Sample records for cu pb sb

  1. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  2. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE PAGES

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...

    2018-03-01

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  3. Effects of antimony substitution on bismuth based superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1990-01-01

    The effect of Sb substitution and simultaneous substitution of Pb and Sb on the superconducting transition temperatures in the BiSrCaCuO system is investigated. The 2:2:2:3 phase is of particular interest since any small increase in the transition temperature could be of great interest. More that 90 different samples were prepared based on 2:2:2:3 stoichiometry in the BiSrCaCuO system. After this preliminary attempt, four different families of samples were investigated. In the first family of samples, Bi was substituted by Sb to form Bi(1.9)Sb(0.1)Sr2Ca2Cu3O(y). The second group of samples were prepared by simultaneous addition of Pb and Sb with nominal composition Bi(1.8)Pb(0.1)Sb(0.1)Sr2Ca2Cu3O(y). The third and fourth groups were prepared to determine the effect created when the Pb concentration is increased with the nominal compositions being Bi(1.7)Pb(0.1)Sr2Ca2Cu3O(y) and Bi(1.6)Sb(0.1)Sr2Ca2Cu3O(y). The results of these investigations are presented with a discussion.

  4. Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb13Sb7S24.

    PubMed

    Bindi, Luca; Petříček, Václav; Biagioni, Cristian; Plášil, Jakub; Moëlo, Yves

    2017-06-01

    The structure of meneghinite (CuPb 13 Sb 7 S 24 ), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb 3+ + [] → Pb 2+ + Cu + , thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

  5. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires.

    PubMed

    Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

    2017-04-01

    An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.

  6. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS 3) and related substitutions

    DOE PAGES

    Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; ...

    2017-02-08

    Bournonite (CuPbSbS 3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn2 1 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD 3 formula. We perform two types of transport calculations: themore » BoltzTraP model, which has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe 3 , CuSnSbSe 3 and CuPbAsSe 3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.« less

  7. Determination of the Extent of Trace Metals Pollution in Soils, Sediments and Human Hair at e-Waste Recycling Site in Ghana.

    PubMed

    Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi

    2017-10-01

    The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.

  8. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  11. Imaging of metal bioaccumulation in hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS.

    PubMed

    Koelmel, Jeremy; Amarasiriwardena, Dulasiri

    2012-09-01

    Understanding Pb removal from the translocation stream is vital to engineering Pb hyperaccumulation in above ground organs, which would enhance the economic feasibility of Pb phytoextraction technologies. We investigated Cu, Pb, Sb and Zn distributions in Hay-scented fern (Dennstaedtia punctilobula) rhizomes on shooting range soils by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), analyzing digested rhizomes, stems, and fronds using ICP-MS. Nutrients Cu and Zn concentrated in fronds while toxic elements Pb and Sb did not, showing potential Pb and Sb sequestration in the rhizome. Frond and rhizome concentration of Pb was 0.17 ± 0.10% and 0.32 ± 0.21% of dry biomass, respectively. The 208Pb/13C and 121Sb/13C determined by LA-ICP-MS increased from inner sclerotic cortex to the epidermis, while Pb concentrated in the starchy cortex only in contaminated sites. These results suggest that concentration dependent bioaccumulation in the rhizome outer cortex removes Pb from the vascular transport stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The Role of Anionogenic Elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) In The Formation of Technogenic Geochemical Anomalies

    NASA Astrophysics Data System (ADS)

    Abrosimova, Natalya; Bortnikova, Svetlana

    2017-12-01

    The study was conducted on the example of sulphide-containing mine tailings with a varying amount of sulphide and arsenide minerals, from three distinct tailings dumps situated in Russia: Karabash Mine Site, South Ural; Komsomolsk tailings impoundment, Kemerovo region; Khovu-Aksy mine site, Tuva Republic. The aim of the study was to compare the mobility of anionogenic elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) and their role in migration, precipitation, and concentration of metals during the water-tailings interaction depending on the physicochemical parameters (pH, Eh) of the medium and the mineral composition of the waste material. Using slightly acidic leaching experiments the quantitative estimation of mobile forms of elements is given. Based on the compositions of the obtained water leaching solutions, aqueous speciation of chemical elements and saturation index of key minerals in the experimental solutions were calculated. The results of calculating forms of chemical elements made it possible to construct series of mobility of metals and metalloids in solutions with different physicochemical parameters. In the alkaline conditions, Sb>As>Cd>Cu>Zn>Fe>Pb, when the medium is acidified, the series changes, As>Cd>Cu>Zn>Pb>Sb>Fe in weakly alkaline conditions, Sb>Mn>As>Zn>Fe however, when the medium is acidified, the series changes to Cd>Mn>Pb>Cu>Zn>Sb>Ni>Fe>As under acidic conditions Cd>Cu>Zn>Pb>Mn>Fe>Se>Mo>Sb>As>Ni. The mineral composition of the tailings was investigated, which will allow to determine the sources of toxic elements and to understand the processes of secondary mineral formation in technogenic objects. Arsenopyrite and pyrite predominate in the heavy fraction of the Komsomolsk tailings impoundment, arsenopyrite grains are often corroded, Sb contained in Sb oxide and Sb sulfide. The pyrite and barite are determined in the solid matter of the Karabash Mine Site and chalcopyrite, sphalerite, tennantite Cu3AsS3, and tetrahedrite (Cu,Fe)12Sb4S13 are determined in the form of inclusions in grains of pyrite.

  13. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range.

    PubMed

    Mariussen, Espen; Heier, Lene Sørlie; Teien, Hans Christian; Pettersen, Marit Nandrup; Holth, Tor Fredrik; Salbu, Brit; Rosseland, Bjørn Olav

    2017-01-01

    An environmental survey was performed in Lake Kyrtjønn, a small lake within an abandoned shooting range in the south of Norway. In Lake Kyrtjønn the total water concentrations of Pb (14µg/L), Cu (6.1µg/L) and Sb (1.3µg/L) were elevated compared to the nearby reference Lake Stitjønn, where the total concentrations of Pb, Cu and Sb were 0.76, 1.8 and 0.12µg/L, respectively. Brown trout (Salmo trutta) from Lake Kyrtjønn had very high levels of Pb in bone (104mg/kg w.w.), kidney (161mg/kg w.w.) and the gills (137mg/kg d.w), and a strong inhibition of the ALA-D enzyme activity were observed in the blood (24% of control). Dry fertilized brown trout eggs were placed in the small outlet streams from Lake Kyrtjønn and the reference lake for 6 months, and the concentrations of Pb and Cu in eggs from the Lake Kyrtjønn stream were significantly higher than in eggs from the reference. More than 90% of Pb accumulated in the egg shell, whereas more than 80% of the Cu and Zn accumulated in the egg interior. Pb in the lake sediments was elevated in the upper 2-5cm layer (410-2700mg/kg d.w), and was predominantly associated with redox sensitive fractions (e.g., organic materials, hydroxides) indicating low potential mobility and bioavailability of the deposited Pb. Only minor amounts of Cu and Sb were deposited in the sediments. The present work showed that the adult brown trout, as well as fertilized eggs and alevins, may be subjected to increased stress due to chronic exposure to Pb, whereas exposure to Cu, Zn and Sb were of less importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thermal fuse for high-temperature batteries

    DOEpatents

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  15. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  16. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  17. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    PubMed

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  18. Biogeochemical features of maple and dandelion in Eastern Administrative District of Moscow

    NASA Astrophysics Data System (ADS)

    Vlasov, Dmitry

    2014-05-01

    Today more than half of world population and 73% of population in Russia live in cities. Moscow is the only one megacity in Russia with the population more than 11 million. The main source of technogenic impact in Moscow is transport. Plants can be used as indicators of urban environment heavy metals and metalloids (HM) pollution. Large scale biogeochemical research was done in Eastern Administrative District of Moscow. Apart from transport there are many industrial sources of pollution: metalworking, mechanical engineering, chemical, energetic and incinerator. This study focuses on detection of HM composition of woody plant leaves (maple - Acer platanoides) and herbaceous species leaves (dandelion - Taraxacum officinale). Plant material was collected on a regular greed with a step of 500-700 m. Background plants were sampled at 40 km west away from the city. Determination of Fe, Mn, Mo, Cd, Pb, Zn, Cu, As, Sb in plants was done using atomic absorption spectrometry after washing, drying and digestion with HNO3+H2O2. It was revealed that dandelion accumulates (index - concentration factors CF relatively background) Mo13Fe6Pb5Cd4.5As4Sb3, while maple Sb13As5.5Fe3Mo2Pb,Zn1.5. Geochemical specialization of plants in functional zones (industrial, transport, recreational, agricultural, residential areas with high-, middle- and low-rise buildings) was identified. The highest CF were determined for Mo in dandelion of all zones except industrial. In which the most accumulated elements are Fe and Mo, as well as Pb10As6Sb5Cu2. Arsenic is accumulated by dandelion in all zones. Copper is not concentrated by herbaceous species because of antagonism between Mo and Cu. The highest CF were determined for HM in maple of industrial zone. There trees concentrate Sb and As9Fe7Mo6Pb3Zn2. In the other zones levels of CF are lower in 2-5 times. Dandelion and maple don't accumulate Mn because of antagonism between Zn, Mo and Mn. Urban plants condition is estimated by the ratio between toxic (Cd, As, Sb, Pb) and essential (Cu, Fe, Mn, Mo, Zn) elements. For evaluation of intensity of photosynthesis and plants growth can be used Fe/Mn, Zn/Mn, Cu/Mn and Mo/Mn ratios. In dandelion and maple Fe/Mn is 6.6 and 3.3 times higher than in background vegetation, Pb/Mn - 5.5 and 2.5 times, (Cd+As+Sb+Pb)/(Cu+Fe+Mn+Mo+Zn) - 2.9 and 1.6 times respectively. In industrial, transport zones and residential area with high-rise buildings the largest increase of those ratios were discovered. Differences in geochemical specialization were shown by Sb/Mo ratio: in dandelion it is 5 times lower than in background plants, while in maple it is 4.5 times higher. The same situation was defined for As/Mo. Strong positive linear relationship between Sb deposition rates and Sb concentrations in maple was calculated (r=0.86). Furthermore moderate positive linear relationships between Cd concentrations in soils and dandelion (r=0.69), concentrations of mobile forms of Pb and Sb in soils and maple (r=0.67 and 0.66), Fe deposition rates and concentrations of this element in maple (r=0.51) were revealed.

  19. Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations

    NASA Astrophysics Data System (ADS)

    Shi, Tingting

    In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and Cu3PSe4 prefer energetically the enargite structure, whereas, other compounds favor the famatinite structure. Among the compounds and structures considered, enargite Cu3PSe4, and famatinite Cu3AsS4, are suitable for single junction solar cell applications due to bandgaps of 1.32 eV and 1.15 eV, respectively. Furthermore, CuSbS2 are also studied by density functional theory and HSE06 hybrid functional. The chalcostibite CuSbS2 has an indirect band gap of 1.85 eV, whereas the chalcogenide Cu3SbS4 has a direct band gap of 0.89 eV. We find that the large difference on band gaps is mainly attributed to the different Sb charge states. We further predict that the Sb charge states will affect the defect physics. Particularly, the Sb lone pair s orbitals in CuSbS 2 have strong influence on the formation energies of Sb-related defects. Lastly, we have studied the atomic structure and electronic properties of aluminum (Al)-related defect complexes in silicon. We find a unique stable complex configuration consisting of an Ali and an oxygen dimer, Ali-2Oi, which introduces deep levels in the band gap of Si. The formation energies of the Ali-2Oi complexes could be lower than that of individual Ali atoms under oxygen-rich conditions. The formation of Ali-2Oi complexes may explain the experimental observation that the coexistence of Al and O results in reduced carrier lifetime in Si wafers.

  20. Spatial Variability and Distribution of the Metals in Surface Runoff in a Nonferrous Metal Mine

    PubMed Central

    Ren, Bozhi; Chen, Yangbo; Zhu, Guocheng; Wang, Zhenghua; Zheng, Xie

    2016-01-01

    The spatial variation and distribution features of the metals tested in the surface runoff in Xikuangshan Bao Daxing miming area were analyzed by combining statistical methods with a geographic information system (GIS). The results showed that the maximum concentrations of those five kinds of the metals (Sb, Zn, Cu, Pb, and Cd) in the surface runoff of the antimony mining area were lower than the standard value except the concentration of metal Ni. Their concentrations were 497.1, 2.0, 1.8, 22.2, and 22.1 times larger than the standard value, respectively. This metal pollution was mainly concentrated in local areas, which were seriously polluted. The variation coefficient of Sb, Zn, Cu, Ni, Pb, and Cd was between 0.4 to 0.6, wherein the Sb's spatial variability coefficient is 50.56%, indicating a strong variability. Variation coefficients of the rest of metals were less than 50%, suggesting a moderate variability. The spatial structure analysis showed that the squared correlation coefficient (R 2) of the models fitting for Sb, Zn, Cu, Ni, Pb, and Cd was between 0.721 and 0.976; the ratio of the nugget value (C 0) to the abutment value (C + C 0) was between 0.0767 and 0.559; the semivariogram of Sb, Zn, Ni, and Pb was in agreement with a spherical model, while semivariogram of Cu and Cd was in agreement with Gaussian model, and both had a strong spatial correlation. The trend and spatial distribution indicated that those pollution distributions resulting from Ni, Pb, and Cd are similar, mainly concentrated in both ends of north and south in eastern part. The main reasons for the pollution were attributed to the residents living, transportation, and industrial activities; the Sb distribution was concentrated mainly in the central part, of which the pollution was assigned to the mining and the industrial activity; the pollution distributions of Zn and Cu were similar, mainly concentrated in both ends of north and south as well as in west; the sources of the metals were widely distributed. PMID:27069713

  1. Metal and metalloid accumulation in cultivated urban soils: A medium-term study of trends in Toronto, Canada.

    PubMed

    Wiseman, Clare L S; Zereini, Fathi; Püttmann, Wilhelm

    2015-12-15

    This study aims to examine the elemental enrichment patterns in low to medium traffic areas over a three year period in Toronto, Canada. Soils were sampled at three locations with different volumes of traffic between 2010 and 2013. A range of elements, including V, Cr, Mn, Cu, Cd, As, Sb and Pb, were measured in acid digested samples using ICP-MS. While the concentrations of Cd, Sb and Pb were found to be relatively low, a significant, albeit small increase in their levels over time was determined for all sites. For the low traffic areas, median Cd, Sb and Pb concentrations increased from 0.18mg Cd/kg, 0.14mg Sb/kg and 12mg Pb/kg in 2010 to 0.38mg Cd/kg, 0.21mg Sb/kg and 15mg Pb/kg in 2012, respectively. For the medium traffic site, the respective levels of Cd and Sb rose from 0.19mg Cd/kg and 0.14mg Sb/kg in 2010 to 0.49mg Cd/kg and 0.28mg Sb/kg in 2012. Median Pb concentrations at the medium traffic site were comparable to those at the low traffic sites (13mg/kg in 2010 and 15mg/kg in 2012). Principal Component Analysis (PCA) revealed the existence of two components (rotated), which explained 77% of the variance for all sites: 1. PC1 with large loadings of V, Cr, Co and Cu that likely originate from the commercial soil originally used for monitoring purposes, and 2. PC2 with high correlations between Cd, Sb and Pb, attributed to traffic sources of emissions. The resuspension and transport of more mobile fractions of contaminated dust and soil particles is hypothesized to be contributing to an elemental enrichment of soils located in low traffic areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Speciation Distribution and Risk Assessment of Heavy Metals in Typical Material Roof Dusts].

    PubMed

    Li, Dun-zhu; Guan, Yun-tao; Liu, An; Li, Si-yuan

    2015-09-01

    With the modified BCR sequential extraction procedure, the chemical speciation and risk for 10 heavy metals (Ba, Co, Cr, Cu, Mn, Ni, Pb, Sb, Sr and Zn) in roof dusts were investigated. The subjects of this study were collected from four typical material paved roofs (i. e., ceramic tile, concrete, metal and asphalt) in southeast China. The results indicated that the average contents of heavy metals in roof dust significantly exceeded road dust. The analysis of chemical fraction showed that the acid soluble/exchangeable fraction of Zn was much higher than other elements, the existence of Pb and Cu was mainly in oxidization fraction, while other heavy metals dominated by the residual fraction. The mobility sequence percentages for all roof dust samples decreased in the order of Pb > Zn > Cu >Mn > Co >Sr > Sb > Ni > Ba > Cr, and it should be noted that Pb, Zn, Cu, Mn and Co all have more than 50% proportion in mobility sequence. Based on environmental risk assessment, the highest values of contamination factors (Cf) and risk assessment code (RAC) consistently was observed in Zn, which indicated that Zn had relatively high ecological risk. Health risk assessment showed that the non-carcinogenic hazard indexes (HI) of heavy metals decreased in the order of Pb > Cr > Sb > Zn > Mn > Cu > Ba > Ni > Co > Sr, the HI of heavy metals for adults were lower than safe value while the HI of Pb for children was higher than safe value, suggesting that they will not harm the adult's health except Pb for children. The carcinogenic risk for Cr, Co and Ni were all below the threshold values, which indicated that there was no carcinogenic risk.

  3. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  4. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil environment.

  5. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  6. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano.

    PubMed

    Goix, Sylvaine; Point, David; Oliva, Priscia; Polve, Mireille; Duprey, Jean Louis; Mazurek, Hubert; Guislain, Ludivine; Huayta, Carlos; Barbieri, Flavia L; Gardon, Jacques

    2011-12-15

    The Bolivian Altiplano (Highlands) region is subject to intense mining, tailing and smelting activities since centuries because of the presence of large and unique polymetallic ore deposits (Ag, Au, Cu, Pb, Sn, Sb, Zn). A large scale PM(10), PM(2.5) aerosol monitoring survey was conducted during the dry season in one of the largest mining cities of this region (Oruro, 200,000 inhabitants). Aerosol fractions, source distribution and transport were investigated for 23 elements at approximately 1 km(2) scale resolution, and compared to children exposure data obtained within the same geographical space. As, Cd, Pb, Sb, W and Zn in aerosols are present at relatively high concentrations when compared to studies from other mining regions. Arsenic exceeds the European council PM(10) guide value (6 ng/m(3)) for 90% of the samples, topping 200 ng/m(3). Ag, As, Cd, Cu, Pb and Sb are present at significantly higher levels in the district located in the vicinity of the smelter zone. At the city level, principal component analysis combined with the mapping of factor scores allowed the identification and deconvolution of four individual sources: i) a natural magmatic source (Co, Cs, Fe, K, Mn, Na, Rb and U) originating from soil dust, resuspended by the traffic activity; ii) a natural sedimentary source (Mg, Ca, Sr, Ba and Th) resulting from the suspension of evaporative salt deposits located South; iii) an anthropogenic source specifically enriched in mined elements (As, Cd, Cu, Pb, Sb and Zn) mainly in the smelting district of the city; and iv) a Ni-Cr source homogenously distributed between the different city districts. Enrichment factors for As, Cd and Sb clearly show the impact of smelting activities, particularly in the finest PM(2.5) fraction. Comparison to children's hair metal contents collected in five schools from different districts shows a direct exposure to smelting activity fingerprinted by a unique trace elements pattern (Ag, As, Cu, Pb, Sb). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China.

    PubMed

    Briki, Meryem; Ji, Hongbing; Li, Cai; Ding, Huaijian; Gao, Yang

    2015-12-01

    Mining and smelting have been releasing huge amount of toxic substances into the environment. In the present study, agricultural soil and different agricultural products (potato, Chinese cabbage, garlic bolt, corn) were analyzed to examine the source, spatial distribution, and risk of 12 elements (As, Be, Bi, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in agricultural soil near mine fields, smelting fields, and mountain field around Hezhang County, west of Guizhou Province, China. Multivariate statistical analysis indicated that in mining area, As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn were generated from anthropogenic sources; in smelting area, As, Be, Cd, Co, Cu, Pb, Sb, and Zn were derived from anthropogenic sources through zinc smelting ceased in 2004. The enrichment factors (EFs) and ecological risk index (RI) of soil in mining area are the most harmful, showing extremely high enrichment and very high ecological risk of As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn. Zinc is the most significant enriched in the smelting area; however, mountain area has a moderate enrichment and ecological risk and do not present any ecological risk. According to spatial distribution, the concentrations depend on the nearby mining and smelting activities. Transfer factors (TFs) in the smelting area and mountain are high, implying a threat for human consumption. Therefore, further studies should be carried out taking into account the harm of those heavy metals and potential negative health effects from the consumption of agricultural products in these circumstances.

  8. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  9. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goix, Sylvaine; UMR 5245 CNRS-INP-UPS, EcoLab; Lévêque, Thibaut

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score duemore » to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.« less

  10. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.

    PubMed

    Rajapaksha, Anushka Upamali; Ahmad, Mahtab; Vithanage, Meththika; Kim, Kwon-Rae; Chang, Jun Young; Lee, Sang Soo; Ok, Yong Sik

    2015-12-01

    High concentration of toxic metals in military shooting range soils poses a significant environmental concern due to the potential release of metals, such as Pb, Cu, and Sb, and hence requires remediation. The current study examined the effectiveness of buffalo weed (Ambrosia trifida L.) biomass and its derived biochars at pyrolytic temperatures of 300 and 700 °C, natural iron oxides (NRE), gibbsite, and silver nanoparticles on metal immobilization together with soil quality after 1-year soil incubation. Destructive (e.g., chemical extractions) and non-destructive (e.g., molecular spectroscopy) methods were used to investigate the immobilization efficacy of each amendment on Pb, Cu, and Sb, and to explore the possible immobilization mechanisms. The highest immobilization efficacy was observed with biochar produced at 300 °C, showing the maximum decreases of bioavailability by 94 and 70% for Pb and Cu, respectively, which were attributed to the abundance of functional groups in the biochar. Biochar significantly increased the soil pH, cation exchange capacity, and P contents. Indeed, the scanning electron microscopic elemental dot mapping and X-ray absorption fine structure spectroscopic (EXAFS) studies revealed associations of Pb with P (i.e., the formation of stable chloropyromorphite [Pb5(PO4)3Cl]) in the biomass- or biochar-amended soils. However, no amendment was effective on Sb immobilization.

  11. Metallogeny of precious and base metal mineralization in the Murchison Greenstone Belt, South Africa: indications from U-Pb and Pb-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Jaguin, J.; Poujol, M.; Boulvais, P.; Robb, L. J.; Paquette, J. L.

    2012-10-01

    The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35 km, which hosts a series of structurally controlled Sb-Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper-Zinc Line where a series of small, ca. 2.97 Ga Cu-Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964 ± 7 and 2,970 ± 7 Ma, respectively (zircon U-Pb), while pyrite associated with gold mineralization yielded a Pb-Pb age of 2,967 ± 48 Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97 Ga. It is, thus, suggested that the major styles of orogenic Au-Sb and the Cu-Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au-Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu-Zn VMS mineralization.

  12. Exposure assessment of heavy metals in an e-waste processing area in northern Vietnam.

    PubMed

    Oguri, Tomoko; Suzuki, Go; Matsukami, Hidenori; Uchida, Natsuyo; Tue, Nguyen Minh; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2018-04-15

    In developing countries, inappropriate recycling of e-waste has resulted in the environmental release of toxicants, including heavy metals, that may have deleterious health effects. In this study, we estimated daily metal intakes in five households in a Vietnamese village located in an e-waste processing area and assessed the health risk posed by exposure to the metals. Garden soil, floor dust, 24-h duplicate diet, and ambient air samples were collected from five households in northern Vietnam in January 2014. All samples were acid-digested, and contents of Cd, Cu, Mn, Pb, Sb, and Zn were measured by using ICP mass spectrometry and ICP atomic emission spectroscopy. In addition, the soil, dust, and diet samples were subjected to an bioaccessibility extraction test to determine bioaccessible metal concentrations. Hazard quotients were estimated from bioaccessible metal concentrations, provisional tolerable weekly intakes, and reference doses. Garden soil and floor dust were estimated to be mainly contributors to daily Pb intake, as indicated by calculations using bioaccessible metal concentrations and the U.S. Environmental Protection Agency soil plus dust ingestion rate. Diet was suggested to contribute significantly to daily Cd, Cu, Mn, Sb, and Zn intake. Estimated metal exposures via inhalation were negligible, as indicated by calculations using International Atomic Energy Agency reference inhalation rates. The maximum hazard quotients were calculated as 0.2 (Cd), 0.09 (Cu), 0.3 (Mn), 0.6 (Pb), 0.2 (Sb), and 0.5 (Zn), on the basis of bioaccessible metal concentrations. The contributions of Cd, Cu, Mn, Sb, and Zn except Pb to potential noncancer risk for adult residents of the five households in the e-waste processing area may be low. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    NASA Astrophysics Data System (ADS)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  14. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    NASA Astrophysics Data System (ADS)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked to explain the isotopically light Zn found in 3 out of 18 samples of PM10.

  15. Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery

    NASA Astrophysics Data System (ADS)

    Melo Aguilera, Evelyn; Hernández Vera, María Cecilia; Viñals, Joan; Graber Seguel, Teófilo

    2016-04-01

    This work characterizes raw and decopperized slimes, with the objective of identifying the phases in these two sub-products. The main phases in copper anodes are metallic copper, including CuO, which are present in free form or associated with the presence of copper selenide or tellurides (Cu2(Se,Te)) and several Cu-Pb-Sb-As-Bi oxides. During electrorefining, the impurities in the anode release and are not deposited in the cathode, part of them dissolving and concentrated in the electrolyte, and others form a raw anode slime that contains Au, Ag, Cu, As, Se, Te and PGM, depending on the composition of the anode. There are several recovery processes, most of which involve acid leaching in the first step to dissolve copper, whose product is decopperized anode slime. SEM analysis revealed that the mineralogical species present in the raw anode slime under study were mainly eucarite (CuAgSe), naumannite (Ag2Se), antimony arsenate (SbAsO4), and lead sulfate (PbSO4). In the case of decopperized slime, the particles were mainly composed of SbAsO4 (crystalline appearance), non-stoichiometric silver selenide (Ag(2- x)Se), and chlorargyrite (AgCl).

  16. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk.

    PubMed

    Li, Xiaoping; Wu, Ting; Bao, Hongxiang; Liu, Xianyu; Xu, Changlin; Zhao, Yanan; Liu, Dongying; Yu, Hongtao

    2017-08-01

    Rapid urbanization and industrialization may cause increased exposure levels to potential toxic trace elements (PTEs) and associated health risks for population living in cities. The main objectives of this study are to investigate systematically the occurrence, source, fate, and risk of PTE contamination from industrial influence in Baoji urban soil. Seven PTE levels (Pb, Zn, Cu, Cr, V, Sb, and As) were surveyed in 50 composite samples from Baoji urban soil by wavelength dispersive X-ray fluorescence spectrometry. Results reveal that the long-term industrial activities have increased PTEs Pb (409.20 mg/kg mean value), Cu (107.19 mg/kg mean value), Zn (374.47 mg/kg mean value), and Sb (26.00 mg/kg mean value) to enrich in urban soil at the different extents. The same results concur with the significant similarity of spatial distribution patterns of Pb, Zn, Cu, and Sb (slightly similar distribution) interpolated by GIS, implying a considerable Pb, Zn, Cu, and Sb contamination pool in urban soil disturbance from local metallic industrial activities. Whereas As in study area mainly controls parent material leaching and therefore has natural sources. Cr and V with the heterogeneous spatial distributions are possibly inclined to coal combustion sources. Those conclusions are also confirmed by the results of multivariate analysis. The chemical forms of PTEs fractionated by BCR three-stage sequential extraction procedure show that Pb and Cu are highly associated to the reducible phase (62.55 and 36.41%, respectively). However, Zn is highly associated to the oxidizable phase (33.68%), and a significant concentration is associated to acid and water extractable fractionation of 15.93% for Zn and 34.40% for Pb. In contrast, As, Cr, V, and Sb are mainly bound to the residual phase (>65% for all elements) with low concentrations retained to water extractable fractionation. The health risk assessed by a new classification Modified Integrate Risk Assessment Code (MI-RAC) reveals that the Pb poses the extremely high risk for human health than others. The results of PTE leaching in organic acids (artificial chelating agent and LMMOAs) indicate that low pH and more carboxyl groups of organic acid can quickly increase the PTEs release from soil and induce more mobility. By comparison, DTPA and EDTA are the effective extractant for Pb and Sb. The leaching kinetics of most PTEs are best described with the Elovich equation model and which involve the ligand exchange (LE) and ligand-enhanced dissolution (LED) two major process. It is a conclusion that long-term metallic industrial activities would accelerate the PTE accumulations in Baoji urban soil and enhance their mobility in a local scale. The considerable mobility and extremely high risk of Pb in Baoji ecoenvironment should be paid more attentions, and the phytoremediation with organic acid leaching assistant could be used to reduce total metal content of multiPTE contaminants in Baoji soils. The research will give the scientific knowledge for controlling the pollution of PTEs in urban soil and can be used as guidance to control the soil pollution in similar cities worldwide.

  17. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  18. Low-Bandgap Cs4CuSb2Cl12 Layered Double Perovskite: Synthesis, Reversible Thermal Changes, and Magnetic Interaction.

    PubMed

    Singhal, Nancy; Chakraborty, Rayan; Ghosh, Prasenjit; Nag, Angshuman

    2018-05-29

    Double perovskites (DPs) with a generic formula A2M'(I)M(III)X6 (A and M are metal ions, and X = Cl, Br, I) are now being explored as potential alternatives to Pb-halide perovskite for solar cell and other optoelectronic applications. However, these DPs typically suffer from wide (~ 3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered DP halide Cs4CuSb2Cl12 (CCSC) with bivalent Cu(II) ion in place of M'(I) was reported exhibiting a band gap ~1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal- and chemical stability, and magnetic response of Cu(II) d9 electrons controlling optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides stable and scalable product CCSC. CCSC is stable in water-acetone solvent mixture (~30% water) and many other polar solvents unlike Pb-halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4 and SbCl3 at 210 oC, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long range magnetic ordering is observed in CCSC even at room temperature. Role of such magnetic ordering in controlling the dispersion of conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Bismuth Alloys as Lead-Free Alternatives for Interconnects in High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Mallampati, Sandeep

    Predominant high melting point solders for high-temperature electronics (operating temperatures from 200 to 250°C) are Pb-based which are being banned from usage due to their toxic nature. In this study, high bismuth alloy compositions (Bi-14Cu-8Sn, Bi-20Sb-10Cu, Bi-15Sb-10Cu and Bi-10Sb-10Cu) were designed, cast, and characterized to understand their potential as replacements. The desirable aspect of Bi is its high melting temperature, which is 271°C. Alloying elements Sn, Sb and Cu were added to improve some of its properties such as thermal conductivity, plasticity, and reactivity with Cu and Ni surface. Metallographic sectioning and microstructure analysis were performed on the bulk alloys to compare the evolution of phases predicted from equilibrium phase diagrams. Reflow processes were developed to make die-attach samples out of the proposed alloys and die-shear testing was carried out to characterize mechanical integrity of the joint. Thermal shock between -55°C to 200°C and high temperature storage at 200°C were performed on the assembled die-attach samples to study microstructure evolution and mechanical behavior of the reflowed alloys under accelerated testing conditions. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the bulk alloys and also on the die-attach assembly. Finally, tensile testing was performed on the dogbone specimens to identify the potential for plastic deformation and electron backscatter diffraction (EBSD) analysis was used to study the grain orientations on the fracture surfaces and their influence on the crack propagation. Bi-14Cu-8Sn has formed BiNi by on the die backside metallization and the reaction with Cu was poor. This has resulted in weaker substrate side interface. It was observed that Bi-Sb alloys have strong reactivity with Ni (forming Bi3Ni, BiNi and NiSb intermetallic phases), and with Cu (forming Cu2Sb, Cu4Sb). Spallation was observed in NiSb interfacial intermetallic layer and the reflow process was optimized to minimize spallation. Die-attach joints made out of Bi-15Sb-10Cu alloy, with the improved reflow process, have shown an average shear strength of 24 MPa with low standard deviation, which is comparable to that of commercially available high Pb solders. Bi-15Sb-10Cu alloy has shown limited plastic deformation in room temperature testing. The fracture propagated through the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has shown up to 7% plastic strain under tension when tested at 175°C. The cleavage planes, which were oriented at higher angles to the tensile axis, contributed to plasticity in the high temperature test. The thermal conductivity of all the alloys was higher than that of pure Bi. Cu2Sb precipitates form high conductive paths in a matrix that has relatively lower conductivity, thereby enhancing thermal conductivity of the Bi alloys. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase the thermal conductivity of this joint to 24 W/m˙K, which is three times higher than that of pure Bi (8 W/m˙K). Delamination along the die side interfacial NiSb layer was the most commonly observed failure mode in thermal shock tests. The die-attach samples made with Bi-15Sb-10Cu, however, retained the original shear strength even after thermal shock and high temperature storage. The microstructures of these samples revealed formation of Bi3Ni on the die side interface that prevented it from being delaminated. Bi-15Sb-10Cu alloy has so far shown the most promising performance as a die-attach material for high temperature applications (operated over 200°C).

  20. Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay Kumar; Masutani, Hideaki; Sugita, Hidetaka; Kanda, Hiroyuki; Kanaya, Shusaku; Shibayama, Naoyuki; Sanehira, Yoshitaka; Ikegami, Masashi; Numata, Youhei; Yamada, Kouji; Miyasaka, Tsutomu; Umeyama, Tomokazu; Imahori, Hiroshi; Ito, Seigo

    2017-09-01

    Research of CH3NH3PbI3 perovskite solar cells had significant attention as the candidate of new future energy. Due to the toxicity, however, lead (Pb) free photon harvesting layer should be discovered to replace the present CH3NH3PbI3 perovskite. In place of lead, we have tried antimony (Sb) and bismuth (Bi) with organic and metal monovalent cations (CH3NH3 +, Ag+ and Cu+). Therefore, in this work, lead-free photo-absorber layers of (CH3NH3)3Bi2I9, (CH3NH3)3Sb2I9, (CH3NH3)3SbBiI9, Ag3BiI6, Ag3BiI3(SCN)3 and Cu3BiI6 were processed by solution deposition way to be solar cells. About the structure of solar cells, we have compared the normal (n-i-p: TiO2-perovskite-spiro OMeTAD) and inverted (p-i-n: NiO-perovskite-PCBM) structures. The normal (n-i-p)-structured solar cells performed better conversion efficiencies, basically. But, these environmental friendly photon absorber layers showed the uneven surface morphology with a particular grow pattern depend on the substrate (TiO2 or NiO). We have considered that the unevenness of surface morphology can deteriorate the photovoltaic performance and can hinder future prospect of these lead-free photon harvesting layers. However, we found new interesting finding about the progress of devices by the interface of NiO/Sb3+ and TiO2/Cu3BiI6, which should be addressed in the future study.

  1. Directional Solidification and Convection in Small Diameter Crucibles

    NASA Technical Reports Server (NTRS)

    Chen, J.; Sung, P. K.; Tewari, S. N.; Poirier, D. R.; DeGroh, H. C., III

    2003-01-01

    Pb-2.2 wt% Sb alloy was directionally solidified in 1, 2, 3 and 7 mm diameter crucibles. Pb-Sb alloy presents a solutally unstable case. Under plane-front conditions, the resulting macrosegregation along the solidified length indicates that convection persists even in the 1 mm diameter crucible. Al-2 wt% Cu alloy was directionally solidified because this alloy was expected to be stable with respect to convection. Nevertheless, the resulting macrosegregation pattern and the microstructure in solidified examples indicated the presence of convection. Simulations performed for both alloys show that convection persists for crucibles as small as 0.6 mm of diameter. For the solutally stable alloy, Al-2 wt% Cu, the simulations indicate that the convection arises from a lateral temperature gradient.

  2. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2007-09-01

    minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb

  3. Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily).

    PubMed

    Varrica, D; Aiuppa, A; Dongarrà, G

    2000-05-01

    Major and trace element concentrations were determined in two lichen species (Parmelia conspersa and Xanthoria calcicola) from the island of Vulcano and all around Mt. Etna. In both areas, the average concentrations of Al, Ca, Mg, Fe, Na, K, P and Ti are substantially greater than those of other elements. Several elements (Br, Pb, Sb, Au, Zn, Cu) resulted enriched with respect to the local substrates. The Br and Pb enrichment factors turned out to be the highest among those calculated in both areas. Data indicate that mixing between volcanic and automotive-produced particles clearly explains the range of Pb/Br shown by lichen samples. Sb is also enriched, revealing a geogenic origin at Vulcano and a prevailing anthropic origin at Mt. Etna. Distribution maps of the enrichment factors show a generalized enrichment of Au and Zn near Mt. Etna, whereas Cu appears to be enriched prevalently in the NE-SE area. The highest levels of Au and Cu at Vulcano occur E-SE from the craters, following the prevailing wind direction.

  4. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings.

    PubMed

    Huang, Lige; Li, Yuanyuan; Zhao, Man; Chao, Yuanqing; Qiu, Rongliang; Yang, Yanhua; Wang, Shizhong

    2018-03-12

    To explore the effect of different biochars on Cassia alata L. growth and heavy metal immobilization in multi-metal mine tailings, a 100-day pot experiment was conducted. Three biochars derived from Hibiscus cannabinus core (HB), sewage sludge (SB) and chicken manure (MB), were added to mine tailings at rates of 0.4%, 1% and 3% ( w / w ). The results showed that the root biomass, shoot biomass, plant height and root length were 1.2-2.8, 1.7-3.2, 1-1.5 and 1.6-3.3 times of those in the control group, respectively. Pb, Zn, Cu, Cd and As contents in the shoot decreased by 63.9-89.5%, 46.9-66.0%, 32.7-62.4%, 40.4-76.4% and 54.9-77.5%, respectively. The biochar significantly increased the pH and decreased the mild acid-soluble Pb and Cu concentrations in the mine tailings. Specifically, SB immobilized Pb and Cu better than MB and HB did, although it did not immobilize As, Zn or Cd. Meanwhile, more attention should be paid to the potential As release as the biochar application rate increases. In conclusion, Cassia alata L. coupled with 3% of SB could be an effective measure for restoring multi-metal mine tailings. This study herein provided a promising ecological restoration technique for future practice of heavy metal stabilization in mine tailings.

  5. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    PubMed

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  6. Potential application of CuSbS2 as the hole transport material in perovskite solar cell: A simulation study

    NASA Astrophysics Data System (ADS)

    Teimouri, R.; Mohammadpour, R.

    2018-06-01

    CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the amount of this material and the cost of construction. Ultimately, an optimum thickness of 140 nm was obtained for this cell with efficiency of 22.88%. The effect of employing alternative inorganic hole transport layer was investigated as a substitute for Spiro-OMeTAD; Copper antimony sulphide (CuSbS2) was selected due to abundant and available material and high open circuit voltage of about 988 mV. Thickness variations were also performed on a MAPbI3/CuSbS2 solar cell. Finally, It has obtained that perovskite solar cell with 120 nm-thick of CuSbS2 has 23.14% conversion efficiency with acceptable VOC and JSC values.

  7. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan

    2018-04-01

    The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb isotopic compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur isotopic values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S isotopic data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of magmatic origin, with meteoric water.

  8. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges.

    PubMed

    Laporte-Saumure, Mathieu; Martel, Richard; Mercier, Guy

    2011-01-01

    Backstop soils of four small-arms firing ranges (SAFRs) of the Canadian Force Bases (CFBs) were characterized in terms of their total soil Cu, Pb, Sb and Zn concentrations, grain size distribution, mineralogy, chemical properties, vertical in-depth contamination distribution (for one CFB), and scanning electron microscope (SEM-EDS) characterization. Metal availability from the soils was evaluated with three leaching tests: the toxicity characteristics leaching procedure (TCLP), representing a landfill leachate; the synthetic precipitation leaching procedure (SPLP), representing field conditions; and the gastric juice simulation test (GJST), representing the leachate of the human stomach during the digestive process and, therefore, the potential metal transfer to humans in the case of soil ingestion. Metal analyses of soils and leaching test extracts were conducted with an Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) instrument. Total soil results showed maximal concentrations of 27,100 mg/kg for Pb, 7720 mg/kg for Cu, 1080 mg/kg for Zn, and 570 mg/kg for Sb. The SEM-EDS analysis showed significant amounts of lead carbonates, which resulted from the alteration of the initial metallic Pb particles. Metal availability evaluation with the leaching tests showed that TCLP Pb and Sb thresholds were exceeded. For the SPLP and the GJST, the drinking water thresholds of the Ministère du Développement Durable, de l'Environnement et des Pares (MDDEP) of Quebec were exceeded by Pb and Sb. The metal availability assessment showed that SAFR backstop soils may pose a potential risk to the environment, groundwater and humans, and affect the management of such soils in order to minimize potential metal dispersion in the environment.

  9. Influence of multi-walled carbon nanotubes on melting temperature and microstructural evolution of Pb-free Sn-5Sb/Cu solder joint

    NASA Astrophysics Data System (ADS)

    Dele-Afolabi, T. T.; Azmah Hanim, M. A.; Norkhairunnisa, M.; Suraya, M. T.; Yusoff, H. M.

    2017-09-01

    In this study, the effects of multi-walled carbon nanotubes on the melting temperature and microstructural evolution of the Sn-5Sb/Cu joints are evaluated. Plain and carbon nanotubes (CNTs) reinforced Sn-5Sb solder systems with solder formulations Sn-5Sb, Sn-5Sb-0.01CNT, Sn-5Sb-0.05CNT and Sn-5Sb-0.1CNT were prepared through the powder metallurgy route and thereafter samples were subjected to thermal and microstructural evaluation. As retrieved from the DSC scans, a slight decline in the peak temperature was observed in the composite solders which is indicative of the CNTs role in exciting surface instability in the host Sn matrix. In order to prepare the solder joints and analyze the interfacial intermetallic compound (IMC) evolution, respective solder systems were placed on copper (Cu) substrate and subjected to both reflow soldering and isothermal aging (170°C) conditions. From the IMC thickness result, considerable retardation in the IMC layer growth was observed in the CNTs reinforced solder joints, especially the 0.05wt.% CNTs solder system owing to the inhibition of Sn atoms diffusion by reinforcement material.

  10. Contamination by ten harmful elements in toys and children's jewelry bought on the North American market.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2013-06-04

    Toys and children's jewelry may contain metals to which children can be orally exposed. The objectives of this research were (1) to determine total concentrations (TC's) of As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Se in toys and jewelry (n = 72) bought on the North American market and compare TC's to regulatory limits, and (2) to estimate oral metal bioavailability in selected items (n = 4) via bioaccessibility testing. For metallic toys and children's jewelry (n = 24) 20 items had TC's exceeding migratable concentration limits (European Union). Seven of seventeen jewelry items did not comply with TC limits in U.S. and Canadian regulations. Samples included articles with very high Cd (37% [w/w]), Pb (65%), and Cu (71%) concentrations. For plastic toys (n = 18), toys with paint or coating (n = 12), and brittle or pliable toys (n = 18), TC's were below the EU migration limits (except in one toy for each category). Bioaccessibility tests showed that a tested jewelry item strongly leached Pb (gastric: 698 μg, intestinal: 705 μg) and some Cd (1.38 and 1.42 μg). Especially in metallic toys and jewelry, contamination by Pb and Cd, and to a lesser extent by Cu, Ni, As, and Sb, still poses an acute problem in North America.

  11. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.

  12. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron

    NASA Astrophysics Data System (ADS)

    Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.

    1996-02-01

    In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly enriched in arc lavas relative to mid-ocean ridge basalts (MORBs) whereas Zn contents of arc lavas, MORB, ocean island basalts (OIBs), and continental crustal samples are similar suggesting that the bulk partition coefficient for Zn is approximately equal to one. However, Zn contents of the upper mantle are lower than these reservoirs implying an enrichment of the source region in Zn prior to melting. These nonigneous enrichments have implications not only for arc magma genesis but also for continental crust formation and crust-mantle evolution. The mobility of Pb, As, Sb, and B in hot, reducing, acidic hydrothermal fluids may be greatly enhanced relative to the large-ion lithophile elements (LILEs; including U) as a result of HS -, H 2S, OH -, or other types of complexing. In the case of Pb, continued transport of Pb from subducted slabs into arc magma source regions throughout Earth history coupled with a U fluxing of the mantle a the end of the Archean may account for the depletion of Pb in the upper mantle, the low U/Pb of most arc volcanics and continental crustal rocks, and provide an explanation for the Pb- Paradox (Hofmann et al., 1986;McCulloch, 1993;Miller et al., 1994). Recycled slabs will then retain high U/Pb ratios upon entering the deep mantle and may eventually become incorporated into the source regions of many OIBs; some with HIMU (high 238U/ 204Pb) signatures.

  13. Spatial Variations and Sources of Trace Elements in Recent Snow from Glaciers at the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, J.; Li, Y.; Li, Z.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L.

    2017-12-01

    Various trace element (TEs) could be long-range transported through the atmosphere and deposited onto the snow surface. Recently, with the development of economy of China and the surrounding countries, TEs such as Pb, Cd, Mo and Sb in several glaciers from the Tibetan Plateau (TP) have been gradually affected by anthropogenic activities. This study presents the acid leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the TP from April to May of 2013. The different concentrations of TEs in the surface snow and snow pit samples over the five glaciers show that TEs were influenced both by surrounding environment of glaciers and seasonal variations of atmospheric impurity loading. Comparison of TEs concentrations with data of other sites, elevated concentrations of As, Cu, Mo, Pb and Sb were observed in glaciers of TP, showing significant atmospheric TEs pollution. Enrichment factor(EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr and Cu mainly originated from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion and traffic emission made an important contribution to the Mo, Pb and Sb. Evidences from air mass back trajectories show the air masses arrived at QMLK mostly came from the Taklimakan desert, the TEs from the Taklimakan desert and the western TP could be transported to the MK and YZF glaciers . The air masses derived from the western TP and the southwestern TP affected the environment of the XDKMD and GRHK glaciers. Futhermore, the air masses passed through some big cities with developed industry and large population such as Urumqi, Bishkek, Dushanbe and some countries such as Pakistan and India could also bring pollutants to the studied glaciers.

  14. Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores.

    PubMed

    Goix, Sylvaine; Lévêque, Thibaut; Xiong, Tian-Tian; Schreck, Eva; Baeza-Squiban, Armelle; Geret, Florence; Uzu, Gaëlle; Austruy, Annabelle; Dumat, Camille

    2014-08-01

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO(4), Sb(2)O(3), and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl2~CdO>CuO>PbO>ZnO>PbSO(4)>Sb(2)O(3). Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb(2)O(3) threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  16. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings

    PubMed Central

    Huang, Lige; Li, Yuanyuan; Zhao, Man; Chao, Yuanqing; Qiu, Rongliang; Yang, Yanhua

    2018-01-01

    To explore the effect of different biochars on Cassia alata L. growth and heavy metal immobilization in multi-metal mine tailings, a 100-day pot experiment was conducted. Three biochars derived from Hibiscus cannabinus core (HB), sewage sludge (SB) and chicken manure (MB), were added to mine tailings at rates of 0.4%, 1% and 3% (w/w). The results showed that the root biomass, shoot biomass, plant height and root length were 1.2–2.8, 1.7–3.2, 1–1.5 and 1.6–3.3 times of those in the control group, respectively. Pb, Zn, Cu, Cd and As contents in the shoot decreased by 63.9–89.5%, 46.9–66.0%, 32.7–62.4%, 40.4–76.4% and 54.9–77.5%, respectively. The biochar significantly increased the pH and decreased the mild acid-soluble Pb and Cu concentrations in the mine tailings. Specifically, SB immobilized Pb and Cu better than MB and HB did, although it did not immobilize As, Zn or Cd. Meanwhile, more attention should be paid to the potential As release as the biochar application rate increases. In conclusion, Cassia alata L. coupled with 3% of SB could be an effective measure for restoring multi-metal mine tailings. This study herein provided a promising ecological restoration technique for future practice of heavy metal stabilization in mine tailings. PMID:29534505

  17. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  18. Monitoring of metallic contaminants in energy drinks using ICP-MS.

    PubMed

    Kilic, Serpil; Cengiz, Mehmet Fatih; Kilic, Murat

    2018-03-09

    In this study, an improved method was validated for the determination of some metallic contaminants (arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), copper (Cu), Mn, and antimony (Sb)) in energy drinks using inductive coupled plasma mass spectrometry (ICP-MS). The validation procedure was applied for the evaluation of linearity, repeatability, recovery, limit of detection, and quantification. In addition, to verify the trueness of the method, it was participated in an interlaboratory proficiency test for heavy metals in soft drink organized by the LGC (Laboratory of the Government Chemist) Standard. Validated method was used to monitor for the determination of metallic contaminants in commercial energy drink samples. Concentrations of As, Cr, Cd, Pb, Fe, Ni, Cu, Mn, and Sb in the samples were found in the ranges of 0.76-6.73, 13.25-100.96, 0.16-2.11, 9.33-28.96, 334.77-937.12, 35.98-303.97, 23.67-60.48, 5.45-489.93, and 0.01-0.42 μg L -1 , respectively. The results were compared with the provisional guideline or parametric values of the elements for drinking waters set by the WHO (World Health Organization) and EC (European Commission). As, Cd, Cu, and Sb did not exceed the WHO and EC provisional guideline or parametric values. However, the other elements (Cr, Pb, Fe, Ni, and Mn) were found to be higher than their relevant limits at various levels.

  19. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China

    NASA Astrophysics Data System (ADS)

    Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun

    2018-02-01

    Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With decreasing temperature of the fluids, Pb2+ ions are incorporated along with Cu+, Sb3+, and As3+ ions into sulfosalt minerals, and Ag+ ions are coprecipitated with Cu+, Sb3+, and As3+ ions forming tetrahedrite series minerals or replacing earlier sulfides and sulfosalts.

  20. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil.

    PubMed

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2016-09-01

    To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  2. High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite

    NASA Astrophysics Data System (ADS)

    Suekuni, Koichiro; Tsuruta, Kojiro; Kunii, Masaru; Nishiate, Hirotaka; Nishibori, Eiji; Maki, Sachiko; Ohta, Michihiro; Yamamoto, Atsushi; Koyano, Mikio

    2013-01-01

    X-ray structural analysis and high-temperature thermoelectric properties measurements are performed on polycrystalline samples of artificial mineral Cu12-xNixSb4S13 tetrahedrite. Analysis of the atomic displacement parameter manifests low-energy vibration of Cu(2) out of CuS3 triangle plane. The vibration results in low lattice thermal conductivity of less than 0.5 W K-1 m-1. By tuning of the Ni composition x and decrease of electronic thermal conductivity, dimensionless thermoelectric figure of merit for x = 1.5 achieves 0.7 at 665 K, which is a considerably high value among p-type Pb-free sulfides. Because the tetrahedrite is an environmentally friendly material, it constitutes a good thermoelectric material for use in support of a sustainable society.

  3. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.

    PubMed

    Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L

    2007-05-15

    To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia.

  4. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  5. Estimating children's exposure to toxic elements in contaminated toys and children's jewelry via saliva mobilization.

    PubMed

    Guney, Mert; Nguyen, Alain; Zagury, Gerald J

    2014-09-19

    Children's potential for exposure to potentially toxic elements in contaminated jewelry and toys via mouth contact has not yet been fully evaluated. Various toys and jewelry (metallic toys and jewelry [MJ], plastic toys, toys with paint or coating, and brittle/pliable toys; n = 32) were tested using the saliva extraction (mouthing) compartment of the DIN and RIVM bioaccessibility protocols to assess As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Se mobilization via saliva. Total concentrations of As, Cd, Cu, Ni, Pb, and Sb were found elevated in analyzed samples. Four metals were mobilized to saliva from 16 MJ in significant quantities (>1 μg for highly toxic Cd and Pb, >10 μg for Cu and Ni). Bioaccessible concentrations and hazard index values for Cd exceeded limit values, for young children between 6 mo- and 3 yr-old and according to both protocols. Total and bioaccessible metal concentrations were different and not always correlated, encouraging the use of bioaccessibility for more accurate hazard assessments. Bioaccessibility increased with increasing extraction time. Overall, the risk from exposure to toxic elements via mouthing was high only for Cd and for MJ. Further research on children's exposure to toxic elements following ingestion of toy or jewelry material is recommended.

  6. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results are consistent with bulk rock analyses of selected and mineralized samples were similar correlations have been obtained. Ag positive correlations indicate that the formation of Ag-bearing minerals is mainly associated with galena, arsenopyrite and sphalerite occurrence. Au positive correlations indicate that this element occurs in close relationship with Ag-bearing minerals, arsenopyrite and sphalerite. The weak correlation between Cu and Ag and Au indicate that the formation of chalcopyrite is not related with the main stages of Ag-Au mineralization. The main conclusion of this study is that geochemical analyses along drill cores that cut mineralization confirm that the occurrence of Ag and Au in the Paguanta deposit is associated with the formation of galena, arsenopyrite and sphalerite. This study also confirm previous conclusions suggesting that the Patricia Pb-Zn-Ag ore deposit probably represents an example of epithermal mineralization of intermediate sulfidation state, with periods of lower sulfidation state during sphalerite deposition.

  7. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    USGS Publications Warehouse

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen fugacities from stage A to stage B, while temperature and oxygen fugacities decrease from stage B to stage C. The Co/Ni ratio of pyrite depends discriminates between the different mineralizing stages in the Yuleken porphyry copper deposit: Py II, associated with the deformation stage B and Cu-enrichment, shows higher Co/Ni ratios and enrichments of Pb, Zn, Mo, Te and Sb than the pyrites formed during the other two stages. The Co/Ni ratio of pyrite can not only apply to discriminate the submarine exhalative, magmatic or sedimentary origins for ore deposits but also can distinguish different ore-forming stages in a single porphyry Cu deposit. Thus, Co/Ni ratio of pyrites may act as an important exploration tool to distinguish pyrites from Cu-rich versus barren area. Furthermore, the distribution of Cu, Mo, Pb, Au, Bi, Sb and Zn in the variably deformed pyrite is proportional to the extent of deformation of the pyrites, indicating in accordance with variable physicochemical conditions different element migration behavior during the different stages of deformation and, thus, mineralisation.

  8. Preliminary Assessment of Health Risks of Potentially Toxic Elements in Settled Dust over Beijing Urban Area

    PubMed Central

    Wan, Dejun; Zhan, Changlin; Yang, Guanglin; Liu, Xingqi; Yang, Jinsong

    2016-01-01

    To examine levels, health risks, sources, and spatial distributions of potentially toxic elements in settled dust over Beijing urban area, 62 samples were collected mostly from residential building outdoor surfaces, and their <63 μm fractions were measured for 12 potentially toxic elements. The results show that V, Cr, Mn, Co, Ni, and Ba in dust are from predominantly natural sources, whereas Cu, Zn, As, Cd, Sb, and Pb mostly originate from anthropogenic sources. Exposure to these elements in dust has significant non-cancer risks to children but insignificant to adults. Cancer risks of Cr, Co, Ni, As, and Cd via inhalation and dermal contact are below the threshold of 10−6–10−4 but As via dust ingestion shows a tolerable risk. The non-cancer risks to children are contributed mainly (75%) by As, Pb, and Sb, and dominantly (92%) via dust ingestion, with relatively higher risks mainly occurring in the eastern and northeastern Beijing urban areas. Although Cd, Zn, and Cu in dust are heavily affected by anthropogenic sources, their health risks are insignificant. Source appointments suggest that coal burning emissions, the dominant source of As, are likely the largest contributors to the health risk, and traffic-related and industrial emissions are also important because they contribute most of the Pb and Sb in dust. PMID:27187427

  9. Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic?

    USGS Publications Warehouse

    Reimann, C.; Englmaier, P.; Flem, B.; Gough, L.; Lamothe, P.; Nordgulen, O.; Smith, D.

    2009-01-01

    Forty soil O- and C-horizon samples were collected along a south-to-north transect extending inland for approximately 200 km from the southern tip of Norway. The elements As, Au, Bi, Cd, Cu, Ga, Ge, Hf, Hg, In, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, V, W, Zn and Zr all show a distinct decrease in concentration in soil O-horizons with increasing distance from the coast. The elements showing the strongest coastal enrichment, some by more than an order of magnitude compared to inland samples, are Au, Bi, As, Pb, Sb and Sn. Furthermore, the elements Cd (median O-/median C-horizon = 31), C, Sb, Ag, K, S, Ge (10), Hg, Pb, As, Bi, Sr (5), Se, Au, Ba, Na, Zn, P, Cu and Sn (2) are all strongly enriched in the O-horizon when compared to the underlying C-horizon. Lead isotope ratios, however, do not show any gradient with distance from the coast (declining Pb concentration). Along a 50 km topographically steep east-west transect in the centre of the survey area, far from the coast but crossing several vegetation zones, similar element enrichment patterns and concentration gradients can be observed in the O-horizon. Lead isotope ratios in the O-horizon correlate along both transects with pH and the C/N-ratio, both proxies for the quality of the organic material. Natural conditions in southern Norway, related to climate and vegetation, rather than long range atmospheric transport of air pollutants (LRT), cause the observed features. ?? 2008 Elsevier Ltd.

  10. Atmospheric trace element concentrations in total suspended particles near Paris, France

    NASA Astrophysics Data System (ADS)

    Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

    2010-09-01

    To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

  11. Brief review of emerging photovoltaic absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  12. Brief review of emerging photovoltaic absorbers

    DOE PAGES

    Zakutayev, Andriy

    2017-02-08

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  13. Electrochromic devices based on lithium insertion

    DOEpatents

    Richardson, Thomas J.

    2006-05-09

    Electrochromic devices having as an active electrode materials comprising Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb, I and chalcogenides are disclosed. The addition of other metals, i.e. Ag and Cu to the active electrode further enhances performance.

  14. Studies on bronze pre-monetary signs found in Dobroudja using XRF and micro-PIXE

    NASA Astrophysics Data System (ADS)

    Constantinescu, B.; Cristea-Stan, D.; Talmatchi, G.; Ceccato, D.

    2016-03-01

    We performed compositional analyses on 180 Scythian-type arrowheads and pre-monetary signs using XRF method and on 60 small fragments of such items (approx. 100 microns diameter), sampling being performed on previously corrosion-cleaned areas on their surface, using micro-PIXE. The items are found in Dobroudja, Istros-Histria region. The most relevant for numismatists result is that for each finding place the same type of alloy was used both for fighting arrowheads and for pre-monetary signs. Our analyses revealed three types of alloys: Cu-Sn-Pb ("normal" bronze), Cu-Sn-Mn-Pb and Cu-Sn-Sb-Pb. The presence of antimony suggests the use of fahlore-type poly-metals deposits, most probably from Caucasus Mountains. The problem of ancient bronze containing manganese is more complicated; an explanation could be the use of manganese oxides as flux necessary to smelt oxidized ores.

  15. Presence, mobility and bioavailability of toxic metal(oids) in soil, vegetation and water around a Pb-Sb recycling factory (Barcelona, Spain).

    PubMed

    Mykolenko, S; Liedienov, V; Kharytonov, M; Makieieva, N; Kuliush, T; Queralt, I; Marguí, E; Hidalgo, M; Pardini, G; Gispert, M

    2018-06-01

    The work was conducted to establish contamination from improper disposal of hazardous wastes containing lead (Pb) and antimony (Sb) into nearby soils. Besides other elements in the affected area, the biological role of Sb, its behaviour in the pedosphere and uptake by plants and the food chain was considered. Wastes contained 139532 ± 9601 mg kg -1 (≈14%) Pb and 3645 ± 194 mg kg -1 (≈0.4%) Sb respectively and variability was extremely high at a decimetre scale. Dramatically high concentrations were also found for As, Cd, Cu, Mn, Ni, Sn and Zn. In adjacent natural soils metal(oid)s amounts decreased considerably (Pb 5034 ± 678 mg kg -1 , Sb 112 mg kg -1 ) though largely exceeded the directives for a given soil use. Metal(oid)s potential mobility was assessed by using H 2 O→KNO 3 →EDTA sequential extractions, and EDTA extracts showed the highest concentration suggesting stable humus-metal complexes formation. Nevertheless, selected plants showed high absorption potential of the investigated elements. Pb and Sb values for Dittrichia viscosa grown in wastes was 899 ± 627 mg kg -1 and 37 ± 33 mg kg -1 respectively. The same plant showed 154 ± 99 mg kg -1 Pb and 8 ± 4 mg kg -1 Sb in natural soils. Helichrysum stoechas had 323 ± 305 mg kg -1 Pb, and 8 ± 3 mg kg -1 Sb. Vitis vinifera from alongside vineyards contained 129 ± 88 mg kg -1 Pb and 18 ± 9 mg kg -1 Sb, indicating ability for metal uptake and warning on metal diffusion through the food chain. The biological absorption coefficient (BAC) and the translocation factor (TF) assigned phytoextraction potential to Dittrichia viscosa and Foeniculum vulgare and phytostabilization potential to Helichrysum stoechas. Dissolved metal (oid)s in the analysed water strongly exceeded the current directive being a direct threat for livings. Data warned against the high contamination of the affected area in all its compartments. Even though native plants growing in metal-contaminated sites may have phytoremediation potential, high risk of metal diffusion may threat the whole ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan plateau.

    PubMed

    Li, Yuefang; Li, Zhen; Cozzi, Giulio; Turetta, Clara; Barbante, Carlo; Huang, Ju; Xiong, Longfei

    2018-06-01

    In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction <30% such as Ti and Al, etc in traditional acid leached samples, will overestimate at least 4.6 times the contribution of other sources than dust for TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Indoor metallic pollution and children exposure in a mining city.

    PubMed

    Barbieri, Enio; Fontúrbel, Francisco E; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2014-07-15

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P=0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P=0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A Simple Qualitative Analysis Scheme for Several Environmentally Important Elements

    ERIC Educational Resources Information Center

    Lambert, Jack L.; Meloan, Clifton E.

    1977-01-01

    Describes a scheme that uses precipitation, gas evolution, complex ion formation, and flame tests to analyze for the following ions: Hg(I), Hg(II), Sb(III), Cr(III), Pb(II), Sr(II), Cu(II), Cd(II), As(III), chloride, nitrate, and sulfate. (MLH)

  19. Toxic trace elements in solid airborne particles and ecological risk assessment in the vicinity of local boiler house plants

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.

    2017-11-01

    The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.

  20. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    NASA Astrophysics Data System (ADS)

    Radmard, Kaikhosrov; Zamanian, Hassan; Hosseinzadeh, Mohamad Reza; Khalaji, Ahmad Ahmadi

    2017-12-01

    Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra'eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra'eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra'eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  1. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran.

    PubMed

    Najmeddin, Ali; Keshavarzi, Behnam; Moore, Farid; Lahijanzadeh, Ahmadreza

    2017-10-28

    This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.

  2. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  3. Ceiling (attic) dust: a "museum" of contamination and potential hazard.

    PubMed

    Davis, Jeffrey J; Gulson, Brian L

    2005-10-01

    Ceiling or attic dusts provide an indirect measure of air pollution integrated over varying time periods. We undertook an investigation into the particle-size distributions and sources and exposure pathways of metals in ceiling dusts from 38 houses in the city of Sydney, Australia. The houses ranged in age from 4 to 106 years and were grouped into three settings: industrial, semi-industrial, and non-industrial. The main roof types were terracotta tile (n=23), cement tile (n=8), and corrugated iron (n=4), with two slate and one asbestos. Soils and rocks from the Sydney area were also analyzed to provide "background" values and allow the estimation of enrichment factors. The bulk of the dusts contained particles derived from soil of crustal origin and organic plant material, with an anthropogenic component estimated at up to 25%. Particle sizes from selected dust samples showed a bimodal distribution, and the volumes of fine dusts were 50% <63 microm, 30%<38 microm, and 7%<10 microm; the highest metal concentrations were in the finest fractions. The geometric mean concentrations of important anthropogenic-derived metals from the industrial setting were 17294 microg/g Zn, 1660 microg/g Pb, 111 microg/g Cr, 261 microg/g Cu, and 26 microg/g As. The metals Cd, Cu, Pb, Sb, and Zn were consistently higher in the industrial settings than in the other settings. Median regression analyses showed that there were significant differences in the urban setting for the metals Cd, Co, Ni, Pb, and Zn. Enrichment factors for metals in the dust from the industrial site houses compared with background soils and rocks from the Sydney area were As, x 5; Cr, x2; Co, x3; Cu, x 12; Pb, x10; Sb, x 26; and Zn, 596. For the three roof types of terracotta tile, cement, and iron, median regression analyses showed that there were no significant effects with respect to age. Median regression analyses for terracotta tile, cement tile, and corrugated iron roofs showed a "roof" effect for Cu and V. Significant correlations (P0.03) were observed between most of the metals As-Cd-Cu-Pb-Sb-Zn, especially from the industrial settings. Pathways of dust exposure in this study are classified as being passive or active based upon the probable route of dust infiltration. Ceiling dusts pose a probable health hazard if the dust is disturbed and allowed to plume within the living areas of a dwelling, thereby exposing the occupants, especially children, to elevated levels of metals and fine particulates. Modeling shows that exposure to the elevated levels of Pb in dust could give rise to blood lead concentrations exceeding current guidelines for the industrial and semi-industrial areas.

  4. Extraction of heavy metals characteristics of the 2011 Tohoku tsunami deposits using multiple classification analysis.

    PubMed

    Nakamura, Kengo; Kuwatani, Tatsu; Kawabe, Yoshishige; Komai, Takeshi

    2016-02-01

    Tsunami deposits accumulated on the Tohoku coastal area in Japan due to the impact of the Tohoku-oki earthquake. In the study reported in this paper, we applied principal component analysis (PCA) and cluster analysis (CA) to determine the concentrations of heavy metals in tsunami deposits that had been diluted with water or digested using 1 M HCl. The results suggest that the environmental risk is relatively low, evidenced by the following geometric mean concentrations: Pb, 16 mg kg(-1) and 0.003 ml L(-1); As, 1.8 mg kg(-1) and 0.004 ml L(-1); and Cd, 0.17 mg kg(-1) and 0.0001 ml L(-1). CA was performed after outliers were excluded using PCA. The analysis grouped the concentrations of heavy metals for leaching in water and acid. For the acid case, the first cluster contained Ni, Fe, Cd, Cu, Al, Cr, Zn, and Mn; while the second contained Pb, Sb, As, and Mo. For water, the first cluster contained Ni, Fe, Al, and Cr; and the second cluster contained Mo, Sb, As, Cu, Zn, Pb, and Mn. Statistical analysis revealed that the typical toxic elements, As, Pb, and Cd have steady correlations for acid leaching but are relatively sparse for water leaching. Pb and As from the tsunami deposits seemed to reveal a kind of redox elution mechanism using 1 M HCl. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  6. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.

  7. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering.

    PubMed

    Zou, Tianhua; Qin, Xiaoying; Zhang, Yongsheng; Li, Xiaoguang; Zeng, Zhi; Li, Di; Zhang, Jian; Xin, Hongxing; Xie, Wenjie; Weidenkaff, Anke

    2015-12-15

    It is a major challenge to elevate the thermoelectric figure of merit ZT of materials through enhancing their power factor (PF) and reducing the thermal conductivity at the same time. Experience has shown that engineering of the electronic density of states (eDOS) and the energy filtering mechanism (EFM) are two different effective approaches to improve the PF. However, the successful combination of these two methods is elusive. Here we show that the PF of β-Zn4Sb3 can greatly benefit from both effects. Simultaneous resonant distortion in eDOS via Pb-doping and energy filtering via introduction of interface potentials result in a ~40% increase of PF and an approximately twofold reduction of the lattice thermal conductivity due to interface scattering. Accordingly, the ZT of β-Pb0.02Zn3.98Sb3 with 3 vol.% of Cu3SbSe4 nanoinclusions reaches a value of 1.4 at 648 K. The combination of eDOS engineering and EFM would potentially facilitate the development of high-performance thermoelectric materials.

  8. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  10. The Influence of Processing on Strengthening Mechanisms in Pb-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis; Arfaei, Babak; Cotts, Eric J.

    2017-04-01

    The number, and the spacing, of Ag3Sn precipitates in Sn-Ag-Cu/Cu solder joints were related to separate processing parameters. The mechanical properties of an individual solder joint were directly related to the resulting distribution of different dispersoids in the joint. As the number of Ag3Sn precipitates increased, so did solder joint strength and shear fatigue lifetime. The room-temperature shear fatigue lifetime was inversely correlated with the separation between Ag3Sn precipitates. Bi and Sb solid solution strengthening was found to result in significantly larger values of shear strength and shear fatigue lifetime for one Pb-free solder. Room-temperature shear fatigue lifetime tests were identified as a relatively straightforward, yet sensitive means to gain insight into the reliability of Sn-Ag-Cu (SAC) solder joints.

  11. Use of lichens in detecting environmental risk and in geochemical prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, G.; Sabatino, G.; Triscari, M.

    1995-10-01

    This paper provides data on variations in the contents of As, Sb, Ni, V, Pb, Cu, Au, Zn, Sc, and Al, measured in the thalli of a saxicolous lichen species, X anthoria calcicola Ochsner s.l., collected in northeastern Sicily, near an industrial zone and along a belt crossing areas of known ores containing sulfides of heavy metals. A total of 91 lichen samples were collected on roof tiles (39) and on rocks (52). In the industrial zone, analysis of lichen thalli revealed high contents of nickel and vanadium, decreasing at increasing distances from the source of contamination. The results havemore » also revealed the versatility of Xanthoria calcicola in geochemical prospecting for heavy metals such as Pb, Zn, As, Au, Sb, Ni, V, and Cu. The contents of these elements in the analyzed lichens highlight the same geochemical associations observed in prospecting surveys on samples of river sediments and identify similar anomalies. Interpretation of data in terms of enrichment factors (EFs) turned out to be particularly useful. 31 refs., 7 figs., 2 tabs.« less

  12. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2015-04-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain an abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactors (MOUDIs). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second-longest freeway tunnel (12.9 km) in Asia. This endeavor aims to characterize the chemical constituents and size distributions, as well as fingerprinting ratios of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups - namely, tailpipe emissions (Zn, Pb, and V in fine mode), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb) - of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios - including Fe / Cu (14), Ba / Cu (1.05), Sb / Cu (0.16), Sn / Cu (0.10), and Ga / Cu (0.03) - served as fingerprints for wear debris. However, the data set collected in this work is useful for further studies on traffic emission inventory and human health effects of traffic-related PM.

  13. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2014-05-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain high abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactor (MOUDI). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second longest freeway tunnel (12.9 km) in Asia. Such endeavor aims to characterize the chemical constituents, size distributions, and fingerprinting ratios, as well as the emission factors of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups, namely, tailpipe emissions (Zn, Pb, and V), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb), of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios, including Fe/Cu (14), Ba/Cu (1.05), Sb/Cu (0.16), Sn/Cu (0.10), and Ga/Cu (0.03), served as fingerprints for wear debris. Emission factor of PM10 mass was estimated to be 7.7 mg vkm-1. The metal emissions were mostly predominated in super-micron particles (PM1-10). Finally, factors that possibly affect particulate metal emissions inside Hsuehshan Tunnel are discussed.

  14. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core.

    PubMed

    Beaudon, Emilie; Gabrielli, Paolo; Sierra-Hernández, M Roxana; Wegner, Anna; Thompson, Lonnie G

    2017-12-01

    A ~500-year section of ice core (1497-1992) from the Puruogangri ice cap has been analyzed at high resolution for 28 trace elements (TEs: Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mg, Mn, Na, Nb, Ni, Pb, Rb, Sb, Sn, Sr, Ti, Tl, U, V and Zn) to assess different atmospheric contributions to the ice and provide a temporal perspective on the diverse atmospheric influences over the central Tibetan Plateau (TP). At least two volcanic depositions have significantly impacted the central TP over the past 500years, possibly originating from the Billy Mitchell (1580, Papua New Guinea) and the Parker Peak (1641, Philippines) eruptions. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s (for Sb and Cd) and increases substantially after 1935 (for Ag, Zn, Pb, Cd and Sb). The metallurgy (Zn, Pb and steel smelting) emission products (Cd, Zn, Pb and Ag) from the former Soviet Union and especially from central Asia (e.g., Kyrgyzstan, Kazakhstan) likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early Sb, Cd, Zn, Pb and Ag pollution originating from developing countries of South (i.e., India) and East (i.e., China) Asia and transported by the summer monsoonal circulation. Published by Elsevier B.V.

  15. Effect of doping in the Bi-Sr-Ca-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Akbar, S. A.; Wong, M. S.; Botelho, M. J.; Sung, Y. M.; Alauddin, M.; Drummer, C. E.; Fair, M. J.

    1991-01-01

    The results of the effect of doping on the superconducting transition in the Bi-Sr-Ca-Cu-O system are reported. Samples were prepared under identical conditions with varying types (Pb, Sb, Sn, Nb) and amounts of dopants. All samples consisted of multiple phases, and showed stable and reproducible superconducting transitions. Stabilization of the well known 110 K phase depends on both the type and amount of dopant. No trace of superconducting phase of 150 K and above was observed.

  16. Bioaccessible trace metals in lip cosmetics and their health risks to female consumers.

    PubMed

    Gao, Peng; Lei, Tingting; Jia, Liming; Yury, Badmatsybenov; Zhang, Zhaohan; Du, Yingqiu; Feng, Yujie; Xing, Baoshan

    2018-07-01

    Females can be exposed to toxic elements in lip cosmetics following ingestion. The bioaccessibility of Cr, Mn, Co, Ni, Cu, Cd, Sb and Pb in lip cosmetics (n = 32) were assessed via the dilute HCl extraction method, In Vitro Gastrointestinal protocol (IVG) and the United States Pharmacopeia Methodology (USPM), and then health risks were characterized. The total concentrations of trace metals (TMs) in lip cosmetics were in the range of 15.55-111.97 mg/kg (Mean: 60.99 mg/kg). Cu, Pb and Cr were the three major TMs and accounting for >75% of the total concentrations. Except Sb and Pb in 4/32 and 4/32 samples were higher than the US FDA (Food and Drug Administration of the United States) limits, the other TMs were lower than that limits. Only bioaccessible Pb in all samples significantly exceeded the FDA limit 0.1 mg/kg in candy. Using IVG or USPM might be preferable for evaluating the TMs exposure over HCl since they better represent gastrointestinal physiology. The estimated average daily intake (ADI) of bioaccessible ∑TMs through lip cosmetics ingestion of career women and female college students were under safety level. The long-term exposure of bioaccessible TMs by lip cosmetics using would inevitably cause non-carcinogenic health risk. This is the first report on the in vitro tests used for evaluating bioaccessible TMs in lip cosmetics. Copyright © 2018. Published by Elsevier Ltd.

  17. Orebody Modelling for Exploration: The Western Mineralisation, Broken Hill, NSW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotfolah Hamedani, Mohammad, E-mail: mlotfham@gmail.com; Plimer, Ian Rutherford; Xu Chaoshui

    2012-09-15

    The Western Mineralisation in the Broken Hill deposit was studied to identify the zonation sequence of lithogeochemical haloes along and across the strike of the orebody. Samples used are from 77 drill holes and the samples were assayed for Pb, Zn, Fe, S, Cu, Ag, Cd, Sb, Bi and As. Variogram analyses were calculated for all the elements and kriging was used to construct the 3D block model. Analysis of cross sections along and across the strike of the orebody shows that Bi and Sb form broader halos around sulphide masses and this suggests that they are pathfinder elements formore » the Pb and Zn elements of this orebody. The threshold concentrations (minimum anomaly) of the 10 elements were determined using the concentration-area analysis. On east-west vertical cross sections, the values of linear productivity, variability gradient and zonality index were calculated for each element. Based on the maximum zonality index of each element, the sequence of geochemical zonation pattern was determined from top to bottom of the orebody. The result shows that S, Pb, Zn and Cd tend to concentrate in the upper part of the mineralisation whereas Ag, Cu, Bi and As have a tendency to concentrate in the lower part of the mineralised rocks. Also, an empirical product ratio index was developed based on the position of the elements in the zonation sequence. The methods and results of this research are applicable to exploration of similar Zn and Pb sulphide ore deposits.« less

  18. Quantification of chemical elements in blood of patients affected by multiple sclerosis.

    PubMed

    Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni

    2005-01-01

    Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).

  19. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria.

    PubMed

    Isimekhai, Khadijah A; Garelick, Hemda; Watt, John; Purchase, Diane

    2017-07-01

    Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p < 0.001) in the dry season than in the wet season. The concentrations of Cu (329-7106 mg kg -1 ), Pb (115-9623 mg kg -1 ) and Zn (508-8178 mg kg -1 ) were consistently higher than international soil guideline values. Using a sequential extraction method, the potential bioavailability of the heavy metals was indicated as Cd > Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.

  20. X-ray Photoelectron Spectroscopy as a tool to investigate silane-based coatings for the protection of outdoor bronze: The role of alloying elements

    NASA Astrophysics Data System (ADS)

    Masi, G.; Balbo, A.; Esvan, J.; Monticelli, C.; Avila, J.; Robbiola, L.; Bernardi, E.; Bignozzi, M. C.; Asensio, M. C.; Martini, C.; Chiavari, C.

    2018-03-01

    Application of a protective coating is the most widely used conservation treatment for outdoor bronzes (cast Cu-Sn-Zn-Pb-Sb alloys). However, improving coating protectiveness requires detailed knowledge of the coating/substrate chemical bonding. This is particularly the case for 3-mercapto-propyl-trimethoxy-silane (PropS-SH) applied on bronze, exhibiting a good protective behaviour in outdoor simulated conditions. The present work deals with X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (FEG-SEM + FIB (Focused Ion Beam)) characterization of a thin PropS-SH film on bronze. In particular, in order to better understand the influence of alloying elements on coating performance, PropS-SH was studied first on pure Cu and Sn substrates then on bronzes with increasing alloy additions: Cu8Sn as well as a quinary Cu-Sn-Zn-Pb-Sb bronze. Moreover, considering the real application of this coating on historical bronze substrates, previously artificially aged ("patinated") bronze samples were prepared and a comparison between bare and "patinated" quinary bronzes was performed. In the case of coated quinary bronze, the free surface of samples was analysed by High Resolution Photoelectron Spectroscopy using Synchrotron Radiation (HR-SRPES) at ANTARES (Synchrotron SOLEIL), which offers a higher energy and lateral resolution. By compiling complementary spectroscopic and imaging information, a deeper insight into the interactions between the protective coating and the bronze substrate was achieved.

  1. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    NASA Astrophysics Data System (ADS)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  2. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential.

    PubMed

    Testiati, Eti; Parinet, Julien; Massiani, Catherine; Laffont-Schwob, Isabelle; Rabier, Jacques; Pfeifer, Hans-Rudolf; Lenoble, Véronique; Masotti, Véronique; Prudent, Pascale

    2013-03-15

    This study aimed at identifying the extent and type of contamination of a former lead smelting site in the area of Marseille, France, dating from the industrial revolution, and to evaluate environmental hazards and opportunities for phytoremediation, a promising sustainable technology. Amongst the native plants growing in this semiarid shrub ecosystem, two perennials Globularia alypum L. and Rosmarinus officinalis L. were selected. Twenty-one soil/plant couples were collected and seventeen additional soil samples were added to better characterize the soil pollution of the area. A multi-contamination by Pb, As, Sb, Zn, Cu was demonstrated, with huge variations within the contamination levels. The soils highest concentrations were encountered along the horizontal chimney and on the slag heaps area. However, both sites differed from each other. The former was characterized by the highest Pb, As and Sb concentrations that could reach 130, 7.0 and 9.0gkg(-1) respectively, the latter, by high Cu, Fe, Mn, S concentrations, even if it was also heavily contaminated by Pb and Zn. G. alypum and R. officinalis were shown to be metal-tolerant and to accumulate trace metals and As. Due to the low bioconcentration and translocation factors determined, both species may not be used for phytoextraction, but seem to be good candidates for phytostabilization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. New observations on the Ni-Co ores of the southern Arburese Variscan district (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Naitza, Stefano; Secchi, Francesco; Oggiano, Giacomo; Cuccuru, Stefano

    2015-04-01

    Among the European Variscan regions, the Arburese district, located in the Paleozoic basement of SW Sardinia (Italy) is remarkable for its metallogenic complexity, and offers good opportunities to investigate time/space and genetic links between post-collisional Variscan intrusive magmatism and mineral deposits. The district hosts a large variety of mineral deposits and occurrences, which include the Pb-Zn (Cu, Ag) mesothermal veins of the Montevecchio Lode System, one of the largest and richest Variscan hydrothermal ore deposit of Europe, now exhausted. Ore deposits are genetically related to the emplacement of the Late Variscan (304±1 Ma) Arbus Pluton, a granitoid composite intrusion ranging from monzogabbroic to granodioritic and to peraluminous leucogranitic rock-types. After more than a century of geological studies in the area, several metallogenic issues are still unresolved; among them, the occurrence in the southern sectors of little known polymetallic Ni-Co-(Pb-Zn-Cu-Ag-Bi) veins, a kind of mineralization quite unusual for the Sardinian basement. These hydrothermal deposits are hosted by very low-grade metamorphic rocks at short distance from the intrusion, where contact effect generate also hornfels. Spatial, structural and textural characters of the hydrothermal system are coherent and in apparent continuity with those of the Montevecchio Lode System. Ni-Co ores are hosted by a system of parallel, 1-2 m thick high-angle veins that discontinuously follow the southwestern and southern contacts of the Arbus Pluton for about 7 km. They constantly dip SSW, sideways with respect to the pluton contact, and show a prevalence of fracture infilling (banded and brecciated) textures, with alternating quartz and siderite bands, cockades and frequent inclusions of wallrock fragments. Wallrocks are usually silicified, bleached and/or sericitized. Systematic studies of ore textures and parageneses from different veins along the system have been performed by standard ore microscopy and SEM-EDS. Ore minerals associations include Ni-Co (Fe, Sb) arsenides/sulfoarsenides (nickeline, rammelsbergite, skutterudite, safflorite, gersdorffite, breithauptite, lollingite, cobaltite), Pb-Zn-Cu-Ag-Bi sulfides (galena, sphalerite, chalcopyrite, tetrahedrite/freibergite, bismuthinite, proustite/pyrargirite, stephanite), native Bi and native Ag. Ore textures and mineral phases relationships allow to envisage the following paragenetic sequence: 1) deposition of quartz (I) and a Ni monoarsenide (nickeline), and antimonide (breithauptite) followed by 2) Ni-,Ni-Co, Co- and Fe- di-, tri- arsenides and sulfoarsenides (rammelsbergite, skutterudite, safflorite, löllingite, cobaltite), with bismuthinite and native Bi; 3) deposition of abundant siderite, with quartz (II), Pb-Zn-Cu-Ag sulfides and sulfosalts and rare native Ag, followed at last by 4) calcite. This sequence depicts a polyphased evolution with alternating gradual and abrupt changes of the physicochemical parameters of a mesothermal fluid initially characterized by Ni-As-(Sb) contents, subsequently evolved to higher contents of As, Co and Bi, and, finally, enriched in S, allowing Pb, Zn, Cu deposition as sulfides and sulfosalts.Thus, the fine alternating rims of pure nickeline (NiAs) and breithauptite (NiSb) in nickeline individuals, detected by SEM-EDS, may be explained by repeated compositional re-equilibrations due to variable As and Sb contents of the fluids; increases in As, and, moreover, the sudden appearance of siderite and sulfides after brecciations indicate further re-opening of the system, related to hydrothermal fracturing and syn-depositional tectonics.

  4. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  5. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of themore » same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).« less

  6. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy).

    PubMed

    Nannoni, Francesco; Protano, Giuseppe

    2016-10-15

    A biogeochemistry field study was conducted in the Siena urban area (Italy) with the main objective of establishing the relationship between available amounts of heavy metals in soil assessed by a chemical method (soil fractionation) and bioavailability assessed by a biological method (bioaccumulation in earthworm tissues). The total content of traffic-related (Cd, Cu, Pb, Sb, Zn) and geogenic (Co, Cr, Ni, U) heavy metals in uncontaminated and contaminated soils and their concentrations in soil fractions and earthworms were used for this purpose. The bioavailability of heavy metals assessed by earthworms did not always match the availability defined by soil fractionation. Earthworms were a good indicator to assess the bioavailability of Pb and Sb in soil, while due to physiological mechanisms of regulation and excretion, Cd, Cu and Zn tissue levels in these invertebrates gave misleading estimates of their bioavailable pool. No relationship was identified between chemical and biological availability for the geogenic heavy metals, characterized by a narrow range of total contents in soil. The study highlighted that chemical and biological methods should be combined to provide more complete information about heavy element bioavailability in soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  8. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding desert. Metals pollution in these newer areas is much lower than in the city core due to their distance from legacy, traditional, and ongoing sources. Thus there is a strong risk gradient for exposure to heavy metals from contaminated soil from the higher levels in the city core to the lower levels in newer residential neighborhoods. NIEHS Grant 1RO1-ES11367

  9. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  10. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    PubMed

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayigit, A.I.; Bulut, Y.; Karayigit, G.

    A total of 48 samples, feed coals (FCs), fly ashes (FAs) and bottom ashes (BAs), which were systematically collected once a week over an eight-week period from boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity from Soma power plant, have been evaluated for major and trace elements (Al, Ca, Fe, K, Mg, Mn, Na, Ti, S, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Ge, Hf, Hg, Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, Tl, U, V, Y, Zn, Zr, and REEs) to get information onmore » behavior during coal combustion. This study indicates that some elements such as Hg, Bi, Cd, As, Pb, Ge, Tl, Sn, Zn, Sb, B show enrichments in FAs relative to the BAs in both group boiler units. In addition to these, Cs, Lu, Tm, and Ga in Units B1-4 and S in Units B5-6 also have enrichments in FAs. Elements showing enrichments in BAs in both group boiler units are Ta, Mn, Nb. In addition to these, Se, Ca, Mg, Na, Fe in Units B1-4 and Cu in Units B5-6 also have enrichments in BAs. The remaining elements investigated in this study have no clear segregation between FAs and BAs. Mass balance calculations with the two methods show that some elements, S, Ta, Hg, Se, Zn, Na, Ca in Units B1-4, and Hg, S, Ta, Se, P in Units B5-6, have volatile behavior during coal combustion in the Soma power plant. This study also implies that some elements, Sb and Tb in Units B1-4 and Sb in Units B5-6, have relatively high retention effects in the combustion residues from the Soma power plant.« less

  12. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar

    2015-05-01

    Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.

  13. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+, F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42-, K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show higher correlation with Cd, Sn, Sb and Pb that are mainly derived from industrial sources.

  14. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.

  15. Potential resource and toxicity impacts from metals in waste electronic devices.

    PubMed

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.

  16. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union.

    PubMed

    Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2014-01-01

    The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

  18. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  19. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III) and Pb(II): Thermodynamics and Application Strategy

    PubMed Central

    Cai, Yue; Liu, Dongying; Xu, Changlin; Ai, Yuwei; Sun, Xuemeng; Zhang, Meng; Gao, Yu; Zhang, Yuchao; Yang, Tao; Wang, Jingzhi; Wang, Lijun; Li, Xiaoyun; Yu, Hongtao

    2018-01-01

    The present work is the first to study co-biosorption of Pb(II) and Sb(III) by a novel bacterium and its application strategy. The biosorption characteristics of Pb(II) and Sb(III) ions from aqueous solution using B. subtilis were investigated. Optimum pH, biomass dosage, contact time and temperature were determined to be 5.00, 6.00 mg/L, 45 min and 35 °C, respectively. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by B. subtilis. Results showed that Langmuir model fitted the equilibrium data of Pb(II) better than others, while biosorption of Sb(III) obeyed the Freundlich model well. The biosorption capacity of B. subtilis biomass for Pb(II) and Sb(III) ions was found to be 17.34 ± 0.14 and 2.32 ± 0.30 mg/g, respectively. Kinetic data showed the biosorption process of Pb(II) and Sb(III) ions both followed the pseudo-second-order kinetic model, with R2 ranging from 0.974 to 0.999 for Pb(II) and from 0.967 to 0.979 for Sb(III). The calculated thermodynamic parameters, negative ∆G and positive ∆H and ∆S values, indicated the biosorption of Pb(II) and Sb(III) ions onto B. subtilis biomass in water was feasible, endothermic, and spontaneous. Bacterial bioleaching experiment revealed B. subtilis can increase the mobility of Pb(II) and Sb(III) in polluted soil when pH was close to 6 at low temperature. Consequently, B. subtilis, as a cheap and original bacterial material, could be a promising biomass to remove Pb or isolate Sb from industrial wastewater and to assist phytoremediation of Pb and Sb from weak acid or near neutral pH polluted soils at low temperature. PMID:29642529

  20. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III) and Pb(II): Thermodynamics and Application Strategy.

    PubMed

    Cai, Yue; Li, Xiaoping; Liu, Dongying; Xu, Changlin; Ai, Yuwei; Sun, Xuemeng; Zhang, Meng; Gao, Yu; Zhang, Yuchao; Yang, Tao; Wang, Jingzhi; Wang, Lijun; Li, Xiaoyun; Yu, Hongtao

    2018-04-09

    The present work is the first to study co-biosorption of Pb(II) and Sb(III) by a novel bacterium and its application strategy. The biosorption characteristics of Pb(II) and Sb(III) ions from aqueous solution using B. subtilis were investigated. Optimum pH, biomass dosage, contact time and temperature were determined to be 5.00, 6.00 mg/L, 45 min and 35 °C, respectively. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by B. subtilis . Results showed that Langmuir model fitted the equilibrium data of Pb(II) better than others, while biosorption of Sb(III) obeyed the Freundlich model well. The biosorption capacity of B. subtilis biomass for Pb(II) and Sb(III) ions was found to be 17.34 ± 0.14 and 2.32 ± 0.30 mg/g, respectively. Kinetic data showed the biosorption process of Pb(II) and Sb(III) ions both followed the pseudo-second-order kinetic model, with R² ranging from 0.974 to 0.999 for Pb(II) and from 0.967 to 0.979 for Sb(III). The calculated thermodynamic parameters, negative ∆ G and positive ∆ H and ∆ S values, indicated the biosorption of Pb(II) and Sb(III) ions onto B. subtilis biomass in water was feasible, endothermic, and spontaneous. Bacterial bioleaching experiment revealed B. subtilis can increase the mobility of Pb(II) and Sb(III) in polluted soil when pH was close to 6 at low temperature. Consequently, B. subtilis , as a cheap and original bacterial material, could be a promising biomass to remove Pb or isolate Sb from industrial wastewater and to assist phytoremediation of Pb and Sb from weak acid or near neutral pH polluted soils at low temperature.

  1. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    PubMed Central

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-01-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272

  2. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that the early Pb-Zn veins were overprinted by later Sb-rich fluids. Stage 2 fluids were likely acidic and oxidized and leached lead from high-grade metamorphic rocks of the Greater Himalayan crystalline complex (GHC) and sulfur from reduced rocks, such as slate of the Ridang Formation, along N-S trending faults, leading to precipitation of Pb-Zn sulfides and Mn-Fe carbonate and formation of solution collapse breccias. Later Sb-rich fluids leached Pb from the GHC and the pre-existing sulfides and deposited Fe-poor sphalerite, Ag-rich galena, tetrahedrite, Sb-Pb sulfosalts, and stibnite in quartz veins that cut pre-existing Pb-Zn-bearing Mn-Fe carbonate veins. The Sb-rich fluids also likely leached Pb from Early Cretaceous gabbro and formed stibnite at shallow levels where early Pb-Zn-bearing Mn-Fe carbonate veins are absent. A sericite 40Ar-39Ar plateau age of 17.9 ± 0.5 Ma from stage 3 veins represents the timing of the onset of stage 3 mineralization.

  3. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    NASA Astrophysics Data System (ADS)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  4. Thermoelectric and mechanical properties of spark plasma sintered Cu3SbSe3 and Cu3SbSe4: Promising thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-01

    We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ˜1.2 as compared to 0.2 V-1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  5. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2009-08-01

    titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb

  6. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd.

    PubMed

    Satoh, Akira; Vudikaria, Litiana Qalokece; Kurano, Norihide; Miyachi, Shigetoh

    2005-07-01

    The sensitivity of nine marine microalgal species (consisting of five divisions and seven genera) to the five heavy metals, Cu(II), As(V), Sb(III), Pb(II) and Cd(II) was studied by using a fluorometric growth-inhibition assay with 96-well microplates. The algal strains studied were Cylindrotheca sp. and the LPP group that respectively characterize aggregating and filamentous types, and Chlorococcum littorale, Chlorococcum sp., Isochrysis galbana, Tetraselmis tetrathele, Heterocapsa sp., Synechococcus sp. and Prasinococcus sp. for types that occur as single cells. A good linear relationship was observed between the chlorophyll a concentration and intensity of chlorophyll fluorescence (485-nm excitation filter and 645-nm emission filter) when the chlorophyll a concentration was within the range of 0.10-5.0 microg ml(-1). A starting cell concentration of 0.10 or 0.25 microg Chl a ml(-1) was therefore selected. In accordance with OECD 201 standard procedures, the IC(50) value (concentration of a metal producing 50% growth inhibition relative to the control) was determined 72 h after adding a heavy metal by using the biomass integral. The microplate toxicity test used in this study is considered to be applicable to diverse algae, not only enumerating species but also hardly enumerating ones.

  7. Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM).

    PubMed

    Vrhovnik, Petra; Dolenec, Matej; Serafimovski, Todor; Tasev, Goran; Arrebola, Juan P

    2016-07-15

    The main purpose of the present study is to assess human dietary exposure to essential and non-essential trace elements via consumption of selected homegrown foodstuffs. Twelve essential and non-essential trace elements (Cd, Co, Cu, Cr, Hg, Mo, Ni, Pb, Sb, Se, Zn and As) were detected in various homegrown foodstuffs. Detailed questionnaires were also applied among a sample of the local population to collect information on sociodemographic characteristics. The results of the present study clearly indicate that the majority of the trace elements are at highly elevated levels in the studied foodstuffs, in comparison to international recommendations. The maximum measured levels of ETE and NETE are as follows [μgkg(-1)]: Cd 873, Co 1370, Cu 21700, Cr 59633, Hg 26, Mo 6460, Ni14.5, Pb 11100, Sb 181, Se 0.30, Zn 102 and As 693. Additionally, age, body mass index and gender were significantly associated with levels of dietary exposure. Further research is warranted on the potential health implication of this exposure. The study merges the accumulation of ETE and NETE in home-grown foodstuffs and reflects considerably high health risks for inhabitants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  9. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    PubMed Central

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807

  10. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  11. [Risk Assessment of Heavy Metal Contamination in Farmland Soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China].

    PubMed

    Wu, Yang; Yang, Jun; Zhou, Xiao-yong; Lei, Mei; Gao, Ding; Qiao, Peng-wei; Du, Guo-dong

    2015-08-01

    For a comprehensive understanding of the pollution characteristics and ecological risk of heavy metals of farmland soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China, this study evaluated the cadmium (Cd), arsenic (As), nickel (Ni), zinc (Zn), chromium (Cr), antimony (Sb), copper (Cu) and lead ( Pb) pollution situation using the single factor index, the Nemerow pollution index and the Hakanson ecological risk index. The results showed that heavy-metal pollution of farmland soil in Du'an County was serious. 74.6% of the soil samples had heavy metals concentrations higher than the Grade II of National Soil Environmental Quality Standard (GB 15618-1995). The over standard rates of Cd, As, Ni, Zn, Cr, Sb, Cu, Pb were 70.6%, 42.9%, 34.9%, 19.8%, 19.6%, 2.94%, 1.59%, 0.79%, respectively. Cd and As were the main contaminants in Du'an County, the pollution was far more serious than those of the national and Guangxi Zhuang Autonomous Region. In terms of the ecological risk, heavy metals of farmland soil in Du'an County showed a "middle" ecological risk, with Cd accounting for 88% of the total ecological risk. The north-west of Jiudu Town and the zone between Bao'an Town and Dongmiao Town were two areas with high ecological risk in Du'an County. The contamination of farmland soils in Du'an County was caused by two main sources, whereas the pollution of As and Sb of farmland soils near Diaojiang River was mainly caused by the upstream mining industry.

  12. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments

    NASA Astrophysics Data System (ADS)

    Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.

    2011-07-01

    A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.

  13. Сontamination of urban soils with heavy metals in Moscow as affected by building development.

    PubMed

    Kosheleva, Natalia E; Vlasov, Dmitry V; Korlyakov, Ilya D; Kasimov, Nikolay S

    2018-09-15

    Building development in cities creates a geochemical heterogeneity via redistributing the atmospheric fluxes of pollutants and forming sedimentation zones in urban soils and other depositing media. However, the influence of buildings on the urban environment pollution is poorly understood. The aim of this study is to evaluate the barrier functions of urban development by means of a joint analysis of the contents of heavy metals and metalloids in the upper horizon of urban soils, their physicochemical properties, and the parameters of the buildings. The soil-geochemical survey was performed in the residential area of the Moscow's Eastern Administrative District (Russia). The parameters of the buildings near sampling points were determined via processing data from the OpenStreetMap database, 2GIS databases and GeoEye-1 satellite image. A high level of soil contamination with Cd, W, Bi, Zn, As, Cr, Sb, Pb, Cu was revealed, depending on building parameters. A protective function of the buildings for yards is manifested in the decreasing concentrations of As, Cd, Co, Cr, Mo, Ni, Pb, Sb, Sn, W by 1.2-3 times at distances of <23-36 m from the buildings with their total area ≥660 m 2 and the height ≥7.5-21 m. An opposite effect which enhances concentrations of Bi, Cd, Co, Cr, Cu, Mo, Pb, Sb, Sn, W, Zn by 1.2-1.9 times is seen in "well-shaped" yards acting as traps under similar distances and heights, but at their average area ≥118-323 m 2 , and total area ≥323-1300 m 2 . The impact of these two building patterns on the soil contamination is only seen for certain directions of atmospheric flows. Buildings located in the northwestern sector relative to the sampling point protect the latter from the aerial pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  15. Antimony in recent, ombrotrophic peat from Switzerland and Scotland: Comparison with natural background values (5,320 to 8,020 14C yr BP) and implications for the global atmospheric Sb cycle

    NASA Astrophysics Data System (ADS)

    Shotyk, William; Krachler, Michael; Chen, Bin

    2004-03-01

    The lowest concentrations, atmospheric fluxes, and enrichments of Sb in a Swiss bog were found in peat samples dating from 8,020 to 5,320 14C yr BP when Sb inputs were proportional to those of Sc and effectively controlled by deposition of soil dust. For comparison with these ancient samples, modern peat samples from five rural areas of Switzerland and two remote areas of Scotland and Shetland are highly contaminated with Sb, with enrichments of the order of 30 to 80 times. "Lithogenic" Sb concentrations calculated using the Sc concentrations and background Sb/Sc ratio are dwarfed at all sites by "anthropogenic" Sb. The chronology and intensity of the Sb enrichments are in many ways similar to those of Pb which indicates that (1) Sb, like Pb, is well preserved in ombrotrophic peat and (2) the extent of human impacts on the geochemical cycle of Sb is comparable to that of Pb. The similar distribution of Sb and Pb can be explained in terms of their chemical and mineralogical associations, with most lead minerals being rich in Sb. Assuming that the "background" Sb flux (0.35 μg/m2/yr) from the Swiss bog is representative of preanthropogenic deposition rates worldwide, the global flux of natural Sb is estimated at 154 T/a. Using the natural Pb flux published by [1987] of 2600 T/a and the "background" Pb/Sb ratio (29) of the preanthropogenic peat samples, the global flux of natural Sb is estimated at 90 T/a. Either way, these values (90 to 154 T/a) are considerably lower than the current estimate of natural Sb to the global atmosphere (2400 T/a) published by [2001]. Assuming that the current estimate of anthropogenic Sb to the global atmosphere (1600 T/a) is correct [, 2001], the ratio of anthropogenic to natural Sb emissions is on the order of 10 to 18. Taken together, the data from modern and ancient peat samples suggests that the impact of human activities on the global geochemical cycle of Sb may have been underestimated by an order of magnitude. Like Pb, Sb has no known biological function, has a similar toxicity, and is a cumulative poison. The environmental geochemistry of Sb therefore may have a relevance to human and environmental health comparable to that of Pb.

  16. Microelements in anthropogenically contaminated soils in the central part of Petrozavodsk

    NASA Astrophysics Data System (ADS)

    Rybakov, D. S.; Kevlich, V. I.

    2017-06-01

    Urban soils (Urbic Technosols) formed within or near the industrial sites removed of service show a considerable excess over the regional background in the content of Pb, Zn, Cu, Mn, Cr, Ni, as well as over the average content of W, Mo, Pb, Sb, Cr, Cu, Sn, Ni, Zn, and Mn in urban soils. Microelements are concentrated for the most part in the soil fine earth, and above all, in the fraction with particle size <0.1 mm. Surface films (on quartz and feldspar grains) of quartz-feldspar-muscovite (partially with tremolite and chlorite) composition and undifferentiated dispersed mixture of quartz, albite, microcline, muscovite and organomineral soil substance are the strongest concentrators of heavy metals and metalloids. Pb and Sn are partially present in soils as oxides, and a part of Zn and Pb, in the form of substantial admixtures to technogenic chemical compounds. As a whole, distribution of elements in the studied soils is controlled by the specifics and type of contamination, resistance of coarser grains to weathering under the given physicochemical conditions, and by predominantly mineral (quartz-feldspar) composition of the solids in soil layers and the features of elements proper.

  17. Thermoelectric and mechanical properties of spark plasma sintered Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}: Promising thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah

    2014-12-29

    We report the synthesis of thermoelectric compounds, Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu{sub 3}SbSe{sub 4} exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu{sub 3}SbSe{sub 3}, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu{sub 3}SbSe{sub 4} was found to be ∼1.2 as compared to 0.2 V{sup −1} for Cu{sub 3}SbSe{sub 3} at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracturemore » toughness values were far superior to the other competing state-of-the-art thermoelectric materials.« less

  18. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance.

    PubMed

    Li, Di; Li, Rui; Qin, Xiao-Ying; Song, Chun-Jun; Xin, Hong-Xing; Wang, Ling; Zhang, Jian; Guo, Guang-lei; Zou, Tian-Hua; Liu, Yong-Fei; Zhu, Xiao-Guang

    2014-01-28

    Large-scale fabrication of nanostructured Cu3SbSe4 and its Sn-doped sample Cu3Sb0.98Sn0.02Se4 through a low-temperature co-precipitation route is reported. The effects of hot-pressing temperatures, time and Sn doping on the thermoelectric properties of Cu3SbSe4 are explored. The maximum figure of merit ZTmax obtained here reaches 0.62 for the un-doped Cu3SbSe4, which is three times as large as that of Cu3SbSe4 synthesized by the fusion method. Due to the ameliorated power factor by optimized carrier concentration and the reduced lattice thermal conductivity by enhanced phonon scattering at grain interfaces, Sn doping leads to an improvement of thermoelectric performance as compared to Cu3SbSe4. The maximum ZT for Cu3Sb0.98Sn0.02Se4 is 1.05 in this work, which is 50% larger than the largest value reported.

  19. The role of Sb in solar cell material Cu 2ZnSnS 4

    DOE PAGES

    Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...

    2017-03-03

    In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu 2ZnSnS 4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe 2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, Sb Sn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration,more » Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less

  20. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial variation distribution, uncertainties and control policies

    NASA Astrophysics Data System (ADS)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-04-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have received worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we established the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocated the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn during the period of 1949-2012, have been increased by about 22-128 times at an annual average growth rate of 5.1-8.0%, amounting to about 79 570 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metals smelting represent the dominant sources for Hg / Cd, As / Se / Pb / Cr / Ni / Mn / Co, Sb / Cu, and Zn, respectively. In terms of spatial variation, the majority of emissions were concentrated in relatively developed regions, especially for the northern, eastern and southern coastal regions. In addition, because of the flourishing nonferrous metals smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on accounting of the current and future demand of energy-saving and pollution reduction in China.

  1. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgour, Douglas W.; Moseley, Rebecca A.; Savage, Kaye S

    2008-09-01

    A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed duringmore » column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.« less

  2. Effects of Cu and Ag as ternary and quaternary additions on some physical properties of SnSb7 bearing alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-02-01

    The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.

  3. Incremental Sampling Methodology (ISM) for Metallic Residues

    DTIC Science & Technology

    2013-08-01

    Deviation (also %RSD) Sb Antimony Sn Tin Sr Strontium STD Standard Deviation ERDC TR-13-5 x SU Sampling Unit Ti Titanium UCL Upper Confidence Limit...Ce), chromium (Cr), Cu, Fe, Pb, mag- nesium (Mg), Mn, potassium (K), sodium (Na), strontium (Sr), titanium (Ti), W, zirconium (Zr), and Zn (Clausen...wastes. A proposed alternative to EPA SW 846 Method 3050. Environmental Science and Technology 23: 89 −900. Matzke, B., N. Hassig, J. Wilson, R. Gilber

  4. The Case of Carpathian (Transylvanian) Gold and its Use for Archaeological Items

    NASA Astrophysics Data System (ADS)

    Stan, D.; Constantinescu, B.; Vasilescu, A.; Radtke, M.; Reinholz, U.; Pop, D.; Ionescu, C.

    2009-04-01

    Romania was one of Europe's main gold-producing areas since the antiquity, especially through the ore deposits in the "Golden Quadrilateral" of the Western Carpathians. The Babeş-Bolyai University in Cluj-Napoca hosts a gold collection consisting of about 500 samples, most of them from Roşia Montană. The geochemical investigation of Romanian gold by using SR-XRF and micro-PIXE is currently in progress; some preliminary results point to interesting features. The goal of the study is to verify if Transylvanian gold was used to manufacture Romanian archaeological objects. This is realized by using information related to trace elements: Sb, Te, Pb - recognized fingerprints for Carpathian Mountains mines and Sn characteristic for the panned river-bed (alluvional) gold. To solve these issues, samples (grains, nuggets, fine gold "sand") from various Transylvanian mines and rivers and some very small (few milligrams) fragments of archaeological objects are measured. Another outcome of this SR-XRF experiment is to obtain the elemental characterization (Au, Ag and Cu) of representative gold mines, subject of interest for the assignement of any other archaeological artifacts to one of the Central European gold sources. During the experiment, point spectra for 22 natural gold samples and 18 "micronic" samples from archaeological objects were acquired at 34 keV excitation SR energy, using a spatially resolved SR-XRF set-up mounted for analyses at the hard X-ray beam line - BAMline at BESSY, Berlin. A summary for the characterization of Transylvanian native gold is the following: high (8 - 30%) Ag amounts and low (0.2 - 1%) Cu amounts; placer deposits contain as fingerprint Sn (150-300 ppm) - most probably from river bed cassiterite; primary deposits present as fingerprints Te (200-2000 ppm), Sb (150-300 ppm) - however, the samples are very inhomogeneous. The micro-PIXE experiment was performed at the AN 2000 Van de Graaff accelerator of Laboratori Nazionali di Legnaro. Elemental maps of gold samples were obtained, complemented by nuclear microprobe point analyses in selected areas of the mapped gold crystals. At Roşia Montană, the mapping evidenced a peculiar microfabric consisting of mm-sized laths of a Zn-S rich phase (with minor Cu and Fe). Au content shows a wide compositional range: 36-57%. A clear chemical inhomogeneity of the Au/Ag ratio, as well as of the local concentration of other elements (Cu, As, Sb, Te, Pb, Fe) was noticed at submilimeter scale. The presence of associated mineral phases (such as Cu, Ag, chalcopyrite, galena, sphalerite, arsenopyrite, pyrite/marcasite and non-metallic minerals) at microscopic scale could be thus illustrated. As concerning the archaeological samples, for "koson" dacian coins, the type "with monogram" is made from refined (more than 97%) gold with no Sb, Te or Sn traces (remelted gold) and the type "without monogram" is clearly made from alluvial gold, partially combined with primary Transylvanian gold (Sn and Sb traces detected). The greek "pseudolysimachus" type staters (contemporary with "kosons") are made from refined remelted gold (no Sn, Sb, Te presence).

  5. Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs.

    PubMed

    Agusa, Tetsuro; Matsumoto, Taro; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Yasunaga, Genta; Kunito, Takashi; Tanabe, Shinsuke; Ogi, Haruo; Shibata, Yasuyuki

    2005-09-01

    Body distribution and maternal transfer of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) to eggs were examined in black-tailed gulls (Larus crassirostris), which were culled in Rishiri Island, Hokkaido Prefecture, Japan. Manganese, Cu, Rb, Mo, and Cd showed the highest levels in liver and kidney, Ag, Sb, and Hg in feather, and V, Sr, and Pb in bone. Maternal transfer rates of trace elements ranged from 0.8% (Cd) to as much as 65% (Tl) of maternal body burden. Large amounts of Sr, Ba, and Tl were transferred to the eggs, though maternal transfer rates of V, Cd, Hg, and Pb were substantially low. It also was observed that Rb, Sr, Cd, Cs, and Ba hardly were excreted into feathers. Concentrations of Co in liver, Ba in liver and kidney, and Mo in liver increased significantly with age, whereas Se in bone and kidney, Hg in kidney, and Cr in feather decreased with age in the known-aged black-tailed gulls (2-20 years old). It also was suggested that feathers might be useful to estimate contamination status of trace elements in birds, especially for Hg on a population basis, although the utility is limited on an individual basis for the black-tailed gulls. To our knowledge, this is the first report on the maternal transfer rate of multielements and also on the usefulness of feathers to estimate contamination status of Hg in birds on a population basis.

  6. Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter.

    PubMed

    Li, Zhu; Ma, Tingting; Yuan, Cheng; Hou, Jinyu; Wang, Qingling; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-09-01

    Four heavy metals (Cd, Cu, Pb and Zn), two metalloids (As and Sb) and two rare metals (In and Tl) were selected as target elements to ascertain their concentrations and accumulation in the soil-plant system and their effects on the structure of the soil microbial community in a typical area of rare metal smelting in south China. Twenty-seven soil samples 100, 500, 1000, 1500 and 3000 m from the smelter and 42 vegetable samples were collected to determine the concentrations of the target elements. Changes in soil micro-organisms were investigated using the Biolog test and 454 pyrosequencing. The concentrations of the eight target elements (especially As and Cd) were especially high in the topsoil 100 m from the smelter and decreased markedly with increasing distance from the smelter and with increasing soil depth. Cadmium bio-concentration factors in the vegetables were the highest followed by Tl, Cu, Zn, In, Sb, Pb, and then As. The concentrations of As, Cd and Pb in vegetables were 86.7, 100 and 80.0 %, respectively, over the permissible limits and possible contamination by Tl may also be of concern. Changes in soil microbial counts and average well colour development were also significantly different at different sampling distances from the smelter. The degree of tolerance to heavy metals appears to be fungi > bacteria > actinomycetes. The 454 pyrosequencing indicates that long-term metal contamination from the smelting activities has resulted in shifts in the composition of the soil bacterial community.

  7. Effects of heavy metal pollution in the Pilcomayo river system Bolivia, on resident human populations

    NASA Astrophysics Data System (ADS)

    Hudson-Edwards, K. A.; Miller, J. R.; Presto, D.; Lechler, P. J.; Macklin, M. G.; Miners, J. S.; Turner, J. N.

    2003-05-01

    The Pilcomayo river in Bolivia drains the Potosi mining district and flows downstream, exposing indigenous populations, who rely on the river for drinking water, irrigation and fish, to elevated levels of toxic metals. A preliminary analysis of agricultural soil and crops from four riverside Pilcomayo communities has shown that many agricultural fields are contaminated with heavy metals (Ag, Cd, Cu, Pb, Sb, Zn) and arsenic(As) However, concentrations of these elements in most crops are within guideline values. Concentrations of metals and As in samples of drinking water are, for the most part, lower than concentrations in Pilcomayo river water taken at the respective communities, and the drinking water concentrations are within guideline values. Exceptions are Sb and As concentrations in two of the communities. In irrigation waters, Zn and Pb exceed recommended guideline values in two of the communities, and may lead to highZn and Pb values in some crops and soils. The work carried out to date suggests that the strategies used by these communities appear to considerably reduce their risks to exposure. Work is ongoing to develop more complex and effective strategies based on further geochemical analyses and social science surveys.

  8. The evaluation of the genotoxicity of two food preservatives: sodium benzoate and potassium benzoate.

    PubMed

    Zengin, N; Yüzbaşıoğlu, D; Unal, F; Yılmaz, S; Aksoy, H

    2011-04-01

    In this study, the genotoxic effects of sodium benzoate (SB) and potassium benzoate (PB) were investigated in cultured human peripheral lymphocytes using chromosomal aberrations (CA), sister chromatid exchange (SCE), and micronuclei (MN). The level of nuclear DNA damage of SB and PB were also evaluated using the comet assay. The lymphocytes were incubated with different concentrations of SB (6.25, 12.5, 25, 50, and 100 μg/ml) and PB (62.5, 125, 250, 500, and 1000 μg/ml). A significant increase was observed in CA, SCE, and MN, in almost all treatments compared to negative controls. SB and PB significantly decreased the mitotic index (MI) in all the treatments, compared to the negative controls. However, neither of the additives affected the replication index (RI). Although SB significantly increased DNA damage, PB did not cause a significant increase in DNA damage. The present results indicate that SB and PB are clastogenic, mutagenic and cytotoxic to human lymphocytes in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogush, Anna; Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk; Wood, Ian

    Highlights: • 66 elements, including “critical strategic elements” were determined in UK EfW APC residues. • Metal pollutants (Zn, Pb, As, Cd, Cu, Mo, Sb, Sn, Se, Ag and In) are enriched in APC residues. • Metal pollutants were widely associated with fine deposits of highly soluble CaCl{sub x}OH{sub 2−x}. • Specific metal (Zn, Pb, Cu)-bearing minerals were also detected in APC residues. - Abstract: Air pollution control (APC) residues from energy-from-waste (EfW) are alkaline (corrosive) and contain high concentrations of metals, such as zinc and lead, and soluble salts, such as chlorides and sulphates. The EPA 3050B-extractable concentrations ofmore » 66 elements, including critical elements of strategic importance for advanced electronics and energy technologies, were determined in eight APC residues from six UK EfW facilities. The concentrations of Ag (6–15 mg/kg) and In (1–13 mg/kg), as well as potential pollutants, especially Zn (0.26–0.73 wt.%), Pb (0.05–0.2 wt.%), As, Cd, Cu, Mo, Sb, Sn and Se were found to be enriched in all APC residues compared to average crustal abundances. Results from a combination of scanning electron microscopy with energy dispersive X-ray spectroscopy and also powder X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy give an exceptionally full understanding of the mineralogy of these residues, which is discussed in the context of other results in the literature. The present work has shown that the bulk of the crystalline phases present in the investigated APC residues include Ca-based phases, such as CaCl{sub x}OH{sub 2−x}, CaCO{sub 3}, Ca(OH){sub 2}, CaSO{sub 4}, and CaO, as well as soluble salts, such as NaCl and KCl. Poorly-crystalline aragonite was identified by FTIR. Sulphur appears to have complex redox speciation, presenting as both anhydrite and hannebachite in some UK EfW APC residues. Hazardous elements (Zn and Pb) were widely associated with soluble Ca- and Cl-bearing phases (e.g. CaCl{sub x}OH{sub 2−x} and sylvite), as well as unburnt organic matter and aluminosilicates. Specific metal-bearing minerals were also detected in some samples: e.g., Pb present as cerussite; Zn in gahnite, zincowoodwardite and copper nickel zinc oxide; Cu in tenorite, copper nickel zinc oxide and fedotovite. Aluminium foil pieces were present and abundantly covered by fine phases, particularly in any cracks, probably in the form of Friedel’s salt.« less

  10. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p < 0.05) more enriched in mosses. Similar REE ratios were measured in soils, bedrock, lichens and mosses at each study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM signature and REE composition of mosses revealed that this biomonitor is highly influenced by throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This explained the higher enrichment measured in mosses for elements which concentration in deposition were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  11. Effects of thermochemical treatment on CuSbS 2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  12. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Geochemical peculiarities of sediments in the northeastern Black Sea

    NASA Astrophysics Data System (ADS)

    Rozanov, A. G.; Gursky, Yu. N.

    2016-11-01

    We present the results of chemical determinations of Al, Fe, Mn, Cu, Ni, Co, Cr, Pb, Sb, and As in Black Sea sediments over a profile from the Kerch Strait to the eastern part of a deep depression (2210 m). The lithological and geochemical variations were studied in the horizontal and vertical profiles of sediments up to 3 m thick. The tendencies in the distributions of the studied metals during Pleistocene and Holocene sedimentation were analyzed beginning from Neoeuxinian freshwater deposits via the overlaying Drevnechernomorian beds with elevated contents of sapropel to modern clayey carbonate deposits with coccolithophorids. Statistical factor analysis isolated five factors: two main factors (75% of the total dispersion) and three subordinate factors. The first leading biogenic factor (47% of dispersion) reflects the correlation between Corg, Cu, and Ni; the second terrigenous factor (28% of dispersion) combimes Fe, Al, Cr, and Sb. The chemical composition of the sediments reflects the manifestation of diagenesis of landslide processes and mud volcanism along with sedimentation regularities.

  14. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6.

    PubMed

    Feng, Zhenzhen; Wang, Yuanxu; Yan, Yuli; Zhang, Guangbiao; Yang, Jueming; Zhang, Jihua; Wang, Chao

    2015-06-21

    Band engineering is one of the effective approaches for designing ideal thermoelectric materials. Introducing an intermediate band in the band gap of semiconducting thermoelectric compounds may largely increase the carrier concentration and improve the electrical conductivity of these compounds. We test this hypothesis by Pb doping in Zintl Ca5In2Sb6. In the current work, we have systematically investigated the electronic structure and thermoelectric performances of substitutional doping with Pb on In sites at a doping level of 5% (0.2 e per cell) for Ca5In2Sb6 by using density functional theory combined with semi-classical Boltzmann theory. It is found that in contrast to Zn doping, Pb doping introduces a partially filled intermediate band in the band gap of Ca5In2Sb6, which originates from the Pb s states by weakly hybridizing with the Sb p states. Such an intermediate band dramatically increases the electrical conductivity of Ca5In2Sb6 and has little detrimental effect on its Seebeck coefficient, which may increase its thermoelectric figure of merit, ZT. Interestingly, a maximum ZT value of 2.46 may be achieved at 900 K for crystalline Pb-doped Ca5In2Sb6 when the carrier concentration is optimized. Therefore, Pb-doped Ca5In2Sb6 may be a promising thermoelectric material.

  15. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    PubMed

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  16. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,

  17. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    PubMed

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  18. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases

    NASA Astrophysics Data System (ADS)

    Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel

    2017-03-01

    Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.

  19. Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements.

    PubMed

    Boente, C; Sierra, C; Martínez-Blanco, D; Menéndez-Aguado, J M; Gallego, J R

    2018-05-15

    The present study focuses on soil washing enhancement via soil pretreatment with nanoscale zero-valent iron (nZVI) for the remediation of potentially toxic elements. To this end, soil polluted with As, Cu, Hg, Pb and Sb was partitioned into various grain sizes (500-2000, 125-500 and <125 μm). The fractions were pretreated with nZVI and subsequently subjected, according to grain size, to Wet-High Intensity Magnetic Separation (WHIMS) or hydrocycloning. The results were compared with those obtained in the absence of nanoparticles. An exhaustive characterization of the magnetic signal of the nanoparticles was done. This provided valuable information regarding potentially toxic elements (PTEs) fate, and allowed a metallurgical accounting correction considering the dilution effects caused by nanoparticle addition. As a result, remarkable recovery yields were obtained for Cu, Pb and Sb, which concentrated with the nZVI in the magnetically separated fraction (WHIMS tests) and underflow (hydrocyclone tests). In contrast, Hg, concentrated in the non-magnetic fraction and overflow respectively, while the behavior of As was unaltered by the nZVI pretreatment. All things considered, the addition of nZVI enhanced the efficiency of soil washing, particularly for larger fractions (125-2000 μm). The proposed methodology lays the foundations for nanoparticle utilization in soil washing operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Migration of trace elements from pyrite tailings in carbonate soils.

    PubMed

    Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J

    2002-01-01

    In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.

  1. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  2. Volatile Element Geochemistry in the Lower Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2004-01-01

    We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.

  3. Structural morphology of cotunnite, PbCl 2, laurionite, Pb(OH)Cl, and SbSI

    NASA Astrophysics Data System (ADS)

    Woensdregt, C. F.; Hartman, P.

    1988-03-01

    The structural morphology of compounds having the PbCl 2 and the closely related SbSI structures has been determined. Based upon the nine-coordination of the Pb atoms the F forms of the PbCl 2 structure are {110}, {020}, {120}, {011}, {200}, {111} , {201}, {121} and {211}. These forms are arranged in an order of increasing attachment energies, that were calculated using a broken bond model. In the SbSI structure type the Sb atom has a seven-coordination with the consequence that {020} becomes a different surface structure and that {120} is an S face. The theoretical habit of PbCl 2 and Pb(OH)Cl is short prismatic, elongated along the c axis, with {011} as terminal form. The appearance of {211} as main form on PbCl 2 when growth takes place from pure aqueous solution is ascribed to the preferential adsorption of OH - ions on that face. The predominance of {020} and {121} on PbCl 2 from solutions containing HCl is explained by adsorption of H 3O + on these faces. The theoretical habit of the SbSI structure type is slender prismatic {110} with {011} as terminal form.

  4. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  5. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  6. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of early PGM in combination with the newly formed mineral species Sb-paolovite-insizwaite-geversite-maslovite, niggliite, tetraferroplatinum, rustenburgite-atokite-zvyagintsevite, moncheite, majakite, plumbopalladinite, polarite in association with altaite. The late minerals of the middle stage include stannopalladinite, tatianaite-taimyrite, Ag-Pd-Pt tetraauricupride, and cuproauride. PGM and Au-Ag minerals of the late stage are represented by sobolevskite-sudburyite-kotulskite, maslovite-michenerite, low-Sb paolovite, hessite, cabriite, Au-Ag minerals with fineness of 870-003, froodite, Sb-free insizwaite, Bi-free geversite, and Sb-free niggliite. Electrum and küstelite in PGM aggregates are not zoned. Crystals of Au-Ag minerals that grow over PGM minerals are smoothly zoned. Their zoning may be direct (crystal margins are enriched in Ag), inverse, oscillatory, and complex. Despite favorable annealing conditions, exsolution structures are not identified in Au-Ag minerals from the Noril'sk ores. Sperrylite—the latest of pneumatolytic PGM—occurs as metacrysts up to 14 cm in size. Sperrylite, which replaces high-Sb minerals, contains up to 11 wt % Sb. Pneumatolytic noble-metal minerals originated under the effect of the fluids released during crystallization of sulfide melts in an extremely reductive setting and at extremely low fS2; temperature drops from ~450 to ~350°C. Metamorphic-hydrothermal Ag mineralization (native silver, Hg-silver, sulfides and selenides, chalcopyrite-lenaite solid solutions, argentopentlandite), Pd mineralization (vysotskite, palladoarsenide, vincentite, Sb-free Ag-paolovite, malyshevite, native palladium), and Pt mineralization (kharaelakhite, cooperite, native platinum) develop in those parts of orebodies that are affected by low-grade metamorphism.

  7. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale.

    PubMed

    Boonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, Kansri

    2017-05-01

    Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

  8. Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides

    NASA Astrophysics Data System (ADS)

    Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.; Mathew, X.

    2018-05-01

    In this work, CuSbS2 thin films were developed by annealing binary precursors deposited sequentially by rf magnetron sputtering. The recrystallization process was optimized and the films were extensively characterized using a number of tools such as XRD, Raman, SEM, energy dispersive x-ray spectroscopy, atomic force microscopy, Hall, UV–vis spectroscopy, Ellipsometry, Seebeck, and photoresponse. The influence of annealing temperature on the structure, morphology, elemental composition, optical and electrical properties are reported. Annealing below 350 °C resulted in famatinite (Cu3SbS4) and chalcostibite (CuSbS2) ternaries as well as binary phases. Phase-pure chalcostibite was obtained in the range of 350 °C–375 °C. At 400 °C, although CuSbS2 was predominant, tetrahedrite phase (Cu12Sb4S13) appeared as an additional phase. The elemental composition of the films was slightly sulfur deficient, and the atomic percentages of Cu, Sb and S showed a dependence on annealing temperature. The material properties of the phase-pure CuSbS2 thin films are: optical band gap in the range of 1.5–1.62 eV, absorption coefficient close to 105 cm‑1, atomic ratios of Cu/Sb ∼1 and (Cu + Sb)/S ∼1.2, crystal size 18.3–24.5 nm and grain size 50–300 nm. The films were photo-sensitive, showed p-type semiconductor behavior. Electrical resistivity, carrier density and hole mobility were 94–459 Ω cm, 1.6–7.0 × 1015 cm‑3 and 8.4–9.5 cm2 V‑1 s respectively.

  9. The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells.

    PubMed

    Xiang, Sisi; Li, Weiping; Wei, Ya; Liu, Jiaming; Liu, Huicong; Zhu, Liqun; Chen, Haining

    2018-05-18

    α-CsPbI3 with the most suitable band gap for all-inorganic perovskite solar cell (PSC) application faces an issue of phase instability at low temperature in an air atmosphere. Herein, through stoichiometric investigation, α-CsPbI3 is successfully obtained with excess CsI at 110 °C in an air atmosphere. By doping α-CsPbI3 with Sb, phase stability is further enhanced and the film morphology is also improved. Carbon-based perovskite solar cells (C-PSCs) based on CsPb0.96Sb0.04I3 achieve a promising power conversion efficiency (PCE) of 5.18%, a record value for α-CsPbI3-based PSCs without hole transport materials. Significantly, the CsPb0.96Sb0.04I3 C-PSCs retain 93% of the initial PCE after 37 days of storage in an air atmosphere. Therefore, the synergistic effect of non-stoichiometry and Sb-doping presents a promising strategy to design all-inorganic lead halide PSCs with high performance and stability.

  10. Ultrasound-assisted HCl-NaCl leaching of lead-rich and antimony-rich oxidizing slag.

    PubMed

    Zhang, Rong Liang; Zhang, Xiao Fei; Tang, Shu Zhen; Huang, Ai Dong

    2015-11-01

    Lead-rich and antimony-rich oxidizing slag was subjected to regular HCl-NaCl leaching, with the experimental conditions optimized under which ultrasound was introduced. After only 15 min of ultrasound-assisted leaching, the leaching rate of Sb resembled that after 45 min of regular leaching. Ultrasonic treatment considerably elevated the leaching rates of Sb and Pb, and shortened the leaching time. With the decrease of particle size, the leaching rate of Sb and Pb increased gradually. Especially, as the particle size of the slag was greater than 0.217 mm, the ultrasonic leaching effects of Sb and Pb were significantly higher than that of regular leaching effects. The temperature exhibited great effect on ultrasonic leaching performance. As the temperature increased, the leaching rates of Sb and Pb increased step by step. In case the temperature was higher than 85°C, the increasing speed of the leaching rates for Sb and Pb tended to be slow. Increasing ultrasonic power could augment the leaching rate or accelerate the procedure till the same leaching rate. However, since ultrasound failed to energize the formation of new reaction pathways, the maximum leaching rates of Sb and Pb were determined by their phase compositions rather than by ultrasonic field. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Trace element concentrations in needles and bark of Larix Sibirica within the Mo-W ore field (Buryat Republic, Russia)

    NASA Astrophysics Data System (ADS)

    Timofeev, Ivan; Kosheleva, Natalia

    2016-04-01

    The present study aims to assess the changes in the trace element (TE) composition of Larix Sibirica species growing in the impact area of Dzhida Mo-W plant in the Zakamensk city. The objectives of the study were: (1) to reveal the biogeochemical background features and changes in the TE composition of larch needles and bark in the mining region; (2) to determine patterns of spatial distribution of TE content in larch organs; (3) to assess the ecological state of larch plantation in different land-use zones of the city. A landscape-geochemical survey of the territory was carried out in summer of 2013. Total of 21 mixed (taken from 3-5 trees) samples of needles and bark were collected in undisturbed and different land-use areas. The bulk contents of TEs in dry plant samples were analyzed by mass spectrometry with induced coupled plasma. Sixteen priority pollutants were selected for thorough analysis, including elements of hazard classes I (Zn, As, Pb, Cd), II (Cr, Co, Ni, Cu, Mo, Sb), III (V, Sr, Ba, W), and some others (Sn, Bi). Concentrations of TEs (C_b) in background trees were compared with the global clarks (C_g) for annual increment of terrestrial vegetation (Dobrovol'skii 2003) via calculating the global enrichment EF_g=C_b/Cg and dispersion factors DF_g=C_g/C_b}. The concentrations of the elements in the urban samples Ci were grouped depending on the type of land use and compared with the background (C_b) via calculating the local enrichment EF_l=C_i/Cb and dispersion factors DF_l=C_b/C_i. The ecological state of the urban plants was diagnosed using three TE ratios. The Fe/Mn ratio represents photosynthetic activity with optimum value 1.5-2.5. The Pb/Mn ratio characterizes balance between technogenic and biophilic elements, its value for unpolluted terrestrial plants is 0.006. The Cu/Zn ratio determines the proportionality in the provision of enzyme synthesis with these metals, its optimum value is 0.27. TE composition of needles of background larch is characterized by increased concentrations of ?? ? Mn (EF_g=2.9) ? Sr (1.5), and reduced ones for Ni, Co, Pb, Mo, Sn, V (DF_l=5.1-22.1), that of Cd, Cu, Zn are close to global clarks. Ba, Pb, Cd (EF_g=3.5-2.3) are accumulated in the bark, Cu, Zn, Co, Cr, Ni, Sn dissipate (DF_g=2.1-3.7), and the content of Mn, Sr, Mo, V, As is close to Cg. In the city larch needles accumulate Cr (EF_l=37.8), W (18.9), V, Pb, Bi (8.6-11.4), Sb, Ni, Cd, Sn (6.6-2.5); Mn (DF_l=3.1) is among scattered. Changes in the TE composition of larch bark is most clearly evident in the industrial area, where high concentrations of W, Sn (EF_l=5.4-6.6), Sb, Pb, As (2.8-3.4), Mo, Cd, V, Bi, Zn (1.5-2.0) and low ones -- of Cr, Ni, Co, Ba (DF_l=4.6-2.1) are observed. As an indicator of long-term pollution, bark displays that vegetation of industrial zone has been subject previously to most intense anthropogenic impact, so, Pb/Mn=0.06 was there the highest. After plant closing residential area experiences the greatest impact according to Fe/Mn=4.7; Pb/Mn=0.04 values in the needles. This is caused by the active transport of aeolian dry material of tailings. 1. Dobrovol'skii VV (2003) Basics of biogeochemistry: the textbook for students of higher educational institutions. Moscow, "Academia" Publ., 400 p.

  12. High temperature neutron powder diffraction study of the Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemoine, Pierric, E-mail: pierric.lemoine@univ-rennes1.fr; Bourgès, Cédric; Barbier, Tristan

    Ternary copper-containing sulfides Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu{sub 12}Sb{sub 4}S{sub 13} decomposes above ≈792 K into Cu{sub 3}SbS{sub 3}, and (ii) Cu{sub 4}Sn{sub 7}S{sub 16} decomposes above ≈891 K into Sn{sub 2}S{sub 3} and amore » copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu{sub 3}SnS{sub 4} stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu{sub 12}Sb{sub 4}S{sub 13} are in fair agreement with recent published data, the decomposition behavior of Cu{sub 4}Sn{sub 7}S{sub 16} differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu{sub 4}Sn{sub 7}S{sub 16} and tetrahedrite Cu{sub 12}Sb{sub 4}S{sub 13} phases at 300 K, and for the high temperature form of skinnerite Cu{sub 3}SbS{sub 3} at 843 K. - Graphical abstract: In situ neutron powder diffraction data (heating rate of 2.5 K/min) indicates that (i) the ternary Cu{sub 12}Sb{sub 4}S{sub 13} phase is stable up to 792 K and decomposes at higher temperature into Cu{sub 3}SbS{sub 3} and Cu{sub 1.5}Sb{sub 0.5}S{sub 2}, and (ii) the Cu{sub 4}Sn{sub 7}S{sub 16} phase is stable up to 891 K and decomposes at higher temperature into Sn{sub 2}S{sub 3} and a cubic phase of sphalerite ZnS-type structure. Sulfur volatilization likely occurs in order to balance the overall stoichiometry.« less

  13. Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi

    1989-04-01

    Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.

  14. Environmental and dietary exposure of young children to inorganic trace elements.

    PubMed

    Glorennec, Philippe; Lucas, Jean-Paul; Mercat, Anne-Camille; Roudot, Alain-Claude; Le Bot, Barbara

    2016-12-01

    Children are exposed to toxic metals and metalloids via their diet and environment. Our objective was to assess the aggregate chronic exposure of children aged 3-6years, living in France, to As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V present in diet, tap water, air, soil and floor dust in the years 2007-2009. Dietary data came from the French Total Diet Study, while concentrations in residential tap water, soil and indoor floor dust came from the 'Plomb-Habitat' nationwide representative survey on children's lead exposure at home. Indoor air concentrations were assumed to be equal to outdoor air concentrations, which were retrieved from regulatory measurements networks. Human exposure factors were retrieved from literature. Data were combined with Monte Carlo simulations. Median exposures were 1.7, 0.3, 10.2, 34.1, 60.3, 0.7, 0.1, 44.3, 1.5 and 95th percentiles were 4.4, 0.5, 15.8, 61.3, 98.3, 2.5, 0.1, 111.1, 2.9μg/kgbw/d for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. Dietary exposures dominate aggregate exposures, with the notable exception of Pb - for which soils and indoor floor dust ingestion contribute most at the 95th percentile. The strengths of this study are that it aggregates exposures that are often estimated separately, and uses a large amount of representative data. This assessment is limited to main diet and residential exposure, and does not take into account the relative bioavailability of compounds. These results could be used to help target prevention strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics.

    PubMed

    Riha, Shannon C; Koegel, Alexandra A; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-02-08

    Copper antimony sulfide (CuSbS 2 ) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>10 4 cm -1 ), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm -1 , as well as a hole concentration of 10 15 cm -3 . Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2 /CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.

  16. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2015-07-01

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10(-6)) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Tunable photoluminescent metal-organic-frameworks and method of making the same

    DOEpatents

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.

    2017-08-22

    The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.

  18. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization not only in the Omsukchan Trough, but also in OCVB as a whole, is caused by superposition of the younger Dogda-Erikit Hg-bearing belt on the older Ag-bearing Omsukchan Trough. In practice, the results can be used to determine the general line of prospecting and geological exploration at objects of this type.

  19. Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  20. Concentrations and human health implications of heavy metals in market foods from a Chinese coal-mining city.

    PubMed

    Cheng, Jiali; Zhang, Xianhui; Tang, Zhenwu; Yang, Yufei; Nie, Zhiqiang; Huang, Qifei

    2017-03-01

    Concentrations of heavy metals (As, Cd, Co, Cr, Cu, Hg, Pb and Sb) in vegetables, meat and fish purchased from traditional agri-product markets in Huainan, China, were measured. Concentrations of the eight metals in most of the measured samples were lower than their respective maximum allowable concentrations (MACs), except for Pb, Cd, Cr and Cu in some of the samples exceeded safe limits. Based on local food consumption, the intake of individual metals was estimated to be less than their respective recommended limits. However, the overall target hazard quotient (THQ) for the eight metals was 1.07 based on the digestion of leafy vegetables and 2.12 based on the consumption of all of the investigated foods. The results of this study suggest that the overall risk from exposure to multiple metals in foods should be of concern, even though low-to-moderate heavy metal pollution is present in foods from Huainan markets. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant.

    PubMed

    Fedotov, Petr S; Ermolin, Mikhail S; Ivaneev, Alexandr I; Fedyunina, Natalia N; Karandashev, Vasily K; Tatsy, Yury G

    2016-03-01

    Continuous-flow (dynamic) leaching in a rotating coiled column has been applied to studies on the mobility of Zn, Cd, Cu, Pb, Ni, Sb, As, S, and other potentially toxic elements in atmospherically deposited dust samples collected near a large copper smelter (Chelyabinsk region, Russia). Water and simulated "acid rain" (pH 4) were used as eluents. The technique enables not only the fast and efficient leaching of elements but as well time-resolved studies on the mobilization of heavy metals, sulphur, and arsenic in environmentally relevant forms to be made. It is shown that up to 1.5, 4.1, 1.9, 11.1, and 46.1% of Pb, As, Cu, Zn, and S, correspondingly, can be easily mobilized by water. Taking into consideration that the total concentrations of these elements in the samples under investigation are surprisingly high and vary in the range from 2.7 g/kg (for arsenic) to 15.5 g/kg (for sulphur), the environmental impact of the dust may be dramatic. The simulated acid rain results in somewhat higher recoveries of elements, except Cu and Pb. The proposed approach and the data obtained can very useful for the risk assessment related to the mobility of potentially toxic elements and their inclusion in the biogeochemical cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.

    The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.

  3. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  4. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; Xu, Qishu; Tan, Guolong

    2016-09-01

    CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.

  5. Role of the interlayer coupling for the thermoelectric properties of CuSbS2 and CuSbSe2

    NASA Astrophysics Data System (ADS)

    Alsaleh, Najebah; Singh, Nirpendra; Schwingenschlogl, Udo

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined using density functional theory and semi-classical Boltzmann transport theory, in order to investigate the role of the interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterised by lower power factors. Therefore, the interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2 even though it is of weak van der Waals type. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

  6. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE PAGES

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...

    2015-04-27

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  7. The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings.

    PubMed

    Hartley, J; Cairney, J W; Freestone, P; Woods, C; Meharg, A A

    1999-09-01

    Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.

  8. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    NASA Astrophysics Data System (ADS)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  9. Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics: the role of Sb valency and Cu d levels.

    PubMed

    Do, Dat; Ozolins, Vidvuds; Mahanti, S D; Lee, Mal-Soon; Zhang, Yongsheng; Wolverton, C

    2012-10-17

    In this paper we discuss the results of ab initio electronic structure calculations for Cu(3)SbSe(4) (Se4) and Cu(3)SbSe(3) (Se3), two narrow bandgap semiconductors of thermoelectric interest. We find that Sb is trivalent in both the compounds, in contrast to a simple nominal valence (ionic) picture which suggests that Sb should be 5 + in Se4. The gap formation in Se4 is quite subtle, with hybridization between Sb 5s and the neighboring Se 4s, 4p orbitals, position of Cu d states, and non-local exchange interaction, each playing significant roles. Thermopower calculations show that Se4 is a better p-type system. Our theoretical results for Se4 agree very well with recent experimental results obtained by Skoug et al (2011 Sci. Adv. Mater. 3 602).

  10. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides

    NASA Astrophysics Data System (ADS)

    Kiseeva, Ekaterina S.; Wood, Bernard J.

    2015-08-01

    We develop a comprehensive model to describe trace and minor element partitioning between sulphide liquids and anhydrous silicate liquids of approximately basaltic composition. We are able thereby to account completely for the effects of temperature and sulphide composition on the partitioning of Ag, Cd, Co, Cr, Cu, Ga, Ge, In, Mn, Ni, Pb, Sb, Ti, Tl, V and Zn. The model was developed from partitioning experiments performed in a piston-cylinder apparatus at 1.5 GPa and 1300 to 1700 °C with sulphide compositions covering the quaternary FeSsbnd NiSsbnd CuS0.5sbnd FeO. Partitioning of most elements is a strong function of the oxygen (or FeO) content of the sulphide. This increases linearly with the FeO content of the silicate melt and decreases with Ni content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. We parameterised the effects by using the ε-model of non-ideal interactions in metallic liquids. The resulting equation for partition coefficient of an element M between sulphide and silicate liquids can be expressed as We used our model to calculate the amount of sulphide liquid precipitated along the liquid line of descent of MORB melts and find that 70% of silicate crystallisation is accompanied by ∼0.23% of sulphide precipitation. The latter is sufficient to control the melt concentrations of chalcophile elements such as Cu, Ag and Pb. Our partition coefficients and observed chalcophile element concentrations in MORB glasses were used to estimate sulphur solubility in MORB liquids. We obtained between ∼800 ppm (for primitive MORB) and ∼2000 ppm (for evolved MORB), values in reasonable agreement with experimentally-derived models. The experimental data also enable us to reconsider Ce/Pb and Nd/Pb ratios in MORB. We find that constant Ce/Pb and Nd/Pb ratios of 25 and 20, respectively, can be achieved during fractional crystallisation of magmas generated by 10% melting of depleted mantle provided the latter contains >100 ppm S and about 650 ppm Ce, 550 ppm Nd and 27.5 ppb Pb. Finally, we investigated the hypothesis that the pattern of chalcophile element abundances in the mantle was established by segregation of a late sulphide matte. Taking the elements Cu, Ag, Pb and Zn as examples we find that the Pb/Zn and Cu/Ag ratios of the mantle can, in principle, be explained by segregation of ∼0.4% sulphide matte to the core.

  11. Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam

    2015-12-01

    Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.

  12. Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3

    PubMed Central

    Hao, Feng; Qiu, Pengfei; Song, Qingfeng; Chen, Hongyi; Lu, Ping; Ren, Dudi; Shi, Xun; Chen, Lidong

    2017-01-01

    Recently, Cu-containing p-type Bi0.5Sb1.5Te3 materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi0.5Sb1.5Te3 is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi0.5Sb1.5Te3 materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance—with a maximum thermoelectric figure of merit of around 1.4 at 430 K—has been achieved in Cu0.005Bi0.5Sb1.495Te3, which is 70% higher than the Bi0.5Sb1.5Te3 matrix. PMID:28772610

  13. Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te₃.

    PubMed

    Hao, Feng; Qiu, Pengfei; Song, Qingfeng; Chen, Hongyi; Lu, Ping; Ren, Dudi; Shi, Xun; Chen, Lidong

    2017-03-01

    Recently, Cu-containing p-type Bi 0.5 Sb 1.5 Te₃ materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi 0.5 Sb 1.5 Te₃ is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi 0.5 Sb 1.5 Te₃ materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance-with a maximum thermoelectric figure of merit of around 1.4 at 430 K-has been achieved in Cu 0.005 Bi 0.5 Sb 1.495 Te₃, which is 70% higher than the Bi 0.5 Sb 1.5 Te₃ matrix.

  14. Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M.; Ma, L.Q.

    1998-11-01

    It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less

  15. Low-temperature atomic layer deposition of CuSbS 2 for thin-film photovoltaics

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Emery, Jonathan D.; ...

    2017-01-24

    Copper antimony sulfide (CuSbS 2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>10 4 cm –1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm –1, as wellmore » as a hole concentration of 10 15 cm –3. Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.« less

  16. Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey.

    PubMed

    Dartan, Güler; Taşpınar, Fatih; Toröz, İsmail

    2015-03-01

    This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandırma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As < Se < Sb < Pb < Co < Cd < V < Cu < Ni < Zn < Cr < P < Mn < Na < K < Mg < Fe < Ca < Al. According to the Pearson cross-correlation results for the element pairs of Fe-Mg (0.635), Fe-Cu (0.863), Fe-Cd (0.545), Cu-Cd (0.630), Mn-Cr (0.698), Mn-Al (0.523), Cr-Mg (0.543), Al-P (0.508), Na-K (0.616), and C-Zn (0.703), the metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.

  17. Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA.

    PubMed

    Majestic, Brian J; Turner, Joseph A; Marcotte, Aurelie R

    2012-10-01

    Because people spend almost 90% of their time indoors, ambient air monitors may severely underestimate actual exposure to atmospheric particulate matter (PM). Therefore, it becomes increasingly important to better understand the microenvironments where people are spending their time. For preadolescent children, the best estimates of exposure may be inside of their school. In this study, 11 size fractions of PM were collected inside and outside of an elementary school in Flagstaff, AZ, USA. In particles<1 μm (PM1), the total mass indoors was similar to the mass outdoors (indoor:outdoor, I:O, ratio=0.92 ± 0.16). In the PM1-10 fraction, however, the mass concentration inside the school was highly elevated relative to outside the school (I:O ratios=13 ± 3). Mass concentrations of 27 elements were analyzed by ICP-MS. For all metals except for antimony (Sb), the PM1 and PM1-10 I:O ratios are found to be similar to the overall PM mass (near 1 and 13, respectively). In addition, indoor and outdoor particle size distributions reveal a crustal character for every element except Cu, Zn, Pb, and Sb. Therefore, we hypothesize that most of the PM mass inside the school is a result of transport from outside the school followed by resuspension from floors and clothing. In the PM1 fraction, the indoor mass of Sb was 86 times greater than the outdoor mass and had an air concentration of 17 ngm(-3) - greater than many urban areas around the world. Cu:Sb ratios and size distribution functions suggest that the excess source of PM1 indoor Sb results from the suspension of embedded Sb (used as a flame retardant) in the carpeting. This is the first study to observe elevated submicron Sb in schools and further studies are required to determine if this is a widespread health risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge

    2018-03-01

    To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.

  19. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2000-11-01

    An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations observed in nature and produced in laboratory studies. Finally, we obtain estimates for the Gibbs energies of formation of Cu 10Fe 2Sb 4S 13 and Ag 10Fe 2Sb 4S 13 fahlores (-63.92 and +11.46 kJ/gfw at 200°C and -75.73 and -3.31 kJ/gfw at 400°C).

  20. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  1. Remediation of heavy metal contaminated sites in the Venice lagoon and conterminous areas (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Maleci, Laura

    2013-04-01

    The lagoon of Venice and the conterminous land are affected by heavy contamination of anthropogenic origin, and for this reason the whole area has been classified as site of national interest, and must be restored. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and organic compounds (IPA, PCB, Dioxine) have been identified as the main contaminants at various sites, owing to agriculture and industrial wastes discharged on soils and convoyed to the lagoon. Five case studies of soil remediation are here reported. S. Giuliano is a former palustrine area reclaimed since the 60's with various human transported materials (HTM). In this area, hot spots overpassing the reference limits for residential and green areas have been recorded for Cd, Cu, Pb, Zn and IPA. Campalto is a site bordering the Venice lagoon and subjected to oscillating water level, that enhances metal mobility; diffuse contamination by heavy metals, particularly Pb, has been recorded at this site, utilized since 30 years for military and sport (skate) activities. Marghera is dramatically famous for its numerous factories and for oil refineries that affected the lagoon sediments since the 50's. Sediments proved heavily contaminated by As (up to 137 mgkg-1), Cd (57 mgkg-1), Hg (30mgkg-1), Ni, Pb (700 mgkg-1), Zn (5818 mgkg-1). Murano is a small island where many glass factories (the most famous all over the world) are running since XIII century. Glass is stained with several metals and, moreover, some substances are used to regulate fusion temperature, purity, etc., and therefore the surrounding environment is heavily contaminated by these substances. Mean concentrations of As (429 mgkg-1), Cd (1452 mgkg-1), Pb (749 mgkg-1), Zn (1624 mgkg-1), Se (341 mgkg-1), Sb (74 mgkg-1) widely overpass the reference values for both residential and industrial areas in national guidelines. Molo Serbatoi is a former oil container currently under restoration in the port of Venice. Soil contamination by As, Hg, Zn and IPA was recorded, while groundwater proved to be contaminated by As, Cd, Cr, Hg, Pb, Cu, Se, Ni, Mn, Sb, Fe. Restoration of the studied sites has been carried out by phytoremediation with native or exotic vegetation (Fragmites australis, Juncus lacustris,Puccinellia palustris, Limonium serotinum, Salicornia glauca, Spartina maritima, Pteris vittata) or cultivated plants (Heliantus annuus, Zea mais, Brassica napus, Brassica juncea). Results are somewhat contradictory. At S. Giuliano, the exotic fern (Pteris vittata), consistently with data from current literature, showed high ability to accumulate As, particularly in aerial parts. At Campalto, native vegetation proved ineffective for phytoextraction, but suitable for phytostabilization, owing to a root barrier effect. In the lagoon sediments from Marghera, Spartina proved more effective than Fragmites to uptake metals, while cultivated plants could not survive to high heavy metal concentrations. At Murano, Pteris vittata proved highly effective to accumulate As, but also resistant to elevated concentrations of co-existing metals (Cd, Pb, Se, Zn), with clear signals of growth sufference and a drastic reduction of sorption capacity only in the presence of very high Cd concentration. At Molo Serbatoi, phytoremediation could not be applied in absence of a chelating agent (e.g. EDTA), which could enhance metal mobilization: therefore, soil has been stored, selected and finally (the most contaminated part) delivered to a landfill, while groundwater will be remediated by bioremediation techniques.

  2. The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Greaney, Allison T.; Rudnick, Roberta L.; Helz, Rosalind T.; Gaschnig, Richard M.; Piccoli, Philip M.; Ash, Richard D.

    2017-08-01

    We quantify the behavior of Cu, Ga, Ge, As, Mo, Ag, Cd, In, Sn, Sb, W, Tl, Pb, and Bi during the differentiation of a picritic magma in the Kilauea Iki lava lake, Hawaii, using whole rock and glass differentiation trends, as well as partition coefficients in Cu-rich sulfide blebs and minerals. Such data allow us to constrain the partitioning behavior of these elements between sulfide and silicate melts, as well as the chalcophile element characteristics of the mantle source of the Kilauea lavas. Nearly all of the elements are generally incompatible on a whole-rock scale, with concentrations increasing exponentially below ∼6 wt% MgO. However, in-situ laser ablation data reveal that Cu, Ag, Bi, Cd, In, Pb, and Sn are chalcophile; As, Ge, Sb, and Tl are weakly chalcophile to lithophile; and Mo, Ga, and W are lithophile. The average Dsulfide/silicate melt values are: DAg = 1252 ± 1201 (2SD), DBi = 663 ± 576, DCd = 380 ± 566, DIn = 40 ± 34, DPb = 34 ± 18, DSn = 5.3 ± 3.6, DAs = 2.4 ± 7.6, DGe = 1.6 ± 1.4, DSb = 1.3 ± 1.5, DTl = 1.1 ± 1.7, DMo = 0.56 ± 0.6, DGa = 0.10 ± 0.3, and DW = 0.11 ± 0.1. These findings are consistent with experimental partitioning studies and observations of Ni-rich sulfide liquid in mid-ocean ridge basalts (MORB), despite the different compositions of the KI sulfides. The KI glasses and whole rocks are enriched in As, Ag, Sb, W, and Bi, relative to elements of similar compatibility (as established by abundances in MORB), mimicking enrichments found in basalts from the Manus back arc basin (Jenner et al., 2012) and the upper continental crust (UCC). These enrichments suggest the presence of terrigenous sediments in the Kilauea mantle source. The KI source is calculated to be a mixture of depleted MORB mantle (DMM) and 10-20% recycled crust composed of MORB and minor terrigenous sediments.

  3. Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Guo, Jixiao; Jiao, Qing; He, Xiaolong; Guo, Hansong; Tong, Jianghao; Zhang, Zhihang; Jiang, Fuchao; Wang, Guoxiang

    2018-03-01

    Dy3+-doped Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses were prepared by traditional melt quenching method. The effect of halide PbI2 on the physical and optical properties of Dy3+ ions was investigated. The density and ionic concentration of the host sample increased with the introduction of PbI2 halides, whereas the refractive index at 1.55 μm decreased. The Judd-Ofelt parameters showed that Ω2 increased in PbI2-modified glass, whereas the Ω6 value showed the opposite tendency. Infrared emission spectrum also showed that the intensity increased with PbI2 addition, and considerable enhancement at 2.8 μm was observed in the mid-infrared region. The halide PbI2 promoted the reduction of phonon energy of the host and the improvement of the laser pump efficiency, which led to the construction of optimized infrared glass materials for optical applications.

  4. Evaluation of the leaching behavior of incineration bottom ash using seawater: A comparison with standard leaching tests.

    PubMed

    Lin, Wenlin Yvonne; Heng, Kim Soon; Nguyen, Minh Quan; Ho, Jin Rui Ivan; Mohamed Noh, Omar Ahmad Bin; Zhou, Xue Dong; Liu, Alec; Ren, Fei; Wang, Jing-Yuan

    2017-04-01

    Batch and column tests were conducted on untreated incineration bottom ash (IBA) samples from two incineration plants in Singapore, using seawater as the leachant. The main objective of this study was to investigate the change in the leaching behavior of certain elements (i.e. As, Cd, Cr, Cu, Ni, Pb, Sb, Se and Zn) when IBA comes into contact with seawater. Such an investigation using seawater as leachant was not commonly carried out when investigating leaching behavior in IBA. The leaching tests were then carried out on the same IBA samples using DI water, as a comparison. Lower level of leaching was observed for Pb and Zn when seawater was used as the leachant. Cr and Sb showed significant cumulative release at Liquid-to-Solids (L/S) ratio 5 in the seawater column leaching. The influence of Dissolved Organic Carbon (DOC) on Cu leaching seems to decrease after L/S 2 when using seawater in the column test. Although the leaching behavior of IBA was affected when seawater was used, for the column test, there was no significant difference during the initial release when compared to DI water. The initial L/S fractions collected were important as the low L/S ratios represent the pore water concentration and the maximum output in an actual application. The results from this study would be useful for the future study on using IBA in marine applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  6. Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China.

    PubMed

    Zhao, Weituo; Ding, Lei; Gu, Xiaowen; Luo, Jie; Liu, Yunlang; Guo, Li; Shi, Yi; Huang, Ting; Cheng, Shenggao

    2015-11-01

    Due to the high threat to human health and the ecosystem from metals, the levels and distribution of As, Hg, Cr, Co, Ni, Cu, Zn, Cd, Pb, Mn, V, Sn, Sb, Li and Be in various layers of soil from an e-waste recycling area in Guiyu, China were investigated. The extent of pollution from the metals in soil was assessed using enrichment factors (EFs) and the Nemerow pollution index (P N ). To determine the metals' integrated potential ecological risks, the potential ecological risk index (RI) was chosen. The concentrations of Hg, Ni, Cu, Cd, Pb, Sn and Sb were mainly enriched in the topsoil. EF values (2-5) of the elements Hg, Co, Ni, Zn, Sn, Li and Be revealed their moderate enrichment status in the topsoil, derived from e-waste recycling activities. P N presented a decreasing trend in different layers in the order topsoil (0-20 cm) > deep soil (100-150 cm) > middle soil (50-100 cm) > shallow soil (20-50 cm). With higher potential ecological risk factor (E(i)), Hg and Cd are the main contributors to the potential ecological risk. With respect to the RI, all the values in soil from the study area exceeded 300, especially for the soil at sites S2, S4, S5, S7 and S8, where RI was greater than 600. Therefore, immediate remediation of the contaminated soil is necessary to prevent the release of metals and potential ecological harm.

  7. Lattice dynamics of A Sb2O6 (A =Cu , Co) with trirutile structure

    NASA Astrophysics Data System (ADS)

    Maimone, D. T.; Christian, A. B.; Neumeier, J. J.; Granado, E.

    2018-03-01

    Raman spectroscopy experiments on single crystals of CuSb2O6 and CoSb2O6 quasi-one-dimensional antiferromagnets with trirutile crystal structure were performed, with a focus on the first material. The observed Raman-active phonon modes and previously reported infrared-active modes were identified with the aid of ab initio lattice dynamics calculations. The structural transition between monoclinic β -CuSb2O6 and tetragonal α -CuSb2O6 phases at Ts=400 K is manifested in our spectra by a "repulsion" of two accidentally quasidegenerate symmetric modes below Ts, caused by a phonon mixing effect that is only operative in the monoclinic β -CuSb2O6 phase due to symmetry restrictions. Also, two specific phonons, associated with CuO6 octahedra rotation and with a Jahn-Teller elongation mode, soften and broaden appreciably as T →Ts . A crossover from a displacive to an order-disorder transition at Ts is inferred.

  8. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances

    PubMed Central

    Ouyang, Zhongliang; Li, Dawen

    2016-01-01

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm−2 at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density. PMID:27052592

  9. Monetary alloys in Iron Age Armorica (Finistère, France): The singular case of the Osismi tribe

    NASA Astrophysics Data System (ADS)

    Guerra, M. F.; Abollivier, Ph.

    2016-06-01

    The analysis by PIXE and PAA of 64 coins struck in Iron Age Armorica by the Osismi tribe revealed the use of a different system from the usual Celtic Gaul tri-metallic system. The gold-based alloy (Au-Ag-Cu) firstly issued is debased over time to become a silver-based alloy (Ag-Cu-Sn). Based on the analytical data, two chronological phases were defined and dates of issuing could be ascribed to the coin-types. The presence of Sn and Sb in the alloys and the low contents of Pb were used in the attribution of 9 specimens of unknown origin to the Osismi monetary system. Considerations on the mints supplies could also be provided.

  10. Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Lubietová-Svätodušná, Slovakia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bor,; #269; inová rAdková, AnežkA

    The legacy of copper (Cu) mining at Špania Dolina-Piesky and Lubietová-Svätodušná (central Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony (Sb), arsenic (As), Cu, and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and sulfosalt solid-solution tetrahedrite-tennantite {Cu6[Cu4(Fe,Zn)2]Sb4S13–Cu6[Cu4(Fe,Zn)2]As4S13} that show wide-spread oxidation characteristic by olive-green color secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron microprobe analyses have been used to determine the mineralogy, chemical composition, element distribution, and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock. Our results show thatmore » the mobility of Sb is limited by the formation of oxidation products such as tripuhyite and roméite group mineral containing 36.54 wt% Sb for samples where the primary mineral chemical composition is close to tetrahedrite end-member. Antimony K-edge μ-XANES spectra of these oxidation products indicate that the predominant Sb oxidation state is 5+. Arsenic and Cu are also hosted by amorphous phases containing 6.23 wt% Sb on average and these are intergrown with tripuhyite and roméite. Antimony in this environment is not very mobile, meaning it is not easily released from solid phases to water, especially compared to As, Cu, and S. For samples where the primary sulfosalt is close to tennantite composition, the oxidation products associated with tennantite relicts contain 2.43 wt% Sb and are amorphous. The variable solubility of the secondary minerals that have been identified is expected to influence mobility of Sb and As in near-surface environment.« less

  11. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with different sizes, shapes, and surface areas. This is advantageous because high surface area materials benefit from improved kinetics for solid state transformations and from decreases in mechanical degradation that occurs during the lithiation and delithiation of battery materials. Intermetallic materials are an alternative to conventional anode materials because they have high capacities and react reversibly with lithium at potentials that hinder the dendrite formation of metallic lithium. Unfortunately, the volume expansion associated with the lithiation and delithiation of intermetallic materials is usually large (over 300%). With this in mind a procedure for the electrodeposition of Cu2Sb from aqueous solutions was developed and is presented in this thesis. Cu2Sb is an intermetallic that lithiates at potentials more positive than the potential needed to plate lithium metal, and has a volume expansion less than 100%. Electrodeposition of an intermetallic with a relatively small volume expansion and with high surface area morphology should dramatically reduce material degradation during battery cycling, thus promoting the life of the material. To electrodeposit Cu2Sb from aqueous solutions, soluble salts of Cu2+ and Sb3+ were needed. There are many Cu2+ salts that are highly soluble in water, but most Sb 3+ salts cause formation of Sb2O3 in aqueous solutions. To obtain Sb3+ in aqueous solutions, citric acid was used as a complexing agent. The results presented in this dissertation show that solution speciation plays an important role in the electrochemistry of aqueous citrate solutions of both copper and antimony. The cyclic voltammograms (CVs) presented here show that the reduction potential of Cu2+ shifted in the negative direction and the reduction potential of Sb 3+ shifted in the positive direction with an increase in pH. Also, Cu2Sb films were deposited at a single potential (-1050 mV vs. SSCE) from aqueous solutions at pH 6. We determined that the deposition potential not only affected the crystallinity of the deposited Cu2Sb, but also the ratio of antimony to copper. The temperature of the solution bath, as well as the smoothness of the growth substrate, were found to provide control over the crystallinity of the deposited Cu2Sb. The ability to electrodeposit crystalline Cu2Sb onto a variety of conducting surfaces is uncommon for intermetallics. The ability to deposit Cu2Sb onto transmission electron microscopy (TEM) grids has allowed the investigation of the morphology, composition, and crystallinity of Cu2Sb during the nucleation and growth of the material. This investigation demonstrated that multiple transformations occur during the early stage of the nucleation of Cu2Sb. A deeper understanding of this electrodeposition procedure for this compound will be useful for extending this technique to other crystalline intermetallics. Using the procedure developed for the single potential deposition of Cu2Sb films, the information from the TEM investigation and the results of a qualitative mathematical treatment, a pulse potential deposition procedure for depositing Cu2Sb nanowire arrays was developed. This procedure leads not only to the deposition of crystalline Cu2Sb nanowires, but also to uniform filling of the templates to afford wires of uniform composition and length. After the development of the procedures for the electrodeposition of Cu2Sb films and nanowire arrays from aqueous solutions at a single potential, the battery performance of the deposited Cu2Sb was examined. The ability to directly electrodeposit Cu2Sb onto the current collector has: (1) improved the characterization of the material during the lithiation and delithiation processes, (2) decreased the weight of inactive components, and (3) allowed for the deposition of high surface area Cu2Sb. The preliminary battery testing of electrodeposited Cu2Sb supported the absence of impurities in the deposited material and demonstrated that the electrodeposited Cu2Sb lithiated and delithiated similarly to Cu2Sb synthesized with different techniques. The deposition of Cu2Sb onto TEM grids was used for the first time without binder to characterize the morphology, composition and crystallinity changes that occur during the lithiation and delithiation of Cu2Sb. Superior capacity retention and rate performance was achieved with Cu2Sb electrodeposited onto high surface area copper foil. This superior performance demonstrates the improvement in battery performance that is expected from Cu2Sb nanowires, which have an order of magnitude higher surface area relative to the copper foam.

  12. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  13. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu3SbSe4.

    PubMed

    Zhang, Dan; Yang, Junyou; Jiang, Qinghui; Zhou, Zhiwei; Li, Xin; Xin, Jiwu; Basit, Abdul; Ren, Yangyang; He, Xu; Chu, Weijing; Hou, Jingdi

    2017-08-30

    The effect of Al-, Ga-, and In-doping on the thermoelectric (TE) properties of Cu 3 SbSe 4 has been comparatively studied on the basis of theoretical prediction and experimental validation. It is found that tiny Al/Ga/In substitution leads to a great enhancement of electrical conductivity with high carrier concentration and also large Seebeck coefficient due to the preserved high band degeneracy and thereby a remarkably high power factor. Ultimately, coupled with the depressed lattice thermal conductivity, all three elements (Al/Ga/In) substituted samples have obtained a highly improved thermoelectric performance with respect to undoped Cu 3 SbSe 4 . Compared to the samples at the same Al/In doping level, the slightly Ga-doped sample presents better TE performance over the wide temperature range, and the Cu 3 Sb 0.995 Ga 0.005 Se 4 sample presents a record high ZT value of 0.9 among single-doped Cu 3 SbSe 4 at 623 K, which is about 80% higher than that of pristine Cu 3 SbSe 4 . This work offers an alternative approach to boost the TE properties of Cu 3 SbSe 4 by selecting efficient dopant to weaken the coupling between electrical conductivity and Seebeck coefficient.

  14. Naturally occurring levels of elements in fishes as determined by PIXE and XRF methods

    NASA Astrophysics Data System (ADS)

    Tallandini, L.; Giacobini, F.; Turchetto, M.; Galassini, S.; Liu, Q. X.; Shao, H. R.; Moschini, G.; Moro, R.; Gialanella, G.; Ghermandi, G.; Cecchi, R.; Injuk, J.; Valković, V.

    1989-04-01

    Naturally occurring levels of S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sb, Sr and Pb were measured in the gills, liver and muscles of fishes ( Zosterisessor ophiocephalus Pall) in the northwestern region of the Adriatic Sea. The overall performance of PIXE and XRF methods was tested by the analysis of standard reference materials. The mean concentration values for elements were calculated from the distribution of experimentally determined concentration values. The obtained data are discussed in the framework of metal metabolism and toxicology.

  15. Reassessment of Atomic Mobilities in fcc Cu-Ag-Sn System Aiming at Establishment of an Atomic Mobility Database in Sn-Ag-Cu-In-Sb-Bi-Pb Solder Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong

    2017-04-01

    To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.

  16. Thermoelectric Properties of Cu-doped Bi2-xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Jin; Kim, Il-Ho

    2018-03-01

    P-type Bi2-xSbxTe3:Cum (x = 1.5-1.7 and m = 0.002-0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.

  17. The interaction of heavy metals and metalloids in the soil-plant system in the São Domingos mining area (Iberian Pyrite Belt, Portugal).

    PubMed

    Andráš, Peter; Matos, João Xavier; Turisová, Ingrid; Batista, Maria João; Kanianska, Radoslava; Kharbish, Sherif

    2018-05-11

    São Domingos belongs among the most important historic Iberian Pyrite Belt Cu mines. The anthrosoil is contaminated by a very high content of heavy metals and metalloids. The study was focused on evaluating the interaction of some chemical elements (Ca, Mg, Fe, Mn, Cu, Pb, Zn, Ag, Cd, Ni, Co, As, Sb) in the system soil vs. five autochthonous dominant plant species: Pinus pinaster Aiton, Quercus rotundifolia Lam., Agrostis sp., Juncus conglomeratus L. and Juncus effusus L. The plants are heavily contaminated by Cu, Pb, As and Zn. The bioconcentration factor proved that they exhibit features of metal tolerant excluders. The trees are accumulators of Ag, whereas the graminoids are hyper-accumulators of Ag and Juncus effusus of Co. The translocation factor confirmed that the selected elements are immobilised in the roots except for Mn and Zn in Pinus pinaster and Mn in Quercus rotundifolia and Juncus conglomeratus. The bioaccumulation of Mn, Zn and Cu at low pH increases. The increased content of Ca and Mg in the soil inhibits, in the case of some metals and metalloids, their intake to plants. Although the studied plants, despite their fitness and vitality at the contaminated sites, are not suitable for phytoextraction (except Co and Ag), they can be used for phytostabilisation at the mining habitats.

  18. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.

    PubMed

    Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena

    2017-09-01

    This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    PubMed

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Functional properties of bicarbonates and lactic acid on chicken breast retail display properties and cooked meat quality.

    PubMed

    Lee, Nakia; Sharma, Vijendra; Brown, Nettie; Mohan, Anand

    2015-02-01

    Whole chicken breast was injected with potassium bicarbonate (PB), sodium bicarbonate (SB), and potassium lactate (K-lactate) and salt, alone or in combination at different concentration levels. The objectives were to 1) investigate the effects of different concentration of PB, SB, and PL on instrumental color, water-holding capacity (WHC), objective tenderness, expressible moisture, and moisture content and 2) evaluate whether sodium-containing ingredients can be replaced with potassium as a potential strategy to reduce total sodium content in the finished product. Results showed that chicken breast tissue marinated with SB and PB had greater moisture retention, display characteristics, and cooked product qualities than chicken breast tissue injected with water and the nonmarinated control. The L* values (lightness) did not change over the period of retail display and were not different compared to the control (P>0.05). The chicken breast enhanced with SB, PB, and K-lactate retained better retail display color than the controls (marinated with water and nonmarinated). Increasing the potassium bicarbonate concentration from 0.5 to 1.5% significantly improved the water-holding capacity (82.17 to 92.61%; P<0.05) and led to better cook yield (83.84 to 91.96%). Shear force values were lower at the 0.5% level for both SB and PB compared to the control. PB performed better on retail display and cooked meat quality than SB. This study suggests that chicken breast tissue can be marinated with KB as a healthier alternative to phosphate or SB. © 2015 Poultry Science Association Inc.

  1. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    PubMed

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  3. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  4. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  5. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb with R²= 95. Total metal contents in soils were analyzed by EDXRF (Energy Dispersion X Ray Fluorescence). We obtained RRL (Regional Reference Level), from La Bienvenida soil samples with values 20 Ni; 53 Cr; 38 Cu; 125 Zn; 128 Pb; 26 As, all in mg kg¯¹. Taking into account the values obtained in S.Quintin Pb 10127; Zn 2861; As 183; Cd 138; Cu 331; Ni 60 and Hg 893 mg kg¯¹, we can say that S.Quintin is a highly contaminated area; Bombita and Romanilla we would consider polluted areas where only Ni, As have values below RRL. We found differences in uptake patterns on the three areas due to heterogeneity in soil parameters and acid drainage, especially in S.Quintín mine where only measured uptake of Sb by plant has a good linear correlation with metal content extract with Ammonium Acetate. Romanilla has more homogeneous soil condition where we found an high soil-plant correlation Ag, As, Cd, Zn using EDTA and Acetate. Bombita has a similar characteristics, with high correlations between plants contents and soil in Cd, Cu, Pb, Zn with EDTA and Acetate. Total contents of heavy metal in a soil is not enough to evaluate the Toxicity Potential, it is necessary to know the bioavailable fraction present in the soil and the extractable fraction which proved to be the decisive factor in the content of heavy metal in plant of studied areas; the correlation in metals content soil-plant is higher in extractable content metals than in total content.

  6. Dust is the dominant source of "heavy metals" to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta.

    PubMed

    Shotyk, William; Bicalho, Beatriz; Cuss, Chad W; Duke, M John M; Noernberg, Tommy; Pelletier, Rick; Steinnes, Eiliv; Zaccone, Claudio

    2016-01-01

    Sphagnum fuscum was collected from twenty-five ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca Bituminous Sands (ABS) in northern Alberta (AB) in order to assess the extent of atmospheric contamination by trace elements. As a control, this moss species was also collected at a bog near Utikuma (UTK) in an undeveloped part of AB and 264km SW of the ABS region. For comparison, this moss was also collected in central AB, in the vicinity of the City of Edmonton which is approximately 500km to the south of the ABS region, from the Wagner Wetland which is 22km W of the City, from Seba Beach (ca. 90km W) and from Elk Island National Park (ca. 45km E). All of the moss samples were digested and trace elements concentrations determined using ICP-SMS at a commercial laboratory, with selected samples also analyzed using instrumental neutron activation analysis at the University of Alberta. The mosses from the ABS region yielded lower concentrations of Ag, As, Bi, Cd, Cu, Pb, Sb, Tl, and Zn compared to the moss from the Edmonton area. Concentrations of Ni and Mo in the mosses were comparable in these two regions, but V was more abundant in the ABS samples. Compared with the surface vegetation of eight peat cores collected in recent years from British Columbia, Ontario, Quebec and New Brunswick, the mean concentrations of Ag, As, Bi, Cd, Cu, Mo, Ni, Pb, Sb, Tl and Zn in the mosses from the ABS region are generally much lower. In fact, the concentrations of these trace elements in the samples from the ABS region are comparable to the corresponding values in forest moss from remote regions of central and northern Norway. Lithophile element concentrations (Ba, Be, Ga, Ge, Li, Sc, Th, Ti, Zr) explain most of the variation in trace metal concentrations in the moss samples. The mean concentrations of Th and Zr are greatest in the moss samples from the ABS region, reflecting dust inputs to the bogs from open pit mines, aggregate quarries, and gravel roads. Linear regressions of V, Ni, and Mo (elements enriched in bitumen) versus Sc (a conservative, lithophile element) show excellent correlations in the mosses from the ABS region, but this is true also of Ag, Pb, Sb and Tl: thus, most of the variation in the trace metal concentrations can be explained simply by the abundance of dust particles on the plants of this region. Unlike the moss samples from the ABS region and from UTK where Pb/Sc ratios resemble those of crustal rocks, the moss samples from the other regions studied yielded much greater Pb/Sc ratios implying significant anthropogenic Pb contributions at these other sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chemical vapor generation sample introduction for the determination of As, Cd, Sb, Hg, and Pb in nail polish by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Fan-Feng; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A. C.

    2018-02-01

    This paper describes a flow injection vapor generation (VG) method using inductively coupled plasma mass spectrometry (ICP-MS) for determining As, Cd, Sb, Hg, and Pb in nail polish. The samples for VG were prepared as aqueous slurries of a nail polish (0.5% m/v), thiourea (1% m/v), Co(II) (0.75 μg mL- 1), and HCl (1.2% v/v). Chemical VG of As, Cd, Sb, Hg, and Pb ions, by reduction with tetrahydroborate (3% m/v in 0.2% m/v NaOH), enabled their separation from the slurry. With VG sample introduction, As, Cd, Sb and Hg signals were increased by 1-2 orders (except Pb) compared to solution nebulization due to better sample introduction. Quantifications were performed by VG ICP-MS using isotope dilution and standard addition methods as slopes of calibration plots of analytes in the slurries were higher. Using the reported procedure, samples of three nail polishes purchased locally were analyzed for their levels of As, Cd, Sb, Hg, and Pb. The results obtained were in good agreement with those measured using electrothermal vaporization ICP-MS. In the original nail polish sample, the detection limits, calculated as 3σ of blank measurements, for As, Cd, Sb, Hg, and Pb, estimated from standard addition curves, were 0.06, 0.12, 0.14, 0.2, and 12 ng g- 1, respectively.

  8. Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey.

    PubMed

    Vural, Alaaddin

    2015-08-01

    Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.

  9. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    NASA Astrophysics Data System (ADS)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  10. Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idella and Oncorhynchus mykiss) from Beijing: implication from feed.

    PubMed

    Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei

    2016-06-01

    Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.

  11. Trace elements in winter snow of the Dolomites (Italy): a statistical study of natural and anthropogenic contributions.

    PubMed

    Gabrielli, P; Cozzi, G; Torcini, S; Cescon, P; Barbante, C

    2008-08-01

    Knowledge of the occurrence of trace elements deposited in fresh alpine snow is very limited. Although current sources of major ionic inorganic species have been well established, this is not the case for many trace elements. This manuscript attempts to reconstruct the origin of Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn in winter surface snow, extensively collected in the Dolomites region (Eastern Alps, Italy). Sampling of surface snow was conducted weekly during the winter 1998 at 21 sites at altitudes ranging from approximately 1000 to approximately 3000 m. This led to a remarkable dataset of trace element concentrations in surface snow from low latitudes. Here we show a preliminary statistical investigation conducted on the 366 samples collected. It was found that V, Sb, Zn, Cd, Mo and Pb have a predominantly anthropogenic origin, linked to the road traffic in the alpine valleys and the nearby heavily industrialised area of the Po Valley. In addition, the occasionally strong Fe and Cr input may reflect the mechanical abrasion of ferrous components of the vehicles. However, much of the Fe along with Mn, U and Ti originates primarily from the geological background of the Dolomites. A marine contribution was found to be negligible for all the trace elements. The origin of other trace elements is less clear: Ag can be possibly attributed to a predominantly anthropogenic origin while Cr, Co, Cu and Ba are usually from crustal rocks but different than the Dolomites.

  12. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    PubMed

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  13. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    PubMed Central

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants. PMID:26274060

  14. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.

    PubMed

    Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba

    2017-06-01

    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. trans-Bis(hexafluoroantimonato)(phthalocyaninato)copper(II).

    PubMed

    Gardberg, A S; Ibers, J A

    2001-05-01

    The title compound, trans-bis(hexafluoroantimonato-F)(phthalocyaninato-kappa(4)N(29,30,31,32))copper(II), [Cu(SbF(6))(2)(C(32)H(16)N(8))] or Cu(pc)(SbF(6))(2) (pc is phthalocyaninate), comprises a six-coordinate Cu atom, lying on an inversion center, bonded to four N atoms of a phthalocyanine ring and to F atoms of two trans SbF(6)(-) groups. The compound is presumed to consist of a Cu(II) center and a doubly oxidized phthalocyanine ring, by analogy with Cu(pc)(ReO(4))(2).

  16. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  17. Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek

    2012-06-25

    We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu2As2 compounds are much shorter than the nonbonding As–As distances in BaFe2As2. Thus, the electronic character of the Cu and the strength of the As–As interlayer bonding are both expected to drastically change between weakly Cu-substituted BaFe2As2 and pure BaCu2As2, perhaps via a first-order lattice instability such as a miscibility gap in the Ba(Fe1−xCux)2As2 system.« less

  18. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE PAGES

    Hobbis, Dean; Wei, Kaya; Wang, Hsin; ...

    2017-10-30

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  19. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbis, Dean; Wei, Kaya; Wang, Hsin

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  20. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain.

    PubMed

    Enamorado, Santiago; Abril, José M; Delgado, Antonio; Más, José L; Polvillo, Oliva; Quintero, José M

    2014-02-15

    Phosphogypsum (PG) has been usually applied as Ca-amendment to reclaim sodic soils such as those in the marshland area of Lebrija (SW Spain). This work aimed at the effects of PG amendments on the uptake of trace-elements by tomato and its implications for food safety. A completely randomized experiment was performed using a representative soil from Lebrija in a greenhouse involving six replicates and four PG treatments equivalent to 0, 20, 60, and 200 Mg ha(-1). Soil-to-plant transfer factors (TFs) were determined for Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U. The highest TF in shoots was observed for Cd (4.0; 1.5 in fruits), its concentration being increased with increasing PG doses due to its content in this metal (2.1 mg Cd kg(-1)PG). Phosphogypsum applying decreased the concentrations of Mn, Co and Cu in shoots; and of B, Cu, Sb, Cs, Ba, Tl and Th in fruits, however enhanced the accumulation of Se in fruits. Although Cd concentrations in tomato were below the maximum allowed levels in control pots (0 Mg PG ha(-1)), PG amendments above 60 Mg ha(-1) exceeded such limits. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biomonitoring of trace metals using transplanted mussels, Mytilus galloprovincialis, in coastal areas around Ulsan and Onsan Bays, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Kook; Choi, Man Sik

    2017-03-01

    Mediterranean (blue) mussels ( Mytilus galloprovincialis) collected from a reference site were transplanted to 15 stations in coastal areas around Ulsan and Onsan Bays, an extensively metal polluted area in Korean coastal waters, to assess metal contamination in the coastal oceans of Korea. During the biomonitoring periods (June 30 to July 20, 2003; 21 days), transplanted mussels, seawater, and particulate materials were collected for analysis of 15 metals (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sn, and Zn). Transplanted mussels showed metal enrichment compared to initial concentrations and spatial gradients consistent with dissolved and/or particulate metal concentrations in seawaters. Based on Q mode factor analysis, stations were clustered into three groups. The first group, located on Onsan Bay, showed high Ag, Cd, Cu, Hg, Pb, Sb and Zn enrichment, presumably arising from non-ferrous metal refineries and chemical industries in this area. The second group was located near the mouth of the Oehwang River and was enriched in Co from petrochemical industries. The third group comprised a site intermediate between Group 1 and Group 2, an isolated station with independent metal sources located in Jangsaengpo harbor, where a number of ship repairing and building companies operate, and a less contaminated station near a small fishing village. Metal accumulation rates (%·day-1) in mussels were estimated to be between 8% (Cr) and 281% (Pb), based on accumulated metal concentrations over 21 days. The active biomonitoring technique using M. galloprovincialis demonstrated here is a useful monitoring method because it reflects the present status of seawaters; furthermore, physiological factors can be standardized, and bioavailable and time-integrated metal concentrations can be obtained. Furthermore, this method can be applied even in coastal seawaters so heavily contaminated that living organisms would not normally survive.

  2. Comparison of the element composition in several plant species and their substrate from a 1500000-km2 area in Northern Europe.

    PubMed

    Reimann, C; Koller, F; Frengstad, B; Kashulina, G; Niskavaara, H; Englmaier, P

    2001-10-20

    Leaves of 9 different plant species (terrestrial moss represented by: Hylocomium splendens and Pleurozium schreberi; and 7 species of vascular plants: blueberry, Vaccinium myrtillus; cowberry, Vaccinium titis-idaea; crowberry, Empetrum nigrum; birch, Betula pubescens; willow, Salix spp.; pine, Pinus sylvestris and spruce, Picea abies) have been collected from up to 9 catchments (size 14-50 km2) spread over a 1500000 km2 area in Northern Europe. Soil samples were taken of the O-horizon and of the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn and Zr) by ICP-MS, ICP-AES or CV-AAS (for Hg-analysis) techniques. The concentrations of some elements vary significantly between different plants (e.g. Cd, V, Co, Pb, Ba and Y). Other elements show surprisingly similar levels in all plants (e.g. Rb, S, Cu, K, Ca, P and Mg). Each group of plants (moss, shrubs, deciduous and conifers) shows a common behaviour for some elements. Each plant accumulates or excludes some selected elements. Compared to the C-horizon, a number of elements (S, K, B, Ca, P and Mn) are clearly enriched in plants. Elements showing very low plant/C-horizon ratios (e.g. Zr, Th, U, Y, Fe, Li and Al) can be used as an indicator of minerogenic dust. The plant/O-horizon and O-horizon/C-horizon ratios show that some elements are accumulated in the O-horizon (e.g. Pb, Bi, As, Ag, Sb). Airborne organic material attached to the leaves can thus, result in high values of these elements without any pollution source.

  3. Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China.

    PubMed

    Li, Yiwen; Pi, Lu; Hu, Wenli; Chen, Mengqin; Luo, Yan; Li, Zhi; Su, Shijun; Gan, Zhiwei; Ding, Sanglan

    2016-05-01

    Eleven trace metal(loid)s were determined in the household dust samples from Chengdu and Tianjin, China, and related human exposure and health risk to metal(loid)s via indoor dust intake were evaluated. The trace metal(loid)s were found to be highly concentrated and polluted in the indoor environment of Chengdu and Tianjin, especially for Cu, Zn, Cd, Sb, and Pb, of which the enrichment factors exceeding 5. Metal(loid) levels in the indoor dust samples exhibited no statistical differences between the two cities, with the exception of Sb, which was detected higher in the Chengdu samples. Bioaccessibilities in stomach phase of each element were estimated, Cd, Pb, and Sr exhibited higher bioaccessibility, and Sb showed the lowest bioaccessibility in both Chengdu and Tianjin. Dust ingestion was the main metal(loid) exposure pathway for Chengdu and Tianjin inhabitants, followed by dermal contact, dust inhalation accounted for less than 1 % of the total daily metal(loid) intakes and thus could be negligible. Children suffered more risk when exposure to metal(loid)s via indoor dust intake due to their higher frequency of hand to mouth activities. Risk evaluation indicated that, for most Chengdu and Tianjin inhabitants, there is little non-cancer and carcinogen risk when exposure to indoor dust. However, there is a potential non-cancer and carcinogen risk for children and adults in Chengdu, in the case of highly exposed scenario based on the current study.

  4. Grain Size Distribution and Health Risk Assessment of Metals in Outdoor Dust in Chengdu, Southwestern China.

    PubMed

    Chen, Mengqin; Pi, Lu; Luo, Yan; Geng, Meng; Hu, Wenli; Li, Zhi; Su, Shijun; Gan, Zhiwei; Ding, Sanglan

    2016-04-01

    A total of 27 outdoor dust samples from roads, parks, and high spots were collected and analyzed to investigate the contamination of 11 metals (Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, Sb, and Pb) in Chengdu, China. The results showed that the samples from the high spots exhibited the highest heavy metal level compared with those from the roads and the parks, except for Ni, Cu, and Pb. The dust was classified into five grain size fractions. The mean loads of each grain size fraction of 11 determined metals displayed similar distribution, and the contribution of median size (63-125, 125-250, 250-500 μm) fractions accounted for more than 70% of overall heavy metal loads. The health risk posed by the determined metals to human via dust ingestion, dermal contact, and inhalation was investigated. Oral and respiratory bioaccessible parts of the metals in dust were extracted using simulated stomach solution and composite lung serum. The mean bioaccessibilities of 11 investigated metals in the gastric solution were much higher than those in the composite lung serum, especially Zn, Cd, and Pb. Ingestion was the most important exposure pathway with percentage greater than 70% for both children and adults. Risk evaluation results illustrated that children in Chengdu might suffer noncarcinogenic risk when exposed to outdoor dust. Given that the cancer risk values of Pb and Cr larger than 1 × 10(-4), potential carcinogenic risk might occur for Chengdu residents through outdoor dust intake.

  5. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piskunov, Yu. V., E-mail: piskunov@imp.uran.ru; Ogloblichev, V. V.; Arapova, I. Yu.

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detectedmore » in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.« less

  6. Chemical and ecological effects of contaminated tunnel wash water runoff to a small Norwegian stream.

    PubMed

    Meland, Sondre; Borgstrøm, Reidar; Heier, Lene Sørlie; Rosseland, Bjørn Olav; Lindholm, Oddvar; Salbu, Brit

    2010-09-01

    Cleaning and washing of road tunnels are routinely performed and large volumes of contaminated wash water are often discharged into nearby recipients. In the present study, traffic related contaminants were quantified in tunnel wash water (the Nordby tunnel, Norway) discharged from a sedimentation pond to a nearby small stream, Arungselva. In situ size and charge fractionation techniques were applied to quantify traffic related metal species, while PAHs were quantified in total samples. All metals and several PAHs appeared at elevated concentrations in the discharged wash water compared with concentrations measured in Arungselva upstream the pond outlet, and to concentrations measured in the pond outlet before the tunnel wash event. In addition, several contaminants (e.g. Cu, Pb, Zn, fluoranthene, pyrene) exceeded their corresponding EQS. PAH and metals like Al, Cd, Cr, Cu, Fe and Pb were associated with particles and colloids, while As, Ca, K, Mg, Mo, Ni, Sb and Zn were more associated with low molecular mass species (<10kDa). Calculated enrichment factors revealed that many of the metals were derived from anthropogenic sources, originating most likely from wear of tires (Zn), brakes (Cu and Sb), and from road salt (Na and Cl). The enrichment factors for Al, Ba, Ca, Cr, Fe, K, Mg and Ni were low, suggesting a crustal origin, e.g. asphalt wear. Based on calculated PAH ratios, PAH seemed to originate from a mixture of sources such as wear from tires, asphalt and combustion. Finally, historical fish length measurement data indicates that the fish population in the receiving stream Arungselva may have been adversely influenced by the chemical perturbations in runoffs originating from the nearby roads and tunnels during the years, as the growth in summer old sea trout (Salmo trutta L.) in downstream sections of the stream is significantly reduced compared to the upstream sections. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Querol, X.; Alastuey, A.; Reche, C.; Cusack, M.; Amato, F.; Pandolfi, M.; Pey, J.; Richard, A.; Prévôt, A. S. H.; Furger, M.; Gibbons, W.

    2011-05-01

    Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.

  8. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Querol, X.; Alastuey, A.; Reche, C.; Cusack, M.; Amato, F.; Pandolfi, M.; Pey, J.; Richard, A.; Prévôt, A. S. H.; Furger, M.; Gibbons, W.

    2011-09-01

    Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.

  9. Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.

    1981-01-01

    The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. Geochemical maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that geochemical sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement geochemical surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide geochemical information not readily discernible from plots of single elements alone. ?? 1981.

  10. Synthesis, crystal and electronic structure of the quaternary sulfides Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kussainova, Ardak M.; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; Akselrud, Lev G.

    2016-01-15

    The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters formore » Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.« less

  11. Thermoelectric Properties of Pulsed Electric Current Sintered Samples of AgPb m SbSe17 ( m = 16 or 17)

    NASA Astrophysics Data System (ADS)

    Wu, Chun-I.; Todorov, Ilyia; Kanatzidis, Mercouri G.; Timm, Edward; Case, Eldon D.; Schock, Harold; Hogan, Timothy P.

    2012-06-01

    Lead chalcogenide materials have drawn attention in recent years because of their outstanding thermoelectric properties. Bulk n-type materials of AgPb m SbTe2+ m have been reported to exhibit high figure of merit, ZT, as high as 1.7 at 700 K. Recent reports have shown p-type lead selenide-based compounds with comparable ZT. The analogous material AgPb m SbSe17 shares a similar cubic rock-salt structure with PbTe-based compounds; however, it exhibits a higher melting point, and selenium is more abundant than tellurium. Using solid solution chemistry, we have fabricated cast AgPb15SbSe17 samples that show a peak power factor of approximately 17 μW/cm K2 at 450 K. Increasing the strength of such materials is commonly achieved through powder processing, which also helps to homogenize the source materials. Pulsed electric current sintering (PECS) is a hot-pressing technique that utilizes electric current through the die and sample for direct Joule heating during pressing. The mechanisms present during PECS processing have captured significant research interest and have led to some notable improvements in sample properties compared with other densification techniques. We report the thermoelectric properties of PECS samples of AgPb m SbSe17 along with sample fabrication and processing details.

  12. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovira, Joaquim; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia; Nadal, Martí

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials,more » colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10{sup −6}) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10{sup −6}). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes.« less

  13. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  14. Toxic and essential elements in Lebanese cheese.

    PubMed

    Bou Khozam, Rola; Pohl, Pawel; Al Ayoubi, Baydaa; Jaber, Farouk; Lobinski, Ryszard

    2012-01-01

    Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka'a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma-mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling.

  15. Thermoelectric properties of p-type Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyunghan; Center for Nanoparticle Research, Institute for Basic Science,; Kong, Huijun

    The thermoelectric properties of Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} (4≤m≤16, −0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometrymore » allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag{sub 0.9}Pb{sub 5}Sn{sub 5}Sb{sub 0.8}Te{sub 12} mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb{sub 1−y}Sn{sub y}){sub m}SbTe{sub m+2}, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} compositions. - Graphical abstract: The Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} system defines a complex and flexible class of tunable thermoelectric class of materials with high performance.« less

  16. Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW.

    PubMed

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2006-01-01

    This paper provides the results of studies on the characteristics of novel material derived from pyrolysis/melting treatment of municipal solid waste in Japan. Slag products from pyrolysis/melting plants were sampled for the purpose of detailed phase analysis and characterization of heavy metal-containing phases using optical microscopy, electron probe microanalysis (EPMA), XRF and XRD. The study revealed that the slag material contains glass (over 95%), oxide and silicate minerals (spinel, melilite, pseudowollastonite), as well as individual metallic inclusions as the major constituents. A distinct chemical diversity was discovered in the interstitial glass in terms of silica content defined as low and high silica glass end members. Elevated concentrations of Zn, Cr, Cu, Pb and Ba were recorded in the bulk composition. Cu, Pb and Ba behave as incompatible elements since they have been markedly characterized as part of polymetallic alloys and insignificantly sulfides in the form of spherical metallic inclusions associated with tracer amounts of other elements such as Sb, Sn, Ni, Zn, Al, P and Si. In contrast, an appreciable amount of Zn is retained by zinc-rich end members of spinel and partially by melilite and silica glass. Chromium exhibits similar behavior, and is considerably held by Cr-rich spinel. The intense incorporation of Zn and Cr into spinel indicates the very effective enrichment of these two elements into phases more environmentally resistant than glass. There was no evidence, however, that Cu and Pb enter into the structure of the crystalline silicates or oxides that may lead to their easier leachability upon exposure to the environment.

  17. Enhanced thermoelectric properties in Bi and Te doped p-type Cu3SbSe4 compound

    NASA Astrophysics Data System (ADS)

    Kumar, Aparabal; Dhama, P.; Banerji, P.

    2018-04-01

    We report the effect of Bi and Te doping on the electrical transport and thermoelectric properties of Cu3SbSe4 with an aim to maximize the power factor and/or minimize the thermal conductivity. A series of Cu3Sb1-xBixSe4-yTey (x = 0, 0.02, 0.04, 0.06, 0.08; y = 0.01) samples were prepared by melt growth technique and ball milling followed by spark plasma sintering. The structural analysis and microstructures were carried out by X-ray diffraction, transmission electron microscopy and Field emission scanning electron microscopy. Electrical resistivity is found to decrease with increase in doping contents, which is due to increase in carrier concentration and formation of acceptor level inside the energy gap. Reduction in thermal conductivity with increase in Bi content is attributed to scattering of phonons through grain boundaries and mass fluctuation. Maximum figure of merit (ZT ˜ 0.76) was achieved in the Cu3Sb0.98Bi0.02Se3.99Te0.01 sample at 650 K, which is approximately twice of the Cu3SbSe4. The results reveal that the Bi and Te doped Cu3SbSe4 leads to remarkable improvement in its thermoelectric properties.

  18. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.

  19. Confirmation of Incorporation of Cu and Se Ions in Applied p- and n-Type-Doped Sb2S3 by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Validžić, Ivana Lj; Popović, Maja; Lojpur, Vesna; Bundaleski, Nenad; Rakočević, Zlatko

    2018-04-01

    The effect of incorporating copper (Cu) and selenium (Se) ions into stibnite (Sb2S3) lattice was investigated using x-ray photoelectron spectroscopy (XPS). The incorporation of Cu and Se ions was verified by comparing the XPS spectra of the undoped (amorphous Sb2S3), doped ( p and n-doped) and pure Se and Cu-acetate powders. The main photoelectron Cu 2p1/2 (951.8 eV) and Cu 2p3/2 (932.1 eV) lines derived from the Cu-doped and Cu-acetate powder samples were clearly observed, whereas in the undoped sample, none of the characteristic lines of Cu were detected. The Se Auger line (138.6 eV), the only line of Se which does not coincide with the lines of Sb and S, was successfully detected in an Se-doped XPS sample and the spectrum of pure Se, while Se in the undoped sample was not found. Further, the XPS measurements revealed the relative amounts of Cu and Se in antimony sulfide, as well as the oxidation state of copper incorporated into the matrix.

  20. Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area)

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Duran, Paola; Barceló, Juan; Roca, Núria; Tume, Pedro; Poschenrieder, Charlotte

    2010-05-01

    Galena has been mined in Bellmunt (Priorat, Western Mediterranean Area) since ancient times until 1972. While sediment pollution originated by the mining activity in the Ebro river passing the region has been investigated (Ferré, 2007), the local impact on soils and plants has received little attention. Here we report the first results on the concentrations of major metal contaminants and antimony in soils and representative plants from 5 selected sites with different pollutant burdens around the mining area. Both total (HNO3, HF, HClO4 digest) and extractable (EDTA) soil concentrations were studied. The range of total and extractable soil values in mgkg-1 is as follows: Sb 9.7-31 and 2.4-7.2; Cu: 89-823 and 20-62; Pb: 19-39 and 18-33; Zn: 318-989 and 79-287 mg•kg-1, respectively). Soils had alkaline pH (7.7-8.2), organic matter contents ranging from 0.8 to 2.4%, and a sandy-loam or a loamy-sand texture. All analysed plant species showed enhanced root and shoot concentrations of Pb, Cu, Zn and Sb when growing on the more polluted soils, and all but one restricted the translocation of metals from roots to shoots exhibiting shoot/root concentration ratios lower than unity. A notably exception was Moricandia moricandioides. This species of the Brassicaceae family exhibited higher Zn concentrations in the shoots than in the roots at all sampling sites yielding shoot/root concentration ratios up to 5.5. This metal accumulation pattern was only observed for Zn and not for other analysed metal contaminants. The concentrations of other, poorly mobile metals, like Pb or Cu were always higher in roots than in shoots (e.g. Pb shoot/root ratios ranged from 0.12 to 0.41). Taking into account the high Pb burden of the soil samples and these low shoot/root Pb ratios, it can be excluded that the particular Zn accumulation pattern of Moricandia moricandioides was biased by soil contamination of shoot samples. To the best of our knowledge, this is the first report of a Zn accumulation behaviour in a Moricandia species. The soil-to-shoot transfer factors (shoot Zn conc/total soil conc.) for this species were, however, relatively low ranging from 0.3 to 1.3. Two main reasons for this could be 1) the fact that real total Zn soil concentrations after HF attack and not pseudototal metal concentrations were analysed in the present study and 2) the relatively high pH of the soils which could considerably hamper Zn bioavailability. Further studies are required to confirm the possible Zn (hyper)accumulator character of Moricandia moricandioides (Boiss.) Heyw. [M. ramburii Webb]. Reference: Ferré, N. 2007 Nivells de metals pesants a la conca Catalana del riu Ebre. Avaluació del risc per la población i l'ecosistema. Universitat Rovira Virgili. ISBN 978-84-691-0371-5. Acknowledgement: Supported by BFU2007-60332/BFI

  1. Development of half metallicity within mixed magnetic phase of Cu1‑x Co x MnSb alloy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Abhisek; Neogi, Swarup Kumar; Paul, Atanu; Meneghini, Carlo; Bandyopadhyay, Sudipta; Dasgupta, Indra; Ray, Sugata

    2018-05-01

    Cubic half-Heusler Cu1‑x Co x MnSb () compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T 2 dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab initio electronic structure calculations that suggests that a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.

  2. The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China

    PubMed Central

    Han, Lanfang; Gao, Bo; Zhou, Huaidong; Xu, Dongyu; Wei, Xin; Gao, Li

    2015-01-01

    The alteration of hydrologic condition of Three Gorges Reservoir (TGR) after impoundment has caused numerous environmental changes. This study investigated the distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs) in sediments from three tributaries (ZY, MX and CT) and one mainstream (CJ) in TGR during different seasons. The average contents of most SMTEs excluding Sb in the winter were similar to that in the summer. For Sb, its average concentrations in the summer and winter were roughly six and three times higher than its background value, respectively. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediments were obviously contaminated by Sb. The enrichment factors (EF) of Ga and Sb were higher than 2.0, revealing the possible anthropogenic inputs; However, the EFs of other SMTEs were lower than 1.5, indicating the natural inputs. Correlation and principal component analysis suggested the most SMTEs were positively correlated with major elements (Cr, Mn, Cu, Zn, As, Cd and Pb) and clay contents, which implies that SMTEs had the same sources with these major metals, and the fine particles might be a major carrier for transporting SMTEs from the rivers to the TGR. PMID:26538153

  3. Children's exposure to harmful elements in toys and low-cost jewelry: characterizing risks and developing a comprehensive approach.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-04-30

    Contamination problem in jewelry and toys and children's exposure possibility have been previously demonstrated. For this study, risk from oral exposure has been characterized for highly contaminated metallic toys and jewelry ((MJ), n=16) considering three scenarios. Total and bioaccessible concentrations of Cd, Cu, Ni, and Pb were high in selected MJ. First scenario (ingestion of parts or pieces) caused unacceptable risk for eight items for Cd, Ni, and/or Pb (hazard index (HI)>1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always <1. Finally, saliva mobilization scenario caused HI>1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  5. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingjie; College of Medicine, Henan University, Kaifeng, Henan 475004; Cao, Jing

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O (1) has been synthesized by reaction of Sb{sub 2}O{sub 3}, Na{sub 2}WO{sub 4}·2H{sub 2}O, CuCl{sub 2}·2H{sub 2}O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW{sub 9}O{sub 33}]{sup 9−} subunits sandwiching a hexagonal (Cu{sub 2}Na{sub 4}) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magneticmore » measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu{sub 2}Na{sub 4}) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu{sub 2}Na{sub 4}) sandwiched tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu (en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu{sub 2}Na{sub 4} sandwiched) tungstoantimonate [Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]{sup 10−}. • Ferromagnetic tungstoantimonate.« less

  6. Magnetic ground state of the two isostructual polymeric quantum magnets [ Cu ( HF 2 ) ( pyrazine ) 2 ] SbF 6 and [ Co ( HF 2 ) ( pyrazine ) 2 ] SbF 6 investigated with neutron powder diffraction

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...

    2015-10-07

    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF 2)(pyrazine) 2]SbF 6 and (ii) a related compound [Co(HF 2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF 2)(pyrazine) 2]SbF 6 are 0.6(1)μ b, while the ordered moments for the Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6 are 3.02(6)μ b. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystalmore » electric field splitting of the S=3/2 Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF 2)(pyrazine) 2]SbF 6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less

  7. Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells.

    PubMed

    Christians, Jeffrey A; Kamat, Prashant V

    2013-09-24

    In solid-state semiconductor-sensitized solar cells, commonly known as extremely thin absorber (ETA) or solid-state quantum-dot-sensitized solar cells (QDSCs), transfer of photogenerated holes from the absorber species to the p-type hole conductor plays a critical role in the charge separation process. Using Sb2S3 (absorber) and CuSCN (hole conductor), we have constructed ETA solar cells exhibiting a power conversion efficiency of 3.3%. The hole transfer from excited Sb2S3 into CuSCN, which limits the overall power conversion efficiency of these solar cells, is now independently studied using transient absorption spectroscopy. In the Sb2S3 absorber layer, photogenerated holes are rapidly localized on the sulfur atoms of the crystal lattice, forming a sulfide radical (S(-•)) species. This trapped hole is transferred from the Sb2S3 absorber to the CuSCN hole conductor with an exponential time constant of 1680 ps. This process was monitored through the spectroscopic signal seen for the S(-•) species in Sb2S3, providing direct evidence for the hole transfer dynamics in ETA solar cells. Elucidation of the hole transfer mechanism from Sb2S3 to CuSCN represents a significant step toward understanding charge separation in Sb2S3 solar cells and provides insight into the design of new architectures for higher efficiency devices.

  8. Automated Mineral Analysis to Characterize Metalliferous Mine Waste

    NASA Astrophysics Data System (ADS)

    Hensler, Ana-Sophie; Lottermoser, Bernd G.; Vossen, Peter; Langenberg, Lukas C.

    2016-10-01

    The objective of this study was to investigate the applicability of automated QEMSCAN® mineral analysis combined with bulk geochemical analysis to evaluate the environmental risk of non-acid producing mine waste present at the historic Albertsgrube Pb-Zn mine site, Hastenrath, North Rhine-Westphalia, Germany. Geochemical analyses revealed elevated average abundances of As, Cd, Cu, Mn, Pb, Sb and Zn and near neutral to slightly alkaline paste pH values. Mineralogical analyses using the QEMSCAN® revealed diverse mono- and polymineralic particles across all samples, with grain sizes ranging from a few μm up to 2000 μm. Calcite and dolomite (up to 78 %), smithsonite (up to 24 %) and Ca sulphate (up to 11.5 %) are present mainly as coarse-grained particles. By contrast, significant amounts of quartz, muscovite/illite, sphalerite (up to 10.8 %), galena (up to 1 %), pyrite (up to 3.4 %) and cerussite/anglesite (up to 4.3 %) are present as fine-grained (<500 μm) particles. QEMSCAN® analysis also identified disseminated sauconite, coronadite/chalcophanite, chalcopyrite, jarosite, apatite, rutile, K-feldspar, biotite, Fe (hydr) oxides/CO3 and unknown Zn Pb(Fe) and Zn Pb Ca (Fe Ti) phases. Many of the metal-bearing sulphide grains occur as separate particles with exposed surface areas and thus, may be matter of environmental concern because such mineralogical hosts will continue to release metals and metalloids (As, Cd, Sb, Zn) at near neutral pH into ground and surface waters. QEMSCAN® mineral analysis allows acquisition of fully quantitative data on the mineralogical composition, textural characteristics and grain size estimation of mine waste material and permits the recognition of mine waste as “high-risk” material that would have otherwise been classified by traditional geochemical tests as benign.

  9. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.

    PubMed

    Coynel, Alexandra; Blanc, Gérard; Marache, Antoine; Schäfer, Jörg; Dabrin, Aymeric; Maneux, Eric; Bossy, Cécile; Masson, Matthieu; Lavaux, Gilbert

    2009-05-01

    The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.

  10. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    PubMed

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.

  11. Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China.

    PubMed

    Liu, Xueping; Jiang, Jingyan; Yan, Yan; Dai, YuanYuan; Deng, Biao; Ding, Sanglan; Su, Shijun; Sun, Weiyi; Li, Zhi; Gan, Zhiwei

    2018-04-01

    To evaluate the distribution patterns, degrees of contamination, and ecological risks of 15 metals (Cd, Pb, Sb, Sn, Tl, Mo, Cr, Mn, Ni, Cu, Zn, As, V, Co, and Se), a total of 26 paired water and sediment samples as well as 7 fish samples were collected in Jinjiang River, Chengdu, China. The metal forms of the sediments were analyzed using BCR three-step sequential extraction procedures, and the metal contents of the samples were determined by ICP-MS. Four environmental indices including the geo-accumulation index, bioconcentration factor, biota-sediment accumulation factor, and the potential ecological risk index were calculated to evaluate pollution level and eco-risk of the metals. Based on the current study, Mn and Cd were preferentially associated with the exchangeable fraction, Cu and Pb were primarily in the reducible fraction, while the other metals were mainly found in the residual fraction. With the exception of Sb and Mo, the BCF values of the metals were greater than 100, especially for Zn, which had the highest BCF value (74200), suggesting that these metals had higher bioconcentration ability. Based on the geo-accumulation index and the potential ecological risk index (R I ) calculated in this study, the middle reaches of Jinjiang River present moderate to severe metal pollution, and moderate to considerable potential ecological risk, especially for the risk of Cd, which should be paid more attention in the future. While non-pollution level and low ecological risk of the metals were found in the upper and lower reaches of Jinjiang River. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  13. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells.

    PubMed

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.

  14. The Impact of cHS4 Insulators on DNA Transposon Vector Mobilization and Silencing in Retinal Pigment Epithelium Cells

    PubMed Central

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238

  15. Enhanced electrical transport and thermoelectric properties in Ni doped Cu3SbSe4

    NASA Astrophysics Data System (ADS)

    Kumar, Aparabal; Dhama, P.; Das, Anish; Sarkar, Kalyan Jyoti; Banerji, P.

    2018-05-01

    In this study, we report the enhanced thermoelectric performance of Cu3SbSe4 by Ni doping at Cu site. Cu3-xNixSbSe4 (x = 0, 0.01, 0.03, 0.05) were prepared by melt growth, ball milling followed by spark plasma sintering. Structural characterization, phase analysis and surface morphology were carried out using X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical and thermal properties of all the samples were investigated in the temperature range 300 - 650 K. Decrease in electrical resistivity with Ni doping due to increase in carrier concentration with enhanced Seebeck coefficient via increase in density of state near the Fermi level gives a remarkably high power factor. At the same time, thermal conductivity was found to decrease due to increased carrier-phonon scattering and acoustic phonon scattering. Consequently, a remarkable enhancement in the thermoelectric figure of merit (ZT˜ 0.65) of Cu3-xNixSbSe4 was achieved for x = 0.01 sample. Thus, Ni doping is an effective approach to improve the efficiency of Cu3SbSe4.

  16. Radionuclide transfer to reptiles.

    PubMed

    Wood, Michael D; Beresford, Nicholas A; Semenov, Dmitry V; Yankovich, Tamara L; Copplestone, David

    2010-11-01

    Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.

  17. Thermoelectric properties of a Mn substituted synthetic tetrahedrite.

    PubMed

    Chetty, Raju; D S, Prem Kumar; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Michor, Herwig; Suwas, Satyam; Puchegger, Stephan; Giester, Gerald; Mallik, Ramesh Chandra

    2015-01-21

    Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 μB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

  18. Vibrational spectroscopic study of the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH)

    NASA Astrophysics Data System (ADS)

    Bahfenne, Silmarilly; Frost, Ray L.

    2009-09-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH). The mineral is characterised by an intense Raman band at 656 cm -1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm -1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm -1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm -1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm -1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm -1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb 2Sb 2O 6(O,OH,H 2O).

  19. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells.

    PubMed

    Jiang, Fangyuan; Yang, Dongwen; Jiang, Youyu; Liu, Tiefeng; Zhao, Xingang; Ming, Yue; Luo, Bangwu; Qin, Fei; Fan, Jiacheng; Han, Hongwei; Zhang, Lijun; Zhou, Yinhua

    2018-01-24

    The environmental toxicity of Pb in organic-inorganic hybrid perovskite solar cells remains an issue, which has triggered intense research on seeking alternative Pb-free perovskites for solar applications. Halide perovskites based on group-VA cations of Bi 3+ and Sb 3+ with the same lone-pair ns 2 state as Pb 2+ are promising candidates. Herein, through a joint experimental and theoretical study, we demonstrate that Cl-incorporated methylammonium Sb halide perovskites (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X show promise as efficient solar absorbers for Pb-free perovskite solar cells. Inclusion of methylammonium chloride into the precursor solutions suppresses the formation of the undesired zero-dimensional dimer phase and leads to the successful synthesis of high-quality perovskite films composed of the two-dimensional layered phase favored for photovoltaics. Solar cells based on the as-obtained (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X films reach a record-high power conversion efficiency over 2%. This finding offers a new perspective for the development of nontoxic and low-cost Sb-based perovskite solar cells.

  20. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    NASA Astrophysics Data System (ADS)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the coarsening kinetics of SAC305, SAC+Zn, SAC+Mn, and SAC+Sb are all much slower than Pb-Sn alloys, therefore, power aging the solder will not be a viable method of stabilizing the microstructure. However, adding small amounts of Zn or Mn may be useful to maintain the original microstructure so that power aging is not required.

  1. The Role of Magmatic Volatile Input, Near-surface Seawater Entrainment and Sulfide Deposition in Regulating Metal Concentrations Within Manus Basin Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Craddock, P. R.; Tivey, M. K.; Seewald, J. S.; Rouxel, O.; Bach, W.

    2007-12-01

    Analyses of Fe, Mn, Cu, Zn, Pb, Ag, Cd, Co and Sb in vent fluid samples from four hydrothermal systems in the Manus back-arc basin, Papua New Guinea, were carried out by ICP-MS. Vienna Woods is located on the well- defined, basalt-dominated Manus Spreading Center, while the other systems are hosted in felsic volcanics on the Pual Ridge (PACMANUS), within a caldera (DESMOS), and on volcanic cones (SuSu Knolls). Metal concentrations were coupled with other fluid data (pH, SO4, Ca, H2S) to discriminate effects of deep- seated water-rock reaction and magmatic volatile input from near surface seawater entrainment, mixing, and consequent mineral precipitation and metal remobilization. Both magmatic volatile input (e.g. SO2, HCl, HF) and sulfide precipitation can increase fluid acidity and thus affect the aqueous mobility of metals. At Vienna Woods, 280°C end-member (Mg = 0) fluids have high pH (>4.2) and low metal contents (Fe <160 uM, Cu <10 uM, Zn <40 uM) relative to most mid-ocean ridge (MOR) vent fluids. The high pH and lack of evidence for magmatic volatile input are consistent with fluid compositions regulated by subsurface seawater- basalt/andesite reactions. Despite low aqueous Zn concentrations, Zn-rich (wurtzite-lined) chimneys are common at Vienna Woods active vents, reflecting deposition from fluids characterized by low Fe and Cu and high pH. At PACMANUS, black smoker fluids (T >300°C, pH ~ 2.7) are enriched in sulfide-forming metals by an order of magnitude relative to Vienna Woods fluids. Enrichments at PACMANUS reflect efficient leaching of metals at low pH, with the lower pH likely a result of input of magmatic volatiles. In addition, some vents fluids show clear evidence for seawater entrainment, subsurface precipitation of Cu-Fe-sulfides and preferential remobilization of Zn-sulfides (lower T, non-zero Mg, lower Fe, Cu, H2S and pH (2.3-2.4), but higher Zn, Pb, Cd and Ag, compared to black smokers). The higher metal concentrations and lower pH of fluids from PACMANUS versus Vienna Woods are reflected in chimney deposit compositions with Zn-poor sulfide linings composed of Cu-Fe-sulfides and As-Sb-sulfosalts in high T and lower T vents, respectively. At DESMOS caldera, fluid data suggest extensive magmatic volatile input (e.g. pH <1.5, elevated F and SO4) but lesser reaction with the basement felsic rocks (low Li, Rb, Mn). Sampled "acid-sulfate" fluids are low temperature (T ~180°C) with Mg >46 mM, and very high concentrations of some metals for these Mg concentrations (Fe >5 mM, Zn >50 - 400 uM). At SuSu Knolls, vent fluid compositions similar to those at both PACMANUS and DESMOS are observed. Smoker fluids have high but variable metal concentrations of similar magnitude to PACMANUS. Acid-sulfate fluids from North Su have low pH (<2), non-zero Mg (>40 mM), and high Fe and Zn concentrations, similar to DESMOS fluids. At SuSu Knolls, fluid compositions reflect either high temperature water-rock reaction (smoker fluids) or magmatic volatile input (acid-sulfate fluids). As at PACMANUS, chimney deposits that correspond to venting fluids are Cu-Fe-As-Sb-rich and Zn-poor, likely reflecting deposition from low pH, high Cu and Fe fluids.

  2. Tailoring Morphology and Size of Microstructure and Tensile Properties of Sn-5.5 wt.%Sb-1 wt.%(Cu,Ag) Solder Alloys

    NASA Astrophysics Data System (ADS)

    Dias, Marcelino; Costa, Thiago A.; Soares, Thiago; Silva, Bismarck L.; Cheung, Noé; Spinelli, José E.; Garcia, Amauri

    2018-02-01

    Transient directional solidification experiments, and further optical and scanning electron microscopy analyses and tensile tests, allowed the dependence of tensile properties on the micromorphology and length scale of the dendritic/cellular matrix of ternary Sn-5.5Sb-1Ag and Sn-5.5Sb-1Cu alloys to be determined. Extensive ranges of cooling rates were obtained, which permitted specific values of cooling rate for each sample examined along the length of the casting to be attributed. Very broad microstructural length scales were revealed as well as the presence of either cells or dendrites for the Ag-containing alloy. Hereafter, microstructural spacing values such as the cellular spacing, λ c, and the primary dendritic spacing, λ 1, may be correlated with thermal solidification parameters, that is, the cooling rate and the growth rate. While, for the Cu-containing Sn-Sb alloy, the β-Sn matrix is characterized only by the presence of dendritic arrangements, the Ag-containing Sn-Sb alloy is shown to have high-velocity β-Sn cells associated with high cooling rate regions, i.e., positions closer to the bottom of the alloy casting, with the remaining positions being characterized by a complex growth of β-Sn dendrites. Minor additions of Cu and Ag increase both the yield and ultimate tensile strengths when compared with the corresponding values of the binary Sn-5.5Sb alloy, with a small reduction in ductility. This has been attributed to the homogeneous distribution of the Ag3Sn and Cu6Sn5 intermetallic particles related to smaller λ 1 characterizing the dendritic zones of the ternary Sn-Sb-(Cu,Ag) alloys. In addition, the Ag-modified Sn-Sb alloy exhibited an initial wetting angle consistent with that characterizing the binary Sn-5.5Sb alloy.

  3. Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeh, Mohsen; Yokoyama, Kazuhito; Ramezanzadeh, Fateme

    2006-02-15

    To assess the effects of environmental exposures to trace metals on the incidence of preeclampsia, concentrations of lead (Pb), antimony (Sb), manganese (Mn), mercury, cadmium, cobalt and zinc in umbilical cord blood (UCB) and mother whole blood (MWB) were measured in 396 postpartum women without occupational exposure to metals in Tehran, Iran, using inductively coupled plasma mass spectrometry. Mother's ages ranged from 15 to 49 (mean 27) years. Preeclampsia was diagnosed in 31 subjects (7.8%). Levels of Pb, Sb and Mn in UCB were significantly higher in preeclampsia cases [mean+/-SD of 4.30+/-2.49{mu}g/dl, 4.16+/-2.73 and 46.87+/-15.03{mu}g/l, respectively] than in controls [3.52+/-2.09{mu}g/dl,more » 3.17+/-2.68 and 40.32+/-15.19{mu}g/l, respectively] (P<0.05). The logistic regression analysis revealed that one unit increase in the common logarithms of UCB concentration of Pb, Sb or Mn led to increase in the risk of preeclampsia several-fold; unit risks (95% CI) were 12.96 (1.57-107.03), 6.11 (1.11-33.53) and 34.2 (1.81-648.04) for Pb, Sb and Mn, respectively (P<0.05). These findings suggest that environmental exposure to Pb, Sb and Mn may increase the risk of preeclampsia in women without occupational exposure; levels of metals in UCB to be sensitive indicators of female reproductive toxicity as compared with those in mother MWB. Further studies are necessary to confirm these findings, especially on Sb and Mn.« less

  4. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  5. Influences of the Tonga Subduction Zone on seafloor massive sulfide deposits along the Eastern Lau Spreading Center and Valu Fa Ridge

    NASA Astrophysics Data System (ADS)

    Evans, Guy N.; Tivey, Margaret K.; Seewald, Jeffrey S.; Wheat, C. Geoff

    2017-10-01

    This study investigates the morphology, mineralogy, and geochemistry of seafloor massive sulfide (SMS) deposits from six back-arc hydrothermal vent fields along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the context of endmember vent fluid chemistry and proximity to the Tonga Subduction Zone. To complement deposit geochemistry, vent fluid analyses of Cu, Zn, Ba, Pb and H2,(aq) were completed to supplement existing data and enable thermodynamic calculations of mineral saturation states at in situ conditions. Results document southward increases in the abundance of mantle-incompatible elements in hydrothermal fluids (Ba and Pb) and SMS deposits (Ba, Pb, As, and Sb), which is also expressed in the abundance of barite (BaSO4) and galena (PbS) in SMS deposits. These increases correspond to a decrease in distance between the ELSC/VFR and the Tonga Subduction Zone that correlates with a change in crustal lithology from back-arc basin basalt in the north to mixed andesite, rhyolite, and dacite in the south. Barite influences deposit morphology, contributing to the formation of horizontal flanges and squat terraces. Results are also consistent with a regional-scale lowering of hydrothermal reaction zone temperatures from north to south (except at the southernmost Mariner vent field) that leads to lower-temperature, higher-pH vent fluids relative to mid-ocean ridges of similar spreading rates (Mottl et al., 2011). These fluids are Cu- and Zn-poor and the deposits formed from these fluids are Cu-poor but Zn-rich. In contrast, at the Mariner vent field, higher-temperature and lower pH vent fluids are hypothesized to result from higher reaction zone temperatures and the localized addition of acidic magmatic volatiles (Mottl et al., 2011). The Mariner fluids are Cu- and Zn-rich and vent from SMS deposits that are rich in Cu but poor in Zn with moderate amounts of Pb. Thermodynamic calculations indicate that the contrasting metal contents of vent fluids and SMS deposits can be accounted for by vent fluid pH. Wurtzite/sphalerite ((Zn, Fe)S) and galena (PbS) are saturated at higher temperatures in higher-pH, Zn-, Cu-, and Pb-poor ELSC/VFR vent fluids, but are undersaturated at similar temperatures in low-pH, Zn-, Cu-, and Pb-rich vent fluids from the Mariner vent field. Indicators of pH in the ELSC and VFR SMS deposits include the presence of co-precipitated wurtzite and chalcopyrite along conduit linings in deposits formed from higher pH fluids, and different correlations between concentrations of Zn and Ag in bulk geochemical analyses. Significant positive bulk geochemical Zn:Ag correlations occur for deposits at vent fields where hydrothermal fluids have a minimum pH (at 25 °C) < 3.3, while correlations of Zn:Ag are weak or negative for deposits at vent fields where the minimum vent fluid pH (at 25 °C) > 3.6. Data show that the compositions of the mineral linings of open conduit chimneys (minerals present, mol% FeS in (Zn,Fe)S) that precipitate directly from hydrothermal fluids closely reflect the temperature and sulfur fugacity of sampled hydrothermal fluids. These mineral lining compositions thus can be used as indicators of hydrothermal fluid temperature and composition (pH, metal content, sulfur fugacity).

  6. Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine

    NASA Astrophysics Data System (ADS)

    Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto

    2013-09-01

    The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.

  7. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  8. Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China.

    PubMed

    Fang, Zhan-Qiang; Cheung, R Y H; Wong, M H

    2003-01-01

    Concentrations of 8 heavy metals: cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), antimony (Sb) and tin (Sn) were examined in 3 species of bivalves ( Perna viridis, Crassostrea rivularis and Ruditapes philippinarum) collected from 25 sites along the Pearl River Delta coastal waters in the South China Sea from July to August 1996. In general, Cd, Cu, Zn and Sn concentrations in the three bivalve species collected from the Estuarine Zone were significantly higher than those collected from the Western and Eastern Zones of the Pearl River Delta, which are related to the existence of various anthropogenic activities in the catchment of the Pearl River Delta. The Western Estuarine Zone is mainly impacted hy Cr, Ni and Cu contamination. In Victoria Harbor, heavy metal contamination is mainly due to Cu and Pb, Cd, Cu and Zn concentrations in oysters were significantly higher than those in mussels and clams. This could be explained by the fact that oysters live mainly in the Estuarine Zone of the Pearl River Delta which receives most of the polluting discharges from the catchment of the Delta. During turbid condition, heavy metals( soluble or adsorbed on suspended particulates) discharged from the Delta are filtered from the water column and subsequently accumulated into the soft body tissues of oysters. Heavy metal concentrations in the three bivalve species were compared with the maximum permissible levels of heavy metals in seafood regulated by the Public Health and Municipal Services Ordinance, Laws of Hong Kong, and it was revealed that Cd and Cr concentrations in the three bivalve species exceeded the upper limits. At certain hotspots in the Delta, the maximum acceptable daily load for Cd was also exceeded.

  9. Selenium, tellurium and precious metal mineralogy in Uchalinsk copper-zinc-pyritic district, the Urals

    NASA Astrophysics Data System (ADS)

    Vikentev, I.

    2016-04-01

    During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.

  10. Yield strength of Cu and a CuPb alloy (1% Pb)

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Gray, G. T.; Fensin, S. J.; Grover, M.; Prime, M. B.; Stevens, G. D.; Stone, J. B.; Turley, W. D.

    2017-01-01

    With PBX9501 we explosively loaded fully annealed OFHC-Cu and an OFHC-CuPb (extruded with 1% Pb that aggregates at the Cu grain boundaries) to study the effects of the 1% Pb on the elastic-plastic yield Y of Cu. The yield-stress Y was studied through observation of surface velocimetry and total ejected mass ρA from periodic surface perturbations machined onto the sample surfaces. The perturbation's wavelengths were λ ≈ 65 µm, and their amplitudes h were varied to determine the wavenumber (2π/λ) amplitude product kh at which ejecta production for the Cu and CuPb begins, which relates to Y. The Y of the two materials is apparently different.

  11. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.

  12. Compositions of modern dust and surface sediments in the Desert Southwest, United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.; Reynolds, R.L.

    2009-01-01

    Modern dusts across southwestern United States deserts are compositionally similar to dust-rich Av soil horizons (depths of 0-0.5 cm and 1-4 cm at 35 sites) for common crustal elements but distinctly different for some trace elements. Chemical compositions and magnetic properties of the soil samples are similar among sites relative to dust sources, geographic areas, and lithologic substrates. Exceptions are Li, U, and W, enriched in Owens Valley, California, and Mg and Sr, enriched in soils formed on calcareous fan gravel in southeast Nevada. The Av horizons are dominated by dust and reflect limited mixing with substrate sediments. Modern dust samples are also similar across the region, except that Owens Valley dusts are higher in Mg, Ba, and Li and dusts both there and at sites to the north on volcanic substrates are higher in Sb and W. Thus, dust and Av horizons consist of contributions from many different sources that are well mixed before deposition. Modern dusts contain significantly greater amounts of As, Cd, Cr, Cu, Ni, Pb, and Sb than do Av horizons, which record dust additions over hundreds to thousands of years. These results suggest that modern dust compositions are influenced by anthropogenic sources and emissions from Owens (dry) Lake after its artificial desiccation in 1926. Both modern dusts and Av horizons are enriched in As, Ba, Cu, Li, Sb, Th, U, and W relative to average crustal composition, which we interpret to indicate that the geologic sources of dust in the southwestern United States are geochemically distinctive.

  13. CuSb(S,Se)2 thin film heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Welch, Adam W.

    Thin film heterojunction solar cells based on CuSb(S,Se)2 absorbers are investigated for two primary reasons. First, antimony is more abundant and less expensive than elements used in current thin film photovoltaics, In, Ga, and Te, and so, successful integration of Sb based materials offers greater diversification and scalability of solar energy. Second, the CuSb(S,Se) 2 ternary is chemically, electronically, and optically similar to the well-known, high efficiency, CuIn(S,Se)2 based materials. It is therefore postulated that the copper antimony ternaries will have similar defect tolerant electronic transport that may allow for similar highly efficient photoconversion. However, CuSb(S,Se)2 forms a layered crystal structure, different from the tetrahedral coordination found in conventional solar absorbers, due to the non-bonding lone pair of electrons on the antimony site. Thus examination of 2D antimony ternaries will lend insight into the role of structure in photoconversion processes. To address these questions, the semiconductors of interest (CuSbS 2 & CuSbSe2) were first synthesized on glass by combinatorial methods, to more quickly optimize process condi- tions. Radio-frequency (RF) magnetron co-sputtering from Sb2(S,Se)3 and Cu 2(S,Se) targets were used, without rotation, to produce chemical and flux graded libraries which were then subjected to high throughput characterization of structure (XRD), composition (XRF), conductivity (4pp), and optical absorption (UV/Vis/NIR). This approach rapidly identified processes that generated phase pure material with tunable carrier concentration by applying excess Sb 2(S,Se)3 within a temperature window bound by the volatility of Sb2(S,Se)3 and stability of the ternary phase. The resulting phase pure thin films were then incor- porated into the traditional CuInGaSe2 (CIGS) substrate photovoltaic (PV) architecture, and the resulting device performance was correlated to gradients in composition, sputter flux, absorber thickness, and grain orientation. This combinatorial work was complimented by individual measurements of photoluminescence (PL), capacitance-voltage (CV), external quantum efficiency (EQE), terahertz (THz) spectroscopy, and photoelectrochemical (PEC) measurements. CuSbS2-based libraries produced devices with just 1% power conversion efficiency, mainly limited by high levels of recombination associated with high density of shallow trap states. Conversely, the selenide variant showed more promise, with initial cells producing significantly more photocurrent, nearly 60% of the theoretical maximum, and likewise 5% efficient devices, mainly due to fewer trap states. However, the selenide is still limited by short carrier diffusion lengths, therefore demonstrating that structure does seem to play limiting role in photoconversion processes. Overall, the CuSb(S,Se)2 material system is only likely to merit further exploration if it can be incorporated into an alternate device structure less dependent on collection by diffusion. There is a small possibility that oriented selenide films with anisotropic carrier lifetimes could improve performance, though this is unlikely considering initial oriented sulfide films did not demonstrate much improved performance. This work demonstrated the utility of the combinatorial device fabrication applied to the search for new, scalable photovoltaic materials. An innovative chemical system was quickly explored in-depth and optimized for devices; continued efforts of this type are likely to produce better materials, or at the very least, quickly expand the library of well-scrutinized photovoltaic materials.

  14. Trace element concentrations in livers of polar bears from two populations in Northern and Western Alaska.

    PubMed

    Kannan, Kurunthachalam; Agusa, Tetsuro; Evans, Thomas J; Tanabe, Shinsuke

    2007-10-01

    Concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of polar bears (Ursus maritimus) collected from Northern and Western Alaska from 1993 to 2002 to examine differences in the profiles of trace metals between the Beaufort Sea (Northern Alaska) and the Chukchi Sea (Western Alaska) subpopulations in Alaska. Among the trace elements analyzed, concentrations of Cu (50-290 microg/g, dry wt) in polar bear livers were in the higher range of values that have been reported for marine mammals. Concentrations of Hg in polar bears varied widely, from 3.5 to 99 microg/g dry wt, and the mean concentrations in polar bears were comparable to concentrations reported previously for several other species of marine mammals. Mean concentrations of Pb and Cd were 0.67 and 1.0 microg/g dry wt, respectively; these concentrations were lower than levels reported elsewhere for polar bears from Greenland and Canada. Age- and gender-related variations in the concentrations of trace elements in our polar bears were minimal. Concentrations of Hg decreased slowly in samples collected during 1993-2002, whereas Cd and Pb concentrations were found to be stable or slowly increasing, in the livers of Alaskan polar bears. Concentrations of Ag, Bi, Ba, Cu, and Sn were significantly higher in the Chukchi Sea subpopulation than in the Beaufort Sea subpopulation. Concentrations of Hg were significantly higher in the Beaufort Sea subpopulation than in the Chukchi Sea subpopulation. Differences in the profiles and concentrations of Hg, Ag, Bi, Ba, Cu, and Sn suggest that the sources of exposure to these trace elements between Western and Northern Alaskan polar bears are different, in agreement with findings reported earlier for several organic contaminants.

  15. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    PubMed

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  16. Two-stage processed high-quality famatinite thin films for photovoltaics

    NASA Astrophysics Data System (ADS)

    Chalapathi, U.; Poornaprakash, B.; Cui, Hao; Park, Si-Hyun

    2017-11-01

    Famatinite (Cu3SbS4) thin films were prepared by annealing chemically grown Sb2S3-CuS stacks in a graphite box at 370-430 °C for 30 min under sulfur and N2 atmospheres. The films grown at 370 °C contain a minor CuSbS2 phase with dominant Cu3SbS4. Those films prepared at 400 °C and 430 °C are single-phase Cu3SbS4 with a tetragonal structure and lattice parameters a = 0.537 nm and b = 1.087 nm and a crystallite size of 25 nm. The grain size of the films increases as the annealing temperature is increased to 400 °C and subsequently decreases. The film morphology is compact and void-free with a grain size of 300-800 nm at 400 °C. The band gap of the films is 0.89 eV. The films exhibited p-type electrical conductivity and a relatively high hole mobility of 14.70 cm2V-1s-1 at 400 °C. Their attractive optoelectronic properties suggest that these films are suitable as solar cell absorber layers.

  17. Using amorphous manganese oxide for remediation of smelter-polluted soils: a pH-dependent long-term stability study

    NASA Astrophysics Data System (ADS)

    Ettler, Vojtech; Tomasova, Zdenka; Komarek, Michael; Mihaljevic, Martin; Sebek, Ondrej

    2015-04-01

    In soil systems, manganese (Mn) oxides are commonly found to be powerful sorbents of metals and metalloids and are thus potentially useful in soil remediation. A novel amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH = 3 - 8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH > 5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils and other in situ applications need to be evaluated. This study was supported by the Czech Science Foundation (GAČR 15-07117S).

  18. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    PubMed

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Geochemical and mineralogical controls on metal(loid) mobility in the oxide zone of the Prairie Creek Deposit, NWT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavinga, Drew; Jamieson, Heather; Layton-Matthews, Daniel

    2017-02-01

    Prairie Creek is an unmined high grade Zn-Pb-Ag deposit in the southern Mackenzie Mountains of the Northwest Territories, located in a 320 km2 enclave surrounded by the Nahanni National Park reserve. The upper portion of the quartz-carbonate-sulphide vein mineralization has undergone extensive oxidation, forming high grade zones, rich in smithsonite (ZnCO3) and cerussite (PbCO3). This weathered zone represents a significant resource and a potential component of mine waste material. This study is focused on characterizing the geochemical and mineralogical controls on metal(loid) mobility under mine waste conditions, with particular attention to the metal carbonates as a potential source of tracemore » elements to the environment. Analyses were conducted using a combination of microanalytical techniques (electron microprobe, scanning electron microscopy with automated mineralogy, laser-ablation inductively-coupled mass spectrometry, and synchrotron-based element mapping, micro-X-ray diffraction and micro-X-ray absorbance). The elements of interest included Zn, Pb, Ag, As, Cd, Cu, Hg, Sb and Se.« less

  20. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  1. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Lim, Jung Eun; Lee, Sung-Eun; Cho, Ju Sik; Moon, Deok Hyun; Hashimoto, Yohey; Ok, Yong Sik

    2014-01-01

    Mussel shell (MS), cow bone (CB) and biochar (BC) were selected to immobilize metals in an army firing range soil. Amendments were applied at 5% (wt) and their efficacies were determined after 175 d. For metal phytoavailability test, maize (Zea mays L.) plants were cultivated for 3weeks. Results showed that all amendments decreased the exchangeable Pb by up to 99% in planted/unplanted soils. Contrarily, exchangeable Sb were increased in the MS- and CB-amended soils. The rise in soil pH (~1 unit) by the amendments affected Pb and Sb mobility in soils. Bioavailability of Pb to maize was reduced by up to 71% in the amended soils. The Sb uptake to maize was decreased by up to 53.44% in the BC-amended soil. Sequential chemical extractions showed the transformation of easily available Pb to stable residual form with the amendment treatments. Scanning electron microscopic elemental dot mapping revealed the Pb association with Al and Si in the MS-amended soil and that with P in the CB- and BC-amended soils. Additionally, the extended X-ray absorption fine structure spectroscopic analysis indicated the transformation of organic bound Pb in unamended control soil to relatively more stable Pb-hydroxide (Ksp=10(-17.1)), chloropyromorphite (Ksp=10(-84.4)) and Pb-phosphate (Ksp=10(-23.8)) in soils amended with MS, CB and BC, respectively. Application of BC was the best in decreasing the phytoavailability of Pb and Sb in the studied army firing range soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Detailed history of atmospheric trace elements from the Quelccaya ice core (Southern Peru) during the last 1200 years

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Thompson, L. G.

    2013-12-01

    The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and ice has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element ice core records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. Ice cores retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the ice of the Quelccaya ice cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome core (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This indicates that there have been additional anthropogenic sources that have impacted the South American atmosphere during the past ~550 years. Furthermore, As, Bi and Pb record shows, the two most significant increases have occurred in the 20th century, one beginning in ~1905 AD and peaking in the 1920s and the second beginning in ~1955 AD and peaking in the 1970s. Comparison with other trace element records from Greenland and Antarctica reveals concomitant peaks of different amplitude in Pb concentration and crustal enrichment factor, possibly pointing to an unexpected larger than regional scale significance for the Quelccaya ice core record during the last century. In conclusion, the Quelccaya ice core indicates that societal and industrial development influenced the atmospheric composition in South America, from different large scale sources, during the last ~550 years. This is the first time that a low latitude ice core record has been used to reconstruct pre-industrial anthropogenic forcing on the atmosphere.

  3. Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x)

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Chen, Nancy; Gascoin, Franck; Mueller, Eckhard; Karpinski, Gabriele; Stiewe, Christian

    2006-01-01

    A document presents a study of why materials of composition (Ag1 ySbTe2)0.05 (PbTe)0.95 [0< or = y < or = 1] were previously reported to have values of the thermoelectric figure of merit [ZT (where Z = alpha(sup 2)/rk, alpha is the Seebeck coefficient, r is electrical resistivity, k is thermal conductivity, and T is absolute temperature)] ranging from <1 to >2. In the study, samples of (AgSbTe2)0.05(PbTe)0.95, (Ag0.67SbTe2)0.05 (PbTe)0.95, and (Ag0.55SbTe2)0.05(PbTe)0.95 were prepared by melting followed, variously, by slow or rapid cooling. Analyses of these samples by x-ray diffraction, electron microscopy, and scanning-microprobe measurements of the Seebeck coefficient led to the conclusion that these materials have a multiphase character on a scale of the order of millimeters, even though they appear homogeneous in x-ray diffraction and electron microscopy. The Seebeck measurements showed significant variations, including both n-type and p-type behavior in the same sample. These variations were found to be consistent with observed variations of ZT. The rapidly quenched samples were found to be less inhomogeneous than were the furnace-cooled ones; hence, rapid quenching was suggested as a basis of research on synthesizing more nearly uniform high-ZT samples.

  4. Practical and quality-control aspects of multi-element analysis with quadrupole ICP-MS with special attention to urine and whole blood.

    PubMed

    De Boer, Jan L M; Ritsema, Rob; Piso, Sjoerd; Van Staden, Hans; Van Den Beld, Wilbert

    2004-07-01

    Two screening methods were developed for rapid analysis of a great number of urine and blood samples within the framework of an exposure check of the population after a firework explosion. A total of 56 elements was measured including major elements. Sample preparation consisted of simple dilution. Extensive quality controls were applied including element addition and the use of certified reference materials. Relevant results at levels similar to those found in the literature were obtained for Co, Ni, Cu, Zn, Sr, Cd, Sn, Sb, Ba, Tl, and Pb in urine and for the same elements except Ni, Sn, Sb, and Ba in blood. However, quadrupole ICP-MS has limitations, mainly related to spectral interferences, for the analysis of urine and blood, and these cause higher detection limits. The general aspects discussed in the paper give it wider applicability than just for analysis of blood and urine-it can for example be used in environmental analysis.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willian de Souza Lucas, Francisco; Peng, Haowei; Johnston, Steve

    Copper antimony disulfide (CuSbS 2) has several excellent bulk optoelectronic properties for photovoltaic absorber applications. Here, we report on the defect properties in CuSbS 2thin film materials and photovoltaic devices studied using several experimental methods supported by theoretical calculations.

  6. Exposure of children to metals via tap water ingestion at home: Contamination and exposure data from a nationwide survey in France.

    PubMed

    Le Bot, Barbara; Lucas, Jean-Paul; Lacroix, Françoise; Glorennec, Philippe

    2016-09-01

    29 inorganic compounds (Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Gd, K, Mg, Mn, Mo, Na, Nd, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn) were measured in the tap water of 484 representative homes of children aged 6months to 6years in metropolitan France in 2008-2009. Parents were asked whether their children consumed tap water. Sampling design and sampling weights were taken into account to estimate element concentrations in tap water supplied to the 3,581,991 homes of 4,923,058 children aged 6months to 6years. Median and 95th percentiles of concentrations in tap water were in μg/L: Al: <10, 48.3, As: 0.2, 2.1; B: <100, 100; Ba: 30.7, 149.4; Ca: 85,000, 121,700; Cd: <0.5, <0.5; Ce: <0.5, <0.5; Co: <0.5, 0.8; Cr: <5, <5; Cu: 70, 720; K: 2210, 6740; Fe: <20, 46; Mn: <5, <5; Mo: <0.5, 1.5; Na: 14,500, 66,800; Ni: <2, 10.2; Mg: 6500, 21,200; Pb: <1, 5.4; Sb: <0.5, <0.5; Se: <1, 6.7; Sr: 256.9, 1004; Tl: <0.5, <0.5; U: <0.5, 2.4; V: <1, 1; Zn: 53, 208. Of the 2,977,123 young children drinking tap water in France, some were drinking water having concentrations above the 2011 World Health Organization drinking-water quality guidelines: respectively 498 (CI 95%: 0-1484) over 700μg/L of Ba; 121,581 (CI 95%: 7091-236,070) over 50mg/L of Na; 2044 (CI 95%: 0-6132) over 70μg/L of Ni, and 78,466 (17,171-139,761) over 10μg/L of Pb. Since it is representative, this tap water contamination data can be used for integrated exposure assessment, in conjunction with diet and environmental (dust and soil) exposure data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  8. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  9. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei, Mariana Lucia, E-mail: marianaluciaandrei@yahoo.com; Babes-Bolyai University, Environmental Science and Engineering Faculty, 30 Fantanele, 400294, Cluj-Napoca; Senila, Marin

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings frommore » Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.« less

  11. A study of Bi-Pb-Sn-Cd-Sb penta-alloys rapidly quenched from melt

    NASA Astrophysics Data System (ADS)

    Kamal, M.; El-Bediwi, A. B.

    2004-11-01

    Optical microscopy, X-ray diffractometry, the double bridge method, the Vickers microhardness testing and dynamic resonance techniques have been used to investigate structure, electrical resistivity, hardness, internal friction and elastic modulus of quenched Bi-Pb-Sn-Cd-Sb penta-alloys. The properties of these penta-alloys are greatly affected by rapid quenching. The intermetallic compound chi(Pb-Bi) or Bi3Pb7 is obtained after rapid quenching using the melt-spinning technique, and this is in agreement with reports by other authors [Marshall, T.J., Mott, G. T. and Grieverson, M. H. (1975). Br. J. Radiol., 48, 924, Kamal, M., El-Bediwi, A. B. and Karman, M. B. (1998). Structure, mechanical properties and electrical resistivity of rapidly solidified Pb-Sn-Cd and Pb-Bi-Sn-Cd alloys. J. Mater. Sci.: Mater. Electron., 9, 425, Borromee-Gautier, C., Giessen, B. C. and Grrant, N. J. (1968). J. Chem. Phys., 48,1905, Moon, K.-W., Boettinger, W. J., Kanner, U. R., Handwerker, C. A. and Lee, D.-J. (2001). The effect of Pb contamination on the solidification behavior of Sn-Bi solders. J. Electron. Mater, 30, 45.]. The quenched Bi43.5Pb44.5Cd5Sn2Sb5 alloy has important properties for safety devices in fire detection and extinguishing systems.

  12. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ˜1500 AD to present

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.; Brenner, Mark; Tucker, Jaimie L.

    2009-06-01

    Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into "natural" and "anthropogenic" groups using concentration trends from the bottom to the top of the core. The "natural" group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the "New World" did not affect their geochemical cycles. The "anthropogenic" group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the "anthropogenic" metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the "anthropogenic" metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V is oil combustion. The decline in V accumulation after 1970 in the BCM peat corresponds to the introduction of low-sulfur fuels and the change from heavy to distilled oils since the 1970s. After the 1920s, Pb distribution in the peat follows closely the history of alkyl lead consumption in the US, which peaked in the 1970s. Pb isotopes support this inference and furthermore, record changes in the ore sources used to produce leaded gasoline. Idaho ores dominated the peat Pb isotope record until the 1960s, followed by Pb from Mississippi Valley Type deposits from the 1960s to the 1980s. Enhanced fluxes of Cu, Zn, Cd, Sn, Sb, Bi, and to some extent Ni during the last century are likely also related to fossil fuel combustion. Local agricultural activities may also have influenced the geochemical cycles of Cu and Zn. The peat record shows enhanced U accumulation during the last century, possibly related to phosphate mining in western Florida. Sr isotopes in the peat core also reflect anthropogenic influence. The 87Sr/ 86Sr ratio decreases from natural background values in the basal part of the core to lower values in the upper part of the core. The Sr isotope shift is probably related to quarrying operations in Florida, and marks the first time an anthropogenic signal has been detected using the Sr isotope record in a peat core.

  13. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  14. Activities in Cu2S-FeS-PbS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eriç, H.; Timuçin, M.

    1981-09-01

    The dew-point method was used to determine the vapor pressures of PbS over liquid sulfides of the system Cu2S-FeS-PbS at 1200 °C. From the PbS activity data, activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations. The systems Cu2S-PbS and Cu2S-FeS exhibit negative departures from ideal behavior, while the FeS-PbS melts are ideal solutions at 1200 °C.

  15. Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

    NASA Astrophysics Data System (ADS)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-02-01

    CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new “Time-Temperature-Reaction” (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS2 to appear is substantially lower than for Cu3BiS3, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation.

  16. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  17. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Huang, Guoyong; Chhajro, Muhammad Afzal; Liu, Yonghong; Fu, Qingling; Zhu, Jun; Ashraf, Muhammad; Zafar, Mohsin; Bashir, Saqib; Hu, Hongqing

    2016-08-01

    Lead (Pb) and copper (Cu) contamination in croplands pose severe health hazards and environmental concerns throughout soil-food chain transfer. In the present study, BCR, TCLP, CaCl2, and SBET techniques were employed to evaluate the simultaneous effectiveness of rice straw (RS) and its derived biochar (BC), multiwall carbon nanotube (MWCNT), and single superphosphate (SSP) to immobilize the Pb and Cu in co-contaminated soil. The BCR sequential extraction results suggested that with increasing BC and SSP amount, the acid-soluble fractions decreased while oxidizable and residual proportions of Pb and Cu were increased significantly. Compared to SSP, the application of BC amendment substantially modified partitioning of Cu from easily exchangeable phase to less bioavailable residual bound fraction. The immobilized Pb and Cu were mainly transformed to reducible forms. The TCLP and CaCl2-extracted Pb and Cu were reduced significantly by the addition of BC compared to RS and MWCNT, whereas the bio-accessibility of Pb significantly reduced with RS addition. SSP showed better results for Pb immobilization while marginal for Cu in co-contaminated soil. Overall, the addition of BC offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.

  18. Effects of annealing and additions on dynamic mechanical properties of SnSb quenched alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-08-01

    The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160degreesC caused variations in the elastic modulus. internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.

  19. Biomonitoring of 33 Elements in Blood and Urine Samples from Coastal Populations in Sanmen County of Zhejiang Province.

    PubMed

    Zhang, Su-jing; Luo, Ru-xin; Ma, Dong; Zhuo, Xian-yi

    2016-04-01

    To determine the normal reference values of 33 elements, Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn and Zr, in the blood and urine samples from the general population in Sanmen County of Zhejiang province, a typical coastal area of eastern China. The 33 elements in 272 blood and 300 urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The normality test of data was conducted using SPSS 17.0 Statistics. The data was compared with other reports. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County were obtained, which of some elements were found to be similar with other reports, such as Co, Cu, Mn and Sr, while As, Cd, Hg and Pb were generally found to be higher than those previously reported. There was a wide variation between the reports from different countries in blood Ba. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County are established, and successfully applied to two poisoning cases.

  20. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

    PubMed

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Gao, Xiang; Zhong, Minzhou; Li, Xiaodong; Li, Xin; He, Xinyue; Fang, Yilong

    2017-06-01

    In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optical contrast and laser-induced phase transition in GeCu2Te3 thin film

    NASA Astrophysics Data System (ADS)

    Saito, Yuta; Sutou, Yuji; Koike, Junichi

    2013-02-01

    Fast crystallization and low power amorphization are essential to achieve rapid data recording and low power consumption in phase-change memory. This work investigated the laser-induced phase transition behaviors of GeCu2Te3 film based on the reflectance of amorphous and crystalline states. The GeCu2Te3 film showed a reflectance decrease upon crystallization, which was the opposite behavior in Ge2Sb2Te5 film. The crystallization starting time of the as-deposited GeCu2Te3 film was as fast as that of the as-deposited Ge2Sb2Te5 film. Furthermore, the GeCu2Te3 crystalline film was found to be reamorphized by laser irradiation at lower power and shorter pulse width than the Ge2Sb2Te5.

  2. Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with CuSCN additive

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2018-05-01

    Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with copper(I) thiocyanate (CuSCN) additive were investigated. The CuSCN-added CH3NH3PbI3(1‑x)Cl x films were prepared by a hot air blow-assisted spin-coating method. Current density–voltage characteristics of the photovoltaic device using the CuSCN-added CH3NH3PbI3(1‑x)Cl x light-absorbing layer showed increases in short-circuit current density, open-circuit voltage, which resulted in increase in the conversion efficiency. Microstructure analysis showed that the crystal structure of the CuSCN-added CH3NH3PbI3(1‑x)Cl x was a pseudocubic system. From these results, partial substitutions of Pb2+ and anions (I‑ and Cl‑) by Cu ions (Cu+ and Cu2+) and SCN‑, respectively, are considered to occur in the CuSCN-added CH3NH3PbI3(1‑x)Cl x films. Based on the obtained results, reaction mechanisms of the CH3NH3PbI3(1‑x)Cl x films with and without CuSCN additive were discussed.

  3. Characterization of defects in copper antimony disulfide

    DOE PAGES

    Willian de Souza Lucas, Francisco; Peng, Haowei; Johnston, Steve; ...

    2017-09-19

    Copper antimony disulfide (CuSbS 2) has several excellent bulk optoelectronic properties for photovoltaic absorber applications. Here, we report on the defect properties in CuSbS 2thin film materials and photovoltaic devices studied using several experimental methods supported by theoretical calculations.

  4. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  5. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  6. Systematic study of electronic and magnetic properties for Cu{sub 12–x}TM{sub x}Sb{sub 4}S{sub 13} (TM = Mn, Fe, Co, Ni, and Zn) tetrahedrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suekuni, K., E-mail: ksuekuni@hiroshima-u.ac.jp; Tomizawa, Y.; Ozaki, T.

    2014-04-14

    Substitution effects of 3d transition metal (TM) impurities on electronic and magnetic properties for Cu{sub 12}Sb{sub 4}S{sub 13} tetrahedrite are investigated by the combination of low-temperature experiments and first-principles electronic-structure calculations. The electrical resistivity for the cubic phase of Cu{sub 12}Sb{sub 4}S{sub 13} exhibits metallic behavior due to an electron-deficient character of the compound. Whereas that for 0.5 ≤ x ≤ 2.0 of Cu{sub 12−x}Ni{sub x}Sb{sub 4}S{sub 13} exhibits semiconducting behavior. The substituted Ni for Cu is in the divalent ionic state with a spin magnetic moment and creates impurity bands just above the Fermi level at the top of the valence band. Therefore,more » the semiconducting behavior of the electrical resistivity is attributed to the thermal excitation of electrons from the valence band to the impurity band. The substitution effect of TM on the electronic structure and the valency of TM for Cu{sub 11.0}TM{sub 1.0}Sb{sub 4}S{sub 13} are systematically studied by the calculation. The substituted Mn, Fe, and Co for Cu are found to be in the ionic states with the spin magnetic moments due to the large exchange splitting of the 3d bands between the minority- and majority-spin states.« less

  7. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  8. Effects of simulated acid rain, EDTA, or their combination, on migration and chemical fraction distribution of extraneous metals in Ferrosol.

    PubMed

    Wen, Fang; Hou, Hong; Yao, Na; Yan, Zengguang; Bai, Liping; Li, Fasheng

    2013-01-01

    A laboratory repacked soil-leaching column experiment was conducted to study the effects of simulated acid rain or EDTA by themselves or in combination, on migration and chemical speciation distribution of Pb and its alternative rare metals including Ag, Bi, In, Sb, and Sn. Experimental results demonstrate that leaching with simulated acid rain promoted the migration of Bi, In and Pb, and their migration reached down to 8 cm in the soil profile, no enhancement of Sb, Ag or Sn migration was observed. Addition of EDTA significantly enhanced the migration of all six metals, especially Bi, In and Pb. The migration of metals was in the order Pb>Bi>In>Sb>Sn>Ag. The individual and combined effects of acid rain and EDTA increased the environmental risk of metals, by increasing the soluble content of metals in soil solutions and the relative distribution of the exchangeable fraction. Leaching risks of Bi, In and Pb were higher than other three metals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

    PubMed

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-04-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Methanobactin from Methylocystis sp. Strain SB2 Affects Gene Expression and Methane Monooxygenase Activity in Methylosinus trichosporium OB3b

    PubMed Central

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S.; DiSpirito, Alan A.

    2015-01-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin “piracy” may be commonplace. PMID:25616801

  11. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  12. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-03-01

    The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.

  13. Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina.

    PubMed

    Gómez, Dario; Smichowski, Patricia; Polla, Griselda; Ledesma, Ariel; Resnizky, Sara; Rosa, Susana

    2002-12-01

    The volcano Copahue, Neuquén province, Argentina has shown infrequent explosive eruptions since the 18th century. Recently, eruptive activity and seismicity were registered in the period July-October, 2000. As a consequence, ash clouds were dispersed by winds and affected Caviahue village located at about 9 km east of the volcano. Samples of deposited particles from this area were collected during this episode for their chemical analysis to determine elements of concern with respect to the health of the local population and its environment. Different techniques were used to evaluate the distribution of elements in four particle size ranges from 36 to 300 microm. X-ray powder diffraction (XRD) was selected to detect major components namely, minerals, silicate glass, fragments of rocks and sulfurs. Major and minor elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, S, Si and Ti), were detected by energy dispersive X ray analysis (EDAX). Trace element (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, U, V and Zn) content was quantified by inductively coupled plasma-mass spectrometry (ICP-MS). Nuclear activation analysis (NAA) was employed for the determination of Ce, Co, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Ta and Yb. An enrichment was observed in the smallest size fraction of volcanic ashes for four elements (As, Cd, Cu and Sb) of particular interest from the environmental and human health point of view.

  14. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  15. Investigation of spin-dependent transports and microstructure in NiMnSb-based magnetoresistive devices

    NASA Astrophysics Data System (ADS)

    Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro

    2017-11-01

    We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.

  16. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  17. Mobilization of Ag, heavy metals and Eu from the waste deposit of the Las Herrerias mine (Almería, SE Spain)

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Cardellach, E.

    2009-02-01

    We studied the mobility of silver, heavy metals and europium in waste from the Las Herrerías mine in Almería (SE Spain). The most abundant primary mineral phases in the mine wastes are hematite, hydrohematite, barite, quartz, muscovite, anorthite, calcite and phillipsite. The minor phase consisted of primary minerals including ankerite, cinnabar, digenite, magnesite, stannite, siderite and jamesonite, and secondary minerals such as glauberite, szomolnokite, thenardite and uklonscovite. The soils show high concentrations of Ag (mean 21.6 mg kg-1), Ba (mean 2.5%), Fe (mean 114,000 mg kg-1), Sb (mean 342.5 mg kg-1), Pb (mean 1,229.8 mg kg-1), Zn (mean 493 mg kg-1), Mn (mean 4,321.1 mg kg-1), Cd (mean 1.2 mg kg-1) and Eu (mean 4.0 mg kg-1). The column experiments showed mobilization of Ag, Al, Ba, Cu, Cd, Eu, Fe, Mn, Ni, Sb, Pb and Zn, and the inverse modelling showed that the dissolution of hematite, hausmannite, pyrolusite and anglesite can largely account for the mobilization of Fe, Mn and Pb in the leaching experiment. The mobility of silver may be caused by the presence of kongsbergite and chlorargyrite in the waste, while the mobility of Eu seems to be determined by Eu(OH)3, which controls the solubility of Eu in the pH-Eh conditions of the experiments. The mineralogy, pH, Eh and geochemical composition of the mine wastes may explain the possible mobilization of heavy metals and metalloids. However, the absence of contaminants in the groundwater may be caused by the carbonate-rich environment of “host-rocks” that limits their mobility.

  18. Characterization of ambient aerosol at a remote site and twin cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Ghauri, B.; Lodhi, A.

    The pollution controls have significantly decreased pollutant concentrations in the industrialized nations in the west while the concentrations are expected to grow in developing countries. In this study the concentrations of major ions i.e SO4 2 -, NO3 -, NO2 -, Cl- , NH4 + and trace metals i.e. Al, V, Cr, Mn, Cu, As, Se, Cd, Sb, Ba, Ti and Pb were determined in aerosols at a remote site of Northern Pakistan in July 1996. Later in May 1998, a comparative study of aerosols in two size fractions (bulk &PM10) at 14 sites enabled to understand the anomalous distribution of several constituents present in the ambient air of the twin cities, Islamabad / Rawalpindi 90 km from South East of earlier site. The suspended particulate matter concentrations (bulk and PM10) were 475 ug/m3, 175 ug/m3 respectively. For urban areas Pb, Cd, Zn and Ni are obviously contributed by steel and other allied industries besides vehicle's contribution of lead and cadmium. In Northern area concentrations of Al, K, Ca, and Fe exceeded 1000 ng/m3. The SO2 concentrations varied from 0.03 to 1.2 ppb. Mean SO4 2- and NO3 - concentrations were 5.2 ug/m3 and 3.6 ug/m3 respectively. Concentrations of Se, Ti, Pb, Cd, Sb, Zn and As in all aerosol samples were highly enriched relative to average crustal abundances indicating significant anthropogenic contributions. As the dominant flow pattern from the Arabian Sea through India (monsoon air pattern) this may transport pollution derived aerosol and moisture from distant sources in China or India. Key word index: Aerosol, trace metals , enrichment, anions, air pollution, Islamabad/Rawalpindi, remote site.

  19. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province.

    PubMed

    Doering, Che; Bollhöfer, Andreas

    2016-10-01

    This paper presents a database of radionuclide activity and metal concentrations for the Alligator Rivers Region (ARR) uranium province in the Australian wet-dry tropics. The database contains 5060 sample records and 57,473 concentration values. The data are for animal, plant, soil, sediment and water samples collected by the Environmental Research Institute of the Supervising Scientist (ERISS) as part of its statutory role to undertake research and monitoring into the impacts of uranium mining on the environment of the ARR. Concentration values are provided in the database for 11 radionuclides ( 227 Ac, 40 K, 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 238 U) and 26 metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Th, U, V, Zn). Potential uses of the database are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens.

    PubMed

    Agnan, Y; Séjalon-Delmas, N; Probst, A

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Human health risks from heavy metals in fish of Buriganga river, Bangladesh.

    PubMed

    Kawser Ahmed, Md; Baki, Mohammad Abdul; Kundu, Goutam Kumar; Saiful Islam, Md; Monirul Islam, Md; Muzammel Hossain, Md

    2016-01-01

    Heavy metals are known to cause deleterious effects on human health through food chain. Human health risks were evaluated from consumption of heavy metal contaminated fish from Buriganga River in Bangladesh. Whole body of five fish species ( Puntius ticto, Puntius sophore, Puntius chola, Labeo rohita and Glossogobius giuris ) were analyzed which contained various concentrations of Cd, As, Pb, Cr, Ni, Zn, Se, Cu, Mo, Mn, Sb, Ba, V and Ag. Concentrations of Mn, Zn, Se and Pb in all fish species were above the Food Safety Guideline (FSG) by WHO/FAO. Assessment of noncarcinogenic health hazard by target hazard quotient (THQ) indicated no concern from consumption of these fish except for Mn. However, all metals together may affect human health as revealed by hazard index (HI). The target cancer risk (TR) values suggested carcinogenic risk from Ni and As. Taken together it can be concluded that there is potential human health risk in consuming fish from river Buriganga.

  2. Inadequacy of Conventional Grab Sampling for Remediation Decision-Making for Metal Contamination at Small-Arms Ranges.

    PubMed

    Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A

    2018-01-01

    Research shows grab sampling is inadequate for evaluating military ranges contaminated with energetics because of their highly heterogeneous distribution. Similar studies assessing the heterogeneous distribution of metals at small-arms ranges (SAR) are lacking. To address this we evaluated whether grab sampling provides appropriate data for performing risk analysis at metal-contaminated SARs characterized with 30-48 grab samples. We evaluated the extractable metal content of Cu, Pb, Sb, and Zn of the field data using a Monte Carlo random resampling with replacement (bootstrapping) simulation approach. Results indicate the 95% confidence interval of the mean for Pb (432 mg/kg) at one site was 200-700 mg/kg with a data range of 5-4500 mg/kg. Considering the U.S. Environmental Protection Agency screening level for lead is 400 mg/kg, the necessity of cleanup at this site is unclear. Resampling based on populations of 7 and 15 samples, a sample size more realistic for the area yielded high false negative rates.

  3. Heavy metals, metalloids and other hazardous elements in marine plastic litter.

    PubMed

    Turner, Andrew

    2016-10-15

    Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Association of metals with plastic production pellets in the marine environment.

    PubMed

    Ashton, Karen; Holmes, Luke; Turner, Andrew

    2010-11-01

    Plastic production pellets sampled from four beaches along a stretch of coastline (south Devon, SW England) and accompanying, loosely adhered and entrapped material removed ultrasonically have been analysed for major metals (Al, Fe, Mn) and trace metals (Cu, Zn, Pb, Ag, Cd, Co, Cr, Mo, Sb, Sn, U) following acid digestion. In most cases, metal concentrations in composite pellet samples from each site were less than but within an order of magnitude of corresponding concentrations in the pooled extraneous materials. However, normalisation of data with respect to Al revealed enrichment of Cd and Pb in plastic pellets at two sites. These observations are not wholly due to the association of pellets with fine material that is resistant to ultrasonication since new polyethylene pellets suspended in a harbour for 8 weeks accumulated metals from sea water through adsorption and precipitation. The environmental implications and potential applications of these findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Baseline study on trace and rare earth elements in marine sediments collected along the Namibian coast.

    PubMed

    Orani, Anna Maria; Vassileva, Emilia; Wysocka, Irena; Angelidis, Michael; Rozmaric, Martina; Louw, Deon

    2018-06-01

    Namibia is a fast-growing country with extensive mineral extraction activities used in diamond, fluorspar, uranium, and metals production. To assess the impact of land based human activities on the Namibian coastal marine environment, 25 elements were analyzed in 22 surface sediments samples collected along the coast. After applying a variety of pollution assessment indices (Enrichment Factor, Igeo and Pollution Load Indexes) was concluded that As, Cd and Sb were considerably enriched in the sediments from several sites, while Cu, Pb and Zn showed very high enrichment near the Walvis Bay harbor. Pearson's correlation and Principal Component Analysis were used to investigate common metal sources. Additionally, the determination of Pb isotope ratios confirmed the contribution of land based human activities at Walvis Bay and Lüderitz as sources of pollution. The analysis of REEs did not reveal any important enrichment due to anthropogenic activities, but provides a needed baseline for further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Toxic metals in children's toys and jewelry: coupling bioaccessibility with risk assessment.

    PubMed

    Cui, Xin-Yi; Li, Shi-Wei; Zhang, Shu-Jun; Fan, Ying-Ying; Ma, Lena Q

    2015-05-01

    A total of 45 children's toys and jewelry were tested for total and bioaccessible metal concentrations. Total As, Cd, Sb, Cr, Ni, and Pb concentrations were 0.22-19, 0.01-139, 0.1-189, 0.06-846, 0.14-2894 and 0.08-860,000 mg kg(-1). Metallic products had the highest concentrations, with 3-7 out of 13 samples exceeding the European Union safety limit for Cd, Pb, Cr, or Ni. However, assessment based on hazard index >1 and bioaccessible metal showed different trends. Under saliva mobilization or gastric ingestion, 11 out of 45 samples showed HI >1 for As, Cd, Sb, Cr, or Ni. Pb with the highest total concentration showed HI <1 for all samples while Ni showed the most hazard with HI up to 113. Our data suggest the importance of using bioaccessibility to evaluate health hazard of metals in children's toys and jewelry, and besides Pb and Cd, As, Ni, Cr, and Sb in children's products also deserve attention. Published by Elsevier Ltd.

  7. Structural phase transition and phonon instability in Cu 12Sb 4S 13

    DOE PAGES

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu 12Sb 4S 13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transitionmore » coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu 12Sb 4S 13 and Cu 10Zn 2Sb 4S 13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu 12Sb 4S 13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  8. Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes.

    PubMed

    Lin, Hui; Niu, Junfeng; Xu, Jiale; Huang, Haiou; Li, Duo; Yue, Zhihan; Feng, Chenghong

    2013-11-19

    The electrochemical mineralization of environmentally persistent long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluorononanoic acid (C8F17COOH, PFNA) and perfluorodecanoic acid (C9F19COOH, PFDA) was investigated in aqueous solutions (0.25 mmol L(-1)) over Ti/SnO2-Sb-Ce (SnO2), Ti/SnO2-Sb/Ce-PbO2 (PbO2), and Ti/BDD (BDD) anodes under galvanostatic control at room temperature. Based on PFCA decay rate, total organic carbon (TOC) reduction, defluorination ratio, safety, and energy consumption, the performance of PbO2 electrode was comparable with that of BDD electrode. After 180 min electrolysis, the PFNA removals on BDD and PbO2 electrodes were 98.7 ± 0.4% and 97.1 ± 1.0%, respectively, while the corresponding PFDA removals were 96.0 ± 1.4% and 92.2 ± 1.9%. SnO2 electrode yielded lower PFCA removals and led to notable secondary pollution by Sb ions. The primary mineralization product, F(-), as well as trace amounts of intermediate PFCAs with shortened chain lengths, were detected in aqueous solution after electrolysis. On the basis of these results, a degradation mechanism including three potential routes is proposed: via formation of short-chain PFCAs by stepwise removal of CF2; direct mineralization to CO2 and HF; conversion to volatile fluorinated organic compounds. The results presented here demonstrate that electrochemical technique exhibits high efficiency in mineralizing PFNA and PFDA under mild conditions, and is promising for the treatment of long-chain PFCAs in wastewater.

  9. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China.

    PubMed

    Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai

    2015-03-01

    Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  11. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France

    NASA Astrophysics Data System (ADS)

    Mbengue, Saliou; Alleman, Laurent Y.; Flament, Pascal

    2014-01-01

    To determine the size distribution of potentially toxic trace metals (TM) in atmospheric particulate matter (PM), sampling experiments were performed in the urban-industrial area of Dunkirk (North of France) during winter 2012. Total mass concentrations are in accordance with typical values obtained at European urban background sites but lower than the concentrations reported for some Asian industrial countries. Considering the local wind directions, mass concentrations are higher downwind of urban influences than downwind of industrial emissions. The mean PM10 mass concentration (25-30 μg/m3) is less than the European Union and US EPA limit values (40-50 μg/m3) but greater than the WHO guidelines (20 μg/m3). The calculated TM crustal enrichment factors (EFCrust) suggest the anthropogenic origins of most of the studied TM (Sb, Cd, As, Mo, Pb, Zn, Cu, Ni, Cr, Mn and V). The highest TM concentrations were obtained for Zn and Mn (> 50 ng/m3) under industrial influence, but the finest particle (< 0.29 μm) concentrations were higher for the urban sector than for the industrial sector. This enrichment may be attributed to local urban traffic. In contrast, trace metals are more abundant in the coarser fraction (> 0.29 μm) downwind of industrial emissions. Moreover, mechanical operations associated with industrial processes (excavating, crushing, and sintering), as well as the resuspension of industrial soils, likely represent some significant TM source-terms in the supermicronic fraction. The EFCrust comparison between the two prevailing sectors demonstrates the importance of steelworks and smelting emissions in the abundance of some TM (As, Cd, Fe, Mn, Mo, Pb, Rb and Zn). In contrast, the Cr and Co concentrations seem to be more related to coal combustion emissions, Cu and Sb to automotive traffic, and V, La and Ni to petrochemical activities.

  12. Enrichment and assessment of the health risks posed by heavy metals in PM1 in Changji, Xinjiang, China.

    PubMed

    Liu, Yu Y; Shen, Ya X; Liu, Cheng; Liu, Hao F

    2017-04-16

    The present study aims to investigate the influence of human activity on heavy metals in a typical arid urban area of China and assess human health risks posed by heavy metals in PM 1 (particles <1.0 μm in diameter) for different people. In this paper, Changji (Xinjiang, China) was selected as the study area, and samples were collected from March 2014 to March 2015. A total 14 elements in PM 1 were quantified using ICP-MS. An enrichment factor (EF) was used to assess the influence of human activity on the contamination of these metals. The results indicated that Mn was not enriched; Co, Cu, Cr, Ni, Tl, and V were slightly enriched; Mo, Pb, and Sb were moderately enriched; and Ag, As, and Cd were strongly enriched. To assess the health risks associated with inhaling PM 1 , the risk assessment code and loss in life expectancy based on the individual metals were calculated. The results showed that the elements Ag, Cu, Mo, Pb, Sb, Tl, and V in PM 1 posed low levels of non-carcinogenic risks, but these metals may still pose risks to certain susceptible populations. In addition, the results also showed that As, Co, and Cr posed an appreciable carcinogenic risk, while Cd and Ni posed low levels of carcinogenic risk. The total predicted loss of life expectancy caused by the three metals As, Co, and Ni was 63.67 d for the elderly, 30.95 d for adult males, 26.62 d for adult females, and 48.22 d for children. Therefore, the safety of the elderly and children exposed to PM 1 should be given more attention than the safety of adults. The results from this study demonstrate that the health risks posed by heavy metals in PM 1 in Changji, Xinjiang, China should be examined.

  13. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  14. Element variations in rhyolitic magma resulting from gas transport

    NASA Astrophysics Data System (ADS)

    Berlo, K.; Tuffen, H.; Smith, V. C.; Castro, J. M.; Pyle, D. M.; Mather, T. A.; Geraki, K.

    2013-11-01

    Tuffisite veins are glass-filled fractures formed when magma fragments during degassing within the conduit. These veins form transient channels through which exsolved gases can escape from magma. The purpose of this study is to determine the extent to which chemical heterogeneity within the melt results from gas transport, and assess how this can be used to study magma degassing. Two tuffisite veins from contrasting rhyolitic eruptions at Torfajökull (Iceland) and Chaitén (Chile) were studied in detail. The tuffisite vein from Torfajökull is from a shallow dissected conduit (∼70 ka) that fed a degassed lava flow, while the sample from Chaitén was a bomb ejected during the waning phases of Plinian activity in May 2008. The results of detailed in situ chemical analyses (synchrotron XRF, FTIR, LA-ICP-MS) show that in both veins larger vesiculated fragments are enriched in volatile elements (Torfajökull: H, Li, Cl; Chaitén: Li, Cl, Cu, Zn, As, Sn, Sb) compared to the host, while the surrounding smaller particles are depleted in the Torfajökull vein (Li, Cl, Zn, Br, Rb, Pb), but enriched in the Chaitén vein (K, Cu, Zn, As, Mo, Sb, Pb). The lifespans of both veins and the fluxes of gas and particles through them can be estimated using diffusion profiles and enrichment factors. The Torfajökull vein had a longer lifespan (∼a day) and low particle velocities (∼cm/s), while the Chaitén vein was shorter lived (<1 h) with a high gas velocity (∼m/s). These differences are consistent with the contrasting eruption mechanisms (effusive vs. explosive). The amount of magma that degassed through the Chaitén vein is more than ten times the volume of the vein itself, requiring the vein to tap into pre-exsolved gas pockets. This study highlights that tuffisite veins are highly efficient gas pathways and thereby impart chemical diversity in volatile elements on the melt.

  15. Mass and number size distributions of particulate matter components: comparison of an industrial site and an urban background site.

    PubMed

    Taiwo, Adewale M; Beddows, David C S; Shi, Zongbo; Harrison, Roy M

    2014-03-15

    Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot (PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed for water-soluble anions (Cl(-), NO₃(-) and SO₄(2-)) and cations (Na(+), NH4(+), K(+), Mg(2+) and Ca(2+)) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass distribution showed a predominance of fine particle (PM₂.₅) mass at EROS whereas the PT samples were dominated by the coarse fraction (PM₂.₅₋₁₀). SO₄(2-), Cl(-), NH4(+), Na(+), NO₃(-), and Ca(2+) were the predominant ionic species at both sites while Al and Fe were the metals with highest concentrations at both sites. Mean concentrations of Cl(-), Na(+), K(+), Ca(2+), Mg(2+), Cr, Mn, Fe and Zn were higher at PT than EROS due to industrial and marine influences. The contribution of regional pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by secondary aerosol and traffic-related particles while PT was heavily influenced by industrial activities and marine aerosol. Profound influences of wind direction are seen in the 72-hour data, especially in relation to the PT local sources. Measurements of particle number in 14 separate size bins plotted as a function of wind direction and speed are highly indicative of contributing sources, with local traffic dominant below 0.5 μm, steelworks emissions from 0.5 to 15 μm, and marine aerosol above 15 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas.

    PubMed

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Hong, Sungmin; Qin, Xiang; Ren, Jiawen; Liu, Yapping; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2008-10-01

    A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sb, Pb, and Bi in order to characterize the relative contributions from anthropogenic and natural sources to the fallout of these elements in central Himalayas. Our data were also considered in the context of monsoon versus non-monsoon seasons. The mean concentrations of the majority of the elements were determined to be at the pg g(-1) level with a strong variation in concentration with snow depth. While the mean concentrations of most of the elements were significantly higher during the non-monsoon season than during the monsoon season, considerable variability in the trace element inputs to the snow was observed during both periods. Cu, Zn, As, Cd, Sb, and Bi displayed high crustal enrichment factors (EFc) in most samples, while Cr, Ni, Rb, and Pb show high EFc values in some of the samples. Our data indicate that anthropogenic inputs are potentially important for these elements in the remote high-altitude atmosphere in the central Himalayas. The relationship between the EFc of each element and the Al concentration indicates that a dominant input of anthropogenic trace elements occurs during both the monsoon and non-monsoon seasons, when crustal contribution is relatively minor. Finally, a comparison of the trace element fallout fluxes calculated in our samples with those recently obtained at Mont Blanc, Greenland, and Antarctica provides direct evidence for a geographical gradient of the atmospheric pollution with trace elements on a global scale.

  17. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  18. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  19. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  20. Toxicity assessment of mycotoxins extracted from contaminated commercial dog pelleted feed on canine blood mononuclear cells.

    PubMed

    Singh, Sanil D; Sheik Abdul, Naeem; Phulukdaree, Alisa; Tiloke, Charlette; Nagiah, Savania; Baijnath, Sooraj; Chuturgoon, Anil A

    2018-04-01

    Raw ingredients of pet food are often contaminated with mycotoxins. This is a serious health problem to pets and causes emotional and economical stress to the pet owners. The aim of this study was to determine the immunotoxicity of the most common mycotoxins (aflatoxin, fumonisin, ochratoxin A and zearalenone) by examining 20 samples of extruded dry dog food found on the South African market [10 samples from standard grocery store lines (SB), 10 from premium veterinarian lines (PB)]. Pelleted dog food was subjected to extraction protocols optimized for the above mentioned mycotoxins. Dog lymphocytes were treated with the extracts (24 h incubation and final concentration 40 μg/ml) to determine cell viability, mitochondrial function, oxidative stress, and markers of cell death using spectrophotometry, luminometry and flow cytometry. Malondialdehyde, a marker of oxidative stress showed no significant difference between SB and PB, however, GSH was significantly depleted in SB extract treatments. Markers of apoptosis (phosphatidylserine externalization) and necrosis (propidium iodide incorporation) were elevated in both food lines when compared to untreated control cells, interestingly SB extracts were significantly higher than PB. We also observed decreased ATP levels and increased mitochondrial depolarization in cells treated with both lines of feed with SB showing the greatest differences when compared to the control. This study provides evidence that irrespective of price, quality or marketing channels, pet foods present a high risk of mycotoxin contamination. Though in this study PB fared better than SB in regards to cell toxicity, there is a multitude of other factors that need to be studied which may have an influence on other negative outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    USGS Publications Warehouse

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests filling of fractures that developed in previously lithified rock. Uniformly low Ca and Mg and uniformly negative Ce anomalies in highly siliceous Red Dog wall rocks reflect hydrothermal decarbonation reactions and pervasive silicification owing to conductive cooling of oxidized metalliferous fluids. Similar Ca and Mg depletions are evident at Anarraaq but generally lack associated silicification, possibly because temperatures of the hydrothermal fluids were too low (<180??C) or because the thermal contrast between the fluids and wall rocks was smaller owing to the greater depth of alteration and mineralization there, compared with Red Dog. Chalcophile element anomalies (Fe, Zn, Pb, Tl, As, Sb) in wall rocks at both Red Dog and Anarraq are attributed to sulfidation reactions, coeval with subsurface Zn-Pb-Ag mineralization, during the mixing of oxidized metalliferous fluids with H2S-rich fluids derived locally within the Kuna Formation. Sedimentary wall rocks in the Red Dog district are characterized by a distinctive suite of geochemical anomalies, especially for Zn, Pb, Tl, As, Sb, Ge, and Eu/Eu*. At the Aqqaluk deposit, wall rocks without visible sphalerite or galena (<300 ppm Zn + Pb) have anomalous Eu/Eu*, Tl, Sb, and As for up to ???100 m stratigraphically below Zn-rich silica rock. At Anarraaq, the Tl anomaly is most extensively developed, and enrichment relative to unaltered black shale of the Kuna Formation is present up to 62 m above the highest Zn-Pb sulfide zones. The magnitude of the enrichment and systematic behavior of Tl in the district make Tl a promising geochemical exploration guide for Red Dog-type Zn-Pb-Ag deposits elsewhere. ?? 2004 by Economic Geology.

  2. Micro-PIXE and micro-SR-XRF studies for Romanian archaeological gold identification

    NASA Astrophysics Data System (ADS)

    Constantinescu, B.

    2009-04-01

    For gold, trace elements are more significant for provenancing archaeological artifacts than the main components: Platinum Group Elements (PGE), Sn, Te, Sb, Hg, Pb, but also high melting point elements, such as Ta and Nb. Several small fragments of native Carpathian gold were studied using micro-PIXE technique at the AGLAE accelerator, Louvre Museum and at the Legnaro AN2000 microbeam facility, and using SR-XRF at BESSY synchrotron. The goal of the study was to identify the trace elements, especially Sn, Sb and Te. At BESSY, the SR-XRF measurements were performed in air by using a 34 keV beam to excite the characteristic X-lines in Sn-Sb-Te region. We found Sn to be present in placers from Valea Arieşului and Valea Pianului, Sb in primary gold from Zlatna, Ruda-Brad, Valea Morii, Runculeţ-Straja and Pb in primary gold from Brǎdişor-Brad, Zlatna, Runculeţ-Straja, Valea Morii, Muşariu-Brad. Ten native gold nuggets and several fragments of objects coming from Visigothic Pietroasa "The Golden Brood Hen with Its Chickens" hoard were analyzed using micro-PIXE technique at the AGLAE accelerator, Louvre Museum, Paris and at the Legnaro AN2000 microbeam facility. We found Te in primary gold from Brǎdişor-Brad, Muşariu-Brad (different samples from BESSY analyzed ones), and Roşia Montanǎ, Sb in primary gold at Bucium-Izbiţa. For Pietroasa hoard, we found Sn in the Oenochoe cup and small fibula, indicating that alluvial gold - probably from Anatolia (Pactolus river) - was used. We also detected Ta inclusions in the large fibula, indicating that Ural Mountains (the only region where Ta and Au minerals are together) gold was (at least partially) used. A spectacular application to nine Dacian gold bracelets (belonging to National History Museum of Romania) authentication is presented. These bracelets look like spirals and are based on the same artistic idea, are centred around the same theme. The number of spiral varies from 6 to 8. When uncoiled, some bracelets measure 2.30 m and others even 2.80 m. 4 of them weigh 1 kg each. At each end, the bracelets are decorated with 7 palm-leaf like ornaments. There are no two identical bracelets. The plate is continued with a so-called "protoma", a decorative element which looks like the head of an animal (a wolf, a snake or a dog). The Dacian bracelets were measured using XRF technique (Am-241 and Pu-238 sources and a portable Mo X-Ray tube used to control the homogeneity of the alloy for each bracelet). Compositions (Au-Ag-Cu) very similar to Brad region native gold (primary and placers), but different form bracelet to bracelet, were obtained. Differences in homogeneity, especially Cu content, for each bracelet were observed. Traces of Sn and Sb were also detected. Our conclusion: native gold (mainly alluvial - placers) from Brad region, primitive metallurgy (no refined gold).

  3. A Compilation of Metals and Trace Elements Extracted from Materials Relevant to Pharmaceutical Applications such as Packaging Systems and Devices.

    PubMed

    Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James

    2013-01-01

    Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.

  4. Characteristics of the trace elements and arsenic, iodine and bromine species in snow in east-central China

    NASA Astrophysics Data System (ADS)

    Gao, Yunchuan; Yang, Chao; Ma, Jin; Yin, Meixue

    2018-02-01

    Fifty-five snow samples were collected from 11 cities in east-central China. These sampling sites cover the areas with the most snowfall in 2014, there were only two snowfalls from June 2013 to May 2014 in east-central China. Twenty-three trace elements in the filtered snow samples were measured with inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis of the results show that the total concentrations of elements in the samples from different cities are in the order of SJZ > LZ > XA > ZZ > GD > NJ > QD > JX > WH > HZ > LA, which are closely related to the levels of AQI, PM2.5 and PM10 in these cities, and their correlation coefficients are 0.93, 0.76 and 0.93. The concentration of elements in snow samples is highly correlated with air pollution and reflects the magnitude of the local atmospheric deposition. The concentrations of Fe, Al, Zn, Ba, and P are over 10.0 μg/L, the concentrations of Mn, Cu, Pb, As, Br and I are between 1.0 μg/L to 10.0 μg/L, the concentrations of V, Cr, Co, Ni, Se, Mo, Cd and Sb are less than 1.0 μg/L in snow samples in east-central China, and Rh, Pd, Pt, Hg were not detected. Iodine and bromine species in all samples and arsenic species (As(III), As(V), dimethylarsinic acid (DMA) and monomethyl arsenic (MMA)) in some samples were separated and measured successfully by HPLC-ICP-MS. The majority of arsenic in the snow samples is inorganic arsenic, and the concentration of As(III) (0.104-1.400 μg/L) is higher than that of As(V) (0.012-0.180 μg/L), while methyl arsenicals, such as DMA and MMA, were almost not detected. The concentration of I- (Br-) is much higher than that of IO3- (BrO3-). The mean concentration of soluble organic iodine (SOI) (1.64 μg/L) is higher than that of I- (1.27 μg/L), however the concentration of Br- (5.58 μg/L) is higher than that of soluble organic bromine (SOBr) (2.90 μg/L). The data presented here shows that SOI is the most abundant species and the majority of the total bromine is bromide in snow sampled at east-central China. Using Fe as the reference element to calculate the EFs, the enrichment factors of V, Cr, Co, Ni, Mn, Ba and P are between 12.3 and 82.8, and the enrichment factors of Cu, Pb, Mo, Zn, Cd, As, Sb, Br, I and Se are between 189.4 and 27667.9, indicating that these elements are contributed by artificial sources. Results of principal component analysis (PCA) on the elements showed that most of trace elements (e.g. V, Cr, Mn, Co, Ni, Cu, As, Mo, Sb, Se, Br, I, Ba and P)were from the combustion of fossil fuels, traffic and ocean sources and some other elements (e.g. Zn, Cd and Pb) were mainly originated from industrial activities.

  5. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  6. Douglas fir (pseudotsuga menziesii) plantlets responses to as, PB, and sb-contaminated soils from former mines.

    PubMed

    Bonet, Amandine; Pascaud, Grégoire; Faugeron, Céline; Soubrand, Marilyne; Joussein, Emmanuel; Gloaguen, Vincent; Saladin, Gaëlle

    2016-01-01

    Phytoremediation of metalloids by conifers is not widely studied although they may be relevant for several contaminated sites, especially those located in cold areas and sometimes under dry climates. Here, seeds of Douglas fir were sown in greenhouse on three soils collected in two French former mines: a gold mine (soils L1 and L2) and a lead and silver mine (soil P). These soils are highly contaminated by Pb, As, and Sb at different concentrations. Plants were harvested after ten weeks. Growth parameters, primary metabolite content, and shoot and root ionomes were determined. Douglas firs grown on the soils L1 and P had a lower biomass than controls and a higher oxidation status whereas those grown on the soil L2 exhibited a more developed root system and only slight modifications of carbon and nitrogen nutrition. Based on trace element (TE) concentrations in shoots and roots and their translocation factor (TF), Douglas fir could be a relevant candidate for As phytoextraction (0.8 g. kg(-1) dry weight in shoots and a TF of 1.1) and may be used to phytostabilize Pb and Sb (8.8 g and 127 mg. kg(-1) in roots for Pb and Sb, respectively, and TF lower than 0.1).

  7. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30-40 years.The regional geochemical baseline values are established for Hungary using low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds allowed the evaluation of the importance of high toxic element concentrations in soils in a valley, downstream of a polymetallic vein-type base-metal mine. The metals present in the yellow sand include Pb, As, Cd, Cu, Zn and Sb. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, the soils and surface water were sampled along the erosion pathways downstream of the mine and dumps.

  8. Size and elemental distributions of nano- to micro-particulates in the geochemically-stratified Great Salt Lake

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.

    2009-01-01

    The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.

  9. High-performance Ti/Sb-SnO(2)/Pb(3)O(4) electrodes for chlorine evolution: preparation and characteristics.

    PubMed

    Shao, Dan; Yan, Wei; Cao, Lu; Li, Xiaoliang; Xu, Hao

    2014-02-28

    Chlorine evolution via electrochemical approach has wide application prospects in drinking water disinfection and wastewater treatment fields. Dimensional stable anodes used for chlorine evolution should have high stability and adequate chlorine evolution efficiency. Thus a novel and cost-effective Ti/Sb-SnO(2)/Pb(3)O(4)electrode was developed. The physicochemical and electrochemical properties as well as the chlorine evolution performances of the electrodes were investigated. The electrocatalytic activity and deactivation course of the electrodes were also explored. Results showed that this novel electrode had strong chlorine evolution ability with high current efficiency ranging from 87.3% to 93.4% depending on the operational conditions. The accelerated service life of Ti/Sb-SnO(2)/Pb(3)O(4) electrode could reach 180 h at a current density of 10,000 A m(-2) in 0.5 molL(-1) H(2)SO(4). During the electrolysis process, it was found that the conversion of Pb(3)O(4) into β-PbO(2) happened gradually on the electrode surface, which not only inhibited the leakage of hazardous Pb(2+) ion but also increased the anti-corrosion capacity of the electrode effectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S

    NASA Astrophysics Data System (ADS)

    Zeb, BibiSaima; Ping, Zheng; Mahmood, Qaisar; Lin, Qiu; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad; Shaheen, Shahida

    2017-07-01

    This research work is focusing on the toxicities of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phosphoreum T3S was used as an indicator organism. The acute toxicities of heavy metals on P. phosphoreum T3S were assessed during 15-min half inhibitory concentration (IC50) as indicator at pH 5.5-6. Toxicity assays involved the assessment of multicomponent mixtures using TU and MTI approaches. The results of individual toxicity indicated that the toxicity of Cd, Cu and Pb on P. phosphoreum increased with increasing concentrations and there was a linear correlation. The 15-min IC50 values of Cd, Cu and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, and their toxic order was Cd > Pb > Cu. The combined effects of Cd, Cu and Pb were assayed by equivalent concentration mixing method. The results showed that the combined effects of Cd + Cu, Cd + Pb, Cu + Pb, Cd + Cu + Pb were antagonistic, antagonistic and partly additive. The combined effect of three heavy metals was partly additive.

  11. Nanocomposites from Solution-Synthesized PbTe-BiSbTe Nanoheterostructure with Unity Figure of Merit at Low-Medium Temperatures (500-600 K).

    PubMed

    Xu, Biao; Agne, Matthias T; Feng, Tianli; Chasapis, Thomas C; Ruan, Xiulin; Zhou, Yilong; Zheng, Haimei; Bahk, Je-Hyeong; Kanatzidis, Mercouri G; Snyder, Gerald Jeffrey; Wu, Yue

    2017-03-01

    A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi 0.7 Sb 1.3 Te 3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.

    2005-06-01

    New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F 4¯ 3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  13. Composition and quality of coals in the Huaibei Coalfield, Anhui, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Wang, L.; Chou, C.-L.

    2008-01-01

    The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust. ?? 2007 Elsevier B.V. All rights reserved.

  14. Doping mechanism of antinomy in PbWO4

    NASA Astrophysics Data System (ADS)

    Li, Wensheng; Tang, Tong B.; Feng, Xiqi

    2002-01-01

    Sb doped PbWO4 (Sb:PWO) shows unique features in its dielectric and visible spectra. We propose that, in low concentration, the dopant enters the lattice as interstitial ions, and at high level it also substitute for W6+ sties. The existence of interstitial ions with relatively high mobility leads to non-negligible dc conductivity, whereas the substitutional impurity produces O23- color centers, which results in absorption at 420 nm, as well as holes hopping among oxygen ions in the Sb-O tetrahedra, that is the origin for the observed dielectric relaxation with an unusually low activation energy of 30±2 meV.

  15. Positive current collector for Li||Sb-Pb liquid metal battery

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Sadoway, Donald R.

    2017-07-01

    Corrosion in grid-scale energy storage devices adversely affects service lifetime and thus has a significant economic impact on their deployment. In this work, we investigate the corrosion of steel and stainless steels (SSs) as positive current collectors in the Li||Sb-Pb liquid metal battery. The erosion and formation of new phases on low-carbon steel, SS301, and SS430 were evaluated both in static conditions and under cell operating conditions. The cell performance is not adversely affected by the dissolution of iron or chromium but rather nickel. Furthermore, the in situ formation of a Fe-Cr-Sb layer helps mitigate the recession of SS430.

  16. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  17. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  18. Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles.

    PubMed

    Suresh, Gatla; Radnik, Jörg; Kalevaru, Venkata Narayana; Pohl, Marga-Martina; Schneider, Matthias; Lücke, Bernhard; Martin, Andreas; Madaan, Neetika; Brückner, Angelika

    2010-05-14

    In a systematic study, the influence of different preparation parameters on phase composition and size of metal crystallites and particles in Pd-Cu/TiO(2) and Pd-Sb/TiO(2) catalyst materials has been explored. Temperature and atmosphere of thermal pretreatment (pure He or 10% H(2)/He), nature of metal precursors (chlorides, nitrates or acetates) as well as of ammonium additives (ammonium sulfate, nitrate, carbonate) and urea were varied with the aim of tailoring the synthesis procedure for the preferential formation of metal particles with similar size and structure as observed recently in active catalysts after long-term equilibration under catalytic reaction conditions in acetoxylation of toluene to benzylacetate. Among the metal precursors and additives, the chloride metal precursors and (NH(4))(2)SO(4) were most suitable. Upon thermal pretreatment of Pd-Sb or Pd-Cu precursors, chloroamine complexes of Pd and Cu are formed, which decompose above 220 degrees C to metallic phases independent of the atmosphere. In He, metallic Pd particles were formed with both the co-components. In H(2)/He flow, Pd-Cu precursors were converted to core-shell particles with a Cu shell and a Pd core, while Sb(1)Pd(1) and Sb(7)Pd(20) alloy phases were formed in the presence of Sb. Metal crystallites of about 40 nm agglomerate to particles of up to 150 nm in He and to even larger size in H(2)/He.

  19. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    DTIC Science & Technology

    2011-05-01

    Ne 3 Na Mg IIIB IVB VB VIB VIIB ------ VIIIB ------ IB IIB Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc...Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np...Electroplating Bath Lid Arrangement ;:::::::::::=== Thermometer Purge gas vent Anode lead Cathode lead (Extractable from the lid) Purge feed gas

  20. Heterometallic and homometallic complexes containing bifunctional ligands and their application in high-temperature oxide superconductor materials

    NASA Astrophysics Data System (ADS)

    Breeze, Steven R.

    We have been interested in the development of soluble precursors for the production of YBasb2Cusb3Osb{7-delta} and Bisb2(Ca,Sr)sbn+1CusbnOsb(2n + 4) + delta, superconductor materials. Several heterometallic and homometallic complexes containing the constituent metals of these superconductors and bifunctional ligands such as aminoalcohols, acetates and thioethers have been isolated and structurally characterized. The thermal decomposition properties and magnetic properties of some of these compounds have been investigated. The first ligand system investigated involved 1,3-bis(dimethylamino)-2-propanol (bdmapH). By varying the ratio of bdmapH, Cu(OCHsb3)sb2, and M(Osb2CCFsb3)sb2 (M = Ca, Sr) several heterometallic complexes have been obtained, including Srsb2Cusb2(bdmap)sb4(Osb2CCFsb3)sb4, CaCu(bdmap)sb2(Osb2CCFsb3)sb3(Hsb2O), Srsb2Cusb4(bdmap)sb6-(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2 and SrCusb2(bdmap)sb3(Osb2CCFsb3)sb3(THF). With the exception of Srsb2Cusb4(bdmap)sb6(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2, these compounds thermally decompose to form mixtures of fluorides and oxides. An analogous acetate compound SrCusb2(bdmap)sb3(Osb2CCHsb3)sb3(THF) has been produced, which forms the corresponding oxide at high temperature. A bismuth dimer, Bisb2(bdmap)sb2(Osb2CCHsb3)sb4(Hsb2O), has also been obtained. Superconducting powder of the Bisb2Srsb2CaCusb2Osb{8 + delta} and epitaxial superconducting films of the YBasb2Cusb3Osb{7-delta} superconductor have been produced using the bdmap and acetate ligands as cross-linking reagents. The second ligand system investigated involved di-2-pyridylmethanediol. Only homonuclear complexes have been obtained by using this ligand, including the mononuclear compound Cu ((2-py)sb2CO(OH)) sb2(HOsb2CCH sb3)sb2*CHsb2Clsb2, the tetranuclear compound Cusb4 ((2-py)sb2CO(OH)) sb2(Osb2CCHsb 3)sb6(Hsb2O)sb2*CHsb2Clsb2, and the bismuth dimer Bisb2 ((2-py)sb2CO(OH)) sb2(Osb 2CCFsb3)sb4*(THF)sb2. The tetranuclear Cusb4 compound was found to be dominated by ferromagnetic exchanges. The third ligand system examined involved 2,2sp'-thiodiethanol (tdeHsb2). Heterometallic complexes Prsb2Cusb4(tde)sb3(tdeH)sb2(hfacac)sb4(musb6 -O) and Basb2Cusb2(tdeH)sb4(hfacac)sb4 have been obtained using this ligand. The six metal centers in Prsb2Cusb4(tde)sb3(tdeH)sb2(hfacac)sb4(musb6-O) are arranged in a octahedron and are linked by musb6-oxide and 2,2sp'-thiodiethanolato ligands. A metallomacrocyclic Cusb4 compound, Cusb4(tde)sb2(hfacac)sb4 has been produced. Attempts have been made to produce bismuthine complexes with an amino or pyridyl functional group that can coordinate to copper. The reaction of 4-Li-Csb6Hsb4CHsb2N(2-PY)sb2 with BiClsb3 produces the compound BispIII (p-Csb6Hsb4CHsb2N(2-py)sb2rbracksb3. The ability of this compound to coordinate CuClsb2 has been investigated. The complex BispV (p-Csb6Hsb4CHsb2N(2-py)sb2rbracksb3(Osb2CCHsb3)sb2 has also been produced.

  1. The mutual influence of speciation and combination of Cu and Pb on the photodegradation of dimethyl o-phthalate.

    PubMed

    Jiang, Xinshu; Wang, Zhe; Zhang, Yiyue; Wang, Fei; Zhu, Mijia; Yao, Jun

    2016-12-01

    Specific industrial application of dimethyl o-phthalate (DMP) in ore flotation has led to DMP-heavy metals combined pollution, which causes the abiotic degradation of DMP in the environment more complex. This study focused on the effect of Cu and Pb on photodegradation of DMP. The major mechanism of inhibiting effect of Cu and Pb on degradation of DMP involved their speciation and combination. It was found that the Cu (5 mg/L, I = 95.4%) and Pb (5 mg/L, I = 100%) could inhibit the photodegradation of DMP. The main species that inhibit the DMP degradation were Cu(OH) + and Pb(OH) + , respectively. The intensity of the UV-Vis absorbance of DMP was obviously related to the concentration of Cu 2+ (R 2  = 0.8655) or Pb 2+ (R 2  = 0.9019) ions. Fluorescence quenching effect of Cu 2+ (R 2  > 0.9946), Pb 2+ (R 2  > 0.6879) on DMP is strongly correlated with the concentration of ions. And the equilibrium membrane dialysis experiment has also verified the combination of DMP and Cu, Pb. These results are useful to understand the effect mechanism of metal species on the photodegradation of organic chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  3. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved.

  5. Contamination of soils by metals and organic micropollutants: case study of the Parisian conurbation.

    PubMed

    Gaspéri, Johnny; Ayrault, Sophie; Moreau-Guigon, Elodie; Alliot, Fabrice; Labadie, Pierre; Budzinski, Hélène; Blanchard, Martine; Muresan, Bogdan; Caupos, Emilie; Cladière, Mathieu; Gateuille, David; Tassin, Bruno; Bordier, Louise; Teil, Marie-Jeanne; Bourges, Catherine; Desportes, Annie; Chevreuil, Marc; Moilleron, Régis

    2016-11-10

    Soils are playing a central role in the transfer and accumulation of anthropogenic pollutants in urbanized regions. Hence, this study aimed at examining the contamination levels of selected soils collected within and around the Paris conurbation (France). This also evaluated factors controlling contamination. Twenty-three trace and major elements as well as 82 organic micropollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates (PAEs), polybrominated diphenyl ethers (PBDEs), alkylphenols (APs), and perfluoroalkylated substances (PFASs) were analyzed. Results reinforced the concern raised by the occurrence and levels of metals such as Zn, Pb, Cu, and Hg, identified as metallic markers of anthropogenic activities, but also pointed out the ubiquitous contamination of soils by organic micropollutants in the 0.2-55,000-μg/kg dw range. For well-documented compounds like PAHs, PCBs, and to a lesser extent PBDEs, contents were in the range of background levels worldwide. The pollutant stock in tested soil was compared to the annual atmospheric input. For PAHs; Pb; and to a lesser extent Zn, Cu, Cd, Hg, Sb, PAEs, and APs, a significant stock was observed, far more important than the recent annual atmospheric fluxes. This resulted from both (i) the persistence of a fraction of pollutants in surface soils and (ii) the cumulative atmospheric inputs over several decades. Regarding PBDEs and PFASs, stronger atmospheric input contributions were observed, thereby highlighting their recent dispersal into the environment.

  6. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    NASA Astrophysics Data System (ADS)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  7. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus).

    PubMed

    Rahman, Motior M; Azirun, Sofian M; Boyce, Amru N

    2013-01-01

    Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower. Plants were grown in a greenhouse and fertilized with N fertilizer at rates of 0, 190 and 380 mg kg⁻¹ soil. Shoots, roots and total accumulation of Cu and Pb, transfer factor (TF), translocation index were assessed to evaluate the transport and translocation ability of tested plants. Addition of N fertilizer acidified the industrial soil and caused the pH to decrease to 5.5 from an initial pH of 6.9. Industrial soil amended with N fertilizer resulted in the highest accumulation of Pb and Cu (for Pb 10.1-15.5 mg kg⁻¹, for Cu 11.6-16.8 mg kg⁻¹) in the shoots, which was two to four folds higher relative to the concentration in roots in all the three plants used. Sunflower removed significantly higher Pb (50-54%) and Cu (34-38%) followed by amaranth and Indian mustard from industrial soils with the application of N fertilizer. The TF was <1 while the shoot and root concentration (SC/RC) ratios of Pb and Cu were between 1.3-4.3 and 1.8-3.8, respectively, regardless of plant species. Sunflower is the best plant species to carry out phytoextraction of Pb and Cu. In contrast, Pb and Cu removal by Indian mustard and amaranth shows great potential as quick and short duration vegetable crops. The results suggest that the application of N fertilizer in contaminated industrial soil is an effective amendment for the phytoextraction of Pb and Cu from contaminated industrial soils.

  8. High Tc superconductors: The scaling of Tc with the number of bound holes associated with charge transfer neutralizing the multivalence cations

    NASA Technical Reports Server (NTRS)

    Vezzoli, G. C.; Chen, M. F.; Craver, F.

    1991-01-01

    It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.

  9. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    PubMed

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  10. Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    D'Angelo, Jonathan; Case, Eldon D.; Matchanov, Nuraddin; Wu, Chun-I.; Hogan, Timothy P.; Barnard, James; Cauchy, Charles; Hendricks, Terry; Kanatzidis, Mercouri G.

    2011-10-01

    In this paper we report on the electrical, thermal, and mechanical characterization of segmented-leg PbTe-based thermoelectric modules. This work featured a thermoelectric module measurement system that was constructed and used to measure 47-couple segmented thermoelectric power generation modules fabricated by Tellurex Corporation using n-type Bi2Te3- x Se x to Ag0.86Pb19+ x SbTe20 legs and p-type Bi x Sb2- x Te3 to Ag0.9Pb9Sn9Sb0.6Te20 legs. The modules were measured under vacuum with hot-side and cold-side temperatures of approximately 670 K and 312 K, respectively. In addition, the measurements on the PbTe-based materials are compared with measurements performed on Bi2Te3 reference modules. Efficiency values as high as 6.56% were measured on these modules. In addition to the measurement system description and the measurement results on these modules, infrared images of the modules that were used to help identify nonuniformities are also presented.

  11. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.

  12. Uncooled infrared photon detection concepts and devices

    NASA Astrophysics Data System (ADS)

    Piyankarage, Viraj Vishwakantha Jayaweera

    This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR detection in the 2--5 microm wavelength range with a peak D* of 6.8x105 cm Hz1/2 W-1. A HIWIP detector based on p-GaSb/GaSb showed a free carrier response threshold wavelength at 97 microm (˜3 THz) with a peak D* of 5.7x1011 cm Hz1/2 W-1 at 36 microm and 4.9 K. In this detector, a bolometric type response in the 97--200 microm (3--1.5 THz) range was also observed. INDEX WORDS: Infrared detectors, Photon detection, NIR detectors, THz detectors, Uncooled detectors, Dye-sensitized, IR dye, Quantum dot, Split-off band, GaSb, GaAs, AlGaAs, TiO2, CuSCN, PbS, Homojunction, Heterojunction, Workfunction, Photoemission, Displacement currents, 1/f noise.

  13. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].

    PubMed

    Deng, Hong-xia; Yang, Ya-li; Li, Zhen; Xu, Yan; Li, Rong-hua; Meng, Zhao-fu; Yang, Ya-ti

    2015-04-01

    In order to investigate the leaching remediation effect of the eco-friendly biosurfactant saponin for Cu and Pb in contaminated Lou soil, batch tests method was used to study the leaching effect of saponin solution on single Cu, Pb contaminated Lou soil and mixed Cu and Pb contaminated Lou soil under different conditions such as reaction time, mass concentration of saponin, pH, concentration of background electrolyte and leaching times. The results showed that the maximum leaching removal effect of Cu and Pb in contaminated Lou soil was achieved by complexation of the heavy metals with saponin micelle, when the mass concentration of saponin solution was 50 g x L(-1), pH was 5.0, the reaction time was 240 min, and there was no background electrolyte. In single and mixed contaminated Lou soil, the leaching percentages of Cu were 29.02% and 25.09% after a single leaching with 50 g x L(-1) saponin under optimal condition, while the single leaching percentages of Pb were 31.56% and 28.03%, respectively. The result indicated the removal efficiency of Pb was more significant than that of Cu. After 4 times of leaching, the cumulative leaching percentages of Cu reached 58.92% and 53.11%, while the cumulative leaching percentages of Pb reached 77.69% and 65.32% for single and mixed contaminated Lou soil, respectively. The fractionation results of heavy metals in soil before and after a single leaching showed that the contents of adsorbed and exchangeable Cu and Pb increased in the contaminated soil, while the carbonate-bound, organic bound and sulfide residual Cu and Pb in the contaminated Lou soil could be effectively removed by saponin.

  14. Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil.

    PubMed

    Kumarathilaka, Prasanna; Ahmad, Mahtab; Herath, Indika; Mahatantila, Kushani; Athapattu, B C L; Rinklebe, Jörg; Ok, Yong Sik; Usman, Adel; Al-Wabel, Mohammad I; Abduljabbar, Adel; Vithanage, Meththika

    2018-06-01

    Presence of organic and inorganic acids influences the release rates of trace metals (TMs) bound in contaminated soil systems. This study aimed to investigate the influence of bioenergy waste biochar, derived from Gliricidia sepium (GBC), on the proton and ligand-induced bioavailability of Pb and Cu in a shooting range soil (17,066mg Pb and 1134mg Cu per kg soil) in the presence of inorganic (sulfuric, nitric, and hydrochloric) and organic acids (acetic, citric, and oxalic). Release rates of Pb and Cu in the shooting range soil were determined under different acid concentrations (0.05, 0.1, 0.5, 1, 5, and 10mM) and in the presence/absence of GBC (10% by weight of soil). The dissolution rates of Pb and Cu increased with increasing acid concentrations. Lead was preferentially released (2.79×10 -13 to 8.86×10 -13 molm -2 s -1 ) than Cu (1.07×10 -13 to 1.02×10 -13 molm -2 s -1 ) which could be due to the excessive Pb concentrations in soil. However, the addition of GBC to soil reduced Pb and Cu dissolution rates to a greater extent of 10.0 to 99.5% and 15.6 to 99.5%, respectively, under various acid concentrations. The increased pH in the medium and different adsorption mechanisms, including electrostatic attractions, surface diffusion, ion exchange, precipitation, and complexation could immobilize Pb and Cu released by the proton and ligands in GBC amended soil. Overall, GBC could be utilized as an effective soil amendment to immobilize Pb and Cu in shooting range soil even under the influence of soil acidity. Copyright © 2017. Published by Elsevier B.V.

  15. Occurrence and health risk assessment of selected metals in drinking water from two typical remote areas in China.

    PubMed

    Geng, Menghan; Qi, Hongjuan; Liu, Xuelin; Gao, Bo; Yang, Zhan; Lu, Wei; Sun, Rubao

    2016-05-01

    The potential contaminations of 16 trace elements (Cr, Mn, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, Co, Be, V, Ti, Tl, Al) in drinking water collected in two remote areas in China were analyzed. The average levels of the trace elements were lower than the allowable concentrations set by national agencies, except for several elements (As, Sb, Mn, and Be) in individual samples. A health risk assessment model was conducted and carcinogenic and non-carcinogenic risks were evaluated separately. The results indicated that the total carcinogenic risks were higher than the maximum allowed risk level set by most organizations (1 × 10(-6)). Residents in both study areas were at risk of carcinogenic effects from exposure to Cr, which accounted for 80-90 % of the total carcinogenic risks. The non-carcinogenic risks (Cu, Zn, Ni) were lower than the maximum allowance levels. Among the four population groups, infants incurred the highest health risks and required special attention. Correlation analysis revealed significant positive associations among most trace elements, indicating the likelihood of a common source. The results of probabilistic health risk assessment of Cr based on Monte-Carlo simulation revealed that the uncertainty of system parameters does not affect the decision making of pollution prevention and control. Sensitivity analysis revealed that ingestion rate of water and concentration of Cr showed relatively high sensitivity to the health risks.

  16. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  17. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    PubMed Central

    2017-01-01

    Background Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day), respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. Conclusions The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required. PMID:29065598

  18. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in felsic natural samples may be identified by Cu, Se, Te and Cd-enrichment in magmatic sulfides, and by As, Se, Cd and Bi-enrichment in magmatic apatite.

  19. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  20. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

    PubMed Central

    Kim, Hyun-sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-il; Kim, Sung Wng

    2017-01-01

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction. PMID:28773118

  1. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    PubMed

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  2. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health.

    PubMed

    Jarzyńska, Grażyna; Falandysz, Jerzy

    2011-07-01

    Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Interfacial Reaction and Shear Strength of SnAgCu/Ni/Bi2Te3-Based TE Materials During Aging

    NASA Astrophysics Data System (ADS)

    Jing, Hongyang; Li, Yuan; Xu, Lianyong; Han, Yongdian; Lu, Guoquan; Zhang, Hao

    2015-12-01

    As a diffusion barrier layer, Ni is widely applied in power electronics packaging, especially in thermoelectric devices. This paper presents the variation of Ni diffusion barrier layer during aging and failure mechanisms of thermoelectric device joints. The thermoelectric joint consists of Sn96.5Ag3.0Cu0.5 (SAC305) solder and Bi2Te3-based thermoelectric materials such as Bi0.5Sb1.5Te3 and Bi1.8Sb0.2Se0.15Te2.85 during service. The result shows that with the increasing aging time, Ni layer was constantly consumed by SAC305 and Bi2Te3-based thermoelectric materials simultaneously. The reaction products are (Cu,Ni)6Sn5 and NiTe or Ni(Bi,Te), respectively. Besides, the shear strength of SAC305/Bi0.5Sb1.5Te3 joint or SAC305/Bi1.8Sb0.2Se0.15Te2.85 joint gets gradually decreased and thermoelectric conversion performance gets worse. Meantime, the different failure mechanisms are also compared between SAC305/Bi0.5Sb1.5Te3 couple joints and SAC305/Bi1.8Sb0.2Se0.15Te2.85 couple joints.

  4. New dielectric ceramics Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn) with the pyrochlore structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambachri, A.; Monier, M.; Mercurio, J.P.

    1988-04-01

    Dielectric ceramics have been obtained by natural sintering of pyrochlore phases with general formula Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn). Low frequency dielectric characteristics have been studied with respect to the processing conditions: sintering without additive and in the presence of some low melting compounds (PbO, Pb/sub 5/Ge/sub 3/O/sub 11/, Bi/sub 12/PbO/sub 19/ and Bi/sub 12/CdO/sub 19/). The dielectric constants of these ceramics lie between 30 and 60, the dielectric losses range from 10 to 30.10/sup -4/ and the temperature coefficient of the dielectric constants (20 - 100/sup 0/C) can be tailored by means of additives inmore » the +- 30 ppm K/sup -1/ range.« less

  5. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  6. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    PubMed Central

    Han, Mi-Kyung; Lee, Da-Hee; Kim, Sung-Jin

    2017-01-01

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping. PMID:29072613

  7. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.

    PubMed

    Han, Mi-Kyung; Jin, Yingshi; Lee, Da-Hee; Kim, Sung-Jin

    2017-10-26

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n -type Bi₂Te₃ co-doped with x at % CuI and 1/2 x at % Pb ( x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi₂Te₃ were measured in the temperature range from 300 K to 523 K, and compared to corresponding x % of CuI-doped Bi₂Te₃ and undoped Bi₂Te₃. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi₂Te₃ rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κ tot ) of co-doped samples (κ tot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi₂Te₃ (κ tot ~ 1.5 W/m∙K at 300 K) and undoped Bi₂Te₃ (κ tot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi₂Te 3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi₂Te 3 and its operating temperature can be controlled by co-doping.

  8. Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)

    DTIC Science & Technology

    2009-03-01

    AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and

  9. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    PubMed

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  10. A naturally-occurring new lead-based halocuprate(I)

    NASA Astrophysics Data System (ADS)

    Welch, Mark D.; Rumsey, Michael S.; Kleppe, Annette K.

    2016-06-01

    Pb2Cu(OH)2I3 is a new type of halocuprate(I) that is a framework of alternating [Pb4(OH)4]4+ and [Cu2I6]4- units. The structure has been determined in orthorhombic space group Fddd to R1=0.037, wR2=0.057, GoF=1.016. Unit cell parameters are a=16.7082(9) Å, b=20.8465(15) Å, c=21.0159(14) Å, V=7320.0(8) Å3 (Z=32). There is no synthetic counterpart. The structure is based upon a cubane-like Pb4(OH)4 nucleus that is coordinated to sixteen iodide ions. Cu+ ions are inserted into pairs of adjacent edge-sharing tetrahedral sites in the iodide motif to form [Cu2I6]4- groups. The Raman spectrum of Pb2Cu(OH)2I3 has two O-H stretching modes and as such is consistent with space group Fddd, with two non-equivalent OH groups, rather than the related space group I41/acd which has only one non-equivalent OH group. Consideration of the 18-electron rule implies that there is a Cu=Cu double bond, which may be consistent with the short Cu…Cu distance of 2.78 Å, although the dearth of published data on the interpretation of Cu…Cu distances in halocuprate(I) compounds does not allow a clear-cut interpretation of this interatomic distance. The orthorhombic structure is compared with that of the synthetic halocuprate(I) compound Pb2Cu(OH)2BrI2 with space group I41/acd and having chains of corner-linked CuI4 tetrahedra rather than isolated Cu2I6 pairs. The paired motif found in Pb2Cu(OH)2I3 cannot be achieved in space group I41/acd and, conversely, the chain motif cannot be achieved in space group Fddd. As such, the space group defines either a chain or an isolated-pair motif. The existence of Pb2Cu(OH)2I3 suggests a new class of inorganic halocuprate(I)s based upon the Pb4(OH)4 group.

  11. Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu12Sb4S13 tetrahedrite.

    PubMed

    Kosaka, Yasufumi; Suekuni, Koichiro; Hashikuni, Katsuaki; Bouyrie, Yohan; Ohta, Michihiro; Takabatake, Toshiro

    2017-03-29

    The synthetic tetrahedrites Cu 12-y Tr y Sb 4 S 13 (Tr: Mn, Fe, Co, Ni, Zn) have been extensively studied due to interest in metal-semiconductor transition as well as in superior thermoelectric performance. We have prepared Ge- and Sn-bearing tetrahedrites, Cu 12-x M x Sb 4 S 13 (M = Ge, Sn; x ≤ 0.6), and investigated the effects of the substitutions on the phase transition and the thermoelectric properties. The substitutions of Ge and Sn for Cu suppress the metal-semiconductor transition and increase the electrical resistivity ρ and the positive thermopower S. This finding suggests that the phase transition is prevented by electron doping into the unoccupied states of the valence band. The variations of ρ, S, and magnetic susceptibility for the present systems correspond well with those for the system with Tr = Zn 2+ , confirming the tetravalent states for Ge and Sn. The substitution of M 4+ for Cu 1+ decreases the power factor S 2 /ρ but enhances the dimensionless thermoelectric figure of merit ZT, due to reductions in both the charge carrier contribution and lattice contribution to the thermal conductivity. As a result, ZT has a maximum value of ∼0.65 at 665 K for x = 0.3-0.5 in Cu 12-x M x Sb 4 S 13 with M = Ge and Sn.

  12. Trace and minor elements in sphalerite from metamorphosed sulphide deposits

    NASA Astrophysics Data System (ADS)

    Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.

    2014-12-01

    Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.

  13. Long-term Geochemical Evolution of Lithogenic Versus Anthropogenic Distribution of Macro and Trace Elements in Household Attic Dust.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu

    2017-01-01

    Attic dusts were examined as historical archives of anthropogenic emissions, with the goal of elucidating the enrichment pathways associated with hydrothermal exploitation of Cu, Pb, and Zn minerals in the Bregalnica River basin in the eastern part of the Republic of Macedonia. Dust samples were collected from 84 settlements. Atomic emission spectrometry and mass spectrometry with inductively coupled plasma were applied as analytical techniques for the determination of 69 element contents. Multivariate analysis was applied for the extraction of dominant geochemical markers. The lithogenic distribution was simplified to six dominant geochemical markers: F1: Ga-Nb-Ta-Y-(La-Gd)-(Eu-Lu); F2: Be-Cr-Li-Mg-Ni; F3: Ag-Bi-Cd-Cu-In-Mn-Pb-Sb-Te-W-Zn; F4: Ba-Cs-Hf-Pd-Rb-Sr-Tl-Zr; F5: As-Co-Ge-V; and F6: К-Na-Sc-Ti. The anthropogenic effects on the air pollution were marked by a dominance of F3 and secondary dominance of F5. The fifth factor also was determined as a lithogenic marker for the occurrence of the very old Rifeous shales. The first factor also presents a very unique association that despite the heterogeneity relays on natural phenomena of tracking the deposition in areas of Proterosoic gneisses; related to the distribution of fine particles was associated with carbonate-silicate volcanic rocks. Intensive poly-metallic dust depositions were recorded only in the surroundings of localities where the hydrothermal extractions are implemented. Long-term deposition can be considered as pollution indexes for these hot spots. This mainly affects the Cd, Pb, and Zn deposition that is as high as 25, 3900, and 3200 mg/kg, respectively.

  14. Trace element reference intervals in the blood of healthy green sea turtles to evaluate exposure of coastal populations.

    PubMed

    Villa, C A; Flint, M; Bell, I; Hof, C; Limpus, C J; Gaus, C

    2017-01-01

    Exposure to essential and non-essential elements may be elevated for green sea turtles (Chelonia mydas) that forage close to shore. Biomonitoring of trace elements in turtle blood can identify temporal trends over repeated sampling events, but any interpretation of potential health risks due to an elevated exposure first requires a comparison against a baseline. This study aims to use clinical reference interval (RI) methods to produce exposure baseline limits for essential and non-essential elements (Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, and Pb) using blood from healthy subadult turtles foraging in a remote and offshore part of the Great Barrier Reef. Subsequent blood biomonitoring of three additional coastal populations, which forage in areas dominated by agricultural, urban and military activities, showed clear habitat-specific differences in blood metal profiles relative to the those observed in the offshore population. Coastal turtles were most often found to have elevated concentrations of Co, Mo, Mn, Mg, Na, As, Sb, and Pb relative to the corresponding RIs. In particular, blood from turtles from the agricultural site had Co concentrations ranging from 160 to 840 μg/L (4-25 times above RI), which are within the order expected to elicit acute effects in many vertebrates. Additional clinical blood biochemistry and haematology results indicate signs of a systemic disease and the prevalence of an active inflammatory response in a high proportion (44%) of turtles from the agricultural site. Elevated Co, Sb, and Mn in the blood of these turtles significantly correlated with elevated markers of acute inflammation (total white cell counts) and liver dysfunction (alkaline phosphatase and total bilirubin). The results of this study support the notion that elevated trace element exposures may be adversely affecting the health of nearshore green sea turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    PubMed

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 2005 Service Academies: Sexual Assault Survey: Administration, Datasets and Codebook

    DTIC Science & Technology

    2005-10-01

    sex w/you-Uned 326 SB026SK* [26sk] Situation w/ greatest eff -Skip 204 SB027* 27. [27---] In which semester did this occur 205 SB027U* [27...Tab recode SB038CR: Commis Officer COC 669 SB038CU* [38c] Retal by officer in chain o c-Uned 370 SB038D* 38d. [38d] Retal by other academy...sex w/you 203 SB026SK [26sk] Situation w/ greatest eff -Skip 204 SB027 27. [27---] In which semester did this occur 205 SB028 28. [28---] Where

  17. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  18. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    NASA Astrophysics Data System (ADS)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  19. Enhanced Accumulation of Copper and Lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus)

    PubMed Central

    Rahman, Motior M.; Azirun, Sofian M.; Boyce, Amru N.

    2013-01-01

    Background Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower. Methods/Principal Findings Plants were grown in a greenhouse and fertilized with N fertilizer at rates of 0, 190 and 380 mg kg−1 soil. Shoots, roots and total accumulation of Cu and Pb, transfer factor (TF), translocation index were assessed to evaluate the transport and translocation ability of tested plants. Addition of N fertilizer acidified the industrial soil and caused the pH to decrease to 5.5 from an initial pH of 6.9. Industrial soil amended with N fertilizer resulted in the highest accumulation of Pb and Cu (for Pb 10.1–15.5 mg kg−1, for Cu 11.6–16.8 mg kg−1) in the shoots, which was two to four folds higher relative to the concentration in roots in all the three plants used. Sunflower removed significantly higher Pb (50–54%) and Cu (34–38%) followed by amaranth and Indian mustard from industrial soils with the application of N fertilizer. The TF was <1 while the shoot and root concentration (SC/RC) ratios of Pb and Cu were between 1.3–4.3 and 1.8–3.8, respectively, regardless of plant species. Conclusions Sunflower is the best plant species to carry out phytoextraction of Pb and Cu. In contrast, Pb and Cu removal by Indian mustard and amaranth shows great potential as quick and short duration vegetable crops. The results suggest that the application of N fertilizer in contaminated industrial soil is an effective amendment for the phytoextraction of Pb and Cu from contaminated industrial soils. PMID:23667546

  20. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    PubMed

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  1. Mineral Deposit Data for Epigenetic Base- and Precious-metal and Uranium-thorium Deposits in South-central and Southwestern Montana and Southern and Central Idaho

    USGS Publications Warehouse

    Klein, T.L.

    2004-01-01

    Metal deposits spatially associated with the Cretaceous Boulder and Idaho batholiths of southwestern Montana and southern and central Idaho have been exploited since the early 1860s. Au was first discovered in placer deposits; exploitation of vein deposits in bedrock soon followed. In 1865, high-grade Ag vein deposits were discovered and remained economically important until the 1890s. Early high-grade deposits of Au, Ag and Pb were found in the weathered portions of the veins systems. As mining progressed to deeper levels, Ag and Pb grades diminished. Exploration for and development of these vein deposits in this area have continued until the present. A majority of these base- and precious-metal vein deposits are classified as polymetallic veins (PMV) and polymetallic carbonate-replacement (PMR) deposits in this compilation. Porphyry Cu and Mo, epithermal (Au, Ag, Hg and Sb), base- and precious-metal and W skarn, W vein, and U and Th vein deposits are also common in this area. The world-class Butte Cu porphyry and the Butte high-sulfidation Cu vein deposits are in this study area. PMV and PMR deposits are the most numerous in the region and constitute about 85% of the deposit records compiled. Several types of syngenetic/diagenetic sulfide mineral deposits in rocks of the Belt Supergroup or their equivalents are common in the region and they have been the source of a substantial metal production over the last century. These syngenetic deposits and their metamorphosed/structurally remobilized equivalents were not included in this database; therefore, deposits in the Idaho portion of the Coeur d'Alene district and the Idaho Cobalt belt, for example, have not been included because many of them are believed to be of this type.

  2. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Extraction behavior of metallic contaminants and soil constituents from contaminated soils.

    PubMed

    Tokunaga, S; Park, S W; Ulmanu, M

    2005-06-01

    With an aim of developing an effective remediation technology for soils contaminated by heavy metals and metalloids, the extraction behavior of metallic contaminants as well as those of soil constituents was studied on a laboratory scale. Three contaminated soils collected from a former metal recycling plant were examined. These three soils were found to be contaminated by As, Cu, Pb, Sb, Se and Zn as compared to the non-contaminated soil. The pH-dependent extraction behavior of various elements from the soils was measured in a wide pH range and categorized into three groups. Hydrochloric acid (HCl), H2SO4, H3PO4, HNO3, sodium citrate, sodium tartrate, disodium dihydrogen ethylenediaminetetraacetate and diethylenetriaminepentaacetic acid were evaluated as extractants for removing contaminants from the soils. Extraction behavior of the soil constituents was also studied. The efficiency of the extraction was evaluated by the Japanese content and leaching tests. The stabilization of Pb remaining in the soil after the extraction process was conducted by the addition of iron(III) and calcium chloride.

  4. Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M.

    2004-01-01

    Slag collected from smelter sites associated with historic base-metal mines contains elevated concentrations of trace elements such as Cu, Zn and Pb. Weathering of slag piles, many of which were deposited along stream banks, potentially may release these trace elements into the environment. Slags were sampled from the Ely and Elizabeth mines in the Vermont copper belt, from the copper Basin mining district at Ducktown, Tennessee and from the Clayton silver mine in the Bayhorse mining district, Idaho, in the USA. Primary phases in the slags include: olivine-group minerals, glass, spinels, sulfide minerals and native metals for Vermont samples; glass, sulfide minerals and native metals for the Ducktown sample; and olivine-group minerals, clinopyroxenes, spinels, sulfide minerals, native metals and other unidentified metallic compounds for Clayton slag. Olivine-group minerals and pyroxenes are dominantly fayalitic and hedenbergitic in composition, respectively and contain up to 1.25 wt.% ZnO. Spinel minerals range between magnetite and hercynite in composition and contain Zn (up to 2.07 wt.% ZnO), Ti (up to 4.25 wt.% TiO2) and Cr (up to 1.39 wt.% Cr2O3). Cobalt, Ni, Cu, As, Ag, Sb and Pb occur in the glass phase, sulfides, metallic phases and unidentified metallic compounds. Bulk slag trace-element chemistry shows that the metals of the Vermont and Tennessee slags are dominated by Cu (1900-13,500 mg/kg) and Zn (2310-10,200 mg/kg), whereas the Clayton slag is dominated by Pb (63,000 mg/kg), Zn (19,700 mg/kg), Cu (7550 mg/kg), As (555 mg/kg), Sn (363 mg/kg) and Ag (200 mg/kg). Laboratory-based leach tests indicate metals can be released under simulated natural conditions. Leachates from most slags were found to contain elevated concentrations of Cu and Zn (up to 1800 and 470 ??g/l, respectively), well in excess of the acute toxicity guidelines for aquatic life. For the Idaho slag, the concentration of Pb in the leachate (11,000 ??g/l) is also in excess of the acute toxicity guideline. Geochemical modeling of the leachate chemistry suggests that leachates from the Vermont, Tennessee and Clayton slags are saturated with amorphous silica and Al hydroxide. Therefore, the dissolution of silicate and oxide phases, the oxidation of sulfide phases, as well as the precipitation of secondary phases may control the composition of leachate from slags. The presence of secondary minerals on slag deposits in the field is evidence that these materials are reactive. The petrographic data and results of leaching tests from this study indicate slag may be a source of potentially toxic metals at abandoned mine sites.

  5. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.

    PubMed

    Palafox-Hernandez, J Pablo; Laird, Brian B

    2016-12-07

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K-a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface, relative to Cu(111), whose surface is more similar to the nucleating phase due to the presence of the prefreezing layer.

  6. Dynamics of PM2.5 and its Chemical Components During 2015 Spring Festival Period in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wei, J.; Tang, A.; Zheng, A.; Liu, X.

    2016-12-01

    Air pollution especially PM2.5 (particles with aerodynamic diameter smaller than 2.5 µm) pollution is a serious problem in Beijing, a megacity in China. In order to quantify the status of PM2.5 pollution as affected by holiday pollution events, we collected and analyzed in urban Beijing during the 2015 Spring Festival period (from February 9th to March 6th 2015). We divided the Spring Festival period into three types of pollution days: normal, haze and fireworks days. The air quality in fireworks and haze days were both substantially worse than that in normal days. The average mass concentration of PM2.5 in fireworks days was 248.9 μg m-3, which was followed by haze days (199.9 μg m-3), and normal days (90.8 μg m-3). Secondary inorganic ions (SO42-, NO3- and NH4+) were enriched in haze days, while the ions of PM2.5 in fireworks days showed high Cl- and K+, but low NO3- and NH4+. Ratios of NO3- /SO42-, SO42-/K+ and Cl- /K+ effective distinguish the characteristics of PM2.5 between fireworks events and haze days. Ion balance calculations indicate that the acidity of PM2.5 from fireworks days was higher than those from haze and normal days. Al, Ca, Fe, and S were the dominant elements in normal days. The concentrations of As, Ba, Cd, Cr, Cu, Pb, S, Se and Zn in haze days were 2.1-10.4 times higher than that in normal days. But fireworks days caused increases in the concentrations of typical fireworks elements Al, Mg, S, Ba, Cu, Pb, Sr, and Zn. It is obvious that the levels of these pollution elements during fireworks days were 1.6-18.6 times higher than that in haze days. A method using EF has been found that fireworks elements (EF>10 in fireworks days, significantly higher than haze days) were made up of Ba, Cr, Cu, Mg, Pb, S, Si, Zn, and common anthropogenic pollution elements (EF>10 in all three sections), such as As, Cd, Cu, Pb, S, Sb, Zn, which would be mainly originated from anthropogenic sources. Therefore reducing anthropogenic reactive N and other pollutants emissions is crucial to tackle PM2.5 pollution in Beijing during traditional festival period.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Janpreet; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com; Singh, Gurinder

    To improve the phase change characteristics of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb{sub 2}Te{sub 3} segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can controlmore » any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.« less

  8. Metal speciation in Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirner, A.V.

    1989-03-01

    The concentrations of 19 elements were determined in organic and inorganic phases of the Julia Creek Oil Shale (Queensland/Australia). The phases were obtained by solvent and alkaline extractions as well as by stepwise demineralization with strong acids. Together with the results of other groups, a consistent model concerning the partition of trace elements in the various sedimentary components could be achieved. Whereas V, Ni and Ag show distributions comparable to the abundances of the correspondent phases in the sample, Ca, Mn and Co are concentrated in the mineral components, and B, As and Pb are enriched in kerogen. Al, Cr,more » Fe, Cu, Zn, Mo, Cd and Sb range between these extremes, while Au and Hg are contained in the humic substances only.« less

  9. Concentration of stable elements in food products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montford, M.A.; Shank, K.E.; Hendricks, C.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less

  10. Photosynthetic Pigments in Hypogymnia Physodes with Different Metal Contents

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Notov, A. A.; Pungin, A. V.

    2018-01-01

    Chlorophyll a and b contents in Hypogymnia physodes specimens collected from various economic areas and natural complexes of Tver Region were found to differ substantially using a spectrophotometric method, showing that the lichen photosynthetic system is highly adaptable. The chlorophyll b content was linked primarily to adaptation to specific environmental features in various plant communities. The chlorophyll a content changed to provide the necessary compensatory responses under technogenic stress. A total of 15 metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, V, and Zn) were detected in H. physodes samples using inductively coupled plasma atomicemission spectroscopy (ICP AES). The most widespread of them were Fe, Al, and Ti. Significant correlations among the concentrations of these metals and the chlorophyll a content were revealed.

  11. Ternary oxide nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  12. A naturally-occurring new lead-based halocuprate(I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Mark D.; Rumsey, Michael S.; Kleppe, Annette K.

    Pb{sub 2}Cu(OH){sub 2}I{sub 3} is a new type of halocuprate(I) that is a framework of alternating [Pb{sub 4}(OH){sub 4}]{sup 4+} and [Cu{sub 2}I{sub 6}{sup ]4−} units. The structure has been determined in orthorhombic space group Fddd to R{sub 1}=0.037, wR{sub 2}=0.057, GoF=1.016. Unit cell parameters are a=16.7082(9) Å, b=20.8465(15) Å, c=21.0159(14) Å, V=7320.0(8) Å{sup 3} (Z=32). There is no synthetic counterpart. The structure is based upon a cubane-like Pb{sub 4}(OH){sub 4} nucleus that is coordinated to sixteen iodide ions. Cu{sup +} ions are inserted into pairs of adjacent edge-sharing tetrahedral sites in the iodide motif to form [Cu{sub 2}I{sub 6}]{supmore » 4-} groups. The Raman spectrum of Pb{sub 2}Cu(OH){sub 2}I{sub 3} has two O-H stretching modes and as such is consistent with space group Fddd, with two non-equivalent OH groups, rather than the related space group I4{sub 1}/acd which has only one non-equivalent OH group. Consideration of the 18-electron rule implies that there is a Cu=Cu double bond, which may be consistent with the short Cu…Cu distance of 2.78 Å, although the dearth of published data on the interpretation of Cu…Cu distances in halocuprate(I) compounds does not allow a clear-cut interpretation of this interatomic distance. The orthorhombic structure is compared with that of the synthetic halocuprate(I) compound Pb{sub 2}Cu(OH){sub 2}BrI{sub 2} with space group I4{sub 1}/acd and having chains of corner-linked CuI{sub 4} tetrahedra rather than isolated Cu{sub 2}I{sub 6} pairs. The paired motif found in Pb{sub 2}Cu(OH){sub 2}I{sub 3} cannot be achieved in space group I4{sub 1}/acd and, conversely, the chain motif cannot be achieved in space group Fddd. As such, the space group defines either a chain or an isolated-pair motif. The existence of Pb{sub 2}Cu(OH){sub 2}I{sub 3} suggests a new class of inorganic halocuprate(I)s based upon the Pb{sub 4}(OH){sub 4} group. - Graphical abstract: Projection onto (100) of the structure of the natural halocuprate(I) Pb{sub 2}Cu(OH){sub 2}I{sub 3} showing the chequerboard alternation of cubane-like [Pb{sub 4}(OH){sub 4}]{sup 4+} and non-polymerised [Cu{sub 2}I{sub 6}]{sup 4−} groups. Pb atoms are black spheres, oxygen atoms are red spheres, iodine atoms are mauve spheres and Cu{sub 2}I{sub 6} groups are shown as paired edge-sharing blue tetrahedra. Display Omitted - Highlights: • A naturally-occurring new inorganic halocuprate(I). • The first natural halocuprate(I). • New structure topology based upon [Pb{sub 4}(OH){sub 4}]{sup 4+} and [Cu{sub 2}I{sub 6}]{sup 4−} groups. • Comparison with synthetic halocuprates suggests tailoring of topology via halogen composition.« less

  13. Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee

    USGS Publications Warehouse

    Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.

    2006-01-01

    Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.

  14. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  15. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  16. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with the most stable intermetallics were found to have the strongest interaction in the liquid state. Eventually, a new criteria was formulated to select electrode materials for liquid metal batteries. Systems with the most stable intermetallics, which can be evaluated by the enthalpy of formation of these systems, will yield the highest voltage when assembled as positive and negative electrodes in a liquid metal battery. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  17. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb-Zn, Fozichong skarn Pb-Zn and Dabaoshan porphyry-skarn deposits are of magmatic-hydrothermal origin and likely formed in a subduction-related setting. This work provides new insight that these intrusion-related deposits (e.g., porphyry and skarn types) of middle to late Jurassic age can be the most important targets for exploration in the QHMB.

  18. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  19. [The possibilities for determining the shooting distance by means of inductively coupled plasma optical emission spectrometry].

    PubMed

    Svetlolobov, D Yu; Luzanova, I S; Zorin, Yu V; Makarov, I Yu; Lorents, A S

    The objective of the present study was to evaluate the possibilities for determining the shooting distance for the MR-79-9 Makarych non-lethal pistol (diameter 9 mm, rubber bullet, shot energy 50 J) by means of inductively coupled plasma optical emission spectrometry. The experiments were carried under the conditions of a ballistic shooting range making the shots from a distance of 0 to 120 cm. The 15×15 cm pieces of muslin fabric and biomaterials (leather) were used as the targets. The morphological signs of the damages inflicted to the targets were evaluated either with the unassisted eye, a criminalistical magnifying glass or the SMT-4 binocular stereoscopic microscope (Germany). The shot products, the area and boundaries of their dispersion were determined in reflected IR and filtered UV rays. Inductively coupled plasma optical emission spectrometry was applied for the qualitative and quantitative analysis of various shot products from the entry hole zone with the contamination (wipedown) bands and contusion collars being 0.2-0.5 cm (group 1) and 2-3 cm (group 2) in width, with special reference to the identification of Ba, Cu, Cr, Fe, K, Ni, Pb, Sb, Sn and Zn. The results of the study give evidence that the detection of Ba, Pb, and Sb among the products of a shot fired from the MR-79-9 Makarych non-lethal pistol is of especially high informative value for determining the shooting distance whereas the detection of Cr, K, Sn and Ni is of a minimum value for this purpose.

  20. Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution.

    PubMed

    Shen, Zhengtao; Tian, Da; Zhang, Xinyu; Tang, Lingyi; Su, Mu; Zhang, Li; Li, Zhen; Hu, Shuijin; Hou, Deyi

    2018-01-01

    Bioapatite (BAp) is regarded as an effective material to immobilize lead (Pb 2+ ) via the formation of stable pyromorphite. However, when applied in contaminated soil, due to its low surface area and low adsorption capacity, BAp might not sufficiently contact and react with Pb 2+ . Biochar, a carbon storage material, typically has high surface area and high adsorption capacity. This study investigated the feasibility of using biochar as a reaction platform to enhance BAp immobilization of Pb 2+ . An alkaline biochar produced from wheat straw pellets (WSP) and a slightly acidic biochar produced from hardwood (SB) were selected. The results of aqueous adsorption showed the combination of biochar (WSP or SB) and BAp effectively removed Pb 2+ from the aqueous solution containing 1000 ppm Pb 2+ . XRD, ATR-IR, and SEM/EDX results revealed the formation of hydroxypyromorphite on both biochars' surfaces. This study demonstrates that biochars could act as an efficient reaction platform for BAp and Pb 2+ in aqueous solution due to their high surface area, porous structure, and high adsorption capacity. Therefore, it is mechanistically feasible to apply biochar to enhance BAp immobilization of Pb 2+ in contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, Clark County, Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals in ore breccias and relatively low S and Pb isotope values (δ34S values vary from 0–~4‰; 206Pb/204Pb <18.5). Copper ± precious metal-PGE deposits (Cu, Co, Ag, Au, Pd, and Pt) consist of Cu carbonate minerals (after chalcocite and chalcopyrite) and fine-grained quartz that have replaced breccia clasts and margins of fissures in Paleozoic limestones and dolomites near porphyritic intrusions. Gold ± silver deposits occur along contacts and within small-volume stocks and dikes of feldspar porphyry, one textural variety of porphyritic intrusions. Lead isotope compositions of copper ± precious metal-PGE, gold ± silver, and lead-dominant carbonate replacement deposits are similar to those of Mojave crust plutons, indicating derivation of Pb from 1.7 Ga crystalline basement or from Late Proterozoic siliciclastic sedimentary rocks derived from 1.7 Ga crystalline basement.Four texturally and modally distinctive porphyritic intrusions are exposed largely in the central part of the district: feldspar quartz porphyry, plagioclase quartz porphyry, feldspar biotite quartz porphyry, and feldspar porphyry. Intrusions consist of 64 to 70 percent SiO2 and variable K2O/Na2O (0.14–5.33) that reflect proportions of K-feldspar and albite phenocrysts and megacrysts as well as partial alteration to K-mica; quartz and biotite phenocrysts are present in several subtypes. Albite may have formed during emplacement of magma in brine-saturated basinal strata, whereas hydrothermal alteration of matrix, phenocrystic, and megacrystic feldspar and biotite to K-mica, pyrite, and other hydrothermal minerals occurred during and after intrusion emplacement. Small volumes of garnet-diopside-quartz and retrograde epidote-mica-amphibole skarn have replaced carbonate rocks adjacent to one intrusion subtype (feldspar-quartz porphyry), but alteration of carbonate rocks at intrusion contacts elsewhere is inconspicuous.Uranium-lead ages of igneous zircons vary inconsistently from ~ 180 to 230 Ma and are too imprecise to distinguish age differences among intrusion subtypes; most ages are 210 to 225 Ma, yielding a mean of 217 ± 1 Ma. K-Ar and 40Ar/39Ar ages of magmatic (plagioclase, biotite) and hydrothermal (K-mica) minerals span a similar range (183–227 Ma), demonstrating broadly contemporaneous intrusion emplacement and hydrothermal alteration but allowing for multiple Late Triassic magmatic-hydrothermal events. Imprecision and range of isotopic ages may have resulted from burial beneath Mesozoic and Tertiary strata and multiple intrusion of magmas, causing thermal disturbance to Ar systems and Pb loss from zircons in intrusions.Separate late Paleozoic (zinc-dominant carbonate replacement deposits) and Late Triassic (all other deposits) mineralizing events are supported by form, distribution, and host rocks of metal deposits, by hydrothermal mineral assemblages, isotope compositions, metal abundances, and metal diversity, and by small intrusion volumes. These characteristics collectively distinguish the Goodsprings district from larger intrusion related carbonate replacement districts in the western United States. They can be used to evaluate proximity to unexposed porphyritic intrusions associated with PGE and gold ± silver mineralization.

  2. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  3. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  4. Effect of tungsten on the corrosion behavior of sulfuric acid-resistant steels for flue gas desulfurization system

    NASA Astrophysics Data System (ADS)

    Ji, Woo-Soo; Jang, Young-Wook; Kim, Jung-Gu

    2011-06-01

    Flue gas desulfurization systems (FGDs) are operated in severely corrosive environments that cause sulfuric acid dew-point corrosion. The corrosion behavior of low-alloy steels was tested using electrochemical techniques (electrochemical impedance spectroscopy, potentiodynamic tests, potentiostatic tests), and the corrosion products were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical results showed that alloying W with small amounts of Sb, Cu, and Co improves the corrosion resistance of steels. The results of surface analyses showed that the surface of the steels alloyed with W consisted of W oxides and higher amounts of Sb and Cu oxides. This suggests that the addition of W promotes the formation of a protective WO3 film, in addition to Sb2O5 and CuO films on the surface.

  5. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  6. Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead.

    PubMed

    Long, Dan-Dan; Fu, Rong-Rong; Han, Jian-Rong

    2017-07-01

    Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.

  7. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  8. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  9. Characterization of a Mineral of the District of Zimapan, Mina Concordia, Hidalgo, for the Viability of the Recovery of Tungsten

    NASA Astrophysics Data System (ADS)

    Martín, Reyes P.; Miguel, Perez L.; Julio, Cesar Juárez T.; Aislinn, Michelle Teja R.; Francisco, Patiño C.; Mizraim, Uriel Flores G.; Iván, A. Reyes D.

    A sulfide-type mineral of the district of Zimapan, Hidalgo, Mexico, was chemically and mineralogically analyzed with the aim of detecting minor species with added value for their subsequent beneficiation. Apart from the usual species of the site, the X-ray diffraction analysis (XRD) detected the presence of tungsten sulfate (WS2) and the mineral species typical of a base-metal sulfide site, as well as impurities such as: orthoclase, quartz, magnesium-silicon oxide, magnesioferrite, monticellite, andradite, magnetite and calcite, the latter being the mineral matrix. The Scanning Electron Microscopy (SEM) mapping confirmed the presence of the typical elements of the mineral: W, Si, O, Mg, Ca, C, Al, K, Fe, S, Zn and Cu. The Inductively Coupled Plasma Spectroscopy (ICP) analysis indicates an average concentration of 380 g W ton"1, as well as 1.81% Zn, 3.41% S, 0.15% Cu, 2.36% Fe, 0.78% Pb, 0.04% Mn, Sb 0.05% and 0.01% Ag. This mineral is a potential source for the extraction of tungsten

  10. Volatile transport on Venus and implications for surface geochemistry and geology

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Fegley, Bruce; Arvidson, Raymond E.

    1995-01-01

    The high vapor pressure of volatile metal halides and chalcogenides (e.g., of Cu, Zn, Sn, Pb, As, Sb, Bi) at typical Venus surface temperatures, coupled with the altitude-dependent temperature gradient of approximately 8.5 K/km, is calculated to transport volatile metal vapors to the highlands of Venus, where condensation and accumulation will occur. The predicted geochemistry of volatile metals on Venus is supported by observations of CuCl in volcanic gases at Kilauea and Nyiragongo, and large enrichments of these and other volatile elements in terrestrial volcanic aerosols. A one-dimensional finite difference vapor transport model shows the diffusive migration of a thickness of 0.01 to greater than 10 microns/yr of moderately to highly volatile phases (e.g., metal halides and chalcogenides) from the hot lowlands (740 K) to the cold highlands (660 K) on Venus. The diffusive transport of volatile phases on Venus may explain the observed low emissivity of the Venusian highlands, hazes at 6-km altitude observed by two Pioneer Venus entry probes, and the Pioneer Venus entry probe anomalies at 12.5 km.

  11. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    PubMed

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigation and health risk assessment of heavy metals in soils from partial areas of Daye city, china

    NASA Astrophysics Data System (ADS)

    Xiao, M. S.; Li, F.; Zhang, J. D.; Lin, S. Y.; Zhuang, Z. Y.; Wu, Z. X.

    2017-05-01

    Heavy metals (Cu and Pb) in four sampling sites from parts areas of Daye city were collected. Concentrations of Cu and Pb in soils in sampling sites were detected, the enrichment degree was measured by geo-accumulation index, and the human health risks were calculated by applying the human health risk assessment model. The results show that the concentrations of Cu and Pb of soils in some areas are much more than Daye City, Hubei Province soil background value. The concentration of Cu and Pb in Xiaganwan soil sample has a higher value and the concentration of Cu (110.17 mg·kg-1) exceeds the soil environmental quality standards. The values of Igeo of Cu and Pb in the soil in some areas of Daye city are 1 except Xiaganwan sample is 2. For human health risk assessment, the non-cancer risk of Cu in three routes of exposure is less than Pb. The non-cancer risk both adults and children are less than 1 and show a general trend of HQ in oral ingestion exposure pathway > HQ in inhalation exposure pathway>HQ in skin contact exposure pathway. It will not cause significant non-carcinogenic health effects on the human body.

  13. Medical geochemistry research in Spissko-Gemerské rudohorie Mts., Slovakia.

    PubMed

    Rapant, S; Cvecková, V; Dietzová, Z; Khun, M; Letkovicová, M

    2009-02-01

    This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spissko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.

  14. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2013-07-01

    According to the present-day ecotoxicologic data, hazardous heavy metals/metalloids form the following sequence in the soil: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence differs from the well-known series of the hazardous heavy elements, in which the danger of Pb and Zn is exaggerated, whereas that of V, Sb, and Ba, is underestimated. Tl also should be included in the list of hazardous elements in the soil. At present, the stress is made on the investigation of heavy metals/metalloids in agricultural soils rather than in urban soils, as the former produce contaminated products poisoning both animals and humans. The main sources of soil contamination with heavy metals are the following: aerial deposition from stationary and moving sources; hydrogenic contamination from the industrial sewage discharging into water bodies; sewage sediments; organic and mineral fertilizers and chemicals for plant protection, tailing dumps of ash, slag, ores, and sludge. In addition to the impact on plants and groundwater, heavy metals/metalloids exert a negative effect on the soil proper. Soil microorganisms appear to be very sensitive to the influence of heavy elements.

  15. A water-leach procedure for estimating bioaccessibility of elements in soils from transects across the United States and Canada

    USGS Publications Warehouse

    Garrett, Robert G.; Hall, G.E.M.; Vaive, J.E.; Pelchat, P.

    2009-01-01

    An objective of the North American Soil Geochemical Landscapes Project is to provide relevant data concerning bioaccessible concentrations of elements in soil to government and other institutions undertaking environmental studies. A protocol was developed that employs a 1-g soil sample agitated overnight with 40 mL of reverse-osmosis de-ionized water for 20 h, and determination of 63 elements following three steps of centrifugation by inductively coupled plasma–atomic emission spectrometry and inductively coupled plasma–mass spectrometry the following day. Statistical summaries are presented for those 48 elements (Ag, Al, As, B, Ba, Be, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Si, Sm, Sn, Sr, Tb, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, and pH) for which <20% of their data were reported as below the detection limit. The resulting data set contains analyses for 161 A-horizon soils collected along two transects, one along the 38th parallel across the USA and the other from northern Manitoba to the USA–Mexico border. The spatial distribution of three selected elements (Ca, Cu, and Pb) along the two transects is discussed in this paper both as absolute amounts liberated by the leach and expressed as a percentage of the total, or near-total, amounts determined for the elements. The Ca data reflect broad trends in soil parent materials, their weathering, and subsequent soil development. Calcium concentrations are generally found to be lower in the older soils of the eastern USA. The Cu data are higher in the eastern half of the USA, correlating with soil organic C, with which it is sequestered. The Pb data exhibit little regional variability due to natural sources, but are influenced by anthropogenic sources. Based on the Pb results, the percentage water-extractable data demonstrate promise as a tool for identifying anthropogenic components. The soil–water partition (distribution) coefficients, Kds (L/kg), were determined and their relevance to estimating bioaccessible amounts of elements to soil fauna and flora is discussed. Finally, a possible link between W concentrations in human urine and water-extractable W levels in Nevada soils is discussed.

  16. Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura-Agucha massive sulfide deposit, northwestern India

    NASA Astrophysics Data System (ADS)

    Mishra, Biswajit; Bernhardt, Heinz-Jurgen

    2009-02-01

    Located adjacent to the Banded Gneissic Complex, Rampura-Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn-(Pb) sulfide orebody occurs within graphite-biotite-sillimanite schist along with garnet-biotite-sillimanite gneiss, calc-silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase-hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720-780°C, whereas temperatures obtained from Fe-Mg exchange between garnet and biotite (580-610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise P- T- t path with peak P- T of ˜6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f( S 2)] range of 352°C (-8.2) to 490°C (-4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb-Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc-silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn-jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb-Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena-sphalerite interfacial angles, (2) presence of multiphase sulfide-sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS-Fe0.96S-ZnS-(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura-Agucha deposit.

  17. Trace elements in free-range hen eggs in the Campania region (Italy) analyzed by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Esposito, Mauro; Cavallo, Stefania; Chiaravalle, Eugenio; Miedico, Oto; Pellicanò, Roberta; Rosato, Guido; Sarnelli, Paolo; Baldi, Loredana

    2016-06-01

    Eggs from hens raised on rural or domestic farms are a good indicator of environmental contamination, as the hens are in close contact with the ground and the air and can therefore accumulate heavy metals and other toxic contaminants from the environment as well as from the diet. In this paper, we report the results of the determination of 19 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mo, Mn, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn) in 39 hen egg samples collected from domestic poultry farms in the territory dubbed the "Land of fires" in the Campania region (Italy). This area is characterized by environmental problems caused by the illegal dumping of industrial or domestic waste in fields or by roadsides. In some cases, these wastes have been burned, thereby spreading persistent contaminants into the atmosphere. The content of trace elements in whole egg samples was determined by mass spectrometer after a microwave-assisted digestion procedure. Because European legislation does not indicate maximum values of these elements in this foodstuff, the results were compared with the content of trace elements reported in literature for eggs, in particular home-produced eggs, in various countries. In some cases (Cd, Cu, Ni, Mn), the content determined in this study was in line with those reported elsewhere, in other cases (Pb, Cr), lower values were found.

  18. Synthesis and characterization of (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Dwivedi, Saurabh; Pandey, Rishikesh

    2016-05-23

    We present here the comprehensive x-ray diffraction and polarization-electric field hysteresis studies on (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics with x = 0.52, 0.56 and 0.60. The powder x-ray diffraction data reveals the presence of tetragonal phase for all the compositions. The saturation of hysteresis loop is observed for x ≤ 0.56.

  19. Mineral potential tracts for polymetallic Pb-Zn-Cu vein deposits (phase V, deliverable 71): Chapter I in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges

    2015-01-01

    In Mauritania, mineral occurrences of the polymetallic Pb-Zn-Cu vein deposit type are found near the Florence-El Khdar shear zone in northeast Mauritania. The deposits visited were deemed representative of other similar occurrences and consist of quartz veins with trace sulfides. The low sulfide and Pb-Zn-Cu content in the quartz veins is unlike producing polymetallic Pb-Zn-Cu vein deposits, such that the veins are not considered to belong to this deposit type. Mineral potential tracts for polymetallic Pb-ZnCu veins are highly speculative considering the lack of known mineralization belonging to this deposit type. Mineral potential tracts for polymetallic Pb-Zn-Cu veins are associated with and surround major shear zones in the Rgueïbat Shield and zones of complex faulting in the southern Mauritanides, at the exclusion of the imbricated thrust faults that are not considered favorable for this deposit type. No skarn and replacement deposits have been documented in Mauritania and the low mineral potential is indicated by lack of causative Mesozoic and Cenozoic mafic to felsic stocks.

  20. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  1. Quantification of main and trace metal components in the fly ash of waste-to-energy plants located in Germany and Switzerland: An overview and comparison of concentration fluctuations within and between several plants with particular focus on valuable metals.

    PubMed

    Haberl, Jasmin; Koralewska, Ralf; Schlumberger, Stefan; Schuster, Michael

    2018-05-01

    The elemental composition of fly ash from six waste-to-energy (WTE) plants in Germany and two WTE plants in Switzerland were analyzed. Samples were taken daily over a period of one month and mixed to a composite sample for each German plant. From two Swiss plants, two and three of these composite samples, respectively, were collected for different months in order to assess temporal differences between these months. In total, 61 elements, including rare earth elements, were analyzed using ICP-OES and ICP-MS. The analysis method was validated for 44 elements either by reference materials (BCR 176R and NIST 1633c) or analysis with both methods. Good recoveries, mostly ±10%, and high agreements between both methods were achieved. As long as no additives from flue gas cleaning were mixed with the fly ash, quite similar element contents were observed between all of the different incinerators. For most elements, the variations between the different months within the two Swiss plants were lower than differences between various plants. Especially main components show low variations between different months. To get a more detailed insight into temporal fluctuations within the mentioned Swiss plants, the concentrations of Zn, Pb, Cu, Cd, Sb, and Sn are presented over a period of three years (Jan. 2015 - Oct. 2017). The concentration profiles are based on weekly composite samples (consisting of daily taken samples) analyzed by the routine control of these plants using ED-XRF. The standard deviations of the average concentrations were around 20% over the three years for the regarded elements. The fluctuations were comparable at both plants. Due to the relatively low temporal concentration fluctuations observed within the plants, fly ash would be a continuous and constant source of secondary raw materials. Beside Zn, Pb, Cu, and Cd, which were already recovered on an industrial scale, Sb, Sn, and Bi also show a high potential as secondary raw material due to the high concentration of these elements in fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  3. Overview about polluted sites management by mining activities in coastal-desertic zones

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Letelier, María Victoria; Arenas, Franko; Cuevas, Jacqueline; Fuentes, Bárbara

    2016-04-01

    In Chile the main mining operations as well as artisanal and small-scale mining (copper, gold and silver) are located in desert areas. A large number of abandoned polluted sites with heavy metals and metalloids (Hg, Pb, Cu, Sb, As) remain in coastal areas close to human centers. The aim of this work was to identify the best remediation alternatives considering the physic-chemical characteristics of the coastal-desertic soils. The concentrations of above mentioned pollutants as well as soil properties were determined. The results showed variable concentration of the pollutants, highest detected values were: Hg (46.5 mg kg-1), Pb (84.7 mg kg-1), Cu (283.0 mg kg-1), Sb (90 mg kg-1), As (2,691 mg kg-1). The soils characteristic were: high alkalinity with pH: 7.75-9.66, high electric conductivity (EC: 1.94-118 mScm-1), sodium adsorption ratio (SAR: 5.07-8.22) and low permeability of the soils. Coastal-desertic sites are potential sources of pollution for population, and for terrestrial and marine ecosystems. Exposure routes of pollution for the population include: primary, by incidental ingestion and inhalation of soil and dust and secondary, by the ingestion of marine sediments, sea food and seawater. Rehabilitation of coastal-desertic sites, by using techniques like soil washing in situ, chemical stabilization, or phytostabilization, is conditioned by physic-chemical properties of the soils. In these cases the recommendation for an appropriate management, remediation and use of the sites includes: 1) physic chemical characterization of the soils, 2) evaluation of environmental risk, 3) education of the population and 3) application of a remediation technology according to soil characteristic and the planned use of the sites. Acknowledgments: Funding for this study was supported by the Regional Council of Antofagasta under Project Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de Taltal-BIP N°30320122-0, and by CICITEM Continuity Project N°R10C1004 funded by CONICYT and Antofagasta GORE.

  4. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China.

    PubMed

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-11-29

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective : This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods : Contamination factors ( CFs ) and integrated pollution indexes ( IPIs ) and enrichment factors ( EFs ) were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results : The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loid)s such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions : The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing way and irrigating water sources are urgencies to reduce the input of Cd and As into the local soils effectively.

  5. Trace and Ultra-trace Elements in the Deepest Part of the Vostok Ice Core, Antarctica: Geochemical Characterization of the Sub-glacial Lake Environment

    NASA Astrophysics Data System (ADS)

    Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.

    2016-12-01

    We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.

  6. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    PubMed Central

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-01-01

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods: Contamination factors (CFs) and integrated pollution indexes (IPIs) and enrichment factors (EFs) were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results: The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loid)s such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions: The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing way and irrigating water sources are urgencies to reduce the input of Cd and As into the local soils effectively. PMID:29186069

  7. Application of the superfine fraction analysis method in ore gold geochemical prospecting in the Shamanikha-Stolbovsky Area (Magadan Region)

    NASA Astrophysics Data System (ADS)

    Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton

    2014-05-01

    The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify potential gold zones, and determine their formation affinity. Nadezhda Site. Contrast Au, Ag, Pb, Bi, Sb, As dispersion halos that form a linear anomalous geochemical field of ore body rank are identified. Predicted mineralization was related to the gold-sulfosalt mineral association according to the secondary dispersion halos chemical composition. Timsha Site. Contrast secondary Au, Ag, Sb, As, Hg, Pb, Bi dispersion halos are identified. These halos have rhythmically-banded structure, which can be caused by stringer morphological type of mineralization. Bands with anomalously high contents of elements have been interpreted by the authors as probable auriferous bodies. Four such bodies of 700 to 1500 m long were identified. Mineralization of the gold-sulfide formation similar to the "Carlin" type is predicted according to the secondary dispersion halos chemical composition as well as geological features. Temny Site. Contrast secondary Au, Ag, W, Sb dispersion halos are identified. A series of geochemical associations was identified based on factor analysis results. Au-Bi-W-Hg, and Pb-Sb-Ag-Zn associations, apparently related to the mineralization are of the greatest interest. Geochemical fields of these associations are closely spaced and overlapped in plan that may be caused by axial zoning of the subvertically dipping auriferous body. Three linear geochemical zones corresponding to potentially auriferous zones with pyrite type mineralization of the gold-quartz formation are identified within the anomalous geochemical field core zone. 3. In all these prospects, mining and drilling penetrated gold ore bodies within the identified potentially gold zones. The Nadezhda target now has the status of gold deposit.

  8. Transfer of copper, lead and zinc in soil-grass ecosystem in aspect of soils properties, in Poland.

    PubMed

    Niesiobędzka, Krystyna

    2012-04-01

    The total metal concentrations in soil samples from polluted area (roadside soils) ranged from 13.87 to 195.76 mg/kg for Cu; 13.56-310.17 mg/kg for Pb and 18.43-894.11 mg/kg for Zn and they were, respectively about 5, 2 and 13 times above the corresponding values in soil samples from country area. The mean values of EDTA-extractable concentrations in soil samples at unpolluted sites were: 2.47 mg/kg for Cu, 6.33 mg/kg for Pb and 4.94 mg/kg for Zn. The highest concentrations of Cu, Pb and Zn in grass were measured in soils from polluted area. Higher values of proportions of EDTA-extractable metals (24% for Cu, 40% for Pb and 38% for Zn) indicate that anthropogenic metals were more mobile and bioavailable than the same metals in soils from unpolluted area (20, 16 and 20% for Cu, Pb and Zn, respectively). The availability of Cu, Pb and Zn are affected by soil properties such as pH, organic matter content and cation exchange capacity. Correlation between the EDTA-extractable forms concentrations of metals and the total concentration in the various soils was observed. The coefficients of determination (R(2)) varied between 0.809 for Cu; 0,709 for Pb and 0.930 for Zn in polluted soils and they are higher than corresponding values in unpolluted soils.

  9. High potential thermoelectric figure of merit in ternary La 3Cu 3X 4 (X = P, As, Sb and Bi) compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.

    Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less

  10. High potential thermoelectric figure of merit in ternary La 3Cu 3X 4 (X = P, As, Sb and Bi) compounds

    DOE PAGES

    Pandey, Tribhuwan; Parker, David S.

    2017-10-27

    Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less

  11. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    PubMed

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated better with the fluorescence of marine humic substances. The present results stress the importance of characterizing not only the amount but also the quality of seawater DOM to better predict ecological effects from total metal concentration data. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Dimer formation and surface alloying: a STM study of lead on Cu(211)

    NASA Astrophysics Data System (ADS)

    Bartels, L.; Zöphel, S.; Meyer, G.; Henze, E.; Rieder, K.-H.

    1997-02-01

    We present a STM investigation of Pb adsorption on the Cu(211) surface in the temperature range between 30 K and room temperature. We observe three different kinds of ordered 1D Pb and PbCu chains (nanowires) located at the intrinsic step edges of the Cu(211) surface. On room temperature prepared samples, Pb is found to be incorporated into the step edges of the (211) surface. The first ordered structure consists of CuPb chains at the step edges (p(2 × disorder)) and is followed with increasing coverage by a close packed row of Pb-atoms (p(4 × disorder)). Preparation at low temperature yields Pb-dimers, and the first ordered structure is a row of Pb-dimers at the step edge (p(3 × disorder)) followed with increased coverage by a structure as described above. By systematic manipulation with the tunneling tip, we could get additional insight into the structural elements of the PbCu layer on the atomic scale. Furthermore, by measuring the threshold resistance to detach atoms from different ad-sites, we can approximately determine the binding energy and gain some insight into the thermodynamical parameters involved.

  13. Cd, Cu, Pb and Zn in clams and sediments from an impacted estuary by the oil industry in the southwestern Gulf of Mexico: concentrations and bioaccumulation factors.

    PubMed

    Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F

    2009-12-01

    With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.

  14. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  15. Differences in the element contents between gunshot entry wounds with full-jacketed bullet and lead bullet.

    PubMed

    Wunnapuk, Klintean; Durongkadech, Piya; Minami, Takeshi; Ruangyuttikarn, Werawan; Tohno, Setsuko; Vichairat, Karnda; Azuma, Cho; Sribanditmongkol, Pongruk; Tohno, Yoshiyuki

    2007-01-01

    To elucidate characteristics of gunshot residues in gunshot entry wounds with full-jacketed and lead bullets, element contents in entry gunshot wounds and control skins were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). It was found that a high content of Fe and Zn was deposited in the gunshot entry wounds with full-jacketed bullet, whereas a high content of Pb was deposited in the gunshot entry wounds with lead (unjacked) bullet. It should be noted that the content of Pb was significantly higher in the gunshot entry wounds with lead bullet than in those with full-jacketed bullet. Regarding the relationships among elements, it was found that there were significant direct correlations between Pb and either Sb or Ba contents in both gunshot entry wounds with full-jacketed and lead bullets. As Pb increased in both gunshot entry wounds, Sb and Ba also increased in the wounds.

  16. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China.

    PubMed

    Niu, Siping; Gao, Liangmin; Zhao, Junjie

    2017-09-03

    This study was conducted to pursue the heavy metals in the soil and plants of a typical restored coal-mining area, China. The average concentrations of Cu, Zn, Cr, Ni, and Pb in soil were 26.4, 76.1, 188.6, 34.3, and 50.2 mg kg -1 , respectively, implying a significant accumulation of Cr, Ni, and Pb compared with the background values. Contamination factor indicates that the soil underwent none to medium pollution by Cu and Zn, medium to strong by Cr, none to strong by Pb, and medium pollution by Ni while the pollution load index means that the soil was subjected to intermediate contamination. Based on the critical threshold values to protect the plants, the investigated metals were unable to affect the plants. One-way ANOVA analysis shows that Cu, Zn, and Pb in plants varied with plant tissues. Cu-Cr, Cu-Ni, Zn-Ni, Zn-Pb, Cr-Ni, and Ni-Pb pairs had significant positive correlation both in soil and in plants due to the similar soil characteristics and plant physiologies. Correspondence analysis indicates that Pb was more likely to be accumulative in stems and leaves. In addition, the levels of Cu and Cr in plant followed an order of roots > stems > leaves; Zn and Ni leaves ≥ stems > roots; and Pb followed stems ≥ leaves > roots. Generally, this study suggests that the plants like Ligustrum lucidum Aiton and Weigela hortensis, which are capable of accumulating Cr, Ni, and Pb, should be the predominant species in the studied area.

  17. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.

    PubMed

    Child, A W; Moore, B C; Vervoort, J D; Beutel, M W

    2018-07-01

    The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems to be similar and can be characterized by logistic curves, with higher affinity of mosses to uptake metals from soils.

  19. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  1. Mineralogy, structural control and age of the Incachule Sb epithermal veins, the Cerro Aguas Calientes collapse caldera, Central Puna

    NASA Astrophysics Data System (ADS)

    Salado Paz, Natalia; Petrinovic, Iván; Do Campo, Margarita; Brod, José Affonso; Nieto, Fernando; da Silva Souza, Valmir; Wemmer, Klauss; Payrola, Patricio; Ventura, Roberto

    2018-03-01

    The Incachule Sb epithermal veins is located near to the N-E rim of the Cerro Aguas Calientes collapse caldera (17.5-10.8 Ma), in the geologic province of Puna, Salta- Argentina. It is hosted in Miocene felsic volcanic rocks with continental arc signature. The district includes twelve vein systems with mineralization of Sb occurring in hydrothermal breccias and stockwork. The veins are composed of quartz-sulfide with pyrite, stibnite and arsenopyrite. All around the veins, wall rocks are variably altered to clay minerals and sulfates in an area of around 2.5 km wide by more than 7 km long. The hydrothermal alterations recognized are: silicic, phyllic and argillic. The veins are characterized by high contents of Sb, As, and Tl and intermediate contents of Pb-Zn-Cu, and traces of Ag and Au. Homogenization and ice-melting temperatures of fluid inclusions vary from 125 °C to 189 °C and -2.4 °C to -0.8 °C. The isotopic data indicated a range of δ34S -3.04‰ to +0.72‰ consistent with a magmatic source for sulfur. We present the firsts K-Ar ages for hydrothermal illite/smectite mixed layers (I/SR1, 60% illite layers) and illite that constrain the age of the ore deposit (8.5-6.7 ± 0.2 Ma). The data shown here, let characterized the Incachule district as a shallow low sulfidation epithermal system hosted in a collapse caldera. Our data also indicate that mineralization is structurally controlled by a fault system related to the 10.3 Ma collapse of Aguas Calientes caldera. The interpreted local stress field is consistent with the regional one.

  2. Removal of heavy metals from Missouri lead mill tailings by froth flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benn, F.W.; Cornell, W.L.

    Froth flotation techniques to remove heavy metals (Pb, Cu, and Zn) from southeast Missouri lead mill tailings were investigated. It has been estimated that southeast Missouri contains between 200 and 300 million st of Pb tailings stored above ground. The tailings were classified as two distinct types: (1) pre-1968 tailings from the Old Lead Belt (some more than 100 years old) and (2) post-1968 tailings from the New Lead Belt. The objectives of the investigation were to reduce the Pb remaining in the tailings to < 500 ppm (< 0.05 pct Pb) and to attempt to recover a marketable concentratemore » to offset a portion of the remediation costs. The remaining dolomite-limestone would then be used as mining backfill or agricultural limestone. Bench-scale froth flotation removed, in percent, 95 Pb, 84 Cu, and 54 Zn, leaving 94 pct of the original weight containing, in parts per million, 400 Pb, 40 Cu, and 300 Zn from the Old Lead Belt tailings. Separate flotation tests also removed, in percent, 85 Pb, 84 Cu, and 80 Zn, leaving 75 pct of the original weight containing, in parts per million, 400 Pb, 200 Cu, and 500 Zn from the New Lead Belt tailings. Concentrates recovered from the Old Lead Belt were retreated to produce a final Pb concentrate containing 72 pct Pb with a cleaner flotation recovery of 79 pct. Froth flotation proved to be a viable method to remove the heavy metals.« less

  3. Magnetic properties of Mn{sub 1.9}Cu{sub 0.1}Sb under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yoshihiro; Hiroi, Masahiko; Mitsui, Yoshifuru

    2016-08-26

    Magnetization measurements were carried out for polycrystalline Mn{sub 1.9}Cu{sub 0.1}Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ∼116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70more » K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn{sub 1.9}Cu{sub 0.1}Sb was suppressed by the application of high pressures.« less

  4. Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal J.; Vinod, Vijay; Subrahmanyam, A.; Malar, P.

    2017-10-01

    Bulk copper antimony selenide was synthesized using mechanical alloying from the elemental precursors. Phase formation in milled powders was studied using x-ray diffraction (XRD) and Raman spectroscopy studies. The synthesized bulk source after cold compaction was used as source material for thin film deposition by e-beam evaporation. Thin film deposition was carried out at various e-beam current values (Ib ∼30, 40 and 50 mA) and at a substrate temperature of 200 °C. Near stoichiometric CuSbSe2 thin films were obtained for Ib values closer to 50 mA and post annealing at a temperature of 380 °C for 1 h. Thin films deposited using above conditions were found to exhibit an absorption coefficient (α) values of >105 cm-1 and a band gap value ∼1.18 eV that is closer to the reported band gap for CuSbSe2 compound.

  5. Tracing dust transport from Middle-East over Delhi in March 2012 using metal and lead isotope composition

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Aggarwal, S. G.; Malherbe, J.; Barre, J. P. G.; Berail, S.; Gupta, P. K.; Donard, O. F. X.

    2016-05-01

    A severe dust-storm which was originated in Middle-East crossed over Delhi during March 20-22, 2012. We have collected these dust-storm (DS) aerosol samples, and analyzed them for selected metals (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, Se, Sn, Sr, V and Zn) together with after dust-storm (ADS) and winter (WS) samples. High aerosol mass loadings were observed in DS samples (1097-1965 μg/m3). On the contrary, metals derived prominently from the anthropogenic sources were found lower in concentration compared to that of ADS and WS aerosols. We observed significantly high concentrations of Ni and V (which are abundantly found in crude oils of Middle-East origin) in the DS samples than that of ADS and WS samples. Also enrichment factor (EF) of these metals with respect to Fe shows no significant enrichment (<10). Fe (and Sr) concentrations were also 3-5 fold higher in DS samples compared to ADS and WS. These results suggest that Ni and V can be used as tracers for dust aerosols transported from Middle-East region. Lead isotope signatures can tell about the variation in the sources of urban aerosols. Therefore Pb isotope analyses of these samples were performed using MC-ICP-MS. The isotope ratios, 208Pb/206Pb is determined to be (mean ± sd) 2.1315 ± 0.0018, 2.1370 ± 0.0022 and 2.1389 ± 0.0016, whereas 206Pb/207Pb is 1.1311 ± 0.0022, 1.1244 ± 0.0017 and 1.1233 ± 0.0016 in DS, ADS and WS aerosols, respectively. There is a clear distinction in Pb isotope composition between DS and urban (ADS and WS) aerosols. Further, these results suggest that in urban aerosols, Pb is less radiogenic in nature compared to that of in transported dust aerosols collected in New Delhi.

  6. Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays.

    PubMed

    Bastos, A C; Prodana, M; Abrantes, N; Keizer, J J; Soares, A M V M; Loureiro, S

    2014-11-01

    It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha(-1)). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l(-1)) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l(-1)) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose-response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25% mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100% SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection.

  7. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features.

    PubMed

    dos Santos, Rodrigo W; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz K; Kreusch, Marianne; Pereira, Debora T; Costa, Giulia B; Simioni, Carmen; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-07-01

    Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50μM and 100μM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Impact of microstructure on the thermoelectric properties of the ternary compound Ce{sub 3}Cu{sub 3}Sb{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witas, Piotr, E-mail: pwitas@us.edu.pl

    We present detailed structural and thermoelectric studies of the ternary compound Ce{sub 3}Cu{sub 3}Sb{sub 4}. This material is of interest due to previously reported considerable thermopower above room temperature (∼ 100 μV/K) and low thermal conductivity (2 W/(m K)). Here, we present detailed studies concerning microstructural and thermoelectric data, their variation across the samples and possible explanations for the observed behaviour. We have used X-ray diffraction, scanning electron microscopy (SEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) for microstructural analysis. The thermoelectric properties were examined using a physical property measurement system (PPMS). We analyse the impact of the sample qualitymore » on the thermoelectric properties. The most unstable parameter is the material resistivity which varies between 1.5 and 15 mΩ cm at room temperature. The properties variability is mainly due to structural defects caused by stresses during material preparation and also due to formation of foreign phases CeCuSb{sub 2} and CeSb. The figure of merit ZT is also strongly dependent on the quality of the sample. The largest value ZT ≈ 0.15 at 400 K is determined for the almost stoichiometric sample with small amounts of a impurity phases. - Highlights: •The Ce{sub 3}Cu{sub 3}Sb{sub 4} has considerable thermoelectric properties and potential for further chemical and/or structural modification. •The control over foreign phases formation is challenging. •The defects arising during arc melting process highly deteriorate ZT of material.« less

  10. [Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai].

    PubMed

    Liu, Yun-Long; Zhang, Li-Jia; Han, Xiao-Fei; Zhuang, Teng-Fei; Shi, Zhen-Xiang; Lu, Xiao-Zhe

    2012-02-01

    Soil heavy metal concentrations along the typical urban-transect in Shanghai were analyzed to indicate the effect of urbanization and industrialization on soil environment quality. Spatial variation structure and distribution of 5 heavy metals (Cu, Cr, Mn, Pb and Zn) in the top soil of urban-transect were analyzed. The single pollution index and the composite pollution index were used to evaluate the soil heavy metal pollution. The results showed that the average concentrations of the Cu, Pb, Zn, Cr, Mn were 27.80, 28.86, 99.36, 87.72, 556.97 mg x kg(-1), respectively. Cu, Cr, Mn, Pb and Zn were medium in variability, Mn was distributed lognormally, while Cu, Cr, Pb and Zn were distributed normally. The results of semivariance analysis showed that Mn was fit for the exponential model, Cr, Pb, Cu and Zn were fit for the linear model. The spatial distribution maps of heavy metal content of the topsoil in this city-transect were produced by means of the universal kriging interpolation. Cu was spatially distributed in ribbon, Cr and Mn were distributed in island, while the spatial distribution of Pb and Zn showed the mixed characteristic of ribbon and island. With the result of soil pollution evaluation, it showed that the pollution of Cr, Zn and Pb was relatively severe. Cr, Zn, Pb, Mn and Cu were significantly correlated, and heavy metal co-contamination existed in soil. Difference of soil heavy metals pollution along "Urban-suburban-rural" was obvious, the special variation of heavy metal concentrations in the soil closely related to the degree of industrialization and urbanization of the city.

  11. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  12. Records of anthropogenic antimony in the glacial snow from the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Kang, Shichang; Chen, Pengfei; Li, Xiaofei; Liu, Yajun; Gao, Tanguang; Guo, Junming; Sillanpää, Mika

    2016-12-01

    Antimony (Sb) is a ubiquitous element in the environment that is potentially toxic at very low concentrations. In this study, surface snow/ice and snowpit samples were collected from four glaciers in the southeastern Tibetan Plateau in June 2015. The concentrations of Sb and other elements were measured in these samples. The results showed that the average concentration of Sb was approximately 2.58 pg g-1 with a range of 1.64-9.20 pg g-1. The average Sb concentration in the study area was comparable to that recorded in a Mt. Everest ice core and higher than that in Arctic and Antarctic snow/ice but much lower than that in Tien Shan and Alps ice cores. Sb presented different variations with other toxic elements (Pb and Cr) and a crustal element (Al) in the three snowpits, which indicated the impact of a different source or post-deposition processes. The enrichment factor of Sb was larger than 10, suggesting that anthropogenic sources provided important contributions to Sb deposition in the glaciers. The Sb in the glacial snow was mainly loaded in the fourth component in principal component analysis, exhibiting discrepancies with crustal elements (Fe and Ca) and other toxic metals (Pb). Backward trajectories revealed that the air mass arriving at the southeastern Tibetan Plateau mostly originated from the Bay of Bengal and the South Asia in June. Thus, pollutants from the South Asia could play an important role in Sb deposition in the studied region. The released Sb from glacier meltwater in the Tibetan Plateau and surrounding areas might pose a risk to the livelihoods and well-being of those in downstream regions.

  13. Ordering and bandgap reduction in InAs{sub 1{minus}x}Sb{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follstaedt, D.M.; Biefeld, R.M.; Kurtz, S.R.

    1995-02-01

    InAs{sub 1{minus}x}Sb{sub x} alloys grown by MBE and MOCVD are found to have reduced emission energies due to CuPt-type order, even for Sb concentrations as low as x = 0.07 ({Delta}E = 25--65 meV). Cross-section TEM examination of such alloys shows the two {l_brace}111{r_brace}{sub B} variants are separated into regions 1--2 {mu}m across with platelet domains 10--40 nm thick on habit planes tilted {approximately}30{center_dot} from the (001) growth surface. Nomarski optical images show a cross-hatched surface pattern expected for lattice-mismatched layers. The local tilt of the surface correlates with the dominant variant in each region. InAs{sub 1{minus}x}Sb{sub x}/In{sub 1{minus}y}Ga{sub y}Asmore » strained-layer superlattices with low Sb content and flat surfaces also show CuPt ordering.« less

  14. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang

    2016-03-01

    The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.

  15. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote environments. The concentrations, however, are not as high as determined in the Northern Hemisphere, suggesting a less drastic impact. That is also reflected in air quality data from the major cities.

  16. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  17. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  18. Preparation of a Ytterbium-tagged Gunshot Residue Standard for Quality Control in the Forensic Analysis of GSR.

    PubMed

    Hearns, Nigel G R; Laflèche, Denis N; Sandercock, Mark L

    2015-05-01

    Preparation of a ytterbium-tagged gunshot residue (GSR) reference standard for scanning electron microscopy and energy dispersive X-ray spectroscopic (SEM-EDS) microanalysis is reported. Two different chemical markers, ytterbium and neodymium, were evaluated by spiking the primers of 38 Special ammunition cartridges (no propellant, no projectile) and discharging them onto 12.7 mm diameter aluminum SEM pin stubs. Following SEM-EDS microanalysis, the majority of tri-component particles containing lead, barium, and antimony (PbBaSb) were successfully tagged with the chemical marker. Results demonstrate a primer spiked with 0.75% weight percent of ytterbium nitrate affords PbBaSb particles characteristic of GSR with a ytterbium inclusion efficiency of between 77% and 100%. Reproducibility of the method was verified, and durability of the ytterbium-tagged tri-component particles under repeated SEM-EDS analysis was also tested. The ytterbium-tagged PbBaSb particles impart synthetic traceability to a GSR reference standard and are suitable for analysis alongside case work samples, as a positive control for quality assurance purposes. © 2015 American Academy of Forensic Sciences.

  19. Magnetic properties and heavy metal contents of automobile emission particulates*

    PubMed Central

    Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705

  20. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.

    PubMed

    Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun

    2014-08-01

    Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control.

Top