotoxicological studies. 65CuO nanoparticles were synthesized as spheres (7 nm) and rods (7 ?? 40 nm). Significant differences were observed between the reactivity and dissolution of spherical and rod shaped nanoparticles. The extreme sensitivity of the stable isotope tracing technique developed in this study allowed determining Cu uptake at exposure concentrations equivalent to background Cu concentrations in freshwater systems (0.2-30 ??g/L). Without a tracer, detection of newly accumulated Cu was impossible, even at exposure concentrations surpassing some of the most contaminated water systems (>1 mg/L). ?? 2011 American Chemical Society.

  8. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  9. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method.

    PubMed

    Pemartin-Biernath, Kelly; Vela-González, Andrea V; Moreno-Trejo, Maira B; Leyva-Porras, César; Castañeda-Reyna, Iván E; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-06-16

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO₂. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap ( E g ) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO₂ to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu 2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  10. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    PubMed Central

    Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-01-01

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602

  11. Functionalized white graphene - Copper oxide nanocomposite: Synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate.

    PubMed

    Paulose, Sanoop; Raghavan, Rajeev; George, Benny K

    2017-05-15

    Reactivity is of great importance for metal oxide nanoparticles (MONP) used as catalysts and advanced materials, but seeking for higher reactivity seems to be conflict with high chemical stability required for MONP. There is direct balance between reactivity and stability of these MONP. This could be acheived for metal oxide by dispersing them in a substrate. Here, we report a simple, efficient and high-yield process for the production of copper oxide (CuO) nanoparticles dispersed on a chemically inert material, few-layer hexagonal boron nitride (h-BN) with a thickness around 1.7nm and lateral dimensions mostly below 200nm. The mechano-chemical reaction which take place at atmospheric pressure and room temperature involves a urea assisted exfoliation of pristine boron nitride. Copper oxide nanoparticles dispersed on the surface of these few layered h-BN reduced its tendency for aggregation. The optimum concentration of CuO:h-BN was found to be 2:1 which shows highest catalytic activity for the thermal decomposition of ammonium perchlorate. The high catalytic activity of the in situ synthesized CuO-h-BN composite may be attributed to uniform distribution of CuO nanoparticles on the few layered h-BN which in turn provide a number of active sites on the surface due to non aggregation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.

  13. Optical and Morphological Characterization of Sonochemically Assisted Europium Doped Copper (I) Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Cosico, J. A. M.; Ruales, P. K.; Marquez, M. C.

    2017-06-01

    In the age where application of nanotechnology in our society has proven to be eminent, different routes of synthesizing nanoparticles have emerged. In this study nanoparticles of cuprous oxide (Cu2O) doped with different amounts of europium was prepared by using solution precursor route approach with the aid of ultrasonic sound. Copper sulphate and europium (III) nitrate pentahydrate was used as source for copper ions and europium ions respectively. X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR) were used to elucidate the cubic crystal structure and organic impurities present on Cu2Onanoparticles. UV-Vis spectroscopy was used to determine the absorption spectrum of the nanoparticles in the wavelength range of 400nm to 700nm. The bandgap of the undoped and doped Cu2O were found to fall between 2.1eV - 2.3eV. Scanning Electron Microscopy (SEM) coupled with energy dispersive x-ray was used to observe the dendritic and rodlike morphology and the presence of europium in the synthesized Cu2O nanoparticles. The observed effect on the absorbance of Cu2O upon adding Eu and a facile way of synthesizing Cu2O nanoparticles could bring a positive impact on the production of functional devices for optoelectronic and energy applications.

  14. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    PubMed Central

    Losa-Adams, Elisabeth; F.-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    Summary The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites. PMID:24991522

  15. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants.

    PubMed

    Gil-Lozano, Carolina; Losa-Adams, Elisabeth; F-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe(3+) into Fe(2+) and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  16. Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Crane, Cameron

    This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.

  17. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    NASA Astrophysics Data System (ADS)

    Pandey, Pratibha; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C.

    2012-01-01

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and 25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 °C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, s taphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 μg/mL nano CuO killed 3 × 108 CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 × 106 CFU/mL E. coli were killed by 100 and 10 μg/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  18. Effect of Precursors on the Synthesis of CuO Nanoparticles Under Microwave for Photocatalytic Activity Towards Methylene Blue and Rhodamine B Dyes.

    PubMed

    Sanjini, N S; Winston, B; Velmathi, S

    2017-01-01

    Copper oxide nanoparticles have been successfully synthesized by microwave assisted precipitation method. Different precursors like copper chloride, copper nitrate and copper sulphate were used for synthesis of CuO nanoparticles with different shape, size and catalytic activity. Sodium hydroxide acts as a capping agent and ethanol as solvent for the synthesis. The XRD study was conducted to confirm the single phase monoclinic structure of as-synthesized and annealed CuO nano particles. The morphology of the as-synthesized and annealed CuO samples was analyzed by high resolution field emission scanning electron microscope. Fourier transform infrared spectroscopy was done for all the synthesized CuO nanoparticles for functional group characterization. The wide band gap and photocatalytic activity were studied by UV-Visible spectroscopy. The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in aqueous solution were investigated under UV light (254 nm). In all the cases annealed samples showed good catalytic activity compared to as-synthesized CuO nanoparticles. The CuO nanoparticles from CuCl2 precursor act as excellent photocatalyst for both MB and RhB compared to CuNO₃ and CuSO₄.

  19. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manso, R H.; Song, L.; Liang, Z.

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  20. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE PAGES

    Manso, R H.; Song, L.; Liang, Z.; ...

    2018-04-01

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  1. Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram

    Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less

  2. Polymethacrylic acid as a new precursor of CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  3. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE PAGES

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan; ...

    2017-08-21

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  4. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  5. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.

    PubMed

    Sasmal, Anup Kumar; Dutta, Soumen; Pal, Tarasankar

    2016-02-21

    In this work, the syntheses of Cu2O as well as Cu(0) nanoparticle catalysts are presented. Copper acetate monohydrate produced two distinctly different catalyst particles with varying concentrations of hydrazine hydrate at room temperature without using any surfactant or support. Then both of them were employed separately for 4-nitrophenol reduction in aqueous solution in the presence of sodium borohydride at room temperature. To our surprise, it was noticed that the catalytic activity of Cu2O was much higher than that of the metal Cu(0) nanoparticles. We have confirmed the reason for the exceptionally high catalytic activity of cuprous oxide nanoparticles over other noble metal nanoparticles for 4-nitrophenol reduction. A plausible mechanism has been reported. The unusual activity of Cu2O nanoparticles in the reduction reaction has been observed because of the in situ generated ternary nanocomposite, Cu2O-Cu-CuO, which rapidly relays electrons and acts as a better catalyst. In this ternary composite, highly active in situ generated Cu(0) is proved to be responsible for the hydride transfer reaction. The mechanism of 4-nitrophenol reduction has been established from supporting TEM studies. To further support our proposition, we have prepared a compositionally similar Cu2O-Cu-CuO nanocomposite using Cu2O and sodium borohydride which however displayed lower rate of reduction than that of the in situ produced ternary nanocomposite. The evolution of isolated Cu(0) nanoparticles for 4-nitrophenol reduction from Cu2O under surfactant-free condition has also been taken into consideration. The synthetic procedures of cuprous oxide as well as its catalytic activity in the reduction of 4-nitrophenol are very convenient, fast, cost-effective, and easily operable in aqueous medium and were followed spectrophotometrically. Additionally, the Cu2O-catalyzed 4-nitrophenol reduction methodology was extended further to the reduction of electronically diverse nitroarenes. This concise catalytic process in aqueous medium at room temperature revealed an unprecedented catalytic performance which would draw attention across the whole research community.

  6. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    NASA Astrophysics Data System (ADS)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  7. Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles.

    PubMed

    Kurokawa, Akinobu; Yanoh, Tkuya; Yano, Shinya; Ichiyanagi, Yuko

    2014-03-01

    CuMnO2 nanoparticles with diameters of 64 nm were synthesized by a novel wet chemical method. An optimized two-step annealing method was developed through the analysis of thermogravimetric differential thermal analysis (TG-DTA) measurements in order to obtain single-phase CuMnO2. A sharp exothermic peak was observed in the DTA curve at approximately 500 K where structural changes of the copper oxides and manganese oxides in the precursor are expected to occur. It is believed that Cu+ ions were oxidized to Cu2+ ions and that Mn2+ ions were oxidized to Mn3+ ions in the Cu-Mn-O system. Deoxidization reactions were also found at approximately 1200 K. The optimized annealing temperature for the first step was determined to be 623 K in air. The optimized annealing temperature for the second step was 1173 K in an Ar atmosphere. Magnetization measurements suggested an antiferromagnetic spin ordering at approximately 50 K. It was expected that Mn3+ spin interactions induced magnetic phase transition affected by definite temperature.

  8. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  9. Cytotoxicity of copper (II) oxide nanoparticles in rat and human intestinal cell models

    EPA Science Inventory

    CuO nanoparticles (NPs) have a variety of commercial applications ranging from catalysts to semiconductors. There is a potential for human oral exposure to CuO NPs following accidental or intentional ingestion, hand-to-mouth activity, or mucociliary transport following inhalatio...

  10. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-12-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  11. Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Yan; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    Copper oxide and sulfide nanoparticles after annealing treatment at 400 °Chave been characterized and tested for their bactericidal properties toward Staphylococcus aureus and Escherichia coli under the dark and LED light illuminated conditions. It was found that the nanoparticles with the formation of CuS/Cu2S/CuO nanoheterostructuresexhibited a great capability of killing Staphylococcus aureus and Escherichia coli with or without light illumination. The antibacterial activity of the nanoparticles was demonstrated and simply observed with colony counting method. A mechanism of the antibacterial behaviour had been proposed and elucidated in this work.

  12. Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination.

    PubMed

    Mohanty, Santosh Ranjan; Rajput, Parul; Kollah, Bharati; Chourasiya, Dipanti; Tiwari, Archana; Singh, Muneshwar; Rao, A Subba

    2014-06-01

    There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g(-1) soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20 > Zn 10 > Cu 20 > Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α = 0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p < 0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.

  13. Effect of Metal Oxide Nanoparticles on Microbial Community Structure and Function in Two Different Soil Types

    PubMed Central

    Frenk, Sammy; Ben-Moshe, Tal; Dror, Ishai; Berkowitz, Brian; Minz, Dror

    2013-01-01

    Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and magnetite (Fe3O4) nanosized (<50 nm) particles. Two different soil types were examined: a sandy loam (Bet-Dagan) and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce their toxicity. PMID:24349575

  14. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    NASA Astrophysics Data System (ADS)

    Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki

    2015-10-01

    Ultrathin Cu layers (˜2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  15. Role of Co3O4 Nanoparticles in Dielectric Properties of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ Superconducting Phase

    NASA Astrophysics Data System (ADS)

    Imran, M.; Mumtaz, M.; Naveed, M.; Khan, M. Nasir

    2018-04-01

    Cobalt oxide (Co3O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase were prepared by sol-gel and solid-state reaction methods, respectively. Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223, x = 0-2.0 wt.%, nanoparticles-superconductor composites. The unchanged crystal structure of the host CuTl-1223 superconducting phase (i.e. tetragonal) revealed that Co3O4 nanoparticles were settled at the grain boundaries. Superconducting properties of the CuTl-1223 phase were overall suppressed due to hole-charge carriers interaction at the grain boundaries. The dielectric properties of (Co3O4)x/CuTl-1223 composites were investigated by varying the test frequencies from 40 Hz to 100 MHz and operating temperatures from 77 to 298 K. The values of dielectric properties were found maximal at lower frequencies and started to decrease at higher frequencies. So, the dielectric properties of the CuTl-1223 superconducting phase can be tuned by varying the contents of (Co3O4) nanoparticles, test frequencies as well as operating temperatures.

  16. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  17. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Dedong, Zhang; Maimaiti, Halidan; Awati, Abuduheiremu; Yisilamu, Gunisakezi; Fengchang, Sun; Ming, Wei

    2018-05-01

    The photocatalytic reduction of CO2 into hydrocarbons provides a promising approach to overcome the challenges of environmental crisis and energy shortage. Here we fabricated a cuprous oxide (Cu2O) based composite photocatalyst consisting of Cu2O/carbon nanoparticles (CNPs). To prepare the CNPs, coal samples from Wucaiwan, Xinjiang, China, were first treated with HNO3, followed by hydrogen peroxide (H2O2) oxidation to strip nanocrystalline carbon from coal. After linking with oxygen-containing group such as hydroxyl, coal-based CNPs with sp2 carbon structure and multilayer graphene lattice structure were synthesized. Subsequently, the CNPs were loaded onto the surface of Cu2O nanoparticles prepared by in-situ reduction of copper chloride (CuCl2·2H2O). The physical properties and chemical structure of the Cu2O/CNPs as well as photocatalytic activity of CO2/H2O reduction into CH3OH were measured. The results demonstrate that the Cu2O/CNPs are composed of spherical particles with diameter of 50 nm and mesoporous structure, which are suitable for CO2 adsorption. Under illumination of visible light, electron-hole pairs are generated in Cu2O. Thanks to the CNPs, the fast recombination of electron-hole pairs is suppressed. The energy gradient formed on the surface of Cu2O/CNPs facilitates the efficient separation of electron-hole pairs for CO2 reduction and H2O oxidation, leading to enhanced photocatalytic activity.

  18. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jun; Shan, Shiyao; Yang, Lefu

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less

  19. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    PubMed

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  20. Cytotoxicity of copper (II) oxide nanoparticles in rat intestinal cells: effect of simulated gastrointestinal fluids and generation of oxidative stress

    EPA Science Inventory

    Metallic oxide nanoparticles (NPs) have a variety of applications in industry, medicine and commercial products. Exposure to NPs can occur by inhalation, dermal contact and oral ingestion. We have previously reported on the dose- and time-dependent cytotoxicity of CuO NPs (size...

  1. Biological and Environmental Transformations of Copper-Based Nanomaterials

    PubMed Central

    Wang, Zhongying; Von Dem Bussche, Annette; Kabadi, Pranita K.; Kane, Agnes B.; Hurt, Robert H.

    2013-01-01

    Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing due to ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species. PMID:24032665

  2. Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Aminuzzaman, Mohammod; Kei, Leong Mei; Liang, Wong Hong

    2017-04-01

    Copper oxide nanoparticles (CuO NPs) are interesting class of materials having multifunctional properties with promising applications in the areas of catalysts, gas sensors, batteries, magnetic storage media, solar energy, superconductors etc. Thus synthesis of CuO NPs has attracted tremendous interest to scientists and researchers Herein, we reported a green and simple method for biosynthesizing CuO NPs using banana peel extract as reducing and stabilizing agent. XRD, EDX, FE-SEM, FTIR have been used for characterization of biosynthesized CuO NPs. The results indicating that the CuO NPs synthesized by banana peel extract have high purity and the average particles size is 60 nm. The photocatalytic activity of the CuO NPs has been investigated by degradation of Congo red (CR) dye under solar irradiation. The extent of CR dye degradation by CuO NPs is monitored by using a UV-visible spectrophotometer. Due to the smaller size and high purity, the biosynthesized CuO NPs showed an excellent photocatlytic activity.

  3. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing.

    PubMed

    Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo

    2017-03-01

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO 4 - exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO 4 was added. Likewise, Cu XANES spectra for CuO and CuSO 4 -exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.

  4. Complete transformation of ZnO and CuO nanoparticles in ...

    EPA Pesticide Factsheets

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  5. Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles

    DOE PAGES

    James, Trevor E.; Hemmingson, Stephanie L.; Campbell, Charles T.

    2015-08-14

    It is known that many catalysts consist of late transition metal nanoparticles dispersed across oxide supports. The chemical potential of the metal atoms in these particles correlate with their catalytic activity and long-term thermal stability. This chemical potential versus particle size across the full size range between the single isolated atom and bulklike limits is reported here for the first time for any metal on any oxide. The chemical potential of Cu atoms on CeO 2(111) surfaces, determined by single crystal adsorption calorimetry of gaseous Cu atoms onto slightly reduced CeO 2(111) at 100 and 300 K is shown tomore » decrease dramatically with increasing Cu cluster size. The Cu chemical potential is ~110 kJ/mol higher for isolated Cu adatoms on stoichometric terrace sites than for Cu in nanoparticles exceeding 2.5 nm diameter, where it reaches the bulk Cu(solid) limit. In Cu dimers, Cu’s chemical potential is ~57 kJ/mol lower at step edges than on stoichiometric terrace sites. Since Cu avoids oxygen vacancies, these monomer and dimer results are not strongly influenced by the 2.5% oxygen vacancies present on this CeO 2 surface and are thus considered representative of stoichiometric CeO 2(111) surfaces.« less

  6. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  7. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  8. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  9. Photocatalytic effect of green synthesised CuO nanoparticles on selected environmental pollutants and pathogens

    NASA Astrophysics Data System (ADS)

    Fuku, Xolile; Thovhogi, Ntevheleni; Maaza, Malik

    2018-05-01

    Highly crystalline irregular green synthesised CuO nanoparticles (CuO NPs) which are 10 nm in particle size were successfully characterised by HRSEM and AFM. EDS confirmed the main components of prepared sample which are Cu and O. Meanwhile, UV/Vis revealed the reflectance, transmittance, absorbance and the semiconducting nature of the synthesised nano-oxides. The optical band gap of CuO NPs was calculated to be 1.4 - 2.3 eV which indicates that CuO NPs can be used in metal oxide semiconductor-based devices. CuO NPs were found to be excellent photocatalysts for the degradation of methyl orange organic dye under the illumination of artificial light irradiation. The experiments demonstrated that MO in aqueous solution was more efficiently photo-degraded (65 %) using CuO NPs as photocatalysts. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5 - 10 mg mL-1.

  10. Mineralization and optical characterization of copper oxide nanoparticles using a high aspect ratio bio-template

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammed Shahriar; Haberer, Elaine D.

    2014-10-01

    Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu2O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap of 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.

  11. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    PubMed

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; ...

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  13. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing

    EPA Science Inventory

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...

  14. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  15. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio

    NASA Astrophysics Data System (ADS)

    Noureen, Aasma; Jabeen, Farhat; Tabish, Tanveer A.; Yaqub, Sajid; Ali, Muhammad; Shakoor Chaudhry, Abdul

    2018-04-01

    Recently, Cu-based nanoparticles have drawn considerable attention for their various fascinating roles in multiple biological systems. It is recognized that their frequent use can create compatibility challenges for the recipient systems. Nevertheless, it is unclear how various biological interactions affect the compatibility of Cu oxide II (CuO) and Cu oxide nanoparticles (Cu-NPs) for different organisms. Consequently, it has been difficult to perform structured risk assessments for their use in biological systems. Therefore, this study compared the effects of different doses of waterborne Cu-NPs and CuO on the blood and liver of selected groups of Cyprinus (C) carpio. These fish while housed in suitable water tanks were exposed to one of the following treatments for 14 d: control (no added Cu) or 0.5 or 1 or 1.5 mg Cu as Cu-NPs or CuO l-1 of water. We found significant changes in all assessed blood parameters of fish in response to increasing doses from 0 to 1.5 mg of Cu-NPs or CuO. Similarly, increased levels of lipid peroxide and reduced glutathione (GSH) were also observed in the livers of C. carpio in Cu-NPs or CuO treated groups. Enhanced levels of lipid peroxidation and GSH were also recorded in the Cu-NP treated groups compared with the CuO treated groups in a dose dependent manner. The lowest catalase activity was observed in the liver of C. carpio treated with the higer dose of Cu-NPs. Cu-NP or CuO exposure induced significant histological alterations in the liver of C. carpio including focal necrosis, cloudy swelling of hepatocytes, degenerative hepatocytes, vacuolization, pyknotic nuclei, damaged central vein, nuclear hypertrophy, dilated sinusoid, vacuolated degeneration, congestion, and complete degeneration in a dose dependent manner. Substantial alterations in blood and liver specimens were observed in the Cu-NP treated fish when compared with the CuO treated fish. It appeared that the Cu-NPs were more toxic than the CuO as shown by the hemato- and hepatotoxicity in C. carpio of this study.

  17. Effect of Zinc and Copper Nanoparticles on Drought Resistance of Wheat Seedlings

    NASA Astrophysics Data System (ADS)

    Taran, Nataliya; Storozhenko, Volodymyr; Svietlova, Nataliia; Batsmanova, Ludmila; Shvartau, Viktor; Kovalenko, Mariia

    2017-01-01

    The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves. Colloidal solution of Cu,Zn-nanoparticles had less significant influence on these indexes in seedlings of the Stolichna variety under drought.

  18. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles

    PubMed Central

    Edelmann, Mariola J.; Shack, Leslie A.; Naske, Caitlin D.; Walters, Keisha B.; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level. PMID:25470785

  19. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films

    PubMed Central

    Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong

    2014-01-01

    We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104

  20. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    PubMed

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 < 1) even after 30 days of aging at 85 °C and 85% relative humidity. Further, a flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  1. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; McGrath, R.; Sharma, H. R.

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized bymore » x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.« less

  2. MoS{sub 2} nanosheet functionalized with Cu nanoparticles and its application for glucose detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingwei; Dong, Zhengping; Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000

    Graphical abstract: - Highlights: • First report on decorating MoS{sub 2} nanosheet with Cu nanoparticles by chemical reduction. • Cu nanoparticles were uniformly decorated on MoS{sub 2} nanosheet. • Glucose biosensor based on copper nanoparticles-MoS{sub 2} nanosheet hybrid is fabricated. • The biosensor exhibits high sensitivity. - Abstract: For the first time, Cu nanoparticles were evenly decorated on MoS{sub 2} nanosheet by chemical reduction. The as-prepared Cu-MoS{sub 2} hybrid was characterized by atomic force microscope (AFM), Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and then used to fabricate a non-enzymatic glucose sensor. The performance of our sensor wasmore » investigated by cyclic voltammetry and amperometric measurement in alkaline media. Electrochemical tests showed that Cu-MoS{sub 2} hybrid exhibited synergistic electrocatalytic activity on the oxidation of glucose with a high sensitivity of 1055 μA mM{sup −1} cm{sup −2} and a linear range up to 4 mM.« less

  3. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  4. Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) Are Modulated by Environmental Salinity

    PubMed Central

    Abid, Aamir; Kennedy, Ian M.; Kültz, Dietmar

    2014-01-01

    The increasing use of manufactured nanoparticles (NP) in different applications has triggered the need to understand their putative ecotoxicological effects in the environment. Copper oxide nanoparticles (CuO NP) are toxic, and induce oxidative stress and other pathophysiological conditions. The unique properties of NP can change depending on the characteristics of the media they are suspended in, altering the impact on their toxicity to aquatic organisms in different environments. Here, Mozambique tilapia (O. mossambicus) were exposed to flame synthesized CuO NP (0.5 and 5 mg·L−1) in two environmental contexts: (a) constant freshwater (FW) and (b) stepwise increase in environmental salinity (SW). Sublethal effects of CuO NP were monitored and used to dermine exposure endpoints. Fish exposed to 5 mg·L−1 CuO in SW showed an opercular ventilation rate increase, whereas fish exposed to 5 mg·L−1 in FW showed a milder response. Different effects of CuO NP on antioxidant enzyme activities, accumulation of transcripts for metal-responsive genes, GSH∶GSSG ratio, and Cu content in fish gill and liver also demonstrate that additive osmotic stress modulates CuO NP toxicity. We conclude that the toxicity of CuO NP depends on the particular environmental context and that salinity is an important factor for modulating NP toxicity in fish. PMID:24520417

  5. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  6. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    PubMed

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001). However, these bacteria were not totally eliminated. CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  7. Assessment of the Toxicity of CuO Nanoparticles by Using Saccharomyces cerevisiae Mutants with Multiple Genes Deleted

    PubMed Central

    Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao

    2015-01-01

    To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067

  8. 77 FR 32942 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    .... Intended Use: The instrument will be used to fabricate bulk nanostructured metals and metallic glasses, in particular Mg based alloys, CuNb, NiAl, Nb based alloys and metal matrix composites with oxide nanoparticles... oxide nanoparticles during the melting of metals. Suction casting is required to achieve nanocrystalline...

  9. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    PubMed Central

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164

  10. Evaluating toxicity of copper(II) oxide nanoparticles (CuO-NPs) through waterborne exposure to tilapia (Oreochromis mossambicus) by tissue accumulation, oxidative stress, histopathology, and genotoxicity.

    PubMed

    Shahzad, Khurram; Khan, Muhammad Naeem; Jabeen, Farhat; Kosour, Nasreen; Chaudhry, Abdul Shakoor; Sohail, Muhammad

    2018-06-01

    Metal oxide nanoparticles are widely used in industries, and peak level can be confirmed in their surroundings. In the present study, the sub-lethal effects of CuO-NPs from low to high concentration as 0.5 to 1.5 mg/L were observed in tilapia (Oreochromis mossambicus). Accumulation of copper from CuO-NPs was increased with the increase in doses, and maximum accumulation was found in the gill than liver and muscles. The increased lipid peroxidation level was observed in the gill as compared to liver, and the similar results were obtained in catalase and glutathione while superoxide dismutase level was higher in the liver than gills. In histological alterations, gill edema, curved tips, fusion of gill lamellae, and thickening of primary and secondary gill lamellae were observed. Necrosis and apoptosis with condensed nuclear bodies and pyknotic nuclei were observed in the liver at the highest dose concentration. In a genotoxic study, the highest value of % tail DNA and olive tail movement was observed with increasing concentrations. Copper oxide nanoparticles has greater potential to accumulate in the soft tissues, which may cause respiratory distress such as oxidative stress, induction of antioxidant defense by raising glutathione, organ pathology, and genotoxicity.

  11. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    PubMed

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles.

    PubMed

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-28

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  13. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    PubMed Central

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification. PMID:26508362

  14. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less

  15. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung H. A.; Padil, Vinod Vellora Thekkae; Slaveykova, Vera I.; Černík, Miroslav; Ševců, Alena

    2018-05-01

    Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga ( Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll ( Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.

  16. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  17. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-08-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  18. Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity.

    PubMed

    Singh, Mandeep; Jampaiah, Deshetti; Kandjani, Ahmad E; Sabri, Ylias M; Della Gaspera, Enrico; Reineck, Philipp; Judd, Martyna; Langley, Julien; Cox, Nicholas; van Embden, Joel; Mayes, Edwin L H; Gibson, Brant C; Bhargava, Suresh K; Ramanathan, Rajesh; Bansal, Vipul

    2018-03-29

    Oxygen vacancies in inorganic semiconductors play an important role in reducing electron-hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(i)-triethylamine [Cu(i)-TEA] complex at low temperature. The oxygen vacancies in these Cu2O nanoparticles led to a significant increase in the lifetimes of photogenerated charge carriers upon excitation with visible light. This, in combination with a suitable energy band structure, allowed Cu2O nanoparticles to exhibit outstanding photoactivity in visible light through the generation of electron-mediated hydroxyl (OH˙) radicals. This study highlights the significance of oxygen defects in enhancing the photocatalytic performance of promising semiconductor photocatalysts.

  19. Heat transfer enhancement by application of nano-powder

    NASA Astrophysics Data System (ADS)

    Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr

    2010-09-01

    In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

  20. Genotoxic potential of copper oxide nanoparticles in the bivalve mollusk Mytilus trossulus

    NASA Astrophysics Data System (ADS)

    Chelomin, Victor P.; Slobodskova, Valentina V.; Zakhartsev, Maksim; Kukla, Sergey

    2017-04-01

    Copper oxide nanoparticles (CuO-NPs) are among the most widely used metal oxide nanoparticles, which increases the chance of their being released into the marine environment. As the applications of these particles have increased in recent years, their potential impact on the health of marine biota has also increased. However, the toxicological effects of these NPs in the marine environment are poorly known. In the present study, the DNA damaging potential of CuO-NPs in the marine eastern mussel Mytilus trossulus was evaluated and compared to that of dissolved copper exposures. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay in mussel gill and digestive gland cells. The results showed that copper in both forms (CuO-NPs and dissolved copper) was accumulated to different extents in mussel tissues. The mussel exposed to the dissolved copper attained higher concentrations of copper in the gills than in the digestive gland. In contrast to these results, it was found that CuO-NPs could induce much higher copper accumulation in the digestive gland than in the gills. A clear and statistically significant increase in DNA damage was found in both tissues of the Cu-exposed group compared to the control mussels. Our results indicated that the CuO-NP exposure produced remarkable effects and increased DNA damage significantly in mussel gill cells only. It should be noted that the digestive gland cells were prone to accumulation following CuO-NPs when compared to the gill cells, while the gill cells were more sensitive to the genotoxic effects of CuO-NPs. These results also suggested the need for a complete risk assessment of engineered particles before its arrival in the consumer market.

  1. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    NASA Astrophysics Data System (ADS)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat ( Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly ( p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  2. Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus).

    PubMed

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O

    2015-01-01

    Dietary and waterborne exposure to copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects, and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a 10-fold higher accumulation in the intestine. The heart, brain, and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p ≥ 0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p < 0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. © 2014 Wiley Periodicals, Inc.

  3. Mechanism of solid-state plasma-induced dewetting for formation of copper and gold nanoparticles.

    PubMed

    Kwon, Soon-Ho; Choe, Han Joo; Lee, Hyo-Chang; Chung, Chin-Wook; Lee, Jung-Joong

    2013-09-01

    Cu and Au nanoparticles were fabricated by plasma treatment on Cu and Au films at 653 K. The nanoparticles were formed by dewetting the metallic films using plasma. Scanning electron microscopy and transmission electron microscopy investigations showed that the plasma-induced dewetting of the Cu and Au films proceeded through heterogeneous hole nucleation and growth along the grain boundaries to lower the surface energy. The amount of energy transferred to surface atoms by one Ar ion was calculated to be 16.1 eV, which was sufficient for displacing Cu and Au atoms. Compared to thermally activated dewetting, more uniform particles could be obtained by plasma-induced dewetting because a much larger number of holes with smaller sizes was generated. The plasma dewetting process is less sensitive to the oxidation of metallic films compared to the annealing process. As a result, Cu nanoparticles could be fabricated at 653 K, whereas the thermally activated dewetting was not possible.

  4. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-05-12

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.

  5. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    PubMed

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  6. VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis

    DTIC Science & Technology

    2007-09-01

    with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are

  7. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli.

    PubMed

    Deng, Can-Hui; Gong, Ji-Lai; Zeng, Guang-Ming; Zhang, Peng; Song, Biao; Zhang, Xue-Gang; Liu, Hong-Yu; Huan, Shuang-Yan

    2017-10-01

    Nanotechnology has great potential in water purification. However, the limitations such as aggregation and toxicity of nanomaterials have blocked their practical application. In this work, a novel copper nanoparticles-decorated graphene sponge (Cu-GS) was synthesized using a facile hydrothermal method. Cu-GS consisting of three-dimensional (3D) porous graphene network and well-dispersed Cu nanoparticles exhibited high antibacterial efficiency against Esherichia coli when used as a bactericidal filter. The morphological changes determined by scanning electron microscope and fluorescence images measured by flow cytometry confirmed the involvement of membrane damage induced by Cu-GS in their antibacterial process. The oxidative ability of Cu-GS and intercellular reactive oxygen species (ROS) were also determined to elucidate the possible antibacterial mechanism of Cu-GS. Moreover, the concentration of released copper ions from Cu-GS was far below the drinking water standard, and the copper ions also have an effect on the antibacterial activity of Cu-GS. Results suggested that Cu-GS as a novel bactericidal filter possessed a potential application of water disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cu2+ -Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme.

    PubMed

    Chen, Wei-Hai; Vázquez-González, Margarita; Kozell, Anna; Cecconello, Alessandro; Willner, Itamar

    2018-02-01

    The synthesis and characterization of UiO-type metal-organic framework nanoparticles (NMOFs) composed of Zr 4+ ions bridged by 2,2'-bipyridine-5,5'-dicarboxylic acid ligands and the postmodification of the NMOFs with Cu 2+ ions are described. The resulting Cu 2+ -modified NMOFs, Cu 2+ -NMOFs, exhibit peroxidase-like catalytic activities reflected by the catalyzed oxidation of Amplex-Red to the fluorescent Resorufin by H 2 O 2 , the catalyzed oxidation of dopamine to aminochrome by H 2 O 2 , and the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 . Also, the Cu 2+ -NMOFs mimic NADH peroxidase functions and catalyze the oxidation of dihydronicotinamide adenine dinucleotide, NADH, to nicotinamide adenine dinucleotide, NAD + , in the presence of H 2 O 2 . The Cu 2+ -NMOFs-catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 is used to develop a glucose sensor by monitoring the H 2 O 2 formed by the aerobic oxidation of glucose to gluconic acid in the presence of glucose oxidase. Furthermore, loading the Cu 2+ -NMOFs with fluorescein and activating the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 yield an efficient chemiluminescence resonance energy transfer (CRET) process to the fluorescein reflected by the activation of the fluorescence of the dye (λ = 520 nm, CRET efficiency 35%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc = βH-α at low operating temperatures 5 K and 20 K only.

  10. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.

    PubMed

    Witzke, M E; Dietrich, P J; Ibrahim, M Y S; Al-Bardan, K; Triezenberg, M D; Flaherty, D W

    2017-01-03

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C-C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cu δ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu 0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2-35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  11. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    PubMed

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    DOE PAGES

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less

  13. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  15. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    PubMed

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    PubMed

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (<250 °C) hydrothermal conditions are systematically studied. The stabilization of Cu(I) cations in aqueous solution and the controlling of the hydrolysis of Ga(III) species are two crucial factors that determine the phase formation. The oriented attachment (OA) growth is proposed as the crystal growth mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  17. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes.

    PubMed

    Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-03-27

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.

  18. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes

    PubMed Central

    Lu, Kuankuan; Li, Yuzhi; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-01-01

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al2O3) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al2O3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al2O3 PVL exhibited remarkable mobility of 33.5–220.1 cm2/Vs when channel length varies from 60 to 560 μm. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously. PMID:29584710

  19. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  20. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines.

    PubMed

    Karlsson, Hanna L; Gliga, Anda R; Calléja, Fabienne M G R; Gonçalves, Cátia S A G; Wallinder, Inger Odnevall; Vrieling, Harry; Fadeel, Bengt; Hendriks, Giel

    2014-09-02

    The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.

  1. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    PubMed

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayob, M. T. M.; Ahmad, A. F.; Mohd, H. M. K.

    Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in themore » range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.« less

  3. Synthesis, characterization and biological studies of copper oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  4. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Zou, Junyan; Song, Weijia; Xie, Weiguang; Huang, Bo; Yang, Huidong; Luo, Zhi

    2018-03-01

    Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ˜108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

  5. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.

    2016-12-12

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) andmore » catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.« less

  6. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells

    DTIC Science & Technology

    2009-06-01

    iron oxide NPs via thermal decomposition. - Prepared gold-coated iron oxide NPs. - Developed a click chemistry protocol (i.e. Cu-catalyzed terminal...D.L.J., Elias, D.R., Tsourkas, A. (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry . Submitted...carbodiimide versus click chemistry . Submitted. APPENDICES: 1) Thorek, D.L.J., Tsourkas, A. (2008) Size, charge, and concentration dependent

  7. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.Themore » variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.« less

  8. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  9. Biokinetics of different-shaped copper oxide nanoparticles in the freshwater gastropod, Potamopyrgus antipodarum

    USGS Publications Warehouse

    Ramskov, Tina; Croteau, Marie-Noele; Forbes, Valery E.; Selck, Henriette

    2015-01-01

    Sediment is recognized as a major environmental sink for contaminants, including engineered nanoparticles (NPs). Consequently, sediment-living organisms are likely to be exposed to NPs. There is evidence that both accumulation and toxicity of metal NPs to sediment-dwellers increase with decreasing particle size, although NP size does not always predict effects. In contrast, not much is known about the influence of particle shape on bioaccumulation and toxicity. Here, we examined the influence of copper oxide (CuO) NP shape (rods, spheres, and platelets) on their bioaccumulation kinetics and toxicity to the sediment-dwelling gastropod, Potamopyrgus antipodarum. The influence of Cu added as CuCl2 (i.e., aqueous Cu treatment) was also examined. Exposure to sediment mixed with aqueous Cu or with different-shaped CuO NPs at an average measured exposure concentration of 207 μg Cu per g dry weight sediment for 14 days did not significantly affect snail mortality. However, growth decreased for snails exposed to sediment amended with CuO NP spheres and platelets. P. antipodarum accumulated Cu from all Cu forms/shapes in significant amounts compared to control snails. In addition, once accumulated, Cu was efficiently retained (i.e., elimination rate constants were generally not significantly different from zero). Consequently, snails are likely to concentrate Cu over time, from both aqueous and NP sources, resulting in a high potential for toxicity.

  10. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05843g

  11. Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes.

    PubMed

    Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar

    2018-06-13

    Catalyzed oxygen insertion into C-H bonds represents a continuous challenge in chemistry. Particularly, driving this process at ambient temperature and aqueous media represents a "holy grail" in catalysis. We report on the catalyzed cascade transformations of l-tyrosine or l-phenylalanine to dopachrome in the presence of l-ascorbic acid/H 2 O 2 as oxidizing mixture and CuFe-Prussian Blue-like nanoparticles, Fe 3 O 4 nanoparticles or Au nanoparticles as catalysts. The process involves the primary transformation of l-tyrosine to l-DOPA that is further oxidized to dopachrome. The transformation of l-phenylalanine to dopachrome in the presence of CuFe-Prussian Blue-like nanoparticles and l-ascorbic acid/H 2 O 2 involves in the first step the formation of l-tyrosine and, subsequently, the operation of the catalytic oxidation cascade of l-tyrosine to l-DOPA and dopachrome. Electron spin resonance experiments demonstrate that ascorbate radicals and hydroxyl radicals play cooperative functions in driving the different oxygen-insertion processes. In addition, the aerobic elecrocatalyzed oxidation of l-tyrosine to dopachrome in the presence of naphthoquinone-modified Fe 3 O 4 nanoparticles and l-ascorbic acid is demonstrated. In this system, magnetic-field attraction of the naphthoquinone-modified Fe 3 O 4 nanoparticles onto the electrode allows the quinone-mediated electrocatalyzed reduction of O 2 to H 2 O 2 (bias potential -0.5 V vs SCE). The electrogenerated H 2 O 2 is then utilized to promote the transformation of l-tyrosine to dopachrome in the presence of l-ascorbic acid and Fe 3 O 4 catalyst.

  12. Mineralization and optical characterization of copper oxide nanoparticles using a high aspect ratio bio-template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaman, Mohammed Shahriar; Haberer, Elaine D., E-mail: haberer@ucr.edu; Materials Science and Engineering Program, University of California, Riverside, California 92521

    Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu₂O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap ofmore » 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.« less

  13. A Stable Plasmonic Cu@Cu2 O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Lou, Yongbing; Zhang, Yake; Cheng, Lin; Chen, Jinxi; Zhao, Yixin

    2018-05-09

    The localized surface plasmon resonance (LSPR) effect has been widely utilized in photocatalysis, but most reported LSPR materials are based on noble metals of gold or silver with high chemical stability. Plasmonic copper nanoparticles that exhibit an LSPR absorbance at 600 nm are promising for many applications, such as photocatalysis. Unfortunately, plasmonic copper nanoparticles are affected by serious surface oxidation in air. Herein, a novel lollipop-shaped Cu@Cu 2 O/ZnO heterojunction nanostructure was designed, for the first time, to stabilize the plasmonic Cu core by decorating Cu@Cu 2 O core-shell structures with ZnO nanorods. This Cu@Cu 2 O/ZnO nanostructure exhibited significantly enhanced stability than that of regular Cu@Cu 2 O, which accounted for the remarkably enhanced photocatalytic H 2 evolution rate through water splitting, relative to pristine ZnO nanorods, over an extended wavelength range due to the plasmonic Cu core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells. Electronic supplementary information (ESI) available: Additional tables and figures supporting the information presented in the manuscript. See DOI: 10.1039/c2nr31785k

  15. Antibiofilm and Membrane-Damaging Potential of Cuprous Oxide Nanoparticles against Staphylococcus aureus with Reduced Susceptibility to Vancomycin

    PubMed Central

    Singh, Avinash; Ahmed, Asar; Khanduja, Sonali; Singh, Satyendra K.; Srivastava, Janmejai K.; Gajbhiye, Namdeo S.

    2015-01-01

    The antimicrobial effects of copper ions and salts are well known, but the effects of cuprous oxide nanoparticles (Cu2O-NPs) on staphylococcal biofilms have not yet been clearly revealed. The present study evaluated Cu2O-NPs for their antibacterial and antibiofilm activities against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA). Nanoscaled Cu2O, generated by solution phase technology, contained Cu2O octahedral nanoparticles. Field emission electron microscopy demonstrated particles with sizes ranging from 100 to 150 nm. Cu2O-NPs inhibited the growth of S. aureus and showed antibiofilm activity. The MICs and minimum biofilm inhibitory concentrations ranged from 625 μg/ml to 5,000 μg/ml and from 2,500 μg/ml to 10,000 μg/ml, respectively. Exposure of S. aureus to Cu2O-NPs caused leakage of the cellular constituents and increased uptake of ethidium bromide and propidium iodide. Exposure also caused a significant reduction in the overall vancomycin-BODIPY (dipyrromethene boron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluorescent dye) binding and a decrease in the viable cell count in the presence of 7.5% sodium chloride. Cu2O-NP toxicity assessment by hemolysis assay showed no cytotoxicity at 625 to 10,000 μg/ml concentrations. The results suggest that Cu2O-NPs exert their action by disruption of the bacterial cell membrane and can be used as effective antistaphylococcal and antibiofilm agents in diverse medical devices. PMID:26303796

  16. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    PubMed

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  17. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

    PubMed

    Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne

    2013-03-18

    A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute basal toxicity of chemicals toward yeasts may be conducted in DI.

  18. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  19. Control surface morphology, structural and optical properties of Cu2O nanocrystals by using the hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Gowd, A. Viswanath; Thangavel, R.

    2018-05-01

    The Cuprous oxide (Cu2O) is a reddish-brown colored p-type semiconductor compound. The Cu2O nanocrystals were successfully synthesized by using copper (II) chloride as a precursor, Sodium hydroxide as mineralizing agent with the ascorbic through hydrothermal method. The process was accomplished with 0.05 and 0.1 mol/L concentration of CuCl2.2H2O at 75°C temperature in the presence of de-ionized (DI) water. X-ray diffraction patterns of the synthesized samples powder confirmed presence of Cu2O and Cu nanoparticles due to complete and incomplete oxidation of Cu particles, respectively. The prepared nanoparticles with an average size of below 40 nm were estimated using Debye - Scherrer method and the analysis shown that an increase in CuCl2.2H2O concentration from 0.05 to 0.1M leads to the downsizing of the Cu2O particles. Field - emission scanning electron microscopy data showed that the morphology has changed from nano - cubes to octahedron by increasing the precursor mole concentration. Optical measurements show the bandgap shift towards higher energy with changing morphology to nano-cubes and octahedron. The luminescence peaks at 450 and 464 nm shows the presence of Cu2O phase and remaining peaks were due to Cu phase and interstials defects.

  20. Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells.

    PubMed

    Halevas, E; Nday, C M; Salifoglou, A

    2016-10-01

    Morphological alterations compromising inter-neuronal connectivity may be directly linked to learning-memory deficits in Central Nervous System neurodegenerative processes. Cu(II)-mediated oxidative stress plays a pivotal role in regulating redox reactions generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), known contributors to Alzheimer's disease (AD) pathology. The antioxidant properties of flavonoid catechin have been well-documented in neurodegenerative processes. However, the impact that catechin encapsulation in nanoparticles may have on neuronal survival and morphological lesions has been poorly demonstrated. To investigate potential effects of nano-encapsulated catechin on neuronal survival and morphological aberrations in primary rat hippocampal neurons, poly(ethyleneglycol) (PEG) and cetyltrimethylammonium bromide (CTAB)-modified silica nanoparticles were synthesized. Catechin was loaded on silica nanoparticles in a concentration-dependent fashion, and release studies were carried out. Further physicochemical characterization of the new nano-materials included elemental analysis, particle size, z-potential, FT-IR, Brunauer-Emmett-Teller (BET), thermogravimetric (TGA), and scanning electron microscopy (SEM) analysis in order to optimize material composition linked to the delivery of loaded catechin in the hippocampal cellular milieu. The findings reveal that, under Cu(II)-induced oxidative stress, the loading ability of the PEGylated/CTAB silica nanoparticles was concentration-dependent, based on their catechin release profile. The overall bio-activity profile of the new hybrid nanoparticles a) denoted their enhanced protective activity against oxidative stress and hippocampal cell survival compared to previously reported quercetin, b) revealed that morphological lesions affecting neuronal integrity can be counterbalanced at high copper concentrations, and c) warrants in-depth perusal of molecular events underlying neuronal function and degeneration, collectively linked to preventive nanotechnology in neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles

    PubMed Central

    Chang, Ya-Nan; Zhang, Mingyi; Xia, Lin; Zhang, Jun; Xing, Gengmei

    2012-01-01

    Recent nanotechnological advances suggest that metal oxide nanoparticles (NPs) have been expected to be used in various fields, ranging from catalysis and opto-electronic materials to sensors, environmental remediation, and biomedicine. However, the growing use of NPs has led to their release into environment and the toxicity of metal oxide NPs on organisms has become a concern to both the public and scientists. Unfortunately, there are still widespread controversies and ambiguities with respect to the toxic effects and mechanisms of metal oxide NPs. Comprehensive understanding of their toxic effect is necessary to safely expand their use. In this review, we use CuO and ZnO NPs as examples to discuss how key factors such as size, surface characteristics, dissolution, and exposure routes mediate toxic effects, and we describe corresponding mechanisms, including oxidative stress, coordination effects and non-homeostasis effects.

  2. Understanding and Quantifying the Reactivity of Energetic NanoParticles and NanoComposites

    DTIC Science & Technology

    2015-01-05

    Aerosol Synthesis and Reactivity of Thin Oxide Shell Aluminum Nanoparticles via Fluorocarboxylic Acid Functional Coating, Particle & Particle...Received Paper 3.00 9.00 8.00 7.00 6.00 5.00 4.00 X. Ma and M.R. Zachariah. " Oxidation Anisotropy and Size Dependent Reaction Kinetics of Zinc ...in the reaction. Experiments also conducted for neat Al, CuO, Fe2O3 and ZnO powders show that the oxygen are produced by decomposition of oxidizer

  3. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.

    PubMed

    Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui

    2011-10-01

    Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011

  4. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    PubMed

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (<5 s), good selectivity to the general coexisted interferences, etc. Such properties would promote the potential application of the nitrogen-doped graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  5. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.

    PubMed

    Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun

    2016-11-02

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  6. Stabilizing CuPd Nanoparticles via CuPd Coupling to WO 2.72 Nanorods in Electrochemical Oxidation of Formic Acid

    DOE PAGES

    Xi, Zheng; Li, Junrui; Su, Dong; ...

    2017-10-05

    Stabilizing a 3d-transition metal component M from an MPd alloy structure in an acidic environment is key to the enhancement of MPd catalysis for various reactions. Here we show a strategy to stabilize Cu in 5 nm CuPd nanoparticles (NPs) by coupling the CuPd NPs with perovskite-type WO 2.72 nanorods (NRs). The CuPd NPs are prepared by controlled diffusion of Cu into Pd NPs and the coupled CuPd/WO 2.72 are synthesized by growing WO 2.72 NRs in the presence of CuPd NPs. The CuPd/WO 2.72 can stabilize Cu in 0.1 M HClO4 solution and, as a result, they show Cu,more » Pd composition dependent activity for the electrochemical oxidation of formic acid in 0.1 M HClO 4 + 0.1 M HCOOH. Among three different CuPd/WO 2.72 studied, the Cu 48Pd 52/WO 2.72 is the most efficient catalyst with its mass activity reaching 2086 mA/mgPd in a broad potential range of 0.40 to 0.80 V (vs. RHE) and staying at this value after the 12 h chronoamperometry test at 0.40 V. The synthesis can be extended to obtain other MPd/WO 2.72 (M = Fe, Co, Ni), making it possible to study MPd-WO 2.72 interactions and MPd stabilization on enhancing MPd catalysis for various chemical reactions.« less

  7. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  8. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE PAGES

    Shan, Junjun; Liu, Jilei; Li, Mengwei; ...

    2017-12-29

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  9. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Liu, Jilei; Li, Mengwei

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  10. Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Davari, Behroz; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros

    2016-10-01

    The aim of this research was to investigate the coexposure of nanoparticles of titanium dioxide (TiO2) and copper oxide (CuO) on the alterations of the gill, intestine, kidney, and liver tissues of carps (Cyprinus carpio). In this study, carps (length 23 ± 1.5 cm; weight 13 ± 1.3 g) were divided into six groups of 15 each and exposed to 2.5 and 5.0 mg L(-1) of CuO nanoparticles (NPs), 10.0 mg L(-1) of TiO2 NPs, and 2.5 and 5.0 mg L(-1) of CuO NPs + 10.0 mg L(-1) of TiO2 NP mixture. Fish were sampled for histopathological studies after hematoxylin-eosin staining. Results indicated that the more kinds of histopathology anomalies observed with CuO NP and TiO2 NP mixture were broadly of the same type as CuO NPs and TiO2 NPs alone, but the severity or incidence of injuries of gill, intestine, liver, and kidney of carps in the mixture of CuO NPs + TiO2 NPs was higher than that of each NP alone. Moreover, behavioral changes in carps exposed to CuO NP and TiO2 NP mixture such as hyperactivity, loss of balance, and convulsions were higher than those to CuO NPs and TiO2 NPs alone. In conclusion, the presence of TiO2 NPs enhanced the effects of NPs of copper oxide in terms of histopathological changes in carps.

  11. The reduced bioavailability of copper by nano-TiO₂ attenuates the toxicity to Microcystis aeruginosa.

    PubMed

    Chen, Jinyuan; Qian, Yi; Li, Herong; Cheng, Yanhong; Zhao, Meirong

    2015-08-01

    Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.

  12. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    PubMed

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  13. Preparation of CuO Quantum Dots by Cost-Effective Ultrasonication Technique

    NASA Astrophysics Data System (ADS)

    Rathod, K. N.; Savaliya, Chirag; Babiya, K. R.; Vasvani, S. H.; Ramani, Rupeshkumar V.; Ramani, Bharat M.; Joshi, Ashvini D.; Pandya, Dhiren; Shah, N. A.; Markna, J. H.

    Due to exciting size-dependent chemical and physical properties, nanoscale materials have extensive range of applications compared with microstructural particles. CuO nanoparticles are very important among transition metal oxides because of their large number of applications. Quantum dots (QDs) of CuO (copper oxide) were prepared by the innovative ultrasonication method. Ultrasonic sound is used in this synthesis method to synthesize QDs of copper oxide. Structural and optical properties were studied in this research work. X-ray diffraction was used to study the formation of structural phase CuO QDs and found to be single phasic without any impurity. Transmission electron microscopic measurements were performed to study the morphology of QDs of CuO, which confirms spherical QDs with an average diameter of ˜4nm. In optical studies, absorption spectra of the CuO were analyzed by using UV-visible spectroscopy.

  14. Interactions between suspension characteristics and physicochemical properties of silver and copper oxide nanoparticles: a case study for optimizing nanoparticle stock suspensions using a central composite design.

    PubMed

    Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery

    2015-04-01

    The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hongjin

    SnPb solders have long been used as interconnect materials in microelectronic packaging. Due to the health threat of lead to human beings, the use of lead-free interconnect materials is imperative. Three kinds of lead-free interconnect materials are being investigated, namely lead-free metal solders (SnAg, SnAgCu, etc.), electrically conductive adhesives (ECAs) and carbon nanotubes (CNTs). However, there are still limitations for the full utilization of these lead-free interconnect materials in the microelectronic packaging, such as higher melting point of lead-free metal solders, lower electrical conductivity of the ECAs and poor adhesion of CNTs to substrates. This thesis is devoted to the research and development of low processing temperature lead-free interconnect materials for microelectronic packaging applications with an emphasis on fundamental studies of nanoparticles synthesis, dispersion and oxidation prevention, and nanocomposites fabrication. Oxide-free tin (Sn), tin/silver (96.5Sn3.5Ag) and tin/silver/copper (96.5Sn3.0Ag0.5Cu) alloy nanoparticles with different sizes were synthesized by a low temperature chemical reduction method. Both size dependent melting point and latent heat of fusion of the synthesized nanoparticles were obtained. The nano lead-free solder pastes/composites created by dispersing the SnAg or SnAgCu alloy nanoparticles into an acidic type flux spread and wet on the cleaned copper surface at 220 to 230°C. This study demonstrated the feasibility of nano sized SnAg or SnAgCu alloy particle pastes for low processing temperature lead-free interconnect applications in microelectronic packaging.

  16. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    NASA Astrophysics Data System (ADS)

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-04-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  17. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete: Part I: relative importance of water and sediment as exposure routes

    USGS Publications Warehouse

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noele; Selck, Henriette

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L. variegatus across a range of exposure concentrations, covering both realistic and worst-case levels of Cu contamination in the environment. Both aqueous Cu (Cu-Aq; administered as Cu(NO3)2) and nanoparticulate Cu (CuO NPs), whether dispersed in artificial moderately hard freshwater or mixed into sediment, were weakly accumulated by L. variegatus. Once incorporated into tissues, Cu elimination was negligible, i.e., elimination rate constants were in general not different from zero for either exposure route or either Cu form. Toxicity was only observed after waterborne exposure to Cu-Aq at very high concentration (305 µgL-1), where all worms died. There was no relationship between exposure route, Cu form or Cu exposure concentration on either worm survival or growth. Slow feeding rates and low Cu assimilation efficiency (approximately 30%) characterized the uptake of Cu from the sediment for both Cu forms. In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases.

  18. Greener Route for Synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using Graphene Oxide-Copper Ferrite Nanocomposite as a Recyclable Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Kumar, Aniket; Rout, Lipeeka; Achary, Lakkoji Satish Kumar; Dhaka, Rajendra. S.; Dash, Priyabrat

    2017-02-01

    A facile, efficient and environmentally-friendly protocol for the synthesis of xanthenes by graphene oxide based nanocomposite (GO-CuFe2O4) has been developed by one-pot condensation route. The nanocomposite was designed by decorating copper ferrite nanoparticles on graphene oxide (GO) surface via a solution combustion route without the use of template. The as-synthesized GO-CuFe2O4 composite was comprehensively characterized by XRD, FTIR, Raman, SEM, EDX, HRTEM with EDS mapping, XPS, N2 adsorption-desorption and ICP-OES techniques. This nanocomposite was then used in an operationally simple, cost effective, efficient and environmentally benign synthesis of 14H-dibenzo xanthene under solvent free condition. The present approach offers several advantages such as short reaction times, high yields, easy purification, a cleaner reaction, ease of recovery and reusability of the catalyst by a magnetic field. Based upon various controlled reaction results, a possible mechanism for xanthene synthesis over GO-CuFe2O4 catalyst was proposed. The superior catalytic activity of the GO-CuFe2O4 nanocomposite can be attributed to the synergistic interaction between GO and CuFe2O4 nanoparticles, high surface area and presence of small sized CuFe2O4 NPs. This versatile GO-CuFe2O4 nanocomposite synthesized via combustion method holds great promise for applications in wide range of industrially important catalytic reactions.

  19. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    PubMed

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammen, Nisha; Spanu, Leonardo; Tyo, Eric C.

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases alsomore » feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.« less

  1. Assessing protein oxidation by inorganic nanoparticles with enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Sun, Wenjie; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes; Field, Jim A

    2013-03-01

    Growth in the nanotechnology industry is leading to increased production of engineered nanoparticles (NPs). This has given rise to concerns about the potential adverse and toxic effects to biological system and the environment. An important mechanism of NP toxicity is oxidative stress caused by the formation of reactive oxygen species (ROS) or via direct oxidation of biomolecules. In this study, a protein oxidation assay was developed as an indicator of biomolecule oxidation by NPs. The oxidation of the protein, bovine serum albumin (BSA) was evaluated with an enzyme-linked immunosorbent assay (ELISA) to measure the protein carbonyl derivatives formed from protein oxidation. The results showed that some NPs such as Cu(0), CuO, Mn(2)O(3), and Fe(0) caused oxidation of BSA; whereas, many of the other NPs tested were not reactive or very slowly reactive with BSA. The mechanisms involved in the oxidation of BSA protein by the reactive NPs could be attributed to the combined effects of ROS-dependent and direct protein oxidation mechanisms. The ELISA assay is a promising method for the assessment of protein oxidation by NPs, which can provide insights on NP toxicity mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  2. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum).

    PubMed

    Zuverza-Mena, Nubia; Medina-Velo, Illya A; Barrios, Ana C; Tan, Wenjuan; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-10-01

    The environmental impacts of Cu-based nanoparticles (NPs) are not well understood. In this study, cilantro (Coriandrum sativum) was germinated and grown in commercial potting mix soil amended with Cu(OH)2 (Kocide and CuPRO), nano-copper (nCu), micro-copper (μCu), nano-copper oxide (nCuO), micro-copper oxide (μCuO) and ionic Cu (CuCl2) at either 20 or 80 mg Cu per kg. In addition to seed germination and plant elongation, relative chlorophyll content and micro and macroelement concentrations were determined. At both concentrations, only nCuO, μCuO, and ionic Cu, showed statistically significant reductions in germination. Although compared with control, the relative germination was reduced by ∼50% with nCuO at both concentrations, and by ∼40% with μCuO, also at both concentrations, the difference among compounds was not statistically significant. Exposure to μCuO at both concentrations and nCu at 80 mg kg(-1) significantly reduced (p≤ 0.05) shoot elongation by 11% and 12.4%, respectively, compared with control. Only μCuO at 20 mg kg(-1) significantly reduced (26%) the relative chlorophyll content, compared with control. None of the treatments increased root Cu, but all of them, except μCuO at 20 mg kg(-1), significantly increased shoot Cu (p≤ 0.05). Micro and macro elements B, Zn, Mn, Ca, Mg, P, and S were significantly reduced in shoots (p≤ 0.05). Similar results were observed in roots. These results showed that Cu-based NPs/compounds depress nutrient element accumulation in cilantro, which could impact human nutrition.

  3. Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route

    NASA Astrophysics Data System (ADS)

    Varghese, Donna; Tom, Catherine; Krishna Chandar, N.

    2017-11-01

    CuO (Copper Oxide) nanoparticles were synthesized by a simple coprecipitation route by using copper acetate, sodium hydroxide as precursors and cetyltrimethyl ammonium bromide (CTAB) as surfactant. For the purpose of the study, the surfactant-CTAB treated and non-treated samples were synthesized separately. Both the synthesized samples were studied to understand their structural and optical properties. The formation of CuO and its crystallinity was confirmed by XRD. Further, the optical studies showed a defined blue shift in CTAB treated sample which is clear evidence that the particles undergo confinement when they are nano-regime.

  4. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.

    PubMed

    Rehana, Dilaveez; Mahendiran, D; Kumar, R Senthil; Rahiman, A Kalilur

    2017-05-01

    Copper oxide (CuO) nanoparticles were synthesized by green chemistry approach using different plant extracts obtained from the leaves of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera and Tamarindus indica. In order to compare their efficiency, the same copper oxide nanoparticles was also synthesized by chemical method. Phytochemical screening of the leaf extracts showed the presence of carbohydrates, flavonoids, glycosides, phenolic compounds, saponins, tannins, proteins and amino acids. FT IR spectra confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. The surface plasmon resonance absorption band at 220-235nm in the UV-vis spectra also supports the formation of copper oxide nanoparticles. XRD patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by SEM, TEM and SAED analysis. EDX analysis confirmed the presence of elements in the synthesized nanoparticles. The antioxidant activity was evaluated by three different free radical scavenging assays. The cytotoxicity of copper oxide nanoparticles was evaluated against four cancer cell lines such as human breast (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549), and one normal human dermal fibroblast (NHDF) cell line. The morphological changes were evaluated using Hoechst 33258 staining assay. Copper oxide nanoparticles synthesized by green method exhibited high antioxidant and cytotoxicity than that synthesized by chemical method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles.

    PubMed

    Martínez, L; Lauwaet, K; Santoro, G; Sobrado, J M; Peláez, R J; Herrero, V J; Tanarro, I; Ellis, G J; Cernicharo, J; Joblin, C; Huttel, Y; Martín-Gago, J A

    2018-05-08

    The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu 0 to CuO through Cu 2 O, and their mixtures) at different stages in the machine.

  6. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain.

    PubMed

    Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S

    2014-07-01

    Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.

  7. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.

    PubMed

    Pan, Xiaoping; Redding, James E; Wiley, Patricia A; Wen, Lisa; McConnell, J Scott; Zhang, Baohong

    2010-03-01

    Nanomaterials have been emerging as a new group of contaminants in the environment. We reported the use of a bacterial reverse mutation assay (Ames assay) to evaluate the mutagenicity of five metal oxide nanoparticles Al(2)O(3), Co(3)O(4), CuO, TiO(2), and ZnO in this study. Results showed the mutagenicity was negative for four nanoparticles (Al(2)O(3), Co(3)O(4), TiO(2), and ZnO) up to 1000mug/plate to all three tested strains without S9 metabolic activation. Using a preincubation procedure and high S9 (9%) activation, TiO(2) and ZnO induced marginal mutagenesis to strain Escherichia coli WP2 trp uvrA. CuO displayed low mutagenic potential to Salmonella typhimurium TA97a and TA100 at specific concentrations. However, the colony inhibition effect of CuO was predominant to the strain E. coli WP2 trp uvrA. A dose-dependent inhibition of Escherichia coli WP2 colony was found under CuO exposure at concentration range of 100-1600mug/plate. No growth inhibition of tested bacterial strains by Al(2)O(3), Co(3)O(4), and ZnO was observed at the concentrations used. Published by Elsevier Ltd.

  8. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).

    PubMed

    Yang, Zhongzhou; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li

    2015-11-30

    In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal oxide NPs. However, at the concentration of 2000 mg·L(-1), the root elongation was significantly inhibited by nCuO (95.73% for maize and 97.28% for rice), nZnO (50.45% for maize and 66.75% for rice). On the contrary, minor phytotoxicity of nAl₂O₃ was only observed in maize, and no obvious toxic effects were found in the other four metal oxide NPs. By further study we found that the phytotoxic effects of nZnO, nAl₂O₃ and nCuO (25 to 2000 mg·L(-)¹) were concentration dependent, and were not caused by the corresponding Cu(2+), Zn(2+) and Al(3+) ions (0.11 mg·L(-)¹, 1.27 mg·L(-)¹ and 0.74 mg·L(-)¹, respectively). Furthermore, ZnO NPs (<50 nm) showed greater toxicity than ZnO microparticles(MPs)(<5 μm) to root elongation of both maize and rice. Overall, this study provided valuable information for the application of engineered NPs in agriculture and the assessment of the potential environmental risks.

  9. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro.

    PubMed

    Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Conde, Estefanía; Fernández, Marta; Schuster, Michael; Navas, José María

    2015-02-01

    Here we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity. However, CuNPs cytotoxicity was not affected by co-incubation with medium containing only zinc ions, indicating the increase in toxicity might be attributed to the particle form of ZnONPs. Transmission electron microscopy (TEM) revealed the presence of CuNPs and ZnONPs inside the cells co-exposed to both types of NP and outflow of cytoplasm through the damaged cell membrane. Inductively coupled plasma mass spectrometry (ICP-MS) determined an increase in the concentration of zinc and a decrease in that of copper in co-exposed cells. On the basis of these results, we propose that accumulation of large numbers of ZnONPs in the cells alters cellular membranes and the cytotoxicity of CuNPs is increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng

    2017-07-01

    Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.

  11. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization

    NASA Astrophysics Data System (ADS)

    Chen, Li Qiang; Kang, Bin; Ling, Jian

    2013-03-01

    Cuprous oxide nanoparticles (Cu2O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu2O NPs on organisms. In the current study, in vitro cytotoxicity of Cu2O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu2O NPs to red blood cells (RBCs) and the phagocytosis of Cu2O NPs by leukocytes were revealed. The results showed that dosages of Cu2O NPs greater than 40 μg/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC50 value of Cu2O NPs as obtained from RBCs and whole blood exposure was 26 and 63 μg/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu2O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu2O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu2O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu2O NPs by leukocytes.

  12. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles

    PubMed Central

    Wysocka, Izabela; Trzciński, Konrad; Łapiński, Marcin; Nowaczyk, Grzegorz; Zielińska-Jurek, Anna

    2018-01-01

    The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), Mott-Schottky analysis and photoluminescence spectroscopy (PL). Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation). It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process. PMID:29316667

  13. GO-Cu7S4 catalyzed ortho-aminomethylation of phenol derivatives with N,N-dimethylbenzylamines: site-selective oxidative CDC.

    PubMed

    Gupta, Sonu; Chandna, Nisha; Dubey, Pooja; Singh, Ajai K; Jain, Nidhi

    2018-06-21

    Copper chalcogenide nanoparticles (Cu7S4) supported on graphene oxide (GO) have been synthesized for the first time from Cu2S, and used as highly efficient heterogeneous catalysts for oxidative ortho-selective C-H aminomethylation of phenols with N,N-dimethylbenzylamines. The NPs (30-80 nm) have been characterized by HRTEM, SEM-EDX, PXRD, FTIR, Raman, ICP-AES and XPS analyses. The NP catalyzed sp2-sp3 cross dehydrogenative coupling (CDC) features a broad substrate scope, excellent functional group tolerance, high yields, use of an inexpensive and reusable copper catalyst, mild conditions, and no need for pre-functionalization of substrates.

  14. Effect of Gold Nanoparticles Addition to CuO–ZnO/A₂O₃ Catalyst in Conversion of Carbon Dioxide to Methanol.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2017-04-01

    Hydrogenation of carbon dioxide (CO₂) into methanol (CH₃OH) was carried out in the CuO–ZnO based supported gold catalyst prepared by the co-precipitation method. When gold nanoparticles were added to the CuO–ZnO/Al2O₃ catalysts (CuO–ZnO/Au/Al₂O₃), the CO₂ conversion and CH₃OH yield were increased (two times higher than that of CuO–ZnO/Al₂O₃ catalyst) with increasing reaction pressure, but selectivity of CH3OH was decreased. The main reason of this result could suggest the importance gold-oxides interface in CH₃OH formation through hydrogenation of CO₂. Maximum selectivity and yield to CH₃OH over CuO–ZnO/Au/Al₂O₃ were obtained at 250°C and under 15–20 bars.

  15. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    PubMed

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  16. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

    2018-02-01

    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  17. Synthesis and Cs-Corrected Scanning Transmission Electron Microscopy Characterization of Multimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, Jesus; Jose-Yacaman, Miguel; Subarna Khanal Team

    2014-03-01

    Multimetallic nanoparticles have been attracted greater attention both in materials science and nanotechnology due to its unique electronic, optical, biological, and catalytic properties lead by physiochemical interactions among different atoms and phases. The distinct features of multimetallic nanoparticles enhanced synergetic properties, large surface to volume ratio and quantum size effects ultimately lead to novel and wide range of possibilities for different applications than monometallic counterparts. For instance, PtPd, Pt/Cu, Au-Au3Cu, AgPd/Pt, AuCu/Pt and many other multimetallic nanoparticles have raised interest for their various applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, and so on. The nanostructures were analyzed by transmission electron microscopy (TEM) and by aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in combination with high angle annular dark field (HAADF), bright field (BF), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) detectors. These techniques allowed us to probe the structure at the atomic level of the nanoparticles revealing new structural information and elemental composition of the nanoparticles. The authors would like to acknowledge NSF grants DMR-1103730, ``Alloys at the Nanoscale: The Case of Nanoparticles Second Phase'' and NSF PREM Grant # DMR 0934218.

  18. (Zn,H)-codoped copper oxide nanoparticles via pulsed laser ablation on Cu-Zn alloy in water

    PubMed Central

    2012-01-01

    Nanosized (5 to 10 nm) amorphous and crystalline nanocondensates, i.e., metallic α-phase of Zn-Cu alloy in face-centered cubic structure and (Zn,H)-codoped cuprite (Cu2O) with high-pressure-favored close-packed sublattice, were formed by pulsed laser ablation on bulk Cu65Zn35 in water and characterized by X-ray/electron diffractions and optical spectroscopy. The as-fabricated hybrid nanocondensates are darkish and showed photoluminescence in the whole visible region. Further dwelling of such nanocondensates in water caused progressive formation of a rice-like assembly of (Zn,H)-codoped tenorite (CuO) nanoparticles with (001), (100), and {111} preferred orientations, (111) tilt boundary, yellowish color, and minimum bandgap narrowing down to ca. 2.7 eV for potential photocatalytic applications. PMID:22647312

  19. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  20. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  1. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    DTIC Science & Technology

    2008-02-07

    22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004

  2. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    PubMed

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts.

  3. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  4. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    USGS Publications Warehouse

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noele; Selck, Henriette

    2016-01-01

    The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched 65Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus handle the two Cu forms differently. However, longer-term exposures are suggested in order to clearly highlight differences in the subcellular distribution of these two Cu forms.

  5. Synthesis of low-size flower-like AlOOH structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakina, Olga V., E-mail: ovbakina@ispms.tsc.ru, E-mail: eagl@ispms.tsc.ru; Glazkova, Elena A., E-mail: ovbakina@ispms.tsc.ru, E-mail: eagl@ispms.tsc.ru; Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru

    Al/Cu, Al/Zn, and Al/Fe bimetallic nanoparticles have been obtained using the method of simultaneous electrical explosion of metal pairs in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C forming flower-like hierarchical porous structures with a high specific surface area. As the Al/Cu nanopowder is oxidized with water, flower-like pseudoboehmite composite structures are formed with the size of under 1.0 μm; structurally heterogeneous electron-dense spherical inclusions of unreacted metal copper and intermetallides are identified inside them. Al/Fe product transformations are presented by the flower-like pseudoboehmite surrounded by lamellar structures enriched with ferric oxides. Al/Zn nanoparticlesmore » react with water, forming the flower-like pseudoboehmite and mainly hexagonal zinc oxide laminae. The composite particles obtained can be used as antibacterial agents in manufacturing medical supplies.« less

  6. Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

    PubMed

    Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng

    2016-12-07

    Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.

  7. Structural characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha

    Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300°C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600°C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealed in helium due to reduction of the surface oxides that promotes coalescence and sintering. The nanoscale composition and structure of alloy catalysts affect heterogeneous catalysis. We also studied Pd:Cu nanoparticle mixtures of different compositions. In Pd:Cu of composition ratio 1:1, ordered B2 phase is formed during annealing at 450C. During the ramped annealing from 450°C to 750°C, the B2 phase transforms into two different alloys, one alloy rich in copper and the other rich in Pd. This structural evolution is different from that of Pd-Cu system in bulk. In the 3:1 composition, the B2 phase dominates in the isothermal anneal at 450C but a disordered alloy fcc phase is also formed. On annealing to 750°C, the disordered fcc phase grows at the expense of the B2 phase. These findings have important applications for the thermal activation of Pd-Cu nanocatalysts for EOR reactions.

  8. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  9. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-03

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dielectric Properties of PANI/CuO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja

    2018-02-01

    The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.

  11. A Facile Synthesis of MPd (M=Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Vismadeb; Chi, Miaofang; Mankin, Max

    2012-01-01

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)2 (acac = acetylacetonate) and PdBr2 at 260 C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co10Pd90 to Co60Pd40) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO4 and 2 M HCOOH solution, their catalytic activities followed the trend of Co50Pd50 > Co60Pd40 > Co10Pd90 > Pd. The Co50Pd50 NPs hadmore » an oxidation peak at 0.4 V with a peak current density of 774 A/gPd. As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/gPd. The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)2 was replaced by Cu(ac)2 (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO4 solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.« less

  12. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    NASA Astrophysics Data System (ADS)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  13. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-01

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core–shell Fe3O4@SiO2 composites (denoted as rCu2O-rGO/Fe3O4@SiO2) are successfully synthesized facilely via a wet-chemical route. The resulting rCu2O-rGO/Fe3O4@SiO2 combines the unique structure of Cu2O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe3O4@SiO2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu2O-rGO/Fe3O4@SiO2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l‑1) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu2O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron–hole pairs, stabilize the Cu2O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  14. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst.

    PubMed

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-27

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core-shell Fe 3 O 4 @SiO 2 composites (denoted as rCu 2 O-rGO/Fe 3 O 4 @SiO 2 ) are successfully synthesized facilely via a wet-chemical route. The resulting rCu 2 O-rGO/Fe 3 O 4 @SiO 2 combines the unique structure of Cu 2 O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe 3 O 4 @SiO 2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu 2 O-rGO/Fe 3 O 4 @SiO 2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l -1 ) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu 2 O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron-hole pairs, stabilize the Cu 2 O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  15. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite.

    PubMed

    Malka, Eyal; Perelshtein, Ilana; Lipovsky, Anat; Shalom, Yakov; Naparstek, Livnat; Perkas, Nina; Patick, Tal; Lubart, Rachel; Nitzan, Yeshayahu; Banin, Ehud; Gedanken, Aharon

    2013-12-09

    Zinc-doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn-doped CuO Cu₀.₈₈Zn₀.₁₂O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10,000 times in the antimicrobial activity of the Zn-CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug-resistant bacteria (MDR), (i.e., Methicillin-resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Grain size tuning of nanostructured Cu{sub 2}O films through vapour phase supersaturation control and their characterization for practical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anu, A.; Abdul Khadar, M., E-mail: mabdulkhadar@rediffmail.com

    2015-09-15

    A strategy for creating nanostructured films is the alignment of nanoparticles into ordered superstructures as living organisms synthesize biomaterials with superior physical properties using nanoparticle building blocks. We synthesized nanostructured films of Cu{sub 2}O of variable grain size by establishing the condition of supersaturation for creation of nanoparticles of copper which deposited as nanograined films and which was then oxidized. This technique has the advantage of being compatible with conventional vacuum processes for electronic device fabrication. The Cu{sub 2}O film samples consisted of a secondary structure of spherical particles of almost uniform size, each particle being an agglomerate of primarymore » nanocrystals. Fractal analysis of the AFM images of the samples is carried out for studying the aggregation mechanism. Grain size tuning of the nanostructured Cu{sub 2}O films has been studied using XRD, and micro-Raman and photoluminescence spectroscopy.« less

  17. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles.

    PubMed

    Sepúlveda, Pamela; Rubio, María A; Baltazar, Samuel E; Rojas-Nunez, J; Sánchez Llamazares, J L; Garcia, Alejandra García; Arancibia-Miranda, Nicolás

    2018-08-15

    In this study, bimetallic nanoparticles (BMNPs) with different mass ratios of Cu and Fe were evaluated. The influence of the morphology on the removal of pollutants was explored through theoretical and experimental studies, which revealed the best structure for removing arsenate (As(V)) in aqueous systems. To evidence the surface characteristics and differences among BMNPs with different mass proportions of Fe and Cu, several characterization techniques were used. Microscopy techniques and molecular dynamics simulations were applied to determine the differences in morphology and structure. In addition, X-ray diffraction (XRD) was used to determine the presence of various oxides. Finally, the magnetization response was evaluated, revealing differences among the materials. Our cumulative data show that BMNPs with low amounts of Cu (Fe 0.9 Cu 0.1 ) had a non-uniform core-shell structure with agglomerate-type chains of magnetite, whereas a Janus-like structure was observed in BMNPs with high amounts of Cu (Fe 0.5 Cu 0.5 ). However, a non-uniform core-shell structure (Fe 0.9 Cu 0.1 ) facilitated electron transfer among Fe, Cu and As, which increased the adsorption rate (k), capacity (q e ) and intensity (n). The mechanism of As removal was also explored in a comparative study of the phase and morphology of BMNPs pre- and post-sorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Polymeric nanoparticle of copper(II)-4,4‧-dicyanamidobiphenyl ligand: Synthetic, spectral and structural aspect; application to electrochemical sensing of dopamine and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Chiniforoshan, Hossein; Ensafi, Ali A.; Heydari-Bafrooei, Esmaeil; Khalesi, Sara Bahmanpour; Tabrizi, Leila

    2015-08-01

    In this research, new polymer of 4,4‧-dicyanamidobiphenyl (bpH2)-Cu(II) complex, [Cu(bp)(H2O)2]n, has been synthesized and characterized by FT-IR, UV-vis spectroscopy and elemental analysis. The spherical morphology of Cu nanoparticles was confirmed by scanning electron microscopy (SEM) image and the transmission electron microscopy (TEM) image showed that the particle size dimensions of Cu nanoparticles were about 80 nm. Thermal gravimetric analysis (TGA) results indicated that this polymer was thermally stable. Hence, the prepared polymer was used as a modifier for the electrochemical determination of dopamine (DA) and ascorbic acid (AA). Compared to the bare carbon paste electrode (CPE) and multiwall carbon paste electrode (CNTPE), bpCu modified CPE (bpCu-CPE) exhibits much higher electrocatalytic activities toward the oxidation of dopamine and ascorbic acid with an increase in peak currents and a decrease in oxidation overpotentials. The effects of scan rate, concentration and pH were also studied. Differential pulse voltammetry results show that DA and AA could be detected selectively and sensitively at bpCu-CPE with peak-to-peak separation of 200 mV. Relative standard deviations for AA and DA determinations were less than 2.5%, and the linear response ranges of the electrode were 0.05-30.0 μmol L-1 for AA and DA, respectively. The calculated detection limits were 0.02 and 0.04 μmol L-1 (S/N = 3) for AA and DA, respectively. In addition, the presented method was successfully applied for the simultaneous determination of DA and AA in urine and blood samples with reliable recovery.

  19. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.

    2016-01-01

    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress). PMID:27911941

  20. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    USDA-ARS?s Scientific Manuscript database

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  1. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.

    PubMed

    Reyes, Vincent C; Opot, Stephen O; Mahendra, Shaily

    2015-04-01

    Proper characterization of nanoparticle (NP) interactions with environmentally relevant bacteria under representative conditions is necessary to enable their sustainable manufacture, use, and disposal. Previous nanotoxicology research based on planktonic growth has not adequately explored biofilms, which serve as the predominant mode of bacterial growth in natural and engineered environments. Copper nanoparticle (Cu-NP) impacts on biofilms were compared with respective planktonic cultures of the ammonium-oxidizing Nitrosomonas europaea, nitrogen-fixing Azotobacter vinelandii, and denitrifying Paracoccus denitrificans using a suite of independent toxicity diagnostics. Median inhibitory concentration (IC50) values derived from adenosine triphosphate (ATP) for Cu-NPs were lower in N. europaea biofilms (19.6 ± 15.3 mg/L) than in planktonic cells (49.0 ± 8.0 mg/L). However, in absorbance-based growth assays, compared with unexposed controls, N. europaea growth rates in biofilms were twice as resilient to inhibition than those in planktonic cultures. Similarly, relative to unexposed controls, growth rates and yields of P. denitrificans in biofilms exposed to Cu-NPs were 40-fold to 50-fold less inhibited than those in planktonic cells. Physiological evaluation of ammonium oxidation and nitrate reduction suggested that biofilms were also less inhibited by Cu-NPs than planktonic cells. Furthermore, functional gene expression for ammonium oxidation (amoA) and nitrite reduction (nirK) showed lower inhibition by NPs in biofilms relative to planktonic-grown cells. These results suggest that biofilms mitigate NP impacts, and that nitrogen-cycling bacteria in wastewater, wetlands, and soils might be more resilient to NPs than planktonic-based assessments suggest. © 2014 SETAC.

  2. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  3. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.

    PubMed

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-18

    Cuprous oxide (Cu 2 O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH 2 (OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu 2 O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu 2 O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu 2 O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu 2 O nanostructures are potential materials for a non-enzyme glucose biosensor.

  4. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  5. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  6. A preliminary study on the potency of nanofluids as the electro-active materials for nanoelectrofuel flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristiawan, B., E-mail: budi-k@uns.ac.id; Wijayanta, A. T., E-mail: agungtw@uns.ac.id; Juwana, W. E., E-mail: wibawa.ej@gmail.com

    2016-03-29

    This study presents a characterization of nanofluids as electroactive materials with dispersing metal oxide nanoparticles into aqueous polyelectrolytes of 20 wt.%, in particular, their electrochemical activites. The fundamental characterizations including X-ray diffraction, transmission electron microscopy, and Fourier ttransform iinfrared measurement were performed to ensure metal oxide component used in this work. Alumina (Al{sub 2}O{sub 3}) and copper oxide (CuO) nanoparticles of 0.5 vol.% in volume fraction were dispersed into Poly(diallyldimethylammonium chloride) solution (PDADMAC) and Poly(sodium 4-styrenesulfonate) (PSS), respectively. Alumina and copper oxide nanoparticles were dispersed into ionic solution with volume fraction of 0.5 vol.% by using two-step method. The generalmore » cyclic voltammetry measurement was used to analyze electrochemical behavior within three-electrode cell setup. The results show that PSS-based nanofluids demonstrate redox process. However, unclearly redox phenomenon was depicted PDADMAC-based nanofluids. Dispersing nanoparticles could shift pure ionic solution’s cyclic profile. It is clear that a significant impact on electrochemical behavior can be provided because of the existence metal oxide nanoparticles into polyelectrolyte solution.« less

  7. Study of GO-Cu2O and RGO-Cu nanocomposite monolayer sheets prepared by modified Langmuir Blodgett route

    NASA Astrophysics Data System (ADS)

    Botcha, V. Divakar; Sutar, D. S.; Major, S. S.

    2018-07-01

    The modified Langmuir-Blodgett (MLB) technique has been improvised and extended to transfer GO-Cu2O nanocomposite monolayer sheets, by introducing Cu2+ ions into the subphase at room temperature. Morphological studies of as-transferred sheets revealed the presence of closely spaced GO monolayer sheets, with slightly enhanced roughness. XPS studies of as-transferred sheets confirmed the presence of copper, either as metallic Cu or Cu2O, along with significant Cu(OH)2 component, but TEM results confirmed the formation of Cu2O nanocrystallites of size (7 ± 2) nm, distributed uniformly over GO sheets. After heat treatment in vacuum at 400 °C, the nanocomposite sheets were covered with a uniform distribution of larger size nanoparticles. Based on Raman, XPS and TEM studies it has been confirmed that heat treatment at 400 °C in vacuum results in the formation of agglomerated Cu nanoparticles of size (23 ± 9) nm distributed uniformly over reduced graphene oxide (RGO) sheets. The electrical characterization of nanocomposite sheets on SiO2/Si in back-gated FET geometry revealed that the electrical conductivity of as-transferred GO-Cu2O sheets was similar to that usually observed for GO monolayer sheets. The RGO-Cu sheets also displayed electrical conductivity and field effect mobility values comparable to those reported for RGO sheets obtained by chemical/thermal reduction, and was unaffected by the presence of Cu nanoparticles.

  8. Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma.

    PubMed

    Horák, Daniel; Pustovyy, Vitaliy Igorovych; Babinskyi, Andrii Valeriyovich; Palyvoda, Olga Mikhailovna; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2017-01-01

    Maghemite (γ-Fe 2 O 3 ) nanoparticles were obtained by coprecipitation of ferrous and ferric salts in an alkaline medium followed by oxidation; the nanoparticles were coated with poly( N,N -dimethylacrylamide) (PDMA) and characterized by transmission electron microscopy, attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering, thermogravimetric and elemental analyses, and magnetic measurements in terms of particle morphology, size, polydispersity, amount of coating, and magnetization, respectively. The effects of α-tocopherol (Toc) and its phenolic (Toc-6-OH) and acetate (Toc-6-Ac) derivatives on Fe 2+ release from γ-Fe 2 O 3 @PDMA, as well as from γ-Fe 2 O 3 and CuFe 2 O 4 nanoparticles (controls), were examined in vitro using 1,10-phenanthroline. The presence of tocopherols enhanced spontaneous Fe 2+ release from nanoparticles, with Toc-6-OH exhibiting more activity than neat Toc. All of the nanoparticles tested were found to initiate blood lipid oxidation in a concentration-dependent manner, as determined by analysis of 2-thiobarbituric acid reactive species. Wistar rats with Walker-256 carcinosarcoma (a model of mammary gland carcinosarcoma) received Toc-6-Ac, magnetic nanoparticles, or their combination per os, and the antitumor activity of each treatment was determined in vivo. γ-Fe 2 O 3 @PDMA nanoparticles exhibited increased antitumor activity compared to both commercial CuFe 2 O 4 particles and the antitumor drug doxorubicin. Moreover, increased antitumor activity was observed after combined administration of γ-Fe 2 O 3 @PDMA nanoparticles and Toc-6-Ac; however, levels of bilirubin, aspartate aminotransferase, and white bloods normalized and did not differ from those of the intact controls. The antitumor activity of the γ-Fe 2 O 3 nanoparticles strongly correlated with Fe 2+ release from the nanoparticles but not with nanoparticle-initiated lipid peroxidation in vitro.

  9. Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma

    PubMed Central

    Horák, Daniel; Pustovyy, Vitaliy Igorovych; Babinskyi, Andrii Valeriyovich; Palyvoda, Olga Mikhailovna; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2017-01-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by coprecipitation of ferrous and ferric salts in an alkaline medium followed by oxidation; the nanoparticles were coated with poly(N,N-dimethylacrylamide) (PDMA) and characterized by transmission electron microscopy, attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering, thermogravimetric and elemental analyses, and magnetic measurements in terms of particle morphology, size, polydispersity, amount of coating, and magnetization, respectively. The effects of α-tocopherol (Toc) and its phenolic (Toc-6-OH) and acetate (Toc-6-Ac) derivatives on Fe2+ release from γ-Fe2O3@PDMA, as well as from γ-Fe2O3 and CuFe2O4 nanoparticles (controls), were examined in vitro using 1,10-phenanthroline. The presence of tocopherols enhanced spontaneous Fe2+ release from nanoparticles, with Toc-6-OH exhibiting more activity than neat Toc. All of the nanoparticles tested were found to initiate blood lipid oxidation in a concentration-dependent manner, as determined by analysis of 2-thiobarbituric acid reactive species. Wistar rats with Walker-256 carcinosarcoma (a model of mammary gland carcinosarcoma) received Toc-6-Ac, magnetic nanoparticles, or their combination per os, and the antitumor activity of each treatment was determined in vivo. γ-Fe2O3@PDMA nanoparticles exhibited increased antitumor activity compared to both commercial CuFe2O4 particles and the antitumor drug doxorubicin. Moreover, increased antitumor activity was observed after combined administration of γ-Fe2O3@PDMA nanoparticles and Toc-6-Ac; however, levels of bilirubin, aspartate aminotransferase, and white bloods normalized and did not differ from those of the intact controls. The antitumor activity of the γ-Fe2O3 nanoparticles strongly correlated with Fe2+ release from the nanoparticles but not with nanoparticle-initiated lipid peroxidation in vitro. PMID:28652731

  10. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea.

    PubMed

    Kovačec, Eva; Regvar, Marjana; van Elteren, Johannes Teun; Arčon, Iztok; Papp, Tamás; Makovec, Darko; Vogel-Mikuš, Katarina

    2017-08-01

    Two plant pathogenic fungi, Botrytis cinerea and Alternaria alternata, isolated from crop plants, were exposed to Cu in ionic (Cu 2+ ), microparticulate (MP, CuO) or nanoparticulate (NP, Cu or CuO) form, in solid and liquid culturing media in order to test fungal response and toxic effects of the mentioned compounds for the potential use as fungicides. B. cinerea has shown pronounced growth and lower levels of lipid peroxidation compared to A. alternata. Its higher resistance/tolerance is attributed mainly to biotransformation of CuO and Cu NPs and CuO MPs into a blue compound at the fungal/culturing media interface, recognized by Cu K-edge EXAFS analysis as Cu-oxalate complex. The pronounced activity of catechol-type siderophores and organic acid secretion in B. cinerea induce leaching and mobilization of Cu ions from the particles and their further complexation with extracellularly secreted oxalic acid. The ability of pathogenic fungus to biotransform CuO MPs and NPs hampers their use as fungicides. However the results show that B. cinerea has a potential to be used in degradation of Cu(O) nanoparticles in environment, copper extraction and purification techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transport, fate, and long-term impacts of metal oxide nanoparticles on the stability of an anaerobic methanogenic system with anaerobic granular sludge.

    PubMed

    Li, Huiting; Cui, Fuyi; Liu, Zhiquan; Li, Dapeng

    2017-06-01

    The fate and long-term effect of different metal oxide (TiO 2 , CuO and ZnO) nanoparticles (NPs) on anaerobic granular sludge (AGS) was evaluated in an anaerobic methanogenic system. Operation stability and structural characteristics of the granules were compared, the metabolism changes in the microbial community were quantified, and NPs fate were investigated. CuO NPs had greatest toxic effect on AGS after extended exposure, whereas ZnO NPs benefited methanogenesis temporarily (no more than 5d). The inhibition on AGS caused by NPs varied due to the unique structure of AGS and different toxic mechanism. Structural changes of AGS provided new evidence that tested NPs have different toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.

    PubMed

    Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang

    2017-10-11

    Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.

  13. Unravelling Iron Oxide Nanoparticles (IONPs) interactions in the environment

    NASA Astrophysics Data System (ADS)

    Demangeat, E.; Pédrot, M.; Dia, A. N.; Cabello-Hurtado, F.; Le Coz-Bouhnik, M.

    2016-12-01

    Either used as nano-carriers in blood, depolluting agents in groundwaters or nanofertilizers in soils engineered nanoparticles (ENPs) are prone to a growing interest that explains their multiple uses as well as their increasing industrial production. The very small size of ENPs (having at least one space dimension <100nm) gives rise to some exceptional physicochemical properties that ensue from their high reactivity. In environmental and agricultural fields, where iron oxide nanoparticles (IONPs) are particularly used, this reactivity is directly related to their adsorption capacity, which is of prime interest regarding soil contamination and soil recovery issues. Considering the peculiar role of copper (Cu) in soils, we investigated the specific relationships that exist between IONPs and Cu. Most particularly, this study aims at understanding how pH, Cu concentration and Fe3O4-NPs natural coatings drive Cu adsorption to IONPs. In a primary step, eight nm-sized Fe3O4-NPs were synthesized using a co-precipitation method and thoroughly characterized with TEM, XRD, FT-IR and BET while in a second stage Cu-adsorption tests were conducted through ultrafiltrations (<2kDa) and monitored with ICP-MS analyses. In these experiments, four types of IONPs were investigated regarding their mineralogy and the nature of their coating. They were tested with four copper concentrations (0.01, 0.05, 0.1 and 0.5mM) and five different pH values (3.5; 5; 6; 7 and 8). According to the results, un-adsorbed Cu decreases with increasing pH values and about 100% of Cu is adsorbed to IONPs at high pH values. Although the trend looks repeatable regardless NPs' coating and Cu concentrations, each NP-type may have its typical pHpzc value and the amount of Cu adsorbed to IONPs is also likely to be related to the number of available adsorption sites.

  14. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    NASA Astrophysics Data System (ADS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  15. Determination of ampicillin sodium using the cupric oxide nanoparticles-luminol-H2 O2 chemiluminescence reaction.

    PubMed

    Iranifam, Mortaza; Kharameh, Merhnaz Khabbaz

    2014-09-01

    A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)-luminol-H2 O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2 O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10(-7) -4.0 × 10(-6) mol/L. The limit of detection was 2.6 × 10(-7) mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10(-6) mol/L ampicillin sodium was 4.71%. Also, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    PubMed

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties.

    PubMed

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H 2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  18. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  19. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  20. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  1. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

    PubMed Central

    Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa

    2017-01-01

    The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020

  2. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.

    PubMed

    Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang

    2010-04-21

    A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.

  3. Magnetic studies of nickel hydride nanoparticles embedded in chitosan matrix

    NASA Astrophysics Data System (ADS)

    Araújo-Barbosa, S.; Morales, M. A.

    2017-11-01

    In this work we present a method to produce NiH (β-NiH phase) nanoparticles from Ni-Cu solid solution. The reduction of Ni2+ and Cu2+ occurred at high temperatures and in presence of glutaraldehyde, citric acid and chitosan biopolymer. The samples are mainly composed of Ni and NiH phases with particles sizes ranging from 9 to 27 nm. DC magnetization studies reveal the presence of hydrogen-poor nickel hydride phase (α-NiH phase) which enhances the saturation magnetization at temperatures below 50 K. Stability of samples stored in air after 8 months was verified, and thermal treatment at 350 oC in presence of air transformed the samples to Ni and Cu oxides. Furthermore, we present a discussion regarding the mechanism of Ni2+ and Cu2+ chemical reduction.

  4. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho

    2012-06-01

    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  5. Hydrogenation of CO 2 to methanol on CeO x/Cu(111) and ZnO/Cu(111) catalysts: Role of the metal-oxide interface and importance of Ce 3+ sites

    DOE PAGES

    Senanayake, Sanjaya D.; Ramirez, Pedro J.; Waluyo, Iradwikanari; ...

    2016-01-06

    The role of the interface between a metal and oxide (CeO x–Cu and ZnO–Cu) is critical to the production of methanol through the hydrogenation of CO 2 (CO 2 + 3H 2 → CH 3OH + H 2O). The deposition of nanoparticles of CeO x or ZnO on Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts for methanol synthesis. The catalytic activity of these systems increases in the sequence: Cu(111) < ZnO/Cu(111) < CeO x/Cu(111). The apparent activation energy for the CO 2 → CH 3OH conversion decreases from 25 kcal/mol on Cu(111) to 16 kcal/mol on ZnO/Cu(111)more » and 13 kcal/mol on CeO x/Cu(111). The surface chemistry of the highly active CeO x–Cu(111) interface was investigated using ambient pressure X-ray photoemission spectroscopy (AP-XPS) and infrared reflection absorption spectroscopy (AP-IRRAS). Both techniques point to the formation of formates (HCOO –) and carboxylates (CO 2 δ–) during the reaction. Our results show an active state of the catalyst rich in Ce 3+ sites which stabilize a CO 2 δ– species that is an essential intermediate for the production of methanol. Furthermore, the inverse oxide/metal configuration favors strong metal–oxide interactions and makes possible reaction channels not seen in conventional metal/oxide catalysts.« less

  6. Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation

    NASA Astrophysics Data System (ADS)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The synthesis of metal nanoparticles through a green method is a rapid biogenic and offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we report synthesis of CuO NPs by using Drypetes sepiaria Leaf extract (DSLE). The synthesized CuO NPs was characterization using different technique such as UV, IR, XRD, and TEM. The formation of CuO NPs was confirmed by Surface Plasmon Resonance (SRP) at 298 nm using UV-Vis spectroscopy. Crystallinity of CuO NPs was confirmed by powder XRD and the characteristic functional groups of synthesised CuO NPs were identified by FTIR spectroscopy. The size and shape of the synthesized CuO NPs was determined by transmission electron microscopy (TEM). In addition, we performed photocatalytic activity to examine the photocatalytic degradation efficiency of CuO NPs to Congo Red. The colloidal solutions of CuO NPs showed good catalytic activity.

  7. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  8. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since metal may be transferred from phytoplankton through food webs vis à vis grazing by zooplankton or other pathways.

  9. Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1

    NASA Astrophysics Data System (ADS)

    Pachamuthu, Muthusamy P.; Karthikeyan, Sekar; Maheswari, Rajamanickam; Lee, Adam F.; Ramanathan, Anand

    2017-01-01

    A family of copper oxide catalysts with loadings spanning 1-5 wt% were dispersed on a three dimensional, mesoporous TUD-1 silica through a hydrothermal, surfactant-free route employing tetraethylene glycol as a structure-directing agent. Their bulk and surface properties were characterized by N2 physisorption, XRD, DRUVS, EPR, TEM and Raman spectroscopy, confirming the expected mesoporous wormhole/foam support morphology and presence of well-dispersed CuO nanoparticles (∼5-20 nm). The catalytic performance of Cu/TUD-1 was evaluated as heterogeneous Fenton-like catalysts for Bisphenol A (BPA) oxidative degradation in the presence of H2O2 as a function of [H2O2], and CuO loading. Up to 90.4% of 100 ppm BPA removal was achieved over 2.5 wt% Cu/TUD-1 within 180 min, with negligible Cu leaching into the treated water.

  10. Versatile Three-Dimensional Porous Cu@Cu2 O Aerogel Networks as Electrocatalysts and Mimicking Peroxidases.

    PubMed

    Ling, Pinghua; Zhang, Qiang; Cao, Tingting; Gao, Feng

    2018-06-04

    A facile strategy is presented to form 3D porous Cu@Cu 2 O aerogel networks by self-assembling Cu@Cu 2 O nanoparticles with the diameters of ca. 40 nm for constructing catalytic interfaces. Unexpectedly, the prepared Cu@Cu 2 O aerogel networks display excellent electrocatalytic activity to glucose oxidation at a low onset potential of ca. 0.25 V. Moreover, the Cu@Cu 2 O aerogels also can act as mimicking-enzymes including horseradish peroxidase and NADH peroxidase, and show obvious enzymatic catalytic activities to the oxidation of dopamine (DA), o-phenyldiamine (OPD), 3,3,5,5-tetramethylbenzidine (TMB), and dihydronicotinamide adenine dinucleotide (NADH) in the presence of H 2 O 2 . These 3D Cu@Cu 2 O aerogel networks are a new class of porous catalytic materials as mimic peroxidases and electrocatalysts and offer a novel platform to construct catalytic interfaces for promising applications in electrochemical sensors and artificial enzymatic catalytic systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis.

    PubMed

    Singh, Ajey; Singh, N B; Hussain, Imtiyaz; Singh, Himani

    2017-11-20

    Study on the ecological effect of metal oxide nanomaterials (NMs) has quickly amplified over the precedent years because it is assumed that these NMs will sooner or later be released into the environment. The present study deals with biologically oriented process for the green synthesis of copper oxide nanoparticles (CuO NPs) by using Morus alba leaf extract as reducing agent. Powder X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed the monoclinic phase and 20-40nm size respectively. The presence of reducing and capping agents revealed by Fourier transform infrared (FTIR) spectroscopy. The seedlings of Brassica oleracea var. botrytis and Solanum lycopersicum were exposed to 10, 50, 100, and 500mgL -1 concentrations of CuO NPs in the sand medium. Bioaccumulation of Cu was also investigated by atomic absorption spectroscopy (AAS). Plant exposure to 100 and 500mgL -1 of CuO NPs has resulted in significant reduction of total chlorophyll and sugar content in the two test plants while 10mgL -1 of NPs slightly increased the pigment and sugar content in tomato plants only. Augmentation of lipid peroxidation, electrolyte leakage, and antioxidant enzyme activity was observed in a dose dependent manner upon plants exposure to CuO NPs. Deposition of lignin in roots of both plants treated with the highest concentration of CuO NPs was observed. Histochemical analysis of leaves of treated plant with nitroblue tetrazolium and 3 ' 3 ' diaminobenzidine showed a concentration dependent increase in superoxide and hydrogen peroxide formation in leaves. The green synthesis of CuO NPs was carried out by using Morus alba leaf extract. Accumulation of NPs more actively by tomato plants as compared to cauliflower was possibly due to the difference in root morphology. The histochemical visualization highlights the spatial organization of oxidant biochemistry occurring in response to metal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  13. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  14. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  15. Design of Copper and Titanium Dioxide Nanoparticles Doped with Reduced Graphene Oxide for Hydrogen Evolution by Water Splitting

    NASA Astrophysics Data System (ADS)

    Yang, Yuhao; Huang, Wenhuan

    2018-05-01

    TiO2-graphene (P25-GR, PG) nanocomposite was fabricated from P25 titania and graphite oxide by hydrothermal method, and then Cu nanoparticles (Cu NPs) were assembled in P25-GR composite (Cu- P25-GR, CPG) under microwave-assisted chemical reduction. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption (UV-Vis) and Raman spectroscopies. Cu NPs were well dispersed on the surface of PG and are in metallic state. The ternary Cu-P25-GR (CPG) nanocomposites show an extended light absorption range and more efficient charge separation properties compared to binary P25-GR (PG) composite. Methylene blue photodegradation experiment proved that surface plasmon resonance (SPR) phenomenon had an effect on photoreaction efficiency. The corresponding hydrogen evolution rate for CPG prepared using 0.002 M Cu(NO3)2 solution was 10 times higher than with pure P25, and 2.3 times higher than with PG in the same test conditions. The improved photocatalytic performance can be attributed to the presence of GR in the prepared composite and to the SPR effect, leading to the longer lifetime of photogenerated electronhole pairs and faster interfacial charge transfer rate. We expect that our work would be useful for the further exploration of GR-based nanocomposites.

  16. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    PubMed

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. © 2015 SETAC.

  17. Multimodality PET/MRI agents targeted to activated macrophages.

    PubMed

    Tu, Chuqiao; Ng, Thomas S C; Jacobs, Russell E; Louie, Angelique Y

    2014-02-01

    The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages.

  18. A novel method to remove arsenic from water

    NASA Astrophysics Data System (ADS)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally occurring arsenic in water from West Bengal, India. This is, to our knowledge, the first time CuO nanoparticles have been used to treat groundwater from West Bengal which has been recognized for greater than two decades as some of the most significantly arsenic affected regions in the world. Our results show that CuO nanoparticles can remove arsenic from water under a wide range of geochemistries without pretreatments. In addition, CuO nanoparticles can be regenerated by desorbing arsenic using NaOH and are effective in removing arsenic following the regeneration. Further, field demonstration of a point-of-use flow through adsorption column was successful in removing arsenic from a variety of waters that contain naturally high concentrations of arsenic. This research suggests that CuO nanoparticles show promise as a viable treatment technology for removing arsenic from water.

  19. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica).

    PubMed

    Liu, Jing; Dhungana, Birendra; Cobb, George P

    2018-05-04

    Arsenic (As) causes phytotoxicity to rice plants, decreases rice production and causes serious human health concerns due to rice consumption. Additional stresses may be posed to rice plants due to the increasing release into the environment by the expanding production and application of copper oxide nanoparticles (nCuO). The influence of nCuO on As uptake in and effects on rice (Oryza sativa japonica) are explored here for the first time. An 18-d factorial experiment was conducted to determine main effects of nCuO (0, 0.1, 1.0, 10, 50, and 100 mg/L) and As (0 and 10 mg/kg), and the interaction between nCuO and As on rice seed germination and seedling growth. Arsenic alone decreased the germination percentage. Both As and nCuO reduced seedling shoot and root length, and exhibited interactive effects. nCuO and As also produced an interaction effect on the number of root branches (NRB) of rice seedlings. Notably, high nCuO concentrations (50 and 100 mg/L) mitigated the negative effect of As on the NRB. Copper uptake in shoots and roots was linearly correlated with Cu concentration in the sand without As addition (R 2  > 0.756). Whereas, As addition to the sand produced non-monotonic changes in Cu concentrations in shoots and roots versus Cu concentration in the sand (R 2  > 0.890). Arsenic concentration in shoots had a slightly negative linear correlation with Cu concentration in the sand (R 2  = 0.275). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Green chemistry synthesis of nano-cuprous oxide.

    PubMed

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  1. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    EPA Science Inventory

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  2. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    USGS Publications Warehouse

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  3. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats

    PubMed Central

    Rao, Meng; Hu, Lixia; Lei, Hui; Wu, Yanqing; Wang, Yingying; Ke, Dandan; Xia, Wei; Zhu, Chang-hong

    2017-01-01

    Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs) in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d) caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic apoptotic pathways and regulate key ovarian genes in oxidative stress-mediated ovarian dysfunction. PMID:28860760

  4. Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates.

    PubMed

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2) in the case of silver nanoparticles, and 10-15 µg/cm(2) for the copper nanoparticles.

  5. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  6. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  7. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  8. Bismesitoylphosphinic Acid (BAPO-OH): A Ligand for Copper Complexes and Four-Electron Photoreductant for the Preparation of Copper Nanomaterials.

    PubMed

    Beil, Andreas; Müller, Georgina; Käser, Debora; Hattendorf, Bodo; Li, Zhongshu; Krumeich, Frank; Rosenthal, Amos; Rana, Vijay Kumar; Schönberg, Hartmut; Benkő, Zoltán; Grützmacher, Hansjörg

    2018-05-16

    Bismesitoylphosphinic acid, (HO)PO(COMes) 2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex Cu II (BAPO-O) 2 (H 2 O) 2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from Cu II into Cu 0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    PubMed Central

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  10. Electrochemiluminescence quenching of luminol by CuS in situ grown on reduced graphene oxide for detection of N-terminal pro-brain natriuretic peptide.

    PubMed

    Li, Xiaojian; Lu, Peng; Wu, Bin; Wang, Yaoguang; Wang, Huan; Du, Bin; Pang, Xuehui; Wei, Qin

    2018-07-30

    A novel electrochemiluminescence (ECL) signal-off strategy based on CuS in situ grown on reduced graphene oxide (CuS-rGO) quenching luminol/H 2 O 2 system was firstly proposed. Luminol was grafted on the surface of Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 nanoflowers (Luminol-Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 ) which exhibited excellent catalytic effect towards the reduction of H 2 O 2 to enhance the ECL intensity of luminol. Cu 3 (PO 4 ) 2 nanoflowers showed large surface area which can immobilize more Fe 3 O 4 and Au nanoparticles. The quenching mechanism of CuS-rGO was due to ECL resonance energy transfer (RET). The spectral overlap between fluorescence spectrum of Luminol-Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 and UV-vis absorption spectrum of CuS-rGO revealed that resonance energy transfer was possible. Au nanoparticles were immobilized on the surface of CuS-rGO to capture secondary antibodies. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed. Under the optimal conditions, the immunosensor showed excellent performance for N-terminal pro-brain natriuretic peptide (NT-proBNP) detection with a wide detection range from 0.5 pg mL -1 to 20 ng mL -1 and a low detection limit of 0.12 pg mL -1 (S/N = 3). The prepared NT-proBNP immunosensor displayed high sensitivity, excellent stability and good specificity. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing.

    PubMed

    Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier

    2015-03-02

    The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.

  12. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    PubMed Central

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana

    2014-01-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663

  13. Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide.

    PubMed

    DeLong, Robert K; Mitchell, Jennifer A; Morris, R Tyler; Comer, Jeffrey; Hurst, Miranda N; Ghosh, Kartik; Wanekaya, Adam; Mudge, Miranda; Schaeffer, Ashley; Washington, Laurie L; Risor-Marhanka, Azure; Thomas, Spencer; Marroquin, Shanna; Lekey, Amber; Smith, Joshua J; Garrad, Richard; Aryal, Santosh; Abdelhakiem, Mohamed; Glaspell, Garry P

    2017-02-01

    Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.

  14. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia

    2014-08-01

    Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.

  15. Photo-induced changes in nano-copper oxide for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Rashad, M.

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) have been prepared using microwave irradiation. A mother material was copper nitrate in distilled water. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterizing the NPs powders. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were measured for as-prepared CuO NPs. The obtained oxides NPs were confirmed produced during chemical precipitation by these characterizions. These NPs were dropped on top of glass substrate for measuring the optical characterizions. Both linear and nonlinear optical properties of the as-prepared CuO NP films were studied. The optical energy gap of the as-prepared CuO NP films is equal to 3.98 eV, which is higher than that of the bulk material. The effect of ultraviolet (UV) light irradiation on the CuO NP films was investigated at 2 and 5 h for study the photo-induced effect. The optical properties of CuO NP films were measured as a function of these UV irradiation time. The optical constants for as-prepared and irradiated CuO NP films were calculated which reflect the affect of UV irradiation time. As observed from these optical results, a highly forced for optoelectronic applications.

  16. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan

    2018-05-01

    Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.

  17. Analysis of localized surface plasmon resonances in gold nanoparticles surrounded by copper oxides

    NASA Astrophysics Data System (ADS)

    Stamatelatos, A.; Sousanis, A.; Chronis, A. G.; Sigalas, M. M.; Grammatikopoulos, S.; Poulopoulos, P.

    2018-02-01

    Au-doped Cu thin films are produced by co-deposition of Au and Cu via radiofrequency magnetron sputtering in a vacuum chamber with a base pressure of 1 × 10-7 mbar. After post annealing in a furnace with air, one may obtain either Au-Cu2O or Au-CuO nanocomposite thin films. The presence of Au does not have any considerable influence on the position of the optical band gap of the oxides. Only the Au-CuO system shows well-formed localized surface plasmonic resonances with Gaussian shape. We study systematically the plasmonic behavior of the nanocomposites as a function of the gold concentration, annealing time, and film thickness. The intensity of the resonances, their position, and width are intensely affected by all these parameters. The experimental results are compared with respect to rigorous theoretical calculations. The similarities and differences between experiment and theory are discussed.

  18. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  19. Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury.

    PubMed

    Liu, Yuxi; Chen, Gang; Tian, Chong; Gupta, Rajender; Wang, Xiaogang; Zeng, Hongbo

    2018-06-05

    Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO 2 , CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO 2 -GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO 2 -GO showed an excel lent Hg 0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO 2 -NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.

  20. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells

    PubMed Central

    Wang, Yonggang; Aker, Winfred G.; Hwang, Huey-min; Yedjou, Clement G.; Yu, Hongtao; Tchounwou, Paul B.

    2011-01-01

    Nanoparticles (NPs), including nano metal oxides, are being used in diverse applications such as medicine, clothing, cosmetics and food. In order to promote the safe development of nanotechnology, it is essential to assess the potential adverse health consequences associated with human exposure. The liver is a target site for NP toxicity, due to NP accumulation within it after ingestion, inhalation or absorption. The toxicity of nano-ZnO, TiO2, CuO and Co3O4 was investigated using a primary culture of channel catfish hepatocytes and human HepG2 cells as in vitro model systems for assessing the impact of metal oxide NPs on human and environmental health. Some mechanisms of nanotoxicity were determined by using phase contrast inverted microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, reactive oxygen species (ROS) assays, and flow cytometric assays. Nano-CuO and ZnO showed significant toxicity in both HepG2 cells and catfish primary hepatocytes. The results demonstrate that HepG2 cells are more sensitive than catfish primary hepatocytes to the toxicity of metal oxide NPs. The overall ranking of the toxicity of metal oxides to the test cells is as follows: TiO2 < Co3O4< ZnO < CuO. The toxicity is due not only to ROS-induced cell death, but also damages to cell and mitochondrial membranes. PMID:21851965

  1. Effect of Particle Size on Thermal Conductivity of Nanofluid

    NASA Astrophysics Data System (ADS)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  2. Microsphere Composites of Nano-Al and Nanothermite: An Approach to Better Utilization of Nanomaterials

    DTIC Science & Technology

    2014-01-01

    2 μm to 16 μm. The combustion behavior is found to be very different from either nanoaluminum or micron aluminum and their corresponding thermite ... thermite mixture with the addition of nanoparticles of copper oxide. In a typical experiment, 180 mg of Al nanoparticles, and 540 mg CuO nanoparticles...combustion performance of thermite samples was evaluated by igniting 25.0 mg of thermite sample in the combustion cell, instrumented with a fast

  3. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid.

    PubMed

    Ulubay, Sükriye; Dursun, Zekerya

    2010-01-15

    Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1x10(-9) to 1x10(-5)M for UA and 1x10(-9) to 1x10(-7)M for DA using DPVs method. The detection limits were determined as 8x10(-10)M (s/n=3) for UA and 8.5x10(-10)M (s/n=3) for DA at a signal-to-noise ratio of 3.

  4. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.

    PubMed

    Feng, Yong; Liao, Changzhong; Shih, Kaimin

    2016-07-01

    To evaluate the heterogeneous degradation of sulfanilamide by external energy-free Fenton-like reactions, magnetic CuFe2O4 spinel nanoparticles (NPs) were synthesized and used as catalysts for activation of hydrogen peroxide (H2O2). The physicochemical properties of the CuFe2O4 NPs were characterized with several techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and magnetometry. In the catalytic experiments, CuFe2O4 NPs/H2O2 oxidation showed the best degradation performance in the circumneutral conditions that resulted from the presence of Cu(II) on the surface of the CuFe2O4 NPs. The surface area-normalized pseudo-first-order rate constants were calculated as 2.60 × 10(-2) L m(-1) min(-1), 2.58 × 10(-3) L m(-1) min(-1), 1.92 × 10(-3) L m(-1) min(-1), and 7.30 × 10(-4) L m(-1) min(-1) for CuO, CuFe2O4 NPs, Fe3O4, and α-Fe2O3 catalysts, respectively. Thus, solid state Cu(II) was more reactive and efficient than Fe(III) in the circumneutral activation of H2O2; this finding was further supported by the results regarding the stoichiometric efficiency of H2O2. The effects of experimental parameters such as the oxidant dosage and catalyst loading were investigated. The mechanism for H2O2 activation on the spinel surface was explored and could be explained by the solid redox cycles of Fe(II)/Fe(III) and Cu(II)/Cu(I). Based on the products detected, a degradation pathway via the CS bond cleavage is proposed for the degradation of sulfanilamide. The findings of this study suggest that copper can be used as a doping metal to improve the reactivity and expand the effective pH range of iron oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure.

    PubMed

    Solairaj, Dhanasekaran; Rameshthangam, Palanivel; Muthukumaran, Palanisamy; Wilson, Jeyaraj

    2017-08-01

    In this study, copper nanoparticle immobilized chitin nanocomposite (CNP/CuNP) was synthesized and used for the development of non-enzymatic electrochemical sensor. The CNP/CuNP was characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy and high resolution transmission electron microscopy (HRTEM) analysis. The glucose sensing property of CNP/CuNP was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). As a result of the synergistic effect of CNP and CuNP, the modified electrode displayed effective electro-oxidation of glucose in 0.1M NaOH solution. At 0.45V potential the modified electrode showed response towards glucose in the linear range of 1-1000μM with a lowest detection limit of 0.776μM with better selectivity and stability. In addition, the antimicrobial activity of CNP/CuNP was evaluated against bacterial and fungal strains. CNP/CuNP displayed enhanced antimicrobial activity when compared to CNP and CuNP alone. Similarly, cytotoxicity of CNP/CuNP was tested against Artemia salina, which showed no toxic effect in the tested concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles

    PubMed Central

    Lin, Sijie; Zhao, Yan; Xia, Tian; Meng, Huan; Zhaoxia, Ji; Liu, Rong; George, Saji; Xiong, Sijing; Wang, Xiang; Zhang, Haiyuan; Pokhrel, Suman; Mädler, Lutz; Damoiseaux, Robert; Lin, Shuo; Nel, Andre E.

    2014-01-01

    Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO and Co3O4) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependant hatching interference in the embryos, with the exception of Co3O4 which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn2+. This hypothesis is based on the presence of metal–sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA sensitive. In conclusion, we demonstrate that high content imaging of embryo development, morphological abnormalities and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo. PMID:21851096

  7. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage

    PubMed Central

    Jin, Su-Eon; Hwang, Woochul; Lee, Hyo Jung; Jin, Hyo-Eon

    2017-01-01

    Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO3, MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m2/g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO3 nanoparticles, showed antibacterial effects on E. coli. Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in pharmaceutical industries and water purification systems. PMID:29138562

  8. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage.

    PubMed

    Jin, Su-Eon; Hwang, Woochul; Lee, Hyo Jung; Jin, Hyo-Eon

    2017-01-01

    Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO 3 , MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m 2 /g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO 3 nanoparticles, showed antibacterial effects on E. coli . Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in pharmaceutical industries and water purification systems.

  9. Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion.

    PubMed

    Horie, Masanori; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nishio, Keiko; Komaba, Lilian Kaede; Fukui, Hiroko; Nakamura, Ayako; Miyauchi, Arisa; Nakazato, Tetsuya; Kinugasa, Shinichi; Yoshida, Yasukazu; Hagihara, Yoshihisa; Morimoto, Yasuo; Iwahashi, Hitoshi

    2011-11-01

    Platinum nanoparticles have industrial application, for example in catalysis, and are used in consumer products such as cosmetics and supplements. Therefore, among the many nanoparticles, platinum is one of the more accessible nanoparticles for consumers. Most platinum nanoparticles that are used in cosmetics and supplements which have an anti-oxidant activity are modified particles. However, the cellular influences of pristine platinum nanoparticles are still unclear, although it has been reported that platinum nanoparticles induce oxidative stress. In this study, we investigated the cellular influences induced by pure pristine platinum nanoparticles. Platinum nanoparticles of 100% purity were dispersed in a cell culture medium and stable medium dispersion was obtained. The platinum nanoparticle medium dispersion was applied to two kinds of cultured cells, A549 and HaCaT cells, and the cellular influences were examined. Cell viability (MTT assay), cell proliferation (clonogenic assay), apoptosis induction (caspase-3 activity), intracellular ROS level (DCFH assay), and lipid peroxidation level (DPPP assay) were measured as markers of cellular influences. Transmission electron microscope observation showed cellular uptake of platinum nanoparticles. However, the platinum nanoparticles did not drive any markers. It is known that some metal oxide nanoparticles such as NiO and CuO show severe cytotoxicity via metal ion release. Compared with these toxic nanoparticles, the platinum nanoparticles used in this study did not release platinum ions into the culture media. These results suggest that the physically and chemically inactive cellular influences of platinum nanoparticles are small.

  10. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    PubMed

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    PubMed

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  12. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    PubMed Central

    Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  14. Effect of Copper Oxide Nanoparticles as a barrier for Efficiency Improvement in ZnO Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Sonthila, A.; Ruankham, P.; Choopun, S.; Wongratanaphisan, D.; Phadungdhitidhada, S.; Gardchareon, A.

    2017-09-01

    CuO nanoparticles (CuO NPs) were used as a barrier layer in ZnO dye-sensitized solar cells (DSSCs) to obtain high power conversion efficiency. The barrier layer was investigated in terms of the size of CuO NPs by varying power of pulsed Nd:YAG (1064 nm) laser ablation. Morphological and optical properties of CuO NPs were characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry (UV-vis) and dynamic light scattering (DLS). It was found that the CuO NPs are rather spherical in shape with diameter in between 20 - 132 nm. In addition, the energy gap of CuO decreases with the increase of CuO NPs size. The power conversion efficiency of ZnO DSSCs was measured under illumination of simulated sunlight obtained from a solar simulator with the radiant power of 100 mW/cm2. The results showed that the ZnO DSSC with the CuO NPs with size of 37 nm exhibits the optimum power conversion efficiency of 1.01% which is higher than that of one without CuO NPs. Moreover, the power conversion efficiency of the ZnO DSSCs decreases with the increase of CuO NPs size.

  15. Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process

    NASA Astrophysics Data System (ADS)

    Phoohinkong, Weerachon; Foophow, Tita; Pecharapa, Wisanu

    2017-09-01

    Copper-doped zinc oxide nanoparticles were successfully synthesized by grinding copper acetate and zinc acetate powder with different starting molar ratios in combined with sodium hydroxide. The effect of initial copper and zinc molar ratios on the product samples was investigated and discussed. Relevant ligand coordination type of reactant acetate salt precursors and product samples were investigated by Fourier transform infrared spectroscopy (FTIR). The particle shapes and surface morphologies were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Phase structures of prepared samples were studied by x-ray powder diffraction (XRD) and x-ray absorption near-edge spectroscopy (XANES) was applied to investigate the local structure of Cu and Zn environment atoms. The results demonstrate that the, particle size of as-synthesized products affected by copper concentration in the precursor trend to gradually decreases from nanorod shape with diameter around 50-100 nm to irregular particle structure around 5 nm associated with an increase in the concentration of copper in precursor. Moreover, it is noticed that shape and morphology of the products are strongly dependent on Cu:Zn ratios during the synthesis. Nanocrystallines Cu-doped ZnO by the substitution in Zn site with a high crystallization degree of hexagonal wurtzite structure were obtained. This synthesis technique is suggested as a potential effective technique for preparing copper zinc oxide nanoparticles with various atomic ratio in wide range of applications. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  16. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  17. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-01-01

    Statement of the Problem: Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. Purpose: The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. Materials and Method: CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Results: Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group (p< 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group (p= 0.695). Conclusion: Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength. PMID:29492409

  18. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    PubMed

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p < 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  19. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    PubMed Central

    Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Dondi, Michele; Lolli, Alice; Andreoli, Sara; Benito, Patricia; Albonetti, Stefania

    2016-01-01

    This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA). The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated. PMID:28773672

  20. Palladium and Platinum Nanoparticles Attenuate Aging-Like Skin Atrophy via Antioxidant Activity in Mice

    PubMed Central

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1 −/− mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1 −/− mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage. PMID:25333617

  1. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    PubMed

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  2. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    NASA Astrophysics Data System (ADS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  3. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems.

    PubMed

    Rippner, Devin A; Green, Peter G; Young, Thomas M; Parikh, Sanjai J

    2018-03-01

    With increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM). In the current study, duckweed growth inhibition was shown to be a function of aqueous Cu 2+ concentration. Growth inhibition was greatest from aqueous CuCl 2 and, for particles, increased with decreasing CuO particle size. The dissolution of CuO NPs in ½ Hoagland's solution was measured to increase with decreasing particle size and in the presence of Suwannee river humic and fulvic acids (HA; FA). However, the current results suggest that HA, and to a lesser extent, FA, decrease the toxicity of both CuO NPs and free ionized Cu to duckweed, likely by inhibiting Cu availability through Cu-DOM complex formation. Such results are consistent with changes to Cu speciation as predicted by speciation modeling software and suggest that DOM changes Cu speciation and therefore toxicity in natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture.

    PubMed

    Xiong, TianTian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-05-02

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight) -1 ] and cabbage [4448 mg (kg of dry weight) -1 ], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day -1 ), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  5. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism.

    PubMed

    Zhang, Q B; Hua, Y X

    2014-12-28

    The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.

  6. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and themore » Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.« less

  7. Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yassin, O. A.; Alamri, S. N.; Joraid, A. A.

    2013-06-01

    A transparent conductive oxide CuAlO2 delafossite is studied using x-ray powder diffraction (XRD) and micro-Raman spectroscopy measurements as a function of the particle size and laser power from 2 to 20 mW. The XRD results indicate that the lattice parameters and the cell volume expand as the particle size reduces. Large red shifts (˜60 cm-1) and line broadening (˜50 cm-1) are observed as the particle size becomes of the order of 13 nm. These huge values can only be justified if collective effects on the Raman spectra created by the lattice expansion, confinement of phonons and enhanced phonon-phonon interactions are included in the interpretations of the Raman spectra of the CuAlO2 nanoparticles.

  8. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  9. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  10. Factors Influencing Temperature Fields during Combustion Reactions

    DTIC Science & Technology

    2014-05-20

    promoting thermal energy distributions. Keywords: Thermites · Nanoparticle combustion • Aluminum · Infrared thermometry • Non-ideal explosives 1...materials (nano- thermite ) comprised of a metallic fuel and organic or metal- lic oxidizer and will be referred to as nanothermites hence forth. The most...magnesium (Mg), manganese (Mn), and titanium (Ti) nanoparticles were added to Al/CuO at 10% by weight of the nanothermite sample. The nano- thermites with

  11. Engineering nanomaterials with a combined electrochemical and molecular biomimetic approach

    NASA Astrophysics Data System (ADS)

    Dai, Haixia

    Biocomposite materials, such as bones, teeth, and shells, are created using mild aqueous solution-based processes near room temperature. Proteins add flexibility to these processes by facilitating the nucleation, growth, and ordering of specific inorganic materials into hierarchical structures. We aim to develop a biomimetic strategy for engineering technologically relevant inorganic materials with controlled compositions and structures, as Nature does, using proteins to orchestrate material formation and assembly. This approach involves three basic steps: (i) preparation of inorganic substrates compatible with combinatorial polypeptide screening; (ii) identification of inorganic-binding polypeptides and their engineering into inorganic-binding proteins; and (iii) protein-mediated inorganic nucleation and organization. Cuprous oxide (Cu2O), a p-type semiconductor, has been used to demonstrate all three steps. Zinc oxide (ZnO), an n-type semiconductor, has been used to show the generality of selected steps. Step (i), preparation of high quality inorganic substrates to select inorganic-binding polypeptides, was accomplished using electrochemical microfabrication to grow and pattern Cu2O and ZnO. Raman spectroscopy and x-ray photoelectron spectroscopy were used to verify phase purity and compositional stability of these surfaces during polypeptide screening. Step (ii), accomplished in collaboration with personnel in Prof Baneyx' lab at the University of Washington, involved incubating the inorganic substrates with the FliTrx(TM) random peptide library to identify cysteine-constrained dodecapeptides that bind the targeted inorganic. Insertion of a Cu2O-binding dodecapeptide into the DNA-binding protein TraI endowed the engineered TraI with strong affinity for Cu2O (Kd ≈ 10 -8 M). Finally, step (iii) involved nonequilibrium synthesis and organization of Cu2O nanoparticles, taking advantage of the inorganic and DNA recognition properties of the engineered TraI. The high affinity of the engineered TraI for Cu2O over other related copper compounds led to the formation of Cu2O nanoparticles from a cuprous chloride complex (Cu2Cln1-n, n = 2 or 3) electrolyte under conditions where the mineral atacamite (CuCl(OH) 3) is thermodynamically preferred. The nonequilibrium Cu 2O nanoparticles consisted of 2--3 nm Cu2O cores and functional protein shells that enabled predictable meso-scale assembly on DNA templates. In short, we have rationally designed a protein-based scheme for forming and organizing inorganic materials that Nature has not previous worked with.

  12. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles

    PubMed Central

    Zeon Han, Seung; Kim, Kwang Ho; Kang, Joonhee; Joh, Hongrae; Kim, Sang Min; Ahn, Jee Hyuk; Lee, Jehyun; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled. We uniformly disperse γ-Al2O3 nanoparticles over Cu matrix, and then we controlled atomic level morphology of the interface γ-Al2O3//Cu by adding Ti solutes. It is shown that the Ti dramatically drives the interfacial phase transformation from very irregular to homogeneous spherical morphologies resulting in substantial enhancement of the mechanical property of Cu matrix. Furthermore, the Ti removes impurities (O and Al) in the Cu matrix by forming oxides leading to recovery of the electrical conductivity of pure Cu. We validate experimental results using TEM and EDX combined with first-principles density functional theory (DFT) calculations, which all consistently poise that our materials are suitable for industrial applications. PMID:26616045

  13. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles.

    PubMed

    Han, Seung Zeon; Kim, Kwang Ho; Kang, Joonhee; Joh, Hongrae; Kim, Sang Min; Ahn, Jee Hyuk; Lee, Jehyun; Lim, Sung Hwan; Han, Byungchan

    2015-11-30

    The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled. We uniformly disperse γ-Al2O3 nanoparticles over Cu matrix, and then we controlled atomic level morphology of the interface γ-Al2O3//Cu by adding Ti solutes. It is shown that the Ti dramatically drives the interfacial phase transformation from very irregular to homogeneous spherical morphologies resulting in substantial enhancement of the mechanical property of Cu matrix. Furthermore, the Ti removes impurities (O and Al) in the Cu matrix by forming oxides leading to recovery of the electrical conductivity of pure Cu. We validate experimental results using TEM and EDX combined with first-principles density functional theory (DFT) calculations, which all consistently poise that our materials are suitable for industrial applications.

  14. Time-controlled synthesis mechanism analysis of kesterite-phased Cu2ZnSnS4 nanorods via colloidal route

    NASA Astrophysics Data System (ADS)

    Jain, Shefali; Singh, Dinesh; Vijayan, N.; Sharma, Shailesh Narain

    2018-05-01

    In this work, stable Cu2ZnSnS4 (CZTS) nanocrystals (NCs) in pure kesterite phase were synthesized by a facile one-pot rapid injection technique (colloidal route). Time-dependent reaction mechanism for the synthesis of CZTS nanoparticles is explained. When TOP-S (Tri-octyl phosphine-sulphur) was injected in the CuZnSn-complex with TOPO (Tri-octyl phosphine oxide) as capping ligand, orthorhombic phase Cu2-X S nanoparticles of spherical shape were found at nucleation sites. With an advancement in the reaction time, Sn got infused in Cu2-X S to form Cu2SnS3 and its shape got deformed. Further increase in reaction time infuses Zn to form Cu2ZnSnS4 with the gradual vanishing of Cu2-X S and Cu2SnS3 phases and finally, the rod-shaped CZTS Np's were obtained. This factor of reaction time, which influence the morphology and size were studied in detail. The structural and optical properties of the pure kesterite phase CZTS nanorods were also analysed. The band gap of the rod-like CZTS is determined to be around 1.43 eV, which is an optimum value for solar photoelectric conversion.

  15. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Kilianová, Martina; Yang, Bing

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less

  16. Electrophoretic deposition of Cu2ZnSn(S0.5Se0.5)4 films using solvothermal synthesized nanoparticles

    NASA Astrophysics Data System (ADS)

    Badkoobehhezaveh, Amir Masoud; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2018-01-01

    In this paper, a simple, practical, and fast solvothermal route is presented for synthesizing the Cu2ZnSn(S0.5Se0.5)4 nanoparticles (CZTSSe). In this method, the precursors were dissolved in triethylenetetramine and placed in an autoclave at 240 °C for 1 h under controlled pressure and constant stirring. After washing the samples for several times with absolute ethanol, the obtained CZTSSe nanoparticles were successfully deposited on fluorine doped tin oxide substrates by convenient electrophoretic deposition (EPD) using colloidal nanoparticles. The most appropriate parameters for EPD of pre-synthesized CZTSSe nanoparticles which result in proper surface properties, controlled thickness, and high film quality are investigated by adjusting applied voltage, pH, and deposition time. X-ray diffraction pattern and Raman spectroscopy of the pre-synthesized nanoparticles show kesterite structure formation. The particle size of the CZTSSe nanoparticles is in the range of 100 to 400 nm and for some agglomerates, it is about 2 µm confirmed by scanning electron microscope. The deposited film with optimized parameter has acceptable quality without any crack in it with the thickness of about 4-5 µm. Energy-dispersive X-ray spectroscopy confirms that the chemical composition of the samples is in near stoichiometric Cu-poor and Zn-rich region, which guarantees the p-type character of the film. The diffuse reflectance spectroscopy also demonstrates that the optical band gap of the sample is about 1.2 eV.

  17. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    NASA Astrophysics Data System (ADS)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  18. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO{sub 2}) at temperatures ≤90 °C in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, Melanie, E-mail: melanie.john@min.uni-muenchen.de; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    In this study, we present the mechanism of CuFeO{sub 2} formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR–SO{sub 4}, a Fe(II–III) layered double hydroxysulphate (Fe{sup 2+}{sub 4}Fe{sup 3+}{sub 2}(OH){sub 12}·SO{sub 4}) and Cu{sub 2}O precipitate first. During further OH{sup −} supply GR–SO{sub 4} oxidizes and forms Fe{sub 10}O{sub 14}(OH){sub 2}, Cu{sub 2}O and CuFeO{sub 2} crystals. Due to the high pH further CuFeO{sub 2} crystals grow at the cost of themore » unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO{sub 2} (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH{sup −} supply during the pH-stat time and rather low temperatures. - Highlights: • We solve the formation mechanism of pure CuFeO{sub 2} using sulfates as reactants. • CuFeO{sub 2} nanoparticles crystallize on cost of green rust, Fe{sub 10}O{sub 14}(OH){sub 2} and Cu{sub 2}O. • The reaction rate increases with increasing temperature and OH- concentration. • CuFeO{sub 2} nanoparticles form at 50 °C within one week and at 70 °C within 10 h. • 2H-polytype of CuFeO{sub 2} is favored by additional NaOH supply during pH-stat-time.« less

  19. Solution-Based Approaches to Fabrication of YBa2Cu3O7-δ (YBCO): Precursors of Tri-Fluoroacetate (TFA) and Nanoparticle Colloids

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.

    2007-10-01

    Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.

  20. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000.

    PubMed

    Platero-Prats, Ana E; Li, Zhanyong; Gallington, Leighanne C; Peters, Aaron W; Hupp, Joseph T; Farha, Omar K; Chapman, Karena W

    2017-09-01

    We explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis of in situ synchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. These analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °C produces metallic Cu 0 of two distinct particle sizes: ∼4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0 -NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2 O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systems in situ.

  1. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000

    DOE PAGES

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.; ...

    2017-04-03

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  2. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity.

    PubMed

    Araújo, Inês M S; Silva, Robson R; Pacheco, Guilherme; Lustri, Wilton R; Tercjak, Agnieszka; Gutierrez, Junkal; Júnior, José R S; Azevedo, Francisco H C; Figuêredo, Girlene S; Vega, Maria L; Ribeiro, Sidney J L; Barud, Hernane S

    2018-01-01

    In this work, for the first time bacterial cellulose (BC) hydrogel membranes were used for the fabrication of antimicrobial cellulosic nanocomposites by hydrothermal deposition of Cu derivative nanoparticles (i.e.Cu(0) and CuxOy species). BC-Cu nanocomposites were characterized by FTIR, SEM, AFM, XRD and TGA, to study the effect of hydrothermal processing time on the final physicochemical properties of final products. XRD result show that depending on heating time (3-48h), different CuxOy phases were achieved. SEM and AFM analyses unveil the presence of the Cu(0) and copper CuxOy nanoparticles over BC fibrils while the surface of 3D network became more compact and smother for longer heating times. Furthermore, the increase of heating time placed deleterious effect on the structure of BC network leading to decrease of BC crystallinity as well as of the on-set degradation temperature. Notwithstanding, BC-Cu nanocomposites showed excellent antimicrobial activity against E. coli, S. aureus and Salmonella bacteria suggesting potential applications as bactericidal films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senobari, Samaneh; Nezamzadeh-Ejhieh, Alireza

    2018-05-01

    Coupled CdS-CuO nanoparticles (NPs) subjected in the photocatalytic degradation of Methylene blue (MB) aqueous solution. The calcination temperature and the crystallite phase of CuO had a significant role on the photocatalytic activity of the coupled system and CuO200/2h-CdS catalyst (containing CuO calcined at 200 °C for 2 h) showed the best photocatalytic activity. The coupled system showed increased activity with respect to the monocomponent semiconductors. The prepared catalysts characterized by x-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive X-ray (EDX) analyzer, x-ray mapping, Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. The best degradation extent of MB was obtained at: CMB: 1 mg L-1, pH 5, 80 min irradiation time and 0.8 g L-1 of the CuO200/2h-CdS catalyst. The chemical oxygen demand (COD) confirmed about 83% of MB molecules can be mineralized at the optimum conditions.

  5. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.

    PubMed

    Zafar, Hira; Ali, Attarad; Zia, Muhammad

    2017-01-01

    Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

  6. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties.

    PubMed

    Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Facile Large-scale synthesis of stable CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  8. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  9. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Noninvasive Detection of Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    availability of 64Cu and 177Lu, we tried to incorporate these two isotopes to the iron oxide core of the dextran-coated nanoparticles besides arsenic...isotopes. The decay characteristics of 64Cu and 177Lu are summarized in Table 2. Table 2. Decay Characteristics of 64Cu and 177Lu. Isotope t1/2 β...MeV (%) β+ MeV (%) EC (%) γ MeV (%) 64Cu 12.7 h 0.578 (39%) 0.653 (17.4%) 41% 1.35 (0.6%) 0.511 (38.6%) 177Lu 6.71 d 0.497 (78.7%) 0.208 (11.0

  10. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid.

    PubMed

    He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong

    2012-08-20

    A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents.

    PubMed

    Patel, Daksha; Kell, Arnold; Simard, Benoit; Xiang, Bo; Lin, Hung Yu; Tian, Ganghong

    2011-02-01

    A new class of nanoparticle-based dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) contrast agents has been developed. The probe consists of a superparamagnetic iron oxide (SPIO) or manganese oxide core coated with 3,4-dihydroxy-D,L-phenylalanine (DL-DOPA). The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to DOPA termini. The DOTA modified nanoparticles allow chelation of copper for PET imaging. These surface functionalized nanoparticle-based probes have been characterized by various analytical techniques. The cell-labeling efficacy, cytotoxicity and relaxivity of these nanoparticles have been evaluated and compared with the same properties of one of the most commonly utilized MRI contrast agents, Feridex(®). Evidently, this new nanoparticle has a great potential for use in cell tracking with MRI and PET in the absence of transfecting agent. It is noteworthy that there is a sharp increase in r(2) relaxivity of these nanoparticles on coordination with Cu(2+) ions. Thus these iron oxide nanoparticles can also be explored as the smart magnetic resonance (MR) sensor for the detection of micromolar changes in copper concentration for neurodegenerative diseases such as Alzheimer's disease, Menkes and Wilson's diseases, amyotrophic lateral sclerosis and prion diseases. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  13. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  14. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

    NASA Astrophysics Data System (ADS)

    Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.

    2018-03-01

    Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

  15. Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela

    2016-12-01

    This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.

  16. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases.

    PubMed

    Zhou, Xingxing; Guo, Shijing; Gao, Jiaxi; Zhao, Jianmin; Xue, Shuyan; Xu, Wenju

    2017-12-15

    Based on cascade catalysis amplification driven by glucose oxidase (GOx), a sensitive electrochemical impedimetric aptasensor for protein (carcinoembryonic antigen, CEA as tested model) was proposed by using Cu-based metal-organic frameworks functionalized with Pt nanoparticles, aptamer, hemin and GOx (Pt@CuMOFs-hGq-GOx). CEA aptamer loaded onto Pt@CuMOFs was bound with hemin to form hemin@G-quadruplex (hGq) with mimicking peroxidase activity. Through sandwich-type reaction of target CEA and CEA aptamers (Apt1 and Apt2), the obtained Pt@CuMOFs-hGq-GOx as signal transduction probes (STPs) was captured to the modified electrode interface. When 3,3-diaminobenzidine (DAB) and glucose were introduced, the cascade reaction was initiated by GOx to catalyze the oxidation of glucose, in situ generating H 2 O 2 . Simultaneously, the decomposition of the generated H 2 O 2 was greatly promoted by Pt@CuMOFs and hGq as synergistic peroxide catalysts, accompanying with the significant oxidation process of DAB and the formation of nonconductive insoluble precipitates (IPs). As a result, the electron transfer in the resultant sensing interface was effectively hindered and the electrochemical impedimetric signal (EIS) was efficiently amplified. Thus, the high sensitivity of the proposed CEA aptasensor was successfully improved with 0.023pgmL -1 , which may be promising and potential in assaying certain clinical disease related to CEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    NASA Astrophysics Data System (ADS)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  18. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant.

    PubMed

    Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda

    2016-09-01

    To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A photoelectrochemical aptasensor constructed with core-shell CuS-TiO2 heterostructure for detection of microcystin-LR.

    PubMed

    Tang, Yunfei; Chai, Yun; Liu, Xiaoqiang; Li, Lele; Yang, Liwei; Liu, Peipei; Zhou, Yanmei; Ju, Huangxian; Cheng, Yunzhi

    2018-06-05

    In this work, a CuS-TiO 2 heterojunction composite was prepared by dispersedly depositing CuS nanoparticles on TiO 2 nanospheres surface with a hydrothermal method, and was then used to construct a photoelectrochemical (PEC) aptasensor for sensitive detection of microcystin-LR (MC-LR) in aquatic environment. The energy bands of CuS nanoparticles and spherical anatase TiO 2 were well matched, which enhanced the photo-to-current conversion efficiency. The composite exhibited the enhanced visible light absorption, the improved separation of photo-generated charges, and the reduced self-aggregation of CuS nanoparticles, leading to the enhanced photocurrent response. The PEC aptasensor was constructed by immobilizing CuS-TiO 2 composite on ITO electrode with chitosan film that further covalently bound aminated aptamer. After the target, microcystin-LR (MC-LR) as an analyte model, was captured by the aptamer on the aptasensor, it could be oxidized by the photo-generated hole to impede the electron-hole recombination and further amplify the photocurrent. The PEC aptasensor showed superior analytical performance for MC-LR with a linear range of 5.0 × 10 -5 nM to 250 nM and a detection limit of 2.0 × 10 -5 nM. The detection results with the aptasensor for practical water samples indicated its promising application in environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Friction and wear behaviors and mechanisms of ZnO and graphite in Cu-based friction materials

    NASA Astrophysics Data System (ADS)

    Chen, Tianhua

    2018-03-01

    Based on powder metallurgy method, nanometer graphite reinforced copper matrix friction materials were prepared. The nanometer zinc oxide were obtained by the hydro-thermal synthesis. Nanoparticles on friction performances of copper-based materials was studied. The wear morphology were investigated by metallographic microscopes. Tribological performance were use the inertia friction and wear testing machine. Experimental results show that the friction factor of the friction material added by nanometer zinc oxide and nano graphite are high and stable, which has no obvious recession phenomenon with the increase of number of joint compared with not add nanoparticles of friction materials.

  3. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    NASA Astrophysics Data System (ADS)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  4. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    PubMed

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  5. "Clickable", trifunctional magnetite nanoparticles and their chemoselective biofunctionalization.

    PubMed

    Das, Manasmita; Bandyopadhyay, Debarati; Mishra, Debasish; Datir, Satyajit; Dhak, Prasanta; Jain, Sanyog; Maiti, Tapas Kumar; Basak, Amit; Pramanik, Panchanan

    2011-06-15

    A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide--alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.

  6. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans.

    PubMed

    Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

    2013-10-22

    Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity.

  7. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  8. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics

    PubMed Central

    Goel, Shreya; Chen, Feng; Cai, Weibo

    2013-01-01

    Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015

  9. Optical Properties and Microstructure of Silver-Copper Nanoparticles Synthesized by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Hirai, Makoto; Kumar, Ashok

    2007-12-01

    Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.

  10. Copper(II) oxide nanoparticles augment antifilarial activity of Albendazole: In vitro synergistic apoptotic impact against filarial parasite Setaria cervi.

    PubMed

    Zafar, Atif; Ahmad, Irshad; Ahmad, Ajaz; Ahmad, Masood

    2016-03-30

    Mass treatment of lymphatic filariasis with Albendazole (ABZ), a therapeutic benzimidazole, is fraught with serious limitations such as possible drug resistance and poor macrofilaricidal activity. Therefore, we need to develop new ABZ-based formulations to improve its antifilarial effectiveness. CuO nanoparticles were used as an adjuvant with ABZ to form ABZ-CuO nanocomposite, which was characterized by UV-vis spectroscopy, FT-IR, AFM and SEM. Antifilarial activity of nanocomposite was evaluated using relative motility assay and dye exclusion test in dark and under UV light. ROS generation, antioxidant levels, lipid peroxidation and DNA fragmentation in nanocomposite treated parasites were estimated. Biophysical techniques were employed to ascertain the mode of binding of nanocomposite to parasitic DNA. Nanocomposite increases parasite mortality as compared to ABZ in dark, and its antifilarial effect was increased further under UV light. Elevated ROS production and decline of parasitic-GST and GSH levels were observed in nanocomposite treated worms in dark, and these effects were pronounced further under UV light. Nanocomposite leads to higher DNA fragmentation as compared to ABZ alone. Further, we found that nanocomposite binds parasitic DNA in an intercalative manner where it generates ROS to induce DNA damage. Thus, oxidative stress production due to ROS generation and consequent DNA fragmentation leads to apoptosis in worms. This is the first report supporting CuO nanoparticles as a potential adjuvant with ABZ against filariasis along with enhanced antifilarial activity of nanocomposite under UV light. These findings, thus, indicate that development of ABZ-loaded nanoparticle compounds may serve as promising leads for filariasis treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 64Cu, a powerful positron emitter for immunoimaging and theranostic: Production via natZnO and natZnO-NPs.

    PubMed

    Karimi, Zahra; Sadeghi, Mahdi; Mataji-Kojouri, Naimeddin

    2018-07-01

    64 Cu is one of the most beneficial radionuclide that can be used as a theranostic agent in Positron Emission Tomography (PET) imaging. In this current work, 64 Cu was produced with zinc oxide nanoparticles ( nat ZnONPs) and zinc oxide powder ( nat ZnO) via the 64 Zn(n,p) 64 Cu reaction in Tehran Research Reactor (TRR) and the activity values were compared with each other. The theoretical activity of 64 Cu also was calculated with MCNPX-2.6 and the cross sections of this reaction were calculated by using TALYS-1.8, EMPIRE-3.2.2 and ALICE/ASH nuclear codes and were compared with experimental values. Transmission Electronic Microscopy (TEM), Scanning Electronic Microscopy (SEM) and X-Ray Diffraction (XRD) analysis were used for samples characterizations. From these results, it's concluded that 64 Cu activity value with nanoscale target was achieved more than the bulk state target and had a good adaptation with the MCNPX result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  13. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less

  14. Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish (Carassius auratus)

    PubMed Central

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.

    2014-01-01

    Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999

  15. Green Synthesis of Ag, Cu and AgCu Nanoparticles using Palm Leaves Extract as the Reducing and Stabilizing Agents

    NASA Astrophysics Data System (ADS)

    Mohamad, N. A. N.; Arham, N. A.; Junaidah, J.; Hadi, A.; Idris, S. A.

    2018-05-01

    This paper reports the green synthesis of Ag, Cu and AgCu nanoparticles at room temperature using palm leaves extract. The purpose of this study is to eliminate the use of chemicals in the synthesis of nanoparticles and evaluate the efficiency of the palm leaves extract as the reducing and stabilizing agents. The palm leaves extract was added to metal salt solution and continuously stirred until reaction completed. The produced nanoparticles were analyzed using atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses revealed that palm leaves extract has efficiently reduced the silver ions, but not the copper ions. During synthesis of AgCu nanoparticles, simultaneous reduction was occurred leading to formation of alloyed nanoparticles. Biomolecules from the palm leaves extract adsorbed on the surface of nanoparticles forming a capping layer thus stabilized the nanoparticles. The produced Ag and Cu nanoparticles were predominantly spherical with the particle size of Cu nanoparticles were larger than Ag nanoparticles. The AgCu nanoparticles closely resembled the Ag nanoparticles due to high Ag content with average size of 13nm. Therefore, palm leaves extract has a potential to be a good reducing and stabilizing agents.

  16. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    NASA Astrophysics Data System (ADS)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  17. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants.

    PubMed

    Falah, Mahroo; MacKenzie, Kenneth J D; Knibbe, Ruth; Page, Samuel J; Hanna, John V

    2016-11-15

    New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu2O/TiO2 nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by (29)Si and (27)Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu2O/TiO2 nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5wt% Cu2O/TiO2 in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Comparative Sensitivity of the Luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis Strains to Toxic Effects of Carbon-Based Nanomaterials and Metal Nanoparticles].

    PubMed

    Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A

    2016-01-01

    A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect.

  19. Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2)

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.

    2018-01-01

    Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.

  20. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤90 °C in aqueous solution

    NASA Astrophysics Data System (ADS)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    2016-02-01

    In this study, we present the mechanism of CuFeO2 formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR-SO4, a Fe(II-III) layered double hydroxysulphate (Fe2+4Fe3+2(OH)12·SO4) and Cu2O precipitate first. During further OH- supply GR-SO4 oxidizes and forms Fe10O14(OH)2, Cu2O and CuFeO2 crystals. Due to the high pH further CuFeO2 crystals grow at the cost of the unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO2 (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH- supply during the pH-stat time and rather low temperatures.

  1. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  3. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton Yu.; Deng, Xiaolong; Onyshchenko, Iuliia; Vujosevic, Danijela; Vuksanovic, Vineta; Cvelbar, Uros; De Geyter, Nathalie; Morent, Rino; Leys, Christophe

    2016-08-01

    A simple method for preparation of nanoparticle incorporated non-woven fabric with high antibacterial efficiency has been proposed based on atmospheric pressure plasma process. In this work direct current plasma jet stabilized by fast nitrogen flow was used as a plasma deposition source. Three different types of the nanoparticles (silver, copper and zinc oxide nanoparticles) were employed as antimicrobial agents. X-ray photoelectron spectroscopy (XPS) measurements have shown a positive chemical shift observed for Ag 3d 5/2 (at 368.1 eV) suggests that silver nanoparticles (AgNPs) are partly oxidized during the deposition. The surface chemistry and the antibacterial activity of the samples against Staphylococcus aureus and Escherichia coli were investigated and analyzed. It is shown that the samples loaded with nanoparticles of Ag and Cu and having the barrier layer of 10 nm characterized by almost 97% of bacterial reduction whereas the samples with ZnO nanoparticles provide 86% reduction of Staphylococcus aureus. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. Processing, microstructure evolution and properties of nanoscale aluminum alloys

    NASA Astrophysics Data System (ADS)

    Han, Jixiong

    In this project, phase transformations and precipitation behavior in age-hardenable nanoscale materials systems, using Al-Cu alloys as model materials, were first studied. The Al-Cu nanoparticles were synthesized by a Plasma Ablation process and found to contain a 2˜5 nm thick adherent aluminum oxide scale, which prevented further oxidation. On aging of the particles, a precipitation sequence consisting of, nearly pure Cu precipitates to the metastable theta' to equilibrium theta was observed, with all three forming along the oxide-particle interface. The structure of theta' and its interface with the Al matrix has been characterized in detail. Ultrafine Al-Cu nanoparticles (5˜25 nm) were also synthesized by inert gas condensation (IGC) and their aging behavior was studied. These particles were found to be quite stable against precipitation. Secondly, pure Al nanoparticles were prepared by the Exploding Wire process and their sintering and consolidation behavior were studied. It was found that nanopowders of Al could be processed to bulk structures with high hardness and density. Sintering temperature was found to have a dominant effect on density, hardness and microstructure. Sintering at temperatures >600°C led to breakup of the oxide scale, leading to an interesting nanocomposite composed of 100˜200 nm Al oxide dispersed in a bimodal nanometer-micrometer size Al matrix grains. Although there was some grain growth, the randomly dispersed oxide fragments were quite effective in pinning the Al grain boundaries, preventing excessive grain growth and retaining high hardness. Cold rolling and hot rolling were effective methods for attaining full densification and high hardness. Thirdly, the microstructure evolution and mechanical behavior of Al-Al 2O3 nanocomposites were studied. The composites can retain high strength at elevated temperature and thermal soaking has practically no detrimental effect on strength. Although the ductility of the composite remains quite low, there was substantial evidence for high localized plasticity. The strengthening mechanisms of the composite include: Orowan strengthening, grain size strengthening and Forest strengthening. Finally, the microstructure evolution and mechanical behavior of 2024Al-Al 2O3 nanocomposites were studied. This 2024Al-Al2O 3 composite exhibits similar thermal stability and high strength at elevated temperature as Al-Al2O3. On aging, the matrix of 2024Al-Al2O3 composites revealed a precipitation sequence of: alphaAl → GP/GPB → theta'/S' → theta/S. The strengthening mechanisms of the 2024Al-Al2O3 composites include precipitation strengthening, Orowan strengthening, grain size strengthening and Forest strengthening.

  5. Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate.

    PubMed

    Wang, Tao; Long, Xiaohua; Chen, Xiaoyan; Liu, Yuanrui; Liu, Zhaopu; Han, Shiqun; Yan, Shaohua

    2017-03-01

    Copper nanoparticles (Cu-NPs) are components in numerous commercial products, but little is known about the mechanisms of their toxicity to marine fish. Here, we investigated physiology, transcriptome and proteome in Epinephelus coioides after exposure to Cu as Cu-NPs or copper sulfate (CuSO 4 ). Aggregation, oxidation and dissolution of Cu-NPs occurred after suspension in seawater within 24 h. Cu-NPs had similar types of the histology and hematological effects as CuSO 4 on E. coioides, but toxicity of Cu-NPs seems more severe than that of CuSO 4 . Venn diagram analyses revealed 1428 and 2239 genes with significantly altered regulation in, respectively, CuSO 4 and Cu-NPs treatments; of these, 911 genes were common to both treatments. A total of 354 and 140 proteins with significantly altered regulation were identified in, respectively, CuSO 4 and Cu-NPs treatments; of these, 75 proteins were common to both treatments. A total of 11,417 transcripts and 3210 proteins were assigned to gene ontology terms, clusters of orthologous groups and Kyoto encyclopedia of genes and genomes. Correlation analysis of gene and protein expressions revealed that 21 differentially expressed proteins had their regulation changed in the same direction in both Cu-NPs and CuSO 4 treatments. Those genes and proteins could be used as targets for subsequent analysis, regardless of the Cu form. Among those proteins, one of the most notable changes was in proteins related to lipid transport and metabolism. This study provides an enhanced understanding of E. coioides responses to Cu-NPs or CuSO 4 .

  6. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  7. A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Minghua; Yang, Longyu; Hu, Bin; Liu, Yongkang; Song, Yingpan; He, Linghao; Zhang, Zhihong; Fang, Shaoming

    2018-07-01

    A novel electrocatalyst based on amine-functionalized Ti-based metal-organic framework (NH2-MIL-125(Ti)) embedded with Cu3P nanocrystals (denoted by Cu3P@NH2-MIL-125(Ti)) was synthesized and used for electrocatalytic oxidation and detection of hydrazine in aqueous solution. A series of Cu3P@NH2-MIL-125(Ti) nanocomposites were obtained by adding Cu3P nanoparticles into the preparation system of NH2-MIL-125(Ti), with the Cu3P nanocrystals derived from the phospatization of Cu(OH)2 at high temperature. Based on the detailed characterizations and analysis of the chemical and physical performances of the series of Cu3P@NH2-MIL-125(Ti) nanocomposites at dosages of Cu3P nanocrystals at 5, 20, 50, and 100 mg, the good synergic effect between the Cu3P (50 mg) and the NH2-MIL-125(Ti) endows the as-prepared Cu3P50@NH2-MIL-125(Ti) nanocomposite with the excellent electrocatalytic activity toward the electrocatalytic oxidation of hydrazine. The Cu3P50@NH2-MIL-125(Ti)-based electrochemical sensor exhibited a detection limit of 79 nM (S/N = 3) within a wider linear range from 5 μM to 7.5 mM. Moreover, the developed sensor exhibited high selectivity toward the detection of hydrazine with the addition of certain common interferents and good applicability in real samples. All of these results imply that the Cu3P50@NH2-MIL-125(Ti) nanocomposite could be promising for detecting hydrazine and offer potential applications in the field of electroanalytical chemistry.

  8. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  9. X-ray Spectroscopy Uncovering the Effects of Cu Based Nanoparticle Concentration and Structure on Phaseolus vulgaris Germination and Seedling Development.

    PubMed

    Duran, Nádia M; Savassa, Susilaine M; Lima, Rafael Giovanini de; de Almeida, Eduardo; Linhares, Francisco S; van Gestel, Cornelis A M; Pereira de Carvalho, Hudson W

    2017-09-13

    Nanoparticles properties such as solubility, tunable surface charges, and singular reactivity might be explored to improve the performance of fertilizers. Nevertheless, these unique properties may also bring risks to the environment since the fate of nanoparticles is poorly understood. This study investigated the impact of a range of CuO nanoparticles sizes and concentrations on the germination and seedling development of Phaseolus vulgaris L. Nanoparticles did not affect seed germination, but seedling weight gain was promoted by 100 mg Cu L -1 and inhibited by 1 000 mg Cu L -1 of 25 nm CuO and CuSO 4 . Most of the Cu taken up remained in the seed coat with Cu hotspots in the hilum. X-ray absorption spectroscopy unraveled that most of the Cu remained in its pristine form. The higher surface reactivity of the 25 nm CuO nanoparticles might be responsible for its deleterious effects. The present study therefore highlights the importance of the nanoparticle structure for its physiological impacts.

  10. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Ni, Dawei; Shen, Haiyan; Li, Huiqiao; Ma, Ying; Zhai, Tianyou

    2017-07-01

    Recently, copper species have been extensively investigated to replace Pt as efficient co-catalysts for the evolution of H2 due to their low cost and relatively high activity. Cu nanoparticles less than 5 nm are successfully decorated on TiO2 surface in this work by an easy and mild milling process. These Cu nanoparticles are highly dispersed on TiO2 when the loading amount of Cu is no more than 10 wt%. The sizes of Cu nanoparticles can be controlled by changing the milling environment and decrease in the order of Cu-ethanol > Cu-water > Cu nanoparticles obtained through drying milling. The highest and stable hydrogen generation can be realized on Cu/TiO2 with 2.0 wt% Cu and sizes of Cu nanoparticles ranging from 2 to 4 nm, in which high and stable photocurrent confirms promoted photogenerated charge separation. Smaller Cu clusters are demonstrated to be detrimental to hydrogen evolution at same Cu content. High loading of Cu nanoparticles of 2-4 nm will benefit photogenerated electron-hole recombination and thus decrease the activity of Cu/TiO2. The results here demonstrate the key roles of Cu cluster size in addition to Cu coverage on photocatalytic activity of Cu/TiO2 composite photocatalysts.

  11. In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction.

    PubMed

    Yan, Xiaoxiao; Chen, Yifan; Deng, Sihui; Yang, Yifan; Huang, Zhenna; Ge, Cunwang; Xu, Lin; Sun, Dongmei; Fu, Gengtao; Tang, Yawen

    2017-11-27

    Ultrathin Pt-based nanowires are considered as promising electrocatalysts owing to their high atomic utilization efficiency and structural robustness. Moreover, integration of Pt-based nanowires with graphene oxide (GO) could further increase the electrocatalytic performance, yet remains challenging to date. Herein, for the first time we demonstrate the in situ synthesis of ultrathin PtCu nanowires grown over reduced GO (PtCu-NWs/rGO) by a one-pot hydrothermal approach with the aid of amine-terminated poly(N-isopropyl acrylamide) (PNIPAM-NH 2 ). The judicious selection of PNIPAM-NH 2 facilitates the in situ nucleation and anisotropic growth of nanowires on the rGO surface and oriented attachment mechanism accounts for the formation of PtCu ultrathin nanowires. Owing to the synergy between PtCu NWs and rGO support, the PtCu-NWs/rGO outperforms the rGO supported PtCu nanoparticles (PtCu-NPs/rGO), PtCu-NWs, and commercial Pt/C toward the oxygen reduction reaction (ORR) with higher activity and better stability, making it a promising cathodic electrocatalyst for both fuel cells and metal-air cells. Moreover, the present synthetic strategy could inspire the future design of other metal alloy nanowires/carbon hybrid catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.

    PubMed

    Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu

    2018-03-01

    Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment.

    PubMed

    Zhao, Chuanqi; Lv, Jinling; Xu, Xiaochen; Zhang, Guoquan; Yang, Yuesuo; Yang, Fenglin

    2017-11-01

    Innovation and effective wastewater treatment technology is still in great demand given the emerging contaminants frequently spotted from the aqueous environment. By blending with poly (vinylidene fluoride) (PVDF), the strong hydrophilic graphene oxide (GO) and antibacterial copper oxide (Cu x O) were used as nanofillers to develop the novel, highly antifouling composite membranes via phase inversion process in our latest work. The existence and dispersion of GO and Cu x O posed a significant role on morphologies, structures, surface composition and hydrophilicity of the developed composite membranes, confirmed by SEM, TEM, FTIR and XPS in depth characterization. The SEM images showed that the modified membranes presented a lower resistant structure with developed finger-like macrovoids and thin-walled even interconnected sponge-like pores after adding nanofillers, much encouraging membrane permeation. The XPS results revealed that Cu x O contained Cu 2 O and CuO in the developed membrane and the Cu 2 O nanoparticles were dominant accounting for about 79.3%; thus the modified membrane specifically exhibited an efficient antibacterial capacity. Due to the hydrophilic and bactericidal membrane surface, the composite membranes demonstrated an excellent antifouling performance, including higher flux recovery rate, more resistant against accumulated contaminants and lower filtration resistance, especially lower irreversible resistance. The antifouling property, especially anti-irreversible fouling, was significantly improved, showing a significant engineering potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nanoparticle-based electrochemical sensors for the detection of lactate and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Uzunoglu, Aytekin

    In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The chronoamperometry results showed that the PdCu/SPCE sensors yielded a high sensitivity (396.7 microA mM -1 cm-2), a wide linear range (0.5 -11 mM), and a low limit of detection (0.7 microM) at the applied potential of -0.3 V. For PdAg/rGO sensors, a high sensitivity of 247.6 +/- 2.7 microA˙mM -1˙cm-2 was obtained towards H2O 2 in a linear range of 0.05 mM to 28 mM.

  15. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

    PubMed

    Cappello, Tiziana; Vitale, Valeria; Oliva, Sabrina; Villari, Valentina; Mauceri, Angela; Fasulo, Salvatore; Maisano, Maria

    2017-09-01

    The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Application of silica-supported Fe-Cu nanoparticles in the selective hydrogenation of p-dinitrobenzene to p-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Shesterkina, A. A.; Shuvalova, E. V.; Kirichenko, O. A.; Strelkova, A. A.; Nissenbaum, V. D.; Kapustin, G. I.; Kustov, L. M.

    2017-02-01

    Supported bimetallic Fe-Cu/SiO2 materials are synthesized, and their catalytic activity in hydrogenation of dinitrobenzene to phenylenediamine at 145-180°C and 1.3 MPa hydrogen pressure is studied for the first time. The best results (89% selectivity toward p-phenylenediamine at complete conversion of p-dinitrobenzene) are obtained for the sample synthesized via co-deposition with subsequent calcination at 300°C. The sample contains 7% iron and 3% copper. The formation of separate phases of metal oxides (for the catalysts prepared by impregnation) and mixed bimetallic oxide phases (in case of co-deposition procedure) in calcined samples is revealed via thermoprogrammed reduction with hydrogen.

  17. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices.

    PubMed

    Xu, X X; Ding, M H; Zhang, J X; Zheng, W; Li, L; Zheng, Y F

    2013-11-01

    In this article, a novel composite of copper (Cu) nanoparticles and polydimethiylsiloxane (PDMS) has been prepared and investigated for the potential application in Cu-containing intrauterine device. The Cu/PDMS composite with various mass fraction of Cu nanoparticles was fabricated via the hot vulcanizing process. The chemical structures and surface morphologies of the Cu/PDMS composites were characterized confirming the physical interaction between Cu nanoparticles and PDMS. The surface morphology observation using scanning electron microscope and atomic force microscope showed the agglomeration of Cu nanoparticles in PDMS matrix and the distribution of the agglomerations was more uniform with increased amount of Cu nanoparticles. The cupric ion release behaviors of the Cu/PDMS composites with different amounts of Cu nanoparticles were investigated in simulated uterine fluid at 37°C for 150 days. The corrosion morphologies of the Cu/PDMS composites were also characterized. Both the burst release rate of the cupric ion in the first few days and the steady release rate after 30-day immersion were improved. The cytotoxicity test has been done for the Cu/PDMS composites. Copyright © 2013 Wiley Periodicals, Inc.

  18. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  19. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.

    PubMed

    Susman, Mariano D; Feldman, Yishai; Bendikov, Tatyana A; Vaskevich, Alexander; Rubinstein, Israel

    2017-08-31

    Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol -1 , similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu 2 O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.

  20. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    PubMed Central

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-01-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494

  1. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing.

    PubMed

    Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I

    2015-06-15

    An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  2. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    PubMed

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.

  3. Cu Nanoparticles Improved Thermal Property of Form-Stable Phase Change Materials Made with Carbon Nanofibers and LA-MA-SA Eutectic Mixture.

    PubMed

    Song, Xiaofei; Cai, Yibing; Huang, Cong; Gu, Ying; Zhang, Junhao; Qiao, Hui; Wei, Qufu

    2018-04-01

    A novel form-stable phase change materials (FSPCMs) was fabricated by incorporating fatty acid eutectics with electrospun carbon nanofibers (CNFs) surface-attached with copper (Cu) nanoparticles. Three different Cu/CNFs mats were made through combining the technique and principle of electrospinning, pre-oxidation/carbonization and in-situ reduction, while lauric-myristic-stearic acid (LA-MA-SA) ternary eutectic mixture was prepared as the model PCM. The morphology and crystal structure of Cu/CNFs were characterized by Fourier transfer infrared (FT-IR) spectra, Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectroscopy (EDS), respectively. The results showed that Cu nanoparticles dispersed uniformly on the surface of CNFs mats without agglomeration, and Cu/CNFs mats could provide the mechanical support for FSPCMs and effectively prevent the flow/leakage of molten fatty acid. Morphological structures, as well as the properties of thermal energy storage and thermal energy storage/retrieval rates, of the resulting FSPCMs were investigated by SEM, Differential scanning calorimetry (DSC), and measurement of melting/freezing times, respectively. The results indicated that the fabricated FSPCMs exhibited desired structural morphology, and LA-MA-SA well dispersed in three-dimensional porous structure of Cu/CNFs mats. The melting and crystallization enthalpies of the fabricated FSPCMs were in the range of 117.1-140.7 kJ/kg and 117.2-142.4 kJ/kg, respectively. In comparison with melting/freezing times of LA-MA-SA ternary eutectic mixture, the melting/freezing times of fabricated FSPCMs were respectively decreased ~27.0-49.2% and ~44.1-63.0%. The fabricated FSPCMs possessed good thermal energy storage/retrieval property, and might have great potential for renewable energy storage applications.

  4. Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1α.

    PubMed

    Zhang, Wenjie; Chang, Qing; Xu, Ling; Li, Guanglong; Yang, Guangzheng; Ding, Xun; Wang, Xiansong; Cui, Daxiang; Jiang, Xinquan

    2016-06-01

    Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2 O nanoparticles of ≈30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1α in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.

    PubMed

    Rotini, A; Gallo, A; Parlapiano, I; Berducci, M T; Boni, R; Tosti, E; Prato, E; Maggi, C; Cicero, A M; Migliore, L; Manfra, L

    2018-01-01

    Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC 50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC 50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC 50 = 64.55 ± 3.54mg/l). Comparable EC 50 values were also obtained for the sub-lethal endpoints in P. lividus (EC 50 = 2.28 ± 0.06mg/l) and T. fulvus (EC 50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric aggregates and high sedimentation rates were observed in the exposure media, with different particle size distributions depending on the medium. The copper dissolution was about 0.16% of the initial concentration, comparable to literature values. The integrated ecotoxicological-physicochemical approach was used to better describe CuO NP toxicity and behavior. In particular, the successful application of ecotoxicological reference protocols allowed to produce reliable L(E)C data useful to identify thresholds and assess potential environmental hazard due to NPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  7. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation.

    PubMed

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-02

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  8. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages – comparative study

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa

    2013-01-01

    At present, nanoparticles are beginning to influence our lives in many ways and understanding the environmental health and safety aspect of nanomaterials has become a crucial issue. The aim of the work was to assess and compare the acute toxicity of 31 different nanomaterials to fish mature individuals Danio rerio with that to fish early life stages on using evaluation of the 48- and 96- hour LC50 values. A further aim was to evaluate teratogenicity of the nanoparticles tested to fish eggs. The nanoparticles tested were: 8 pure metals, 10 metal oxides, 5 other metal compounds and their mixtures, 2 silicon compounds, 3 calcium compounds, and 3 carbon compounds. Using 48-h and 96-h tests of acute toxicity (according to OECD 203), we evaluated mortality data, LC50 values, occurrence of malformations, as well as hatching time. In our study, 6 kinds of nanoparticles – calcium oxide, copper, copper in the form of oxide and CuZnFe4O4, magnesium oxide, and nickel – caused cumulative mortality. Two kinds of nanoparticles – copper and silver – were toxic for fish with LC50 values of approximately 3 mg/L. We did not observe marked differences between the 48-hour and 96-hour acute toxicity LC50 values, yet the possibility to evaluate hatching time in the 96-h acute fish toxicity test seems to be an advantage against that of the 48-hour toxicity. PMID:24179431

  9. Sonochemical coating of textile fabrics with antibacterial nanoparticles

    NASA Astrophysics Data System (ADS)

    Beddow, Jamie; Singh, Gagandeep; Blanes, María; Molla, Korina; Perelshtein, Ilana; Gedanken, Aharon; Joyce, Eadaoin; Mason, Timothy

    2012-05-01

    The high incidence of hospital-acquired infections places a huge financial burden on our healthcare systems. These infections are also responsible for many millions of deaths each year. Antibacterial fabrics for use in medical textiles, such as hospital uniforms, bedding and wound dressings, can provide a useful weapon in the on-going fight against these infections. The aim of this EU funded Framework 7 project is to develop a pilot line sonochemical coating machine for the production of antibacterial fabrics. The sonochemical coating technology under development is based on a lab scale process that was developed at Bar-Ilan University (BIU). It involves two processes that are driven by acoustic cavitation; the in situ generation of the metal oxide (MO) nanoparticles and the simultaneous high velocity propulsion of these nanoparticles onto a fabric leading to impregnation. Here we report on a comparison of 2 different MO nanoparticle coatings, ZnO and CuO, that were sonochemically applied on to a plain cotton fabric. Both of these coatings were prepared by BIU. In this work, the antibacterial efficacy of the coated fabrics was quantitatively assessed using the absorption method from BS EN ISO 20743:2007. Both types of metal oxide nanoparticle displayed antibacterial activity against all of the test bacteria with particularly high levels of bacterial reduction observed with the CuO coating. The results presented here are from an EU Framework 7 funded project (SONO, EU Project Number: 228730). The project is a collaboration between 17 partner organizations from 10 different European countries. Further details can be found on the project website at: www.fp7-sono.eu.

  10. Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma

    NASA Astrophysics Data System (ADS)

    Ki, Seo Jin; Lee, Heon; Park, Young-Kwon; Kim, Sun-Jae; An, Kay-Hyeok; Jung, Sang-Chul

    2018-07-01

    Successful modification of surface properties of a nanocomposite electrode is prerequisite to enhancing the overall performance of electrochemical supercapacitors. The present study was designed to describe the microstructural and electrochemical characteristics of a new composite electrode assembled by activated carbon (AC) powder (as a host) and copper precursor (as a guest) using liquid phase plasma. The fabrication processes were conducted by changing plasma discharge time from 30 to 90 min in the presence and absence of (thermal) oxidation. We observed that merging plasma and oxidation treatments raised the content of copper oxide nanoparticles precipitated (evenly) on the AC surface, along with oxygen. A mixed valence state of copper oxides (in the forms of Cuo, Cu2O, and CuO) was found in different composites with and without oxidation, where CuO and Cuo affected a specific capacitance in positive and negative ways, respectively. This led to the difference of electrochemical stability and resistance among the assembled composites. For instance, the best cycling performance was observed in the plasma-treated composite for 90 min with oxidation, whereas that of 60 min without oxidation recorded the lowest resistance. Therefore, a proper balance between the capacitance and resistance appears to be required for effective fabrication of the supercapacitor electrode, specifically in cases involving copper oxides.

  11. Silica-Protection-Assisted Encapsulation of Cu2 O Nanocubes into a Metal-Organic Framework (ZIF-8) To Provide a Composite Catalyst.

    PubMed

    Li, Bo; Ma, Jian-Gong; Cheng, Peng

    2018-06-04

    The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural Engineering of Carbon and Metal Nanostructures for Antibacterial Applications

    NASA Astrophysics Data System (ADS)

    Rojas-Andrade, Mauricio D.

    Antibiotic resistance is a particularly alarming issue in world health today, as the rise and prevalence of antibiotic-resistant microorganisms significantly increases death rates and costs of treatment in even the most developed nations. According to the World Health Organization, many countries around the world have observed last-resort antibiotics to be ineffective in over half of patients afflicted by common pathogenic bacteria such as Escherichia coli and Staphylococcus Aureus, necessitating the search for novel antibacterial agents. Recently, nanostructured materials have been utilized for this application, with promising results observed for a wide variety of different compositions and morphologies. This has prompted significant research efforts toward the understanding of the antimicrobial activities of nanostructured materials in order to determine the nature of their unique cytotoxic mechanisms and consequently, the root of their antibacterial efficacy. This dissertation presents the antibacterial activities of novel carbon and metal nanostructures, focusing on the connection between their structural characteristics and their mechanisms of cytotoxicity. In the first chapter, the antibacterial activity of silver nanostructures synthesized by a green, photochemical method is reported. By utilizing high-resolution transmission microscopy (HRTEM) and x-ray diffraction (XRD), a correlation between the surface morphology and crystal structure of silver nanostructures to their antibacterial activity is established. Silver nanostructures structures composed of (111) faceted surfaces are proposed to be more cytotoxic towards bacterial cells due to slow oxidation and fast dissolution kinetics outside and inside bacterial cells respectively. This chapter develops the foundation for silver nanostructure toxicity, with the fundamental mechanisms being applicable to all metal nanostructures. In chapter 2, the antibacterial activities of Ag, Cu, and bimetallic, AgCu alloy nanoparticles is presented. A comprehensive characterization of Ag, Cu, and AgCu alloy nanoparticle structures is first presented, followed by a thorough analysis of their antibacterial activities. AgCu alloy nanoparticles with an average size of 5 nm and an equal composition of Ag and Cu were found to be the most effective at inhibiting bacterial growth. The mechanisms of Ag, Cu, and AgCu alloy nanoparticles cytotoxicity is then further investigated using fluorescence microscopy and electron paramagnetic resonance (EPR) experiments. AgCu alloy nanoparticles are concluded to exhibit their marked activity due to enhanced reactive oxygen species (ROS) generation resulting from increased Fenton reactions catalyzed by copper species stabilized in the homogenous bimetallic alloy structure. Finally, in chapter 3, the antibacterial activity of graphene oxide quantum dots (GOQD) is reported. The as-prepared structures were synthesized through an established top-down approach, and a sodium borohydride-reduced derivative (rGOQD) was synthesized using these as the precursor. Using a variety of spectroscopic techniques, the structural properties are characterized and differences between as-prepared and reduced GOQD established. Their cytotoxicity toward bacterial cells with and without light irradiation is presented, with GOQDs demonstrating apparent activity under dark conditions, and rGOQD only under light irradiation. A mechanism of cytotoxicity and phototoxicty is proposed, which can be used to establish a foundation by which the cytotoxicity of all carbon nanostructures can be understood.

  13. Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl-, NO3 -, SO4 2-) Influence on the Product Morphology

    NASA Astrophysics Data System (ADS)

    Mansournia, Mohammadreza; Arbabi, Akram

    2017-01-01

    Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.

  14. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions

    PubMed Central

    Xie, Ting; Hasan, Md Rezaul; Qiu, Botong; Arinze, Ebuka S.; Nguyen, Nhan V.; Motayed, Abhishek; Thon, Susanna M.; Debnath, Ratan

    2017-01-01

    We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated. PMID:28729741

  15. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    NASA Astrophysics Data System (ADS)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  16. The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study

    NASA Astrophysics Data System (ADS)

    Fang, Liping; Xu, Cuihong; Zhang, Wenbin; Huang, Li-Zhi

    2018-03-01

    The important role of polyvinylpyrrolidone (PVP) and Cu on the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) by Cu/Fe bimetal nanoparticles has been investigated. The synthesized PVP coated Cu/Fe bimetal nanoparticles with different Cu/Fe ratios were systematically characterized by FTIR, XRD, TEM and magnetic hysteresis loops. The Cu/Fe ratio and the PVP loading were optimized for dechlorination performance, and the optimum ratio of PVP to Cu/Fe was found to be 0.35 and the content of Cu in Cu/Fe nanoparticles was 41%. The presence of PVP as a dispersant/stabilizer results in a highly-dispersed Cu/Fe NPs and increase the reactivity of Cu/Fe NPs for 2,4-DCP removal. The dechlorination rate was enhanced at lower pH and higher temperature conditions. The presence of humic acid, PO43-, NO3-, SO42- leads to a slightly decreased removal efficiency of 2,4-DCP. The magnetic property of PVP-Cu/Fe nanoparticles allows rapid magnetic separation of the catalysts after reaction. A galvanic corrosion model was proposed where iron corrodes and transfers electrons to Cu-rich catalytic regions of the nanoparticles, and finally accelerating the reduction efficiency of 2,4-DCP.

  17. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    PubMed

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.

  18. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    PubMed

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na(+), K(+)). The toxicity of NNPs may differ from that of ENPs because of differences in the coatings on the nanoparticle surfaces. An example of this phenomenon is presented and is briefly discussed.

  19. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties.

    PubMed

    Jaidev, L R; Kumar, Sachin; Chatterjee, Kaushik

    2017-11-01

    Despite several recent advances, poor vascularization in implanted scaffolds impedes complete regeneration for clinical success of bone tissue engineering. The present study aims to develop a multi-biofunctional nanocomposite for bone tissue regeneration using copper nanoparticle decorated reduced graphene oxide (RGO_Cu) hybrid particles in polycaprolactone (PCL) matrix (PCL/RGO_Cu). X-ray photoelectron spectroscopy and X-ray diffraction confirmed the presence of copper oxides (CuO and Cu 2 O) on RGO. Thermogravimetric analysis showed that 11.8% of copper was decorated on RGO. PCL/RGO_Cu exhibited steady release of copper ions in contrast to burst release from the composite containing copper alone (PCL/Cu). PCL/RGO_Cu exhibited highest modulus due to enhanced filler exfoliation. Endothelial cells rapidly proliferated on PCL/RGO_Cu confirming cytocompatibility. The sustained release of ions from PCL/RGO_Cu composites augmented tube formation by endothelial cells evidenced enhanced angiogenic activity. Gene expression of angiogenic markers VEGF and ANG-2 was higher on PCL/RGO_Cu compared to PCL. The osteogenic activity of PCL/RGO_Cu was confirmed by the 87% increase in mineral deposition by pre-osteoblasts compared to PCL. The bactericidal activity of PCL/RGO_Cu showed 78% reduction in viability of Escherichia coli. Thus, the multi-biofunctional PCL/RGO_Cu composite exhibits angiogenic, osteogenic and bactericidal properties, a step towards addressing some of the critical challenges in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles.

    PubMed

    Moustakas, Michael; Malea, Paraskevi; Haritonidou, Katerina; Sperdouli, Ilektra

    2017-07-01

    Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L -1 ). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L -1 and after 27 h to 5 mg L -1 CuO NPs. As a result, 4-h treatment with 5 mg L -1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H 2 O 2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L -1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen ( 1 O 2 ) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L -1 . Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the "Threshold for Tolerance Model" with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H 2 O 2 production.

  1. PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids

    NASA Astrophysics Data System (ADS)

    Tarasenko, N. V.; Butsen, A. V.

    2010-12-01

    The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, Ag — Au), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.

  2. Surface modification of Cu metal particles by the chemical reaction between the surface oxide layer and a halogen surfactant

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki

    2014-01-01

    Surface oxides on small (2-5 μm) copper metal particles can be removed by chemical reaction with tris(2,3-dibromopropyl) isocyanurate (TIC) in diethylene glycol mono-n-hexyl ether (DGHE) solution under mild conditions where metal particles are not damaged. Surface oxides convert to copper bromide species and subsequently dissolve into the solvent. It was found that resultant surface species are resistant to re-oxidation due to remaining surface bromides. This finding opens up a possibility to create microclines based on cheap copper nanoparticles.

  3. Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions.

    PubMed

    Lin, Sen; Xu, Meng; Zhang, Wei; Hua, Xiufu; Lin, Kuangfei

    2017-08-05

    The hierarchical effect of amine-functionalization on nanoparticle properties, magnetism especially, and adsorption of Cu 2+ , Ni 2+ , Pb 2+ and Zn 2+ by aminated MIONPs were investigated elaboratively. The results reflected that the dispersibility and stability of nanoparticles in aqueous solution were both enhanced as MIONPs grafted with amine groups, while saturation magnetism and magnetic recovery conveniences had a negatively correlative relation with the amination degree. In addition, the adsorption performances of Cu 2+ , Ni 2+ , Pb 2+ and Zn 2+ by different aminated MIONPs were also studied comprehensively. The results showed that the initial adsorption rates and adsorption capacities of heavy metal ions increased with the amination degree. In addition, the quantitative correlation between amination degree and adsorption capacities of different heavy metal ions could be described well by a model built on basis of adsorption processes. Copyright © 2017. Published by Elsevier B.V.

  4. Iron Sulfide Attenuates the Methanogenic Toxicity of Elemental Copper and Zinc Oxide Nanoparticles and their Soluble Metal Ion Analogs

    PubMed Central

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A.

    2016-01-01

    Elemental copper (Cu0) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu0 and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25–75 µm) and coarse (500 to 1200 µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu0 and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu0 NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excesses of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu0 and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  5. Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Sagheer, M.; Bilal, M.; Hussain, S.; Ahmed, R. N.

    2018-03-01

    This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation, Joule heating and viscous dissipation. Silver (Ag), copper (Cu), copper oxide (CuO), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) have been taken under consideration as the nanoparticles and water (H 2 O) as the base fluid. Using suitable similarity transformations, the governing partial differential equations (PDEs) of the modeled problem are transformed to the ordinary differential equations (ODEs). These ODEs are then solved numerically by applying the shooting method. For the particular situation, the results are compared with the available literature. The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically. It is witnessed that the skin friction coefficient is maximum for silver based nanofluid. Also, the velocity profile is found to diminish for the increasing values of the magnetic parameter.

  6. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode.

    PubMed

    Selvarajan, S; Suganthi, A; Rajarajan, M

    2018-06-01

    A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    NASA Astrophysics Data System (ADS)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at 0.25% Cu). These surfaces were negatively impacted when tested under dry conditions with high organic content. At 0.25% Cu, the antibacterial activity of the powder coatings was not impacted by washing with several commercial cleaners; however, at concentrations of 0.05% Cu, antibacterial activity was reduced by washing with water, WindexRTM , and Pine SolRTM. Ultrasonic cleaning of the coatings appeared to decrease their antimicrobial efficacy. Despite this, CuI nanoparticles were found in all studies to have great potential as a new class of fast-acting, broad-spectrum antimicrobial.

  8. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange.

    PubMed

    Arabi, Mozhgan; Baizaee, Seyyed Mahdy; Bahador, Alireza; Otaqsara, Seyed Mohammad Taheri

    2018-05-01

    Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one-pot and room-temperature pulsed UV-laser assisted method. UV-laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (I Zn ) to zinc vacancy level (V Zn ) and electronic transition from conduction band to the oxygen vacancy level (V O ), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)-related emission appeared. PL intensity of Cu-related emission increased with the increase in concentration of Cu 2+ , so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu-doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T 2 ) inside the ZnO energy band gap. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.

    PubMed

    Li, Christina W; Ciston, Jim; Kanan, Matthew W

    2014-04-24

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H(+) source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O ('oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  10. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less

  11. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. Dedicated to Prof. Brigitte Weiss.

  12. Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization

    NASA Astrophysics Data System (ADS)

    Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yu, Hui; Yang, Ying; Dong, Xiang-ting

    2018-02-01

    For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3-CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value.

  13. Enhancement in light harvesting ability of photoactive layer P3HT: PCBM using CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Pukhrambam; Chandel, Tarun

    2018-05-01

    In this paper, we have synthesized CuO nanoparticles via precipitation method and incorporated CuO nanoparticles in the P3HT-poly (3-hexyl) thiophene: PCBM-[6, 6]-phenyl-C61-butyric acid methyl ester heterogeneous blend. The ratio of P3HT to CuO in the blend was varied, while maintaining the fixed ratio of PCBM. The UV-visible absorption spectra of P3HT: PCBM photoactive layer containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer. The absorption band starts from 310 nm to 750 nm for P3HT: CuO (NPs):PCBM (0.5:0.5:1). This shows that incorporation of CuO nanoparticles leads to larger absorption band. In addition, the X-ray diffraction (XRD) shows improvement in P3HT crystallinity and the better formation of CuO nanostructures.

  14. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, A.; Han, T. Y.

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have beenmore » synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.« less

  15. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  16. Copper-Based Metal-Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of Staphylococcus aureus.

    PubMed

    Wang, Shuqin; Deng, Wenfang; Yang, Lu; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo

    2017-07-26

    Cu-MOF nanoparticles with an average diameter of 550 nm were synthesized from 2-aminoterephthalic acid and Cu(NO 3 ) 2 by a mixed solvothermal method. The Cu-MOF nanoparticles can show peroxidase-like activity that can catalyze 3,3',5,5'-tetramethylbenzidine to produce a yellow chromogenic reaction in the presence of H 2 O 2 . The presence of abundant amine groups on the surfaces of Cu-MOF nanoparticles enables facile modification of Staphylococcus aureus (S. aureus) aptamer on Cu-MOF nanoparticles. By combining Cu-MOF-catalyzed chromogenic reaction with aptamer recognition and magnetic separation, a simple, sensitive, and selective colorimetric method for the detection of S. aureus was developed.

  17. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  18. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou

    2015-07-01

    This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.

  19. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width of SERS application.

  20. An experimental investigation of localised surface plasmon resonance (LSPR) for Cu nanoparticles depending as a function of laser pulse number in Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Copper is a low cost metal and its nanoparticles have a unique optical properties such as LSPR. The location of LSPR wavelength can be tuned by controlling nanoparticles sizes and size distributions of nanoparticles, shapes and interparticle distances. This morphological changes are provided by controlling system parameters in PLD. For this work, 48000 and 36000 laser pulses from Nd:YAG laser were applied to produce Cu nanoparticle thin films. These thin films were characterised by performing UV-VIS absorption spectroscopy, Atomic Force Microscopy (AFM) analysis. When the number of laser pulse decreases, the size of Cu nanoparticles and the number of nanoparticles arriving on the substrate are reduced, and LSPR peak of thin films are red shifted depending on the geometrical shapes of the Cu nanoparticles. We have driven a conclusion in this work that LSPR properties of Cu nanoparticles can be tuned by proposed method.

  1. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.

    PubMed

    Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2017-01-15

    With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu 2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu 2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO 2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu 2+ -ascorbic acid (H 2 A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu 2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu 2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu 2+ , and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu 2+ , which can determined accurately trace Cu 2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    PubMed

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  3. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture.

    PubMed

    Zhong, Ziyi; Ng, Vivien; Luo, Jizhong; Teh, Siew-Pheng; Teo, Jaclyn; Gedanken, Aharon

    2007-05-22

    Copper oxide with various morphologies was synthesized by the hydrolysis of Cu(ac)2 with urea under mild hydrothermal conditions. In the synthesis, a series of organic amines with one or two amine groups (monoamine and diamine), including isobutylamine, octylamine (OLA), dodecylamine, octadecylamine (monoamines), ethylenediamine dihydrochloride, and hexamethylenediamine (diamines), was used as the "structure-directing agent". The monoamines led to the formation of one-dimensional (1D) aggregates of the copper oxide precursor particles (Pre-CuO), while the diamines led to the formation of two-dimensional (2D) aggregates. In both cases, the shorter carbon-chain amine molecules showed a stronger structure-directing function than that of the longer carbon-chain amine molecules. Next, in a series of syntheses, OLA was selected for further study, and the experimental parameters were systematically manipulated. When the hydrolysis was adjusted to a very slow rate by coupling the hydrolysis reaction with an esterification reaction, 1D aggregates of Pre-CuO were formed; when the hydrolysis rate was in the middle range, spherical Pre-CuO architectures composed of smaller linear aggregates were formed. However, under the high hydrolysis rates achieved by increasing the precipitation agent (urea) or by conducting the reaction at high temperatures (>/=120 degrees C), only Pre-CuO nanoparticles with a featureless morphology were formed. The formed spherical Pre-CuO architectures can be converted to a porous structure (CuOx) after removing the OLA molecules via calcination. Compared to the 1D and 2D aggregates, this porous architecture is highly thermally stable and did not collapse even after calcination at 500 degrees C. Preliminary results showed that the porous structure can be used both as a catalyst support and as a catalyst for the oxidation of CO at low temperatures.

  4. Structure and photoluminescence studies of CeO2·CuAlO2 mixed metal oxide fabricated by co-precipitation method.

    PubMed

    Subhan, Md Abdus; Ahmed, Tanzir; Awal, M R; Kim, B Moon

    2015-01-25

    A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Structure and photoluminescence studies of CeO2·CuAlO2 mixed metal oxide fabricated by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Subhan, Md Abdus; Ahmed, Tanzir; Awal, M. R.; Kim, B. Moon

    2015-01-01

    A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology.

  6. A facile one-pot hydrothermal approach for the preparation of CuO/rGO nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan

    2018-05-01

    Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.

  7. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweensmore » on Cu nanoparticles was different from those arising from the individuals.« less

  8. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  9. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  10. Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua

    2015-04-01

    Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.

  11. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications.

    PubMed

    Banerjee, Arghya Narayan; Joo, Sang W

    2011-09-07

    Field emission properties of CuAlO(2) nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm(-1) and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

  12. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications

    NASA Astrophysics Data System (ADS)

    Narayan Banerjee, Arghya; Joo, Sang W.

    2011-09-01

    Field emission properties of CuAlO2 nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm - 1 and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

  13. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  14. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles

    PubMed Central

    Lu, Xiaoyan; Miousse, Isabelle R.; Pirela, Sandra V.; Moore, Jodene K.; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2016-01-01

    Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is twofold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo; and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages, and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs. PMID:26559097

  15. Poly-l-cysteine/electrospun copper oxide nanofibers-zinc oxide nanoparticles nanocomposite as sensing element of an electrochemical sensor for simultaneous determination of adenine and guanine in biological samples and evaluation of damage to dsDNA and DNA purine bases by UV radiation.

    PubMed

    Arvand, Majid; Sayyar Ardaki, Masoomeh

    2017-09-15

    A new nanocomposite film constructed of poly-l-cysteine/zinc oxide nanoparticles-electrospun copper oxide nanofibers (PLC/ZnO-NPs-CuO-NFs) was prepared on the surface of the graphite electrode (GE). The novel electrode was successfully applied for the simultaneous determination of guanine (G) and adenine (A), two of the most important components of DNA and RNA. The PLC/ZnO-NPs-CuO-NFs/GE enhanced the anodic peak currents of the purine bases conspicuously and could determine them sensitively and separately in 0.1 M phosphate buffer solution at the physiological pH (7.0). The synthesized nanofibers, nanoparticles and nanocomposite were characterized by different methods such as Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Under the optimum operating conditions, linear calibration curves were obtained in the range of 0.05-6.78 and 0.01-3.87 μM with a detection limit of 12.48 and 1.25 nM for G and A, respectively. The proposed method was applied to quantify A and G in three different DNA samples with satisfactory results. In addition, damage to human blood double-stranded DNA (dsDNA) and DNA purine bases (liberated in previously hydrolyzed human blood dsDNA) caused by UV-C and UV-B were evaluated. The results demonstrated that the proposed biosensing platform not only provides a novel and sensitive approach to detecting DNA damage, but also can be used for simultaneous determination of purine bases and major products of DNA oxidative damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Catalytic degradation of PCB77 by microwave-induced nano-particle metal oxides in diatomite].

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua

    2009-08-15

    The degradation of PCB77 in diatomite by microwave-induced catalytic oxidation was studied in a sealed vial, including four effects such as microwave (MV) radiating time, addition of different nano-particle metal oxides, concentration and type of acids and dosage of MnO2. The results indicated that PCB77 could be removed significantly by microwave-induced catalytic oxidation. Compared to control reactor (without MV radiation), the removal rate of PCB77 increased by twice after 1 min. In addition, the removal rate of PCB77 under MV radiation was gradually increased with time of radiation and then reached equilibrium after 10 min. The removal rates are about 50% and 20% by addition of H2SO4 and ultrapure water respectively. No significant removal was observed by addition of NaOH and without aqueous media. Moreover, catalytic degradation of PCB77 by microwave-induced nano-particle MnO2 had best removal rate was up to 90% after 1 min, in contrast with addition of nano-particle Fe2O3, CuO and Al2O3. The removal rate raised from 37.0% to 98.5% rapidly with the concentration of H2SO4 ranged from 1 mol/L to 8 mol/L, and H2SO4 mainly played a role of acidification but not oxidation. The addition of 0.01, 0.03 and 0.05 g MnO2 showed the similar result.

  17. Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport.

    PubMed

    Vardanyan, Zaruhi; Gevorkyan, Vladimir; Ananyan, Michail; Vardapetyan, Hrachik; Trchounian, Armen

    2015-10-16

    Due to bacterial resistance to antibiotics there is a need for new antimicrobial agents. In this respect nanoparticles can be used as they have expressed antibacterial activity simultaneously being more reactive compared to their bulk material. The action of zinc (II), titanium (IV), copper (II) and (I) oxides thin films with nanostructured surface and silver nanoscale particles on Enterococcus hirae and Escherichia coli growth and membrane activity was studied by using microbiological, potentiometric and spectrophotometric methods. It was revealed that sapphire base plates with deposited ZnO, TiO2, CuO and Cu2O nanoparticles had no effects neither on E. hirae nor E. coli growth both on agar plates and in liquid medium. Concentrated Ag nanoparticles colloid solution markedly affected bacterial growth which was expressed by changing growth properties. E. hirae was able to grow only at <1:200 dilutions of Ag nanoparticles while E. coli grew even at 1:10 dilution. At the same time Ag nanoparticles directly affected membranes, as the FOF1-ATPase activity and H(+)-coupled transport was changed either (E. coli were less susceptible to nanoparticles compared to E. hirae). Ag nanoparticles increased H(+) and K(+) transport even in the presence of N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of FOF1. The stoichiometry of DCCD-inhibited ion fluxes was disturbed. These results point out to distinguishing antibacterial effects of Ag nanoparticles on different bacteria; the difference between effects can be explained by peculiarities in bacterial membrane structure and properties. H(+)-K(+)-exchange disturbance by Ag nanoparticles might be involved in antibacterial effects on E. hirae. The role of FOF1 in antibacterial action of Ag nanoparticles was shown using atpD mutant lacked β subunit in F1.

  18. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    PubMed

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, interfacial interactions between NPs and cell membrane were evaluated, and the magnitude of interaction energy barrier correlated well with the 48 h LC(50) data of NPs to Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  19. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    NASA Astrophysics Data System (ADS)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  20. Quaternary M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (M = Ni, Zn, Co, Mn) ferrite oxides: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocarlan, Radu George; Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen; Pui, Aurel, E-mail: aurel@uaic.ro

    2016-09-15

    Highlights: • Superparamagnetic quaternary nanoferrite (M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4,} where M = Mn, Zn, Co, Ni) were obtained. • C, O, H and metals were observed by XPS analysis. • Phases purity were confirmed by XRD diffraction and crystallite size (3–10 nm) were determind. - Abstract: We report the synthesis of M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (where M = Mn, Zn, Co, Ni) nanoparticles using the coprecipitation method in the presence of carboxymethyl cellulose (CMC) as the in-situ surfactant. The crystalline structure and surface morphology were examined by means of X-ray diffraction (XRD) and scanning electron microscopymore » (SEM) and it was established that the average diameter of the magnetic nanoparticles (MNPs) is in the range of 3–10 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) show that the MNPs are activated by the hydrophilic groups of the surfactant, which coat them and enhance their stability. The vibrating sample magnetometry measurements show the superparamagnetic behavior of the nanoparticles. Due to their small crystallite size, which implies large surface area, and their functionalization with organic groups, the obtained nanoparticles could have medical and catalytic applications.« less

  1. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    PubMed

    Padil, Vinod Vellora Thekkae; Černík, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  3. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  4. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  5. High-performing visible-blind photodetectors based on SnO{sub 2}/CuO nanoheterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ting, E-mail: ting.xie@nist.gov; Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742; Hasan, Md Rezaul

    2015-12-14

    We report on the significant performance enhancement of SnO{sub 2} thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO{sub 2} p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO{sub 2}-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ∼592 for the CuO/SnO{sub 2}more » PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO{sub 2} heterostructured thin films are also investigated.« less

  6. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  7. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  8. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

    PubMed

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E

    2012-05-22

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.

  9. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  10. Effects of CuO nanoparticles on Lemna minor.

    PubMed

    Song, Guanling; Hou, Wenhua; Gao, Yuan; Wang, Yan; Lin, Lin; Zhang, Zhiwei; Niu, Qiang; Ma, Rulin; Mu, Lati; Wang, Haixia

    2016-12-01

    Copper dioxide nanoparticles (NPs), which is a kind of important and widely used metal oxide NP, eventually reaches a water body through wastewater and urban runoff. Ecotoxicological studies of this kind of NPs effects on hydrophyte are very limited at present. Lemna minor was exposed to media with different concentrations of CuO NPs, bulk CuO, and two times concentration of Cu 2+ released from CuO NPs in culture media. The changes in plant growth, chlorophyll content, antioxidant defense enzyme activities [i.e., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) activities], and malondialdehyde (MDA) content were measured in the present study. The particle size of CuO NPs and the zeta potential of CuO NPs and bulk CuO in the culture media were also analyzed to complementally evaluate their toxicity on duckweed. Results showed that CuO NPs inhibited the plant growth at lower concentration than bulk CuO. L. minor roots were easily broken in CuO NPs media under the experimental condition, and the inhibition occurred only partly because CuO NPs released Cu 2+ in the culture media. The POD, SOD, and CAT activities of L. minor increased when the plants were exposed to CuO NPs, bulk CuO NPs and two times the concentration of Cu 2+ released from CuO NPs in culture media, but the increase of these enzymes were the highest in CuO NPs media among the three kinds of materials. The MDA content was significantly increased compared with that of the control from 50 mg L -1 CuO NP concentration in culture media. CuO NPs has more toxicity on L. minor compared with that of bulk CuO, and the inhibition occurred only partly because released Cu 2+ in the culture media. The plant accumulated more reactive oxygen species in the CuO NP media than in the same concentration of bulk CuO. The plant cell encountered serious damage when the CuO NP concentration reached 50 mg L -1 in culture media. The toxicology of CuO NP on hydrophytes must be considered because that hydrophytes are the basic of aquatic ecosystem.

  11. Can CuO nanoparticles lead to epigenetic regulation of antioxidant enzyme system?

    PubMed

    Chibber, Sandesh; Shanker, Rishi

    2017-01-01

    Copper has been used from ancient time in various applications. Scientists have exploited its means of exposure and consequences to living organisms. The peculiar property of nanomaterials that is a high surface to volume ratio has increased the range of application in products. Copper oxide nanoparticles (CuO NPs) are widely used in industrial applications such as semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics, heat transfer fluids and consumer products. In contrast, acute toxicity of CuO NPs has also been reported. Subsequently, human and environmental health may be at a high risk. Their frequent use can also contaminate ecosystems. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this review, we have tried to discuss the recent facts and mechanism that have been explored for CuO NPs-induced toxicity at a cellular, in vivo and ecotoxicological level. Accordingly, the main cause for induction of toxicity by CuO NPs is the generation of reactive oxygen species (ROS) followed by the mitochondrial destruction that leads to apoptosis via the intrinsic pathway or under the condition such as hypoxia cell on exposure to CuO NPs may commit to necrosis. Moreover, CuO NPs also result in activation of MAPK pathways, ERKs and JNK/SAPK thus play an important role in the activation of AP-1. Furthermore, CuO NPs also leads to up-regulation of p53 and caspase three genes. Therefore, careful measures are required to explore omic technology to understand the molecular mechanism of the deleterious effects caused by CuO NPs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Low temperature synthesis of Ru-Cu alloy nanoparticles with the compositions in the miscibility gap

    NASA Astrophysics Data System (ADS)

    Martynova, S. A.; Filatov, E. Yu.; Korenev, S. V.; Kuratieva, N. V.; Sheludyakova, L. A.; Plusnin, P. E.; Shubin, Yu. V.; Slavinskaya, E. M.; Boronin, A. I.

    2014-04-01

    A complex salt [Ru(NH3)5Cl][Cu(C2O4)2H2O]-the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P21/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution CuxRu1-x (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper-ruthenium oxide composite were tested in catalytic oxidation of CO.

  13. Controlling Surface Termination and Facet Orientation in Cu2O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study.

    PubMed

    Su, Yang; Li, Hongfei; Ma, Hanbin; Robertson, John; Nathan, Arokia

    2017-03-08

    Cu 2 O nanoparticles with controllable facets are of great significance for photocatalysis. In this work, the surface termination and facet orientation of Cu 2 O nanoparticles are accurately tuned by adjusting the amount of hydroxylamine hydrochloride and surfactant. It is found that Cu 2 O nanoparticles with Cu-terminated (110) or (111) surfaces show high photocatalytic activity, while other exposed facets show poor reactivity. Density functional theory simulations confirm that sodium dodecyl sulfate surfactant can lower the surface free energy of Cu-terminated surfaces, increase the density of exposed Cu atoms at the surfaces and thus benefit the photocatalytic activity. It also shows that the poor reactivity of the Cu-terminated Cu 2 O (100) surface is due to the high energy barrier of holes at the surface region.

  14. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  15. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    PubMed

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  16. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-01-01

    In this work, we have investigated the hybridization of plasmon resonance modes in completely copper (Cu)-based subwavelength nanoparticle clusters from simple symmetric dimers to complex asymmetric self-assembled structures. The quality of apparent bonding and antibonding plasmon resonance modes for all of the clusters has been studied, and we examined the spectral response of each one of the proposed configurations numerically using the finite-difference time domain (FDTD) method. The effect of the geometric sizes of nanoparticles used and substrate refractive index on the cross-sectional profiles of each of the studied structures has been calculated and drawn. We proved that Fano-like resonance can be formed in Cu-based heptamer clusters as in analogous noble metallic particles (e.g., Au and Ag) by determining the coupling strength and interference between sub-radiant and super-radiant resonance modes. Employing certain Cu nanodiscs in designing an octamer structure, we measured the quality of the Fano dip formation along the scattering diagram. Accurate tuning of the geometric sizes for the Cu-based octamer yields an opportunity to observe isotropic, deep, and narrow Fano minima along the scattering profile that are in comparable condition with the response of other plasmonic metallic substances. Immersing investigated final Cu-based octamer in various liquids with different refractive indices, we determined the sensing accuracy of the cluster based on the performance of the Fano dip. Plotting a linear diagram of plasmon energy differences over the refractive index variations as a figure of merit (FoM), which we have quantified as 13.25. With this method, the precision of the completely Cu-based octamer is verified numerically using the FDTD tool. This study paves the way toward the use of Cu as an efficient, low-cost, and complementary metal-oxide semiconductor (CMOS)-compatible plasmonic material with optical properties that are similar to analogous plasmonic substances.

  17. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine

    NASA Astrophysics Data System (ADS)

    Hosseini, Sayed Reza; Ghasemi, Shahram; Kamali-Rousta, Mina

    2017-03-01

    In present work, polyvinyl alcohol/copper acetate-nickel acetate composite nanofibers (PVA/Cu(OAc)2-Ni(OAc)2 NFs) with various weight percentages of Cu(OAc)2:Ni(OAc)2 such as 25:75, 50:50 and 75:25 are fabricated by electrospinning method. After this, the CuO/NiO composite NFs are produced after thermal treatment. A calcination temperature at about 600 °C is determined by thermal gravimetric analysis. Field-emission scanning electron microscopy (FE-SEM) for morphology characterization indicates that large quantities of the prepared PVA/Cu(OAc)2-Ni(OAc)2 composite fibers have smooth and bead-free surfaces. Fourier transform infrared spectroscopy, FE-SEM and energy dispersive X-ray spectroscopy are used to characterize the CuO/NiO composites. According to FE-SEM results, with increasing of Cu(OAc)2 content in polymeric solution, the fibers don't remain as continuous structures after calcination and accumulate in the form of nanoparticles. Also, a carbon paste electrode (CPE) bulky modified with CuO/NiO composites is used for investigation of the electro-catalytic oxidation of hydrazine hydrate in NaOH solution. The catalytic activities of the synthesized catalysts are studied through cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The obtained results demonstrate that the most appropriate proportion of Cu(OAc)2:Ni(OAc)2 in electrospinning solution to enhance the electro-catalytic ability is 25:75.

  19. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  20. Direct deposit laminate nanocomposites with enhanced propellent properties.

    PubMed

    Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R

    2015-05-06

    One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.

  1. Cu0.89Zn0.11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection.

    PubMed

    Nagvenkar, Anjani P; Gedanken, Aharon

    2016-08-31

    Nanomaterial-based enzyme mimetics (nanozymes) is an emerging field of research that promises to produce alternatives to natural enzymes for a variety of applications. The search for the most cost-effective and efficient inorganic nanomaterials, such as metal oxides, cannot be won by pristine CuO. However, unlike CuO, the Zn-doped CuO (Zn-CuO) nanoparticles reported in this paper reveal superior peroxidase-like enzyme activity. This places Zn-CuO in a good position to participate in a range of activities aimed at developing diverse enzyme applications. The peroxidase-like activity was tested and confirmed against various chromogenic substrates in the presence of H2O2 and obeyed the Michaelis-Menten enzymatic pathway. The mechanism of enhanced enzymatic activity was proved by employing terephthalic acid as a fluorescence probe and by electron spin resonance. The nanozyme, when tested for the detection of glucose, showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also decreased reaching a limit as low as 0.27 ppm. Such a low LOD has not been reported so far for the metal oxides without any surface modifications. Moreover, the nanozyme (Zn-CuO) was utilized to detect the three antioxidants tannic acid, tartaric acid, and ascorbic acid and the relative strength of their antioxidant capacity was compared.

  2. Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization

    PubMed Central

    Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yang, Ying; Dong, Xiang-ting

    2018-01-01

    For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film–ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3–CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value. PMID:29515887

  3. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    PubMed Central

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-01-01

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts. PMID:28772910

  4. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    PubMed

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  5. Efficient light absorption by plasmonic metallic nanostructures in photovoltaic application

    NASA Astrophysics Data System (ADS)

    Roy, Rhombik; Datta, Debasish

    2018-04-01

    This article reports the way to trap light efficiently inside a tri-layered Cu(Zn,Sn)S2 (CZTS) and Zinc Oxide (ZnO) based solar cell module using Ag nanoparticles as light concentrators by virtue of their plasmonic property. The passage of E. M. radiation within the cell has been simulated using finite difference time domain (FDTD) method.

  6. Ultrafine Pt Nanoparticles and Amorphous Nickel Supported on 3D Mesoporous Carbon Derived from Cu-Metal-Organic Framework for Efficient Methanol Oxidation and Nitrophenol Reduction.

    PubMed

    Wu, Xue-Qian; Zhao, Jun; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Li, Jian-Rong; Zhang, Qichun

    2018-04-18

    The development of novel strategy to produce new porous carbon materials is extremely important because these materials have wide applications in energy storage/conversion, mixture separation, and catalysis. Herein, for the first time, a novel 3D carbon substrate with hierarchical pores derived from commercially available Cu-MOF (metal-organic framework) (HKUST-1) through carbonization and chemical etching has been employed as the catalysts' support. Highly dispersed Pt nanoparticles and amorphous nickel were evenly dispersed on the surface or embedded within carbon matrix. The corresponding optimal composite catalyst exhibits a high mass-specific peak current of 1195 mA mg -1 Pt and excellent poison resistance capacity ( I F / I B = 1.58) for methanol oxidation compared to commercial Pt/C (20%). Moreover, both composite catalysts manifest outstanding properties in the reduction of nitrophenol and demonstrate diverse selectivities for 2/3/4-nitrophenol, which can be attributed to different integrated forms between active species and carbon matrix. This attractive route offers broad prospects for the usage of a large number of available MOFs in fabricating functional carbon materials as well as highly active carbon-based electrocatalysts and heterogeneous organic catalysts.

  7. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  8. Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing.

    PubMed

    Mao, Zhengui; Qing, Zhihe; Qing, Taiping; Xu, Fengzhou; Wen, Li; He, Xiaoxiao; He, Dinggeng; Shi, Hui; Wang, Kemin

    2015-07-21

    Biomineralized fluorescent metal nanoparticles have attracted considerable interest in many fields by virtue of their excellent properties in synthesis and application. Poly(thymine)-templated fluorescent copper nanoparticles (T-CuNPs) as a promising nanomaterial has been exploited by us recently and displays great potential for signal transducing in biochemical analysis. However, the application of T-CuNPs is rare and still at an early stage. Here, a new fluorescent analytical strategy has been developed for H2O2 and oxidase-based biosensing by exploiting T-CuNPs as an effective signal indicator. The mechanism is mainly based on the poly(thymine) length-dependent formation of T-CuNPs and the probe's oxidative cleavage. In this assay, the probe T40 can effectively template the formation of T-CuNPs by a fast in situ manner in the absence of H2O2, with high fluorescent signal, while the probe is cleaved into short-oligonucleotide fragments by hydroxyl radical (·OH) which is formed from the Fenton reaction in the presence of H2O2, leading to the decline of fluorescence intensity. By taking advantage of H2O2 as a mediator, this strategy is further exploited for oxidase-based biosensing. As the proof-of-concept, glucose in human serum has been chosen as the model system and has been detected, and its practical applicability has been investigated by assay of real clinical blood samples. Results demonstrate that the proposed strategy has not only good detection capability but also eminent detection performance, such as simplicity and low-cost, holding great potential for constructing effective sensors for biochemical and clinical applications.

  9. Effective performance for undoped and boron-doped double-layered nanoparticles-copper telluride and manganese telluride on tungsten oxide photoelectrodes for solar cell devices.

    PubMed

    Srathongluan, Pornpimol; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab; Tubtimtae, Auttasit

    2016-11-01

    This work demonstrates the synthesis of a novel double-layered Cu2-xTe/MnTe structure on a WO3 photoelectrode as a solar absorber for photovoltaic devices. Each material absorber is synthesized using a successive ionic layer adsorption and reaction (SILAR) method. The synthesized individual particle sizes are Cu2-xTe(17) ∼5-10nm and MnTe(3) ∼2nm, whereas, the aggregated particle sizes of undoped and boron-doped Cu2-xTe(17)/MnTe(11) are ∼50 and 150nm, respectively. The larger size after doping is due to the interconnecting of nanoparticles as a network-like structure. A new alignment of the energy band is constructed after boron/MnTe(11) is coated on boron/Cu2-xTe nanoparticles (NPs), leading to a narrower Eg equal to 0.58eV. Then, the valence band maximum (VBM) and conduction band minimum (CBM) with a trap state are also up-shifted to near the CBM of WO3, leading to the shift of a Fermi level for ease of electron injection. The best efficiency of 1.41% was yielded for the WO3/boron-doped [Cu2-xTe(17)/MnTe(11)] structure with a photocurrent density (Jsc)=16.43mA/cm(2), an open-circuit voltage (Voc)=0.305V and a fill factor (FF)=28.1%. This work demonstrates the feasibility of this double-layered structure with doping material as a solar absorber material. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ferromagnetic signal in nanosized Ag particles.

    PubMed

    Jo, Younghun; Jung, Myung-Hwa; Kyum, Myung-Chul; Lee, Sung-Ik

    2007-11-01

    A new technique using an inductively coupled plasma reactor equipped with a liquid-nitrogen cooling system was developed to prepare Ag nanoparticles. The magnetic signal from these Ag particles with diameters of 4 nm showed, surprisingly, a signal with combined ferromagnetic and diamagnetic components, in contrast to the signal with only one diamagnetic component from bulk Ag. The same technique was used to prepare the Ag/Cu nanoparticles, which are Ag nanoparticles coated with a Cu layer. Compared to the Ag nanoparticles, these showed a greatly enhanced superparamagnetic signal in addition to the same value of the ferromagnetism. The comparison between the Ag and the Ag/Cu nanoparticles indicated that the ferromagnetic components are a common feature of Ag nanoparticles while the greatly enhanced paramagnetic component of Ag/Cu, which dominates over the background diamagnetic component from the Ag core, is from the outer Cu shell.

  11. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation

    PubMed Central

    Sadjadpour, Susan; Safarian, Shahrokh; Zargar, Seyed Jalal; Sheibani, Nader

    2016-01-01

    In photodynamic therapy (PDT) of cancer both the light and the photosensitizing agent are normally harmless, but in combination they could result in selective tumor killing. Zinc oxide nanoparticles were synthesized and coated with the amino acid cysteine to provide an adequate arm for conjugation with porphyrin photosensitizers (meso-tetra (4-carboxyphenyl) porphyrin [MTCP] and CuMTCP). Porphyrin-conjugated nanoparticles were characterized by TEM, FTIR, and UV–vis, and fluorescence spectrophotometry. The 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability in the presence or absence of porphyrin conjugates following UV and X-ray irradiation. The uptake of the porphyrin-conjugated ZnO nanoparticles by cells was detected using fluorescence microscopy. Our results indicated that the survival of T-47D cells was significantly compromised in the presence of ZnO-MTCP-conjugated nanostructures with UV light exposure. Exhibition of cytotoxic activity of ZnO-MTCP for human prostate cancer (Du145) cells occurred at a higher concentration, indicating the more resistant nature of these tumor cells. ZnO-CuMTCP showed milder cytotoxic effects in human breast cancer (T-47D) and no cytotoxic effects in Du145 with UV light exposure, consistent with its lower cytotoxic potency as well as cellular uptake. Surprisingly, none of the ZnO-porphyrin conjugates exhibited cytotoxic effects with X-ray irradiation, whereas ZnO alone exerted cytotoxicity. Thus, ZnO and ZnO-porphyrin nanoparticles with UV or X-ray irradiation may provide a suitable treatment option for various cancers. PMID:25581219

  12. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach.

    PubMed

    Mantecca, Paride; Kasemets, Kaja; Deokar, Archana; Perelshtein, Ilana; Gedanken, Aharon; Bahk, Yeon Kyoung; Kianfar, Baharh; Wang, Jing

    2017-08-15

    Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.

  13. Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity.

    PubMed

    Lasfargues, Mathieu; Cao, Hui; Geng, Qiao; Ding, Yulong

    2015-08-11

    This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40) ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%-18.0% compared to the latter equation.

  14. CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink.

    PubMed

    Sun, Guoqiang; Zhang, Yan; Kong, Qingkun; Zheng, Xiaoxiao; Yu, Jinghua; Song, Xianrang

    2015-04-15

    In this work, multiplexed photoelectrochemical (PEC) immunoassays are introduced into an indium tin oxide (ITO) device. Firstly, the ITO device is fabricated using a simple acid etch treatment method. Secondly, AuPd alloy nanoparticles are electro-deposited on ITO working electrodes as electron sink to construct the immunosensor platform. After that, ZnO nanotubes (ZNTs) arrays are synthesized via chemical etching of ZnO nanorods that are grown on AuPd surface by electrochemical deposition method. Subsequently, CdS is electro-deposited on ZNTs arrays and used as photoactive material. Then, CuO nanoseeds are labeled with signal antibodies and firstly used as PEC signal amplification label. The introduction of CuO brings signal amplification because of the conduction band (CB) of both CuO and ZnO are lower than that of CdS, CuO will compete the photo-induced electrons in CB of CdS with ZnO, leading to the decrease of the photocurrent intensity. Using cancer antigen 125, prostate specific antigen and α-fetoprotein as model analytes, the proposed immunoassay exhibits excellent precision and sensitivity. Meanwhile, this work provides a promising, addressable and simple strategy for the multi-detection of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium with radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Tlili, I.; Khan, W. A.; Khan, I.

    2018-03-01

    The purpose of this communication is to examine the collective influence of velocity, and thermal slips on magnetohydrodyanmics (MHD) SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium together with thermal radiation and chemical reaction effects. Sodium Alginate (SA-NaAlg) is taken as non-Newtonian base fluid. Two types of nanoparticles alumina or aluminum oxide (Al2O3) and copper (Cu) are suspended in sodium alginate (SA) which is taken as base fluid, an example of non-Newtonian Casson fluid. The formulated nonlinear partial differential equations with auxiliary boundary conditions are transformed into non-dimensional form by applying suitable similarity transformations. The resulting dimensionless problem is solved numerically using shooting and fourth order Runge-Kutta method. The impacts of various thermophysical parameters on local skin-friction, local Nusselt number, temperature and velocity are analyzed through graphs as well as in tabular form and discussed in detail. A comparison between SA-Al2O3 and SA-Cu nanofluids is clearly shown and in limiting sense the present results are compared with published results from literature. The results show that with magnetic parameter, skin-friction and Nusselt number both decreased, and Nusselt numbers are the highest in case of Al2O3 than Cu nanoparticles.

  16. Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects

    NASA Astrophysics Data System (ADS)

    Grover, Valerie Ann

    The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.

  17. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    PubMed Central

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  19. Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells.

    PubMed

    El-Nagar, Gumaa A; Mohammad, Ahmad M; El-Deab, Mohamed S; El-Anadouli, Bahgat E

    2017-06-14

    This study introduces a novel competent dendritic copper oxide-platinum nanocatalyst (nano-Cu 2 O-Pt) immobilized onto a glassy carbon (GC) substrate for formic acid (FA) electro-oxidation (FAO); the prime reaction in the anodic compartment of direct formic acid fuel cells (DFAFCs). Interestingly, the proposed catalyst exhibited an outstanding improvement for FAO compared to the traditional platinum nanoparticles (nano-Pt) modified GC (nano-Pt/GC) catalyst. This was evaluated from steering the reaction mechanism toward the desired direct route producing carbon dioxide (CO 2 ); consistently with mitigating the other undesired indirect pathway producing carbon monoxide (CO); the potential poison deteriorating the catalytic activity of typical Pt-based catalysts. Moreover, the developed catalyst showed a reasonable long-term catalytic stability along with a significant lowering in onset potential of direct FAO that ultimately reduces the polarization and amplifies the fuel cell's voltage. The observed catalytic enhancement was believed to originate bifunctionally; while nano-Pt represented the base for the FA adsorption, nanostructured copper oxide (nano-Cu 2 O) behaved as a catalytic mediator facilitating the charge transfer during FAO and providing the oxygen atmosphere inspiring the poison's (CO) oxidation at relatively lower potential. Surprisingly, moreover, nano-Cu 2 O induced a surface retrieval of nano-Pt active sites by capturing the poisoning CO via "a spillover mechanism" to renovate the Pt surface for the direct FAO. Finally, the catalytic tolerance of the developed catalyst toward halides' poisoning was discussed.

  20. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; A, F. Ismail; Hadi, Nur; Z, Othaman; M, K. Mustafa

    2016-07-01

    Zn1-x Cu x O (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping. Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.

  1. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts

    DOE PAGES

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-05-23

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  2. Guided selective deposition of nanoparticles by tuning of the surface potential

    NASA Astrophysics Data System (ADS)

    Eklöf, J.; Stolaś, A.; Herzberg, M.; Pekkari, A.; Tebikachew, B.; Gschneidtner, T.; Lara-Avila, S.; Hassenkam, T.; Moth-Poulsen, K.

    2017-07-01

    Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  3. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    PubMed

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  4. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-01-01

    Novel Cu@Fe 3 O 4 core-shell nanoparticles prepared via a simple reduction method were evaluated for degradation of oxytetracycline (OTC) in pre-treated leachate (L p-TREA ) (leachate treated by conventional methods). Changes in the characteristics of dissolved organic matter (DOM) in the leachate were also investigated to gain a better understanding of the effects of DOM on the performance of Cu@Fe 3 O 4 . An excellent OTC degradation of >99% was achieved within 30 min under conditions of 1 g/L Cu@Fe 3 O 4 , 20 mg/L OTC, 20 mM H 2 O 2 , and initial pH 3.0, which was similar to the efficiency obtained in deionized water (90% even at pH 9.05). Humic acid (HA) and fulvic acid (FA) were completely degraded at initial pH 3, while aromatic protein (AP) with 32.7% of 1-3 kDa constituents were totally transformed to 0.5-1 kDa compounds, and 17% < 0.5 kDa material was degraded. The OTC removal rate decreased gradually as Cu@Fe 3 O 4 was repeatedly used, but it was significantly enhanced when Cu@Fe 3 O 4 was washed after five uses to remove the organic matter on its surface. The results suggest that Cu@Fe 3 O 4 is a promising and effective catalyst for pharmaceutical and personal care product degradation in landfill leachates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors.

    PubMed

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g -1 at a 20 mV s -1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  6. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    NASA Astrophysics Data System (ADS)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  7. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    PubMed Central

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles. PMID:27877410

  8. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

  9. Synthesis methods influence characteristics, behaviour and toxicity of bare CuO NPs compared to bulk CuO and ionic Cu after in vitro exposure of Ruditapes philippinarum hemocytes.

    PubMed

    Volland, Moritz; Hampel, Miriam; Katsumiti, Alberto; Yeste, María Pilar; Gatica, José Manuel; Cajaraville, Miren; Blasco, Julián

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) are increasingly investigated, developed and produced for a wide range of industrial and consumer products. Notwithstanding their promising novel applications, concern has been raised that their increased use and disposal could consequently increase their release into marine systems and potentially affect species within. To date the understanding of factors and mechanisms of CuO (nano-) toxicity to marine invertebrates is still limited. Hence, we studied the characteristics and behaviour of two commercially available CuO NPs of similar size, but produced employing distinct synthesis methods, under various environmentally and experimentally relevant conditions. In addition, cell viability and DNA damage, as well as gene expression of detoxification, oxidative stress, inflammatory response, DNA damage repair and cell death mediator markers were studied in primary cultures of hemocytes from the marine clam Ruditapes philippinarum and, where applicable, compared to bulk CuO and ionic Cu (as CuSO 4 ) behaviour and effects. We found that the synthesis method can influence particle characteristics and behaviour, as well as the toxicity of CuO NPs to Ruditapes philippinarum hemocytes. Our results further indicate that under the tested conditions aggregating behaviour influences the toxicity of CuO NPs by influencing their rate of extra- and intracellular dissolution. In addition, gene expression analysis identified similar transcriptional de-regulation for all tested copper treatments for the here measured suite of genes. Finally, our work highlights various differences in the aggregation and dissolution kinetics of CuO particles under environmental (marine) and cell culture exposure conditions that need consideration when extrapolating in vitro findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nature of diffraction fringes originating in the core of core-shell nanoparticle Cu/SiO2 and formation mechanism of the structures

    NASA Astrophysics Data System (ADS)

    Radnaev, A. R.; Kalashnikov, S. V.; Nomoev, A. V.

    2016-05-01

    This article is devoted to the analysis of the reasons for the occurrence of diffraction fringes in the cores of the core-shell nanoparticles Cu/SiO2. Moiré and diffraction fringes are observed while studying the nanoparticle cores under a transmission electron microscope. The formation of diffraction fringes is closely connected to the mechanism of nanoparticle formation under study and appears to be its consequence, letting us develop a hypothesis of metastable phase formation in nanoparticle cores. In our opinion, the emergence of diffraction fringes in cores of copper is connected to clasterisation in solid solution oversaturated with silicon α-Cu with the diffused interphase state. Only copper and oxygen (oxygen is presented as oxides in such types of copper as M0 - up to 0.01%; and M1 - up to 0.03%), Copper and silicon with oxygen in a stoichiometric proportion that is only sufficient for silicon dioxide formation (SiO2), Copper and silicon with oxygen in an amount that is sufficient not only for silicon dioxide formation, but also for the dissolution of silicon in the α-Cu solid solution, The amount of silicon in the alloy is not sufficient for the total fixation of oxygen contained in copper, Copper, oxygen and silicon whose contamination is greater than 8 wt.%. In the first case, the top-cut of oxygen in α-Cu solid solution is 0.03% at the temperature of 1066 °C. At slow cooling, secondary recrystallisation leads to the formation of equilibrium Cu2O on the line of the ultimate solubility (Figure 1a - line of maximum solubility of oxygen in copper). In the case of fast cooling fixation of oversaturated, single-phase, non-equilibrium α-Cu, solid solution (heat-treated) takes place, which contains saluted oxygen in an interstice crystal lattice of copper.Room temperature for nonferrous alloys (metals) is sufficient for the diffusive mobility of atoms, but insufficient for the formation of an equilibrium phase and stable phase of Cu2O. This is why diffusion of oxygen atoms in certain areas (clusters) with their increased diffusion of oxygen atoms in certain areas (clusters) with their increased number has been suggested [4]. At the same time, there is a boundary between the stable phase of α-Cu and 'pre-precipitations' containing oxygen, but not having the full value oxide: red copper ore, Cu2O (Figure 1b - solvus of suggested metastable phase). In this case, diffraction fringes can be treated as 'pre-precipitations' in the form of Guinier-Preston zones with diffuse interfaces and a stable α-Cu phase.In the second case, all oxygen and silicon after condensation and crystallisation are fixed in the form of amorphous SiO2 on the core surface of copper. As far as there are no atoms of saluted oxygen or silicon in copper, there are no conditions for the formation of non-equilibrium structures. Consequently, the diffraction pattern of nanoparticle cores is not observed (Figure 2a).In the third case, in the presence of quite a large amount of silicon in the stoichiometric drop, the process of copper oxide formation is not possible, because all the oxygen is used for the production of silicon dioxide since the sensitivity of oxygen to silicon is higher than to copper. This can be explained by the difference in Gibbs energy for the oxidising reaction of components. At the temperature of 25 °C it is 29.0 J/(g mol) - for copper, and 80.8 J/(g mol) for silicon. Silicon dioxide occurring due to the oxygen content in copper will be displaced on the surface of the drop in the form of ash, forming the SiO2 shell [24]. The reason lies in the lower specific density of silicon (approximately 2.2 g/cm3) compared to copper (8.92 g/cm3). This is why, in our case, it is appropriate to study the system where there is no influence of oxygen on the crystallisation of the Cu-Si system [5]. In the cores of such nanoparticles, prominent diffraction fringes can be observed in the α-Cu core (Figure 3b).Analysis of the Cu-Si phase diagram (Figure 3) shows that the maximum solubility of silicon α-Cu at the temperature 552 °C comprises 4.65 wt.% Si. This part of the Cu-Si phase diagram containing up to 8 wt.% silicon represents a classical example of the well-studied phase diagram of Al-Cu components, with the formation of Guinier-Preston zones in the quenched aluminium alloy [25].Single-phase solid solution of silicon α-Cu is fixed at fast cooling in our case. During its formation, cooling and natural ageing of the nanoparticle core, and redistribution of silicon into certain areas, takes place, forming metastable clusters in the matrix with high silicon content. They seem to be 'pre-precipitations' of the γ-phase of copper, though they really are not. In our opinion, diffraction fringes observed in these particles appear to be metastable phases according to Guinier-Preston zone type, i.e. α-Cu area with excessive silicon content.For nonferrous alloys, room temperature is sufficient for diffusive mobility of atoms of the saluted component [19]. Clusters are formed both at the time of cooling and in the long-term process (i.e. natural ageing). Provided that it is not a new phase, but rather the area of the initial matrix α-Cu solid solution enriched with dissolved silicon, such areas may be treated as Guinier-Preston zones. In contrast to intermediate phases with qualitatively new structures, characterised by their own lattices, Guinier-Preston zones have the same lattice as the matrix solution, but are deformed because of the difference in the atomic diameters of the solute and solvent. There is no clear boundary between the zone and solid solution by which it is surrounded. Compared to concentration fluctuations that appear continuously and are diffused by thermal motion, Guinier-Preston zones are stable for a long time (at low temperatures, for an intermediate amount of time). Experiments have shown that, with the increase of ageing duration, zone sizes are also increased. Furthermore, larger zones grow due to dissolution of the smaller ones, i.e. the same way as in coagulation of crystal grains in the solid state (i.e. collective crystallisation) [19]. The number of the zones at the given ageing temperature does not depend on the alloy composition.In some alloys, Guinier-Preston zones appear immediately after heat treatment or even during the cooling after heat treatment. At the same time, intermediate phases and stable phases appear after the incubation interval. All these facts show that Guinier-Preston zones are different to intermediate and stable phases. This is why Guinier-Preston zones are often called 'pre-precipitations' to differentiate them from real precipitations of intermediate and stable phases with a qualitatively new structure [19].Unlike such a structured approach that treats Guinier-Preston zones as 'pre-precipitations' from a thermodynamic point of view, they can be treated as independent stable phases, intermediate between the matrix solution and the stable phase. Consequently, these zones can be treated as the second phase that is in metastable equilibrium with the matrix solution.Moreover, a Guinier-Preston zone in the dual Cu-Si system with limited solubility of silicon in solid state can have its own line limit of solubility km (Figure 3). Metastable phases with a high content of silicon in the α-Cu matrix crystalline lattice appear below this line.Provided that the Guinier-Preston zone is treated as a phase, at the moment of its origin, the change of the free energy of the alloy is as follows: ΔU = -ΔUtot + ΔUsurf + ΔUel (Utot - total energy of the system, Usurf - surface energy of the crystal, Uel - elastic energy component). Because of the coherence property of the zone and the matrix, the ΔUsurf component can be neglected as its value is very small. Then, at relatively high oversaturation, the energy barrier for the origin of the Guinier-Preston zone should be relatively small, which explains the occurrence of clusters immediately after heat treatment or even at the moment of cooling and following natural ageing.The fact that Guinier-Preston zones can easily appear throughout the whole volume of the matrix solid solution and give the structure of equable decay with high density is of high practical value for us (Figure 2b).Thus, diffraction fringes in copper cores of core-shell nanoparticles should be treated as the second metastable phase, which is in equilibrium with the matrix solid solution. Similar to the exfoliation curve km in the solid solution α-Cu, the solvus curve for γ-Cu with intermediate 'pre-precipitations' can be built. The structure of the boundary with the matrix differentiates Guinier-Preston zones from other intermediate phases. These zones are fully coherent extractions, which is why their boundary with the matrix is poorly defined.As the rate accuracy of basal spacing with the method of electronic diffraction does not exceed 1 Å, according to the data it is not possible to evaluate accurately the change dα-Cu in diffraction fringes of the nanoparticle core; phase nonuniformity of structures has been suggested [26]. This is why it is necessary to treat such structures as solid solutions of α-Cu matrix, with the presence of metastable phases with the deformed crystal lattice.In the fourth case, formation of core-shell nanoparticle Cu/SiO2 happens much like in the third case, but due to the fact the amount of silicon is insufficient for the total fixation of oxygen and copper, a transition zone containing Cu2O is formed. Moiré in such particles are observed at the possible placing of double diffraction from two or more crystals of solid solution α-Cu (Figure 4a) [3]. The nanoparticle according to SAED analysis is very much like a 'sandwich': core α-Cu (Figure 4b, basal spacing d(111) ≈ 2.0 Å, corresponding to the tabular data for Cu), transition zone - copper oxide Cu2O (Figure 5a, basal spacing d(111) ≈ 2.4 Å) and shell - amorphous silicon dioxide, according to the EDAX data, the content of oxygen in this area is greater than 12% [11]. High copper oxide (CuO) was discovered only on the surface of the nanoparticle shell SiO2 (Figure 5b, basal spacing d(111) ≈ 2.5 Å).In the fifth case, when the silicon content is from 8.3-8.5 wt.% to 13 wt.%, copper with silicon in solid state at room temperature forms a continuous series of solid solutions of copper α, γ, ɛ and η. Silicon containing more than 13 wt.% copper undergoes eutectic decomposition only at (η″ + Si) [5]; structurally, such a solution contains eutectics in eutectics. In the obtained powder of nanoparticles, there are no modifications of solid solutions of copper, except for α-Cu.

  11. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption.

    PubMed

    Bradfield, Scott J; Kumar, Pawan; White, Jason C; Ebbs, Stephen D

    2017-01-01

    The potential release of metal oxide engineered nanoparticles (ENP) into agricultural systems has created the need to evaluate the impact of these materials on crop yield and food safety. The study here grew sweet potato (Ipomoea batatas) to maturity in field microcosms using substrate amended with three concentrations (100, 500 or 1000 mg kg DW -1 ) of either nZnO, nCuO, or nCeO 2 or equivalent amounts of Zn 2+ , Cu 2+ , or Ce 4+ . Adverse effects on tuber biomass were observed only for the highest concentration of Zn or Cu applied. Exposure to both forms of Ce had no adverse effect on yield and a slight positive benefit at higher concentrations on tuber diameter. The three metals accumulated in both the peel and flesh of the sweet potato tubers, with concentrations higher in the peel than the flesh for each element. For Zn, >70% of the metal was in the flesh and for Cu >50%. The peels retained 75-95% of Ce in the tubers. The projected dietary intake of each metal by seven age-mass classes from child to adult only exceeded the oral reference dose for chronic toxicity in a scenario where children consumed tubers grown at the highest metal concentration. The results throughout were generally not different between the ENP- and ionic-treatments, suggesting that the added ENPs underwent dissolution to release their component ions prior to accumulation. The results offer insight into the fate and impact of these ENPs in soils. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong

    2017-12-01

    In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.

  13. Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.

    Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less

  14. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  15. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE PAGES

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan; ...

    2017-09-18

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  16. Colloid particle formulations for antimicrobial applications.

    PubMed

    Halbus, Ahmed F; Horozov, Tommy S; Paunov, Vesselin N

    2017-11-01

    Colloidal particles are being extensively studied in various antimicrobial applications due to their small size to volume ratio and ability to exhibit a wide spectrum of antibacterial, antifungal, antialgal and antiviral action. The present review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid materials, and discusses some of the methods for their preparation as well as mechanisms of their antimicrobial action. We consider the antimicrobial applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu 2 O, Al 2 O 3 , TiO 2 , CeO 2 and Y 2 O 3 ), metal nanoparticles (NPs), such as copper, silver and gold, metal hydroxide NPs such as Mg(OH) 2 as well as hybrid NPs made from biodegradable materials, such as chitosan, lignin and dextran, loaded with other antimicrobial agents. Recent developments for targeted delivery of antimicrobials by using colloid antibodies for microbial cell shape and surface recognition are also discussed. We also consider recent advances in the functionalization of nanoparticles and their potential antimicrobial applications as a viable alternative of conventional antibiotics and antiseptic agents which can help to tackle antimicrobial resistance. The review also covers the recently developed environmentally benign NPs (EbNPs) as a "safer-by-design" green chemistry solution of the post use fate of antimicrobial nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhibition of growth of S. epidermidis by hydrothermally synthesized ZnO nanoplates

    NASA Astrophysics Data System (ADS)

    Abinaya, C.; Mayandi, J.; Osborne, J.; Frost, M.; Ekstrum, C.; Pearce, J. M.

    2017-07-01

    The antibacterial effect of zinc oxide (ZnO#1) as prepared and annealed (ZnO#2) at 400 °C, Cu doped ZnO (CuZnO), and Ag doped ZnO (AgZnO) nanoplates on Staphylococcus epidermidis was investigated for the inhibition and inactivation of cell growth. The results shows that pure ZnO and doped ZnO samples exhibited antibacterial activity against Staphylococcus epidermidis (S. epidermidis) as compared to tryptic soy broth (TSB). Also it is observed that S. epidermidis was extremely sensitive to treatment with ZnO nanoplates and it is clear that the effect is not purely depend on Cu/Ag. Phase identification of a crystalline material and unit cell dimensions were studied by x-ray powder diffraction (XRD). The scanning electron microscopy (SEM) provides information on sample’s surface topography and the EDX confirms the presence of Zn, O, Cu and Ag. X-ray photo-electron spectroscopy (XPS) was used to analyze the elemental composition and electronic state of the elements that exist within the samples. These studies confirms the formation of nanoplates and the presence of Zn, O, Ag, Cu with the oxidation states  +2, -2, 0 and  +2 respectively. These results indicates promising antibacterial applications of these ZnO-based nanoparticles synthesized with low-cost hydrothermal methods.

  18. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes

    PubMed Central

    Ahrari, Farzaneh; Eslami, Neda; Rajabi, Omid; Ghazvini, Kiarash; Barati, Sahar

    2015-01-01

    Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO), copper oxide (CuO), titanium dioxide (TiO2) and silver (Ag) nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs) and with subcultures obtained minimum bactericidal concentrations (MBCs) of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO2-containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05). The colloidal solutions containing nanoTiO2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05). On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05). Conclusion: The nanoTiO2-containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues. PMID:25709674

  19. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    NASA Astrophysics Data System (ADS)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  20. Legionella pneumophila transcriptional response following exposure to CuO nanoparticles.

    PubMed

    Lu, Jingrang; Struewing, Ian; Buse, Helen Y; Kou, Jiahui; Shuman, Howard A; Faucher, Sébastien P; Ashbolt, Nicholas J

    2013-04-01

    Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila.

Top